1
|
Tian H, Guo H, Liu J, Du Y, Ren H, Li H. Polymeric nanoparticles in radiopharmaceutical delivery strategies. J Mater Chem B 2025; 13:1270-1285. [PMID: 39693049 DOI: 10.1039/d4tb02076f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The potential applications of polymer nanoparticles (NPs) in the biomedical field have been the subject of extensive research. Radiopharmaceuticals that combine radionuclides and drugs using polymer nanoparticles (NPs) as carriers can be externally labelled, internally labelled or interfacially labelled with radionuclides at different sites. Consequently, they can be employed as delivery agents for a range of diseases. Currently, polymeric nanoparticles can deliver isotopes via active targeting, passive targeting and stimuli-responsive release systems. The objective is to deliver drugs and nuclides to the target site in an efficient manner, thereby maximizing efficacy and minimizing side effects. The development of drug release systems has the potential to address the growing social and economic challenges currently facing modern healthcare. This paper presents a detailed synthesis of the methods used to create polymer nanoparticles (NPs) and strategies for the targeted delivery of radiopharmaceuticals with radionuclides labelled at different locations. Additionally, the paper outlines the current progress of polymer NPs for use in imaging and therapeutic applications, as well as the future challenges that lie ahead in this field.
Collapse
Affiliation(s)
- Haidong Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
| | - Huijun Guo
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jiadi Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
| | - Yongpeng Du
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Hongyan Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100039, China
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
| |
Collapse
|
2
|
Ghorpade KB, Agrawal S, Havelikar U. Biomarker Detection and Therapy of Parkinson's and Alzheimer's disease using upconversion based approach: A Comprehensive Review. Ageing Res Rev 2025:102656. [PMID: 39788432 DOI: 10.1016/j.arr.2025.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Neurodegenerative diseases (NDs) are debilitating disorders characterized by the progressive and selective loss of function or structure in the brain and spinal cord. Both chronic and acute forms of these diseases are associated with significant morbidity and mortality, as they involve the degeneration of neurons in various brain regions. Misfolding and aggregation of amyloid proteins into oligomer and β-sheet rich fibrils share as common hallmark and lead to neurotoxicity. Unfortunately, effective curative therapies remain limited, underscoring the urgent need for early diagnosis and differentiation among disorders with overlapping symptoms to guide optimal clinical treatment strategies. Lack of selective probes for detecting soluble amyloid β-oligomer and insoluble amyloid deposits, for example, amyloid β1-42, α-synuclein or Tau proteins, promotes the onset of disease. A variety of sensors are being developed using the Förster resonance transfer mechanism (FRET) effect. However, its efficacy depends on fluorophore donors. Dyes also suffer several drawbacks, including photobleaching, interference from the aggregates, overlapping and blinking effects. Upconversion nanoparticles (UCNPs) solve such issues by acting as alternative fluorescence donors and helping in treating and diagnosing NDs at early stages. In this article, we present the theranostic potential of UCNPs and their critical challenges, along with the future direction. We begin with upconversion sensing mechanism followed with different biomarker detection of NDs using upconversion approach.
Collapse
Affiliation(s)
- Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002 (Uttar Pradesh), India.
| | - Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002 (Uttar Pradesh), India
| | - Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India
| |
Collapse
|
3
|
Lu C, Ouyang J, Zhang J. Core-shell upconversion nanoparticles with suitable surface modification to overcome endothelial barrier. DISCOVER NANO 2024; 19:181. [PMID: 39532756 PMCID: PMC11557796 DOI: 10.1186/s11671-024-04139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Upconversion nanoparticles (UCNPs), capable of converting near-infrared (NIR) light into high-energy emission, hold significant promise for bioimaging applications. However, the presence of tissue barriers poses a challenge to the effective delivery of nanoparticles (NPs) to target organs. In this study, we demonstrate the core-shell UCNPs modified with cationic biopolymer, i.e., N, N-trimethyl chitosan (TMC), can overcome endothelial barriers. The core-shell UCNP is composed of NaGdF4: Yb3+,Tm3+ (16.7 ± 2.7 nm) as core materials and silica (SiO2) shell. The average particle size of UCNPs@SiO2 is estimated at 26.1 ± 3.7 nm. X-ray diffraction (XRD), transmission electron microscopy (TEM) and element mapping shows the formation of hexagonal crystal structure of β-NaGdF4 and elements doping. The surface of UCNPs@SiO2 has been modified with poly(ethylene glycol) (PEG) to enhance water dispersibility and colloidal stability, and further modified with TMC with the zeta potential increasing from -2.1 ± 0.96 mV to 26.9 ± 12.6 mV. No significant toxic effect is imposed to HUVECs when the cells are treated with core-shell UCNPs with surface modification up to 250 µg/mL. The transport ability of the core-shell UCNPs has been evaluated by using the in vitro endothelial barrier model. Transepithelial electrical resistance (TEER) and immunofluorescence staining of tight junction proteins have been employed to verify the integrity of the in vitro endothelial barrier model. The results indicate that the transport percentage of the UCNPs@SiO2 with PEG and TMC through the model is up to 4.56%, which is twice higher than that of the UCNPs@SiO2 with PEG but without TMC and six times that of the UCNPs@SiO2.
Collapse
Affiliation(s)
- Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Jianying Ouyang
- Quantum and Nanotechnologies Research Center, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
- School of Biomedical Engineering, University of Western Ontario, London, ON, 6A 5B9, Canada.
| |
Collapse
|
4
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
5
|
Abstract
Surface-modified lanthanide nanoparticles have been widely developed as an emerging class of therapeutics for cancer treatment because they exhibit several unique properties. First, lanthanide nanoparticles exhibit a variety of diagnostic capabilities suitable for various image-guided therapies. Second, a large number of therapeutic molecules can be accommodated on the surface of lanthanide nanoparticles, which can simultaneously achieve combined cancer therapy. Third, multivalent targeting ligands on lanthanide nanoparticles can be easily modified to achieve high affinity and specificity for target cells. Last but not least, lanthanide nanoparticles can be engineered for spatially and temporally controlled tumor therapy, which is critical for developing precise and personalized tumor therapy. Surface-modified lanthanide-doped nanoparticles are widely used in cancer phototherapy. This is due to their unique optical properties, including large anti-Stokes shifts, long-lasting luminescence, high photostability, and the capacity for near-infrared or X-ray excitation. Upon near-infrared irradiation, these nanoparticles can emit ultraviolet to visible light, which activates photosensitizers and photothermal agents to destroy tumor cells. Surface modification with special ligands that respond to tumor microenvironment changes, such as acidic pH, hypoxia, or redox reactions, can turn lanthanide nanoparticles into a smart nanoplatform for light-guided tumor chemotherapy and gene therapy. Surface-engineered lanthanide nanoparticles can include antigens that elicit tumor-specific immune responses, as well as immune activators that boost immunity, allowing distant and metastatic tumors to be eradicated. The design of ligands and surface chemistry is crucial for improving cancer therapy without causing side effects. In this Account, we classify surface-modified lanthanide nanoparticles for tumor therapy into four main domains: phototherapy, radiotherapy, chemotherapy, and biotherapy. We begin by introducing fundamental bioapplications and then discuss recent developments in tumor phototherapy (photodynamic therapy and photothermal therapy), radiotherapy, chemotherapy, and biotherapy (gene therapy and immunotherapy). We also assess the viability of a variety of strategies for eliminating tumor cells through innovative pathways. Finally, future opportunities and challenges for the development of more efficient lanthanide nanoprobes are discussed.
Collapse
Affiliation(s)
- Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, Singapore 138634, Singapore
| |
Collapse
|
6
|
Xu D, Li C, Li W, Lin B, Lv R. Recent advances in lanthanide-doped up-conversion probes for theranostics. Front Chem 2023; 11:1036715. [PMID: 36846851 PMCID: PMC9949555 DOI: 10.3389/fchem.2023.1036715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Up-conversion (or anti-Stokes) luminescence refers to the phenomenon whereby materials emit high energy, short-wavelength light upon excitation at longer wavelengths. Lanthanide-doped up-conversion nanoparticles (Ln-UCNPs) are widely used in biomedicine due to their excellent physical and chemical properties such as high penetration depth, low damage threshold and light conversion ability. Here, the latest developments in the synthesis and application of Ln-UCNPs are reviewed. First, methods used to synthesize Ln-UCNPs are introduced, and four strategies for enhancing up-conversion luminescence are analyzed, followed by an overview of the applications in phototherapy, bioimaging and biosensing. Finally, the challenges and future prospects of Ln-UCNPs are summarized.
Collapse
Affiliation(s)
| | | | | | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | | |
Collapse
|
7
|
Ji C, Li J, Mei J, Su W, Dai H, Li F, Liu P. Advanced Nanomaterials for the Diagnosis and Treatment of Renal Cell Carcinoma. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chen Ji
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junru Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junyang Mei
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Weiran Su
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Huili Dai
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fengqin Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
8
|
Chintamaneni PK, Nagasen D, Babu KC, Mourya A, Madan J, Srinivasarao DA, Ramachandra RK, Santhoshi PM, Pindiprolu SKSS. Engineered upconversion nanocarriers for synergistic breast cancer imaging and therapy: Current state of art. J Control Release 2022; 352:652-672. [PMID: 36328078 DOI: 10.1016/j.jconrel.2022.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Breast cancer is the most common type of cancer in women and is the second leading cause of cancer-related deaths worldwide. Early diagnosis and effective therapeutic interventions are critical determinants that can improve survival and quality of life in breast cancer patients. Nanotheranostics are emerging interventions that offer the dual benefit of in vivo diagnosis and therapeutics through a single nano-sized carrier. Rare earth metal-doped upconversion nanoparticles (UCNPs) with their ability to convert near-infrared light to visible light or UV light in vivo settings have gained special attraction due to their unique luminescence and tumor-targeting properties. In this review, we have discussed applications of UCNPs in drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and tumor targeting in breast cancer. Further, present challenges and future opportunities for UCNPs in breast cancer treatment have also been mentioned.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | - Dasari Nagasen
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| | - Katta Chanti Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| | - R K Ramachandra
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India; Government Degree College, Chodavaram, Andhra Pradesh, India.
| | - P Madhuri Santhoshi
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| |
Collapse
|
9
|
De R, Song YH, Mahata MK, Lee KT. pH-responsive polyelectrolyte complexation on upconversion nanoparticles: a multifunctional nanocarrier for protection, delivery, and 3D-imaging of therapeutic protein. J Mater Chem B 2022; 10:3420-3433. [PMID: 35389393 DOI: 10.1039/d2tb00246a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The delicate tertiary structure of proteins, their susceptibility to heat- and enzyme-induced irreversible denaturation, and their tendency to get accumulated at the cell membrane during uptake are daunting challenges in proteinaceous therapeutic delivery. Herein, a polyelectrolyte complex having encapsulated therapeutic protein has been designed on the surface of upconverting luminescent nanoparticles (NaYF4:20%Yb3+,2%Er3+). This nanosized complex system has been found to overcome the challenges of protein aggregation at the cell membrane. It has also defended the cargo from denaturation against (a) enzymatic action of proteinase K and (b) heat (up to 60 °C). Additionally, the nanoparticles at the core of the loaded carrier served as near-infrared (980 nm) responsive probe to accomplish extended-duration 3D imaging during protein delivery. The outer layer of polymer played pivotal role to protect/retrieve the protein structure from denaturation as investigated by circular dichroism studies. Both the masked surface-charges of protein and the nanoscale size of the loaded carrier have facilitated their efficient passage through the cell membrane as observed through 3D images/videos. This nanocarrier is the first of its kind for direct delivery of protein. Thus, the findings can be useful to protect and transport various proteinaceous materials to overcome challenges of accumulation at the cell-membrane and low-temperature storage, as nature does.
Collapse
Affiliation(s)
- Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea. .,Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Yo Han Song
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| | - Manoj Kumar Mahata
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea. .,Drittes Physikalisches Institut - Biophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| |
Collapse
|
10
|
Chen T, Shang Y, Zhu Y, Hao S, Yang C. Activators Confined Upconversion Nanoprobe with Near-Unity Förster Resonance Energy Transfer Efficiency for Ultrasensitive Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19826-19835. [PMID: 35438973 DOI: 10.1021/acsami.2c00604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) as energy donors for Förster resonance energy transfer (FRET) are promising in biosensing, bioimaging, and therapeutic applications. However, traditional FRET-based UC nanoprobes show low efficiency and poor sensitivity because only partial activators in UCNPs possessing suitable distance with energy acceptors (<10 nm) can activate the FRET process. Herein, a novel excited-state energy distribution-modulated upconversion nanostructure is explored for highly efficient FRET. Integration of the optimal 4% Er3+ doped shell and 100% Yb3+ core achieves ∼4.5-fold UC enhancement compared with commonly used NaYF4:20%Yb3+,2%Er3+ nanoparticles, enabling maximum donation of excitation energy to an acceptor. The spatial confinement strategy shortens significantly the energy-transfer distance (∼4.5 nm) and thus demonstrates experimentally a 91.9% FRET efficiency inside the neutral red (NR)-conjugated NaYbF4@NaYF4:20%Yb3+,4%Er3+ nanoprobe, which greatly outperforms the NaYbF4@NaYF4:20%Yb3+,4%Er3+@SiO2@NR nanoprobe (27.7% efficiency). Theoretical FRET efficiency calculation and in situ single-nanoparticle FRET measurement further confirm the excellent energy-transfer behavior. The well-designed nanoprobe shows a much lower detection limit of 0.6 ng/mL and higher sensitivity and is superior to the reported NO2- probes. Our work provides a feasible strategy to exploit highly efficient FRET-based luminescence nanoprobes for ultrasensitive detection of analytes.
Collapse
Affiliation(s)
- Tong Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yunfei Shang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuyan Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shuwei Hao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Chunhui Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
11
|
Liu S, Shen C, Jiang D, Qian C, Yang Z, Wang J, Ye W. Cascade Tumor Therapy Platform for Sensitized Chemotherapy and Penetration Enhanced Photothermal Therapy. Macromol Biosci 2021; 22:e2100429. [PMID: 34910842 DOI: 10.1002/mabi.202100429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Indexed: 12/24/2022]
Abstract
As a stand-alone therapy strategy may not be sufficient for effective cancer treatment and a combination of chemotherapy with other therapies is a main trend in cancer treatment. A combination of chemotherapy and photothermal therapy (PTT) is reported here to achieve the goal of cascade multistage cancer treatment. A thermally responsive amphiphilic copolymer is designed and then a CuS nanoparticles (NPs)-based carbon monoxide (CO) photoinduced release system and doxorubicin (Dox) are encapsulated to construct the nanomedicine. The large-sized nanomedicine can accumulate in tumors after long circulation in vivo and will generate heat to act as a photothermal therapeutic agent by near infrared (NIR) light. Moreover, synergically release of CO and Dox is achieved and acted as a sensitized chemotherapeutic agent. The combination of PTT and chemotherapy sensitization can effectively eliminate active tumor cells in the periphery of the tumor. CuS NPs are also released after the degradation of nanomedicine and small-sized CuS NPs possess better tumor penetration and achieve penetration-enhanced PTT by further NIR irradiation, thereby effectively eliminating tumor cells inside solid tumors. Hence, cascade multistage cancer treatment of "combined PTT and chemotherapy sensitization"-"penetration-enhanced PTT" is achieved, and tumor cells are comprehensively and effectively eliminated.
Collapse
Affiliation(s)
- Sen Liu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.,Institute of Materials Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Can Shen
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Dongsheng Jiang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Cheng Qian
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zhongmei Yang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jianquan Wang
- Institute of Materials Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Wei Ye
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| |
Collapse
|
12
|
Liu C, Shao H, Li D, Sui X, Liu N, Rahman SU, Li X, Arany PR. Safety and efficacy of citric acid-upconverting nanoparticles for multimodal biological imaging in BALB/c mice. Photodiagnosis Photodyn Ther 2021; 36:102485. [PMID: 34411736 DOI: 10.1016/j.pdpdt.2021.102485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/03/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
There has been significant progress with rare-earth coated upconversion nanoparticles (UCNPs) representing a promising new generation of contrast agents for biomedical applications. However, in vivo biological safety remains poorly investigated. This work examined citric acid-UCNP (NaYF4:Yb3+/Gd3+, ∼ 5 nm, Cit-UCNP) generated as contrast agents for multimodal imaging with concurrent magnetic resonance (MRI) and X-ray computed tomography (CT). We first examined the in vitro cytotoxicity and efficacy of Cit-UCNPs as a contrast agent. We then performed a systematic investigation of their in vivo biodistribution and biocompatibility. Our results noted that Cit-UCNPs have minimal toxicity and demonstrated significant potential as contrast agents for multimodal biomedical imaging. This study indicates Cit-UCNPs could be a valuable addition to enhance long-term targeted diagnostic and prognostic multimodal clinical imaging approaches.
Collapse
Affiliation(s)
- Cheng Liu
- Fourth Affiliated Hospital of Harbin Medical University, China
| | - Hua Shao
- Fourth Affiliated Hospital of Harbin Medical University, China
| | - Dan Li
- Fourth Affiliated Hospital of Harbin Medical University, China
| | - Xin Sui
- Third Affiliated Hospital of Qiqihar Medical College, China
| | | | - Saeed Ur Rahman
- Institute of Basic Medical Sciences, Khyber Medical University, Pakistan
| | - Xiang Li
- Fourth Affiliated Hospital of Harbin Medical University, China.
| | - Praveen R Arany
- Oral Biology, Suregry and Biomedical Engineering, University at Buffalo, USA.
| |
Collapse
|
13
|
Ansari AA, Parchur AK, Thorat ND, Chen G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Ansari AA, Thakur VK, Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213821] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Li H, Wang X, Ohulchanskyy TY, Chen G. Lanthanide-Doped Near-Infrared Nanoparticles for Biophotonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000678. [PMID: 32638426 DOI: 10.1002/adma.202000678] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 05/27/2023]
Abstract
Light in the near-infrared (NIR) spectral region is increasingly utilized in bioapplications, providing deeper penetration in biological tissues owing to the lower absorption and scattering in comparison with light in the visible range. Lanthanide-doped luminescent nanoparticles with excitation and/or emission in the NIR range have recently attracted tremendous attention as one of the prime candidates for noninvasive biological applications due to their unique optical properties, such as large Stokes shift, spectrally sharp luminescence emissions, long luminescence lifetimes, and excellent photostability. Herein, recent advances of lanthanide-doped nanoparticles with NIR upconversion or downshifting luminescence and their uses in cutting-edge biophotonic applications are presented. A set of efficient strategies for overcoming the fundamental limit of low luminescence brightness of lanthanide-doped nanoparticles is introduced. An in-depth literature review of their state-of-art biophotonics applications is also included, showing their superiority for high-resolution imaging, single-nanoparticle-level detection, and efficacy for tissue-penetrating diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering and Key Laboratory of Micro-Systems and Micro-Structures, Ministry of Education and State Key Laboratory of Urban Water, Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering and Key Laboratory of Micro-Systems and Micro-Structures, Ministry of Education and State Key Laboratory of Urban Water, Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Tymish Y Ohulchanskyy
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering and Key Laboratory of Micro-Systems and Micro-Structures, Ministry of Education and State Key Laboratory of Urban Water, Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
16
|
Synthesis, optical properties and toxic potentiality of photoluminescent lanthanum oxide nanospheres. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
18
|
Peng C, Huang Y, Zheng J. Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. J Control Release 2020; 322:64-80. [PMID: 32194171 PMCID: PMC8696951 DOI: 10.1016/j.jconrel.2020.03.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/27/2020] [Accepted: 03/15/2020] [Indexed: 01/10/2023]
Abstract
Physiological barriers encountered in the clinical translation of cancer nanomedicines inspire the community to more deeply understand nano-bio interactions in not only tumor microenvironment but also entire body and develop new nanocarriers to tackle these barriers. Renal clearable nanocarriers are one kind of these newly emerged drug delivery systems (DDSs), which enable drugs to rapidly penetrate into the tumor cores with no need of long blood retention and escape macrophage uptake in the meantime they can also enhance body elimination of non-targeted anticancer drugs. As a result, they can improve therapeutic efficacies and reduce side effects of anticancer drugs. Not limited to anticancer drugs, diagnostic agents can also be achieved with these renal clearable DDSs, which might also be applied to improve the precision in the gene editing and immunotherapy in the future.
Collapse
Affiliation(s)
- Chuanqi Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
19
|
Qiao R, Huang X, Qin Y, Li Y, Davis TP, Hagemeyer CE, Gao M. Recent advances in molecular imaging of atherosclerotic plaques and thrombosis. NANOSCALE 2020; 12:8040-8064. [PMID: 32239038 DOI: 10.1039/d0nr00599a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As the complications of atherosclerosis such as myocardial infarction and stroke are still one of the leading causes of mortality worldwide, the development of new diagnostic tools for the early detection of plaque instability and thrombosis is urgently needed. Advanced molecular imaging probes based on functional nanomaterials in combination with cutting edge imaging techniques are now paving the way for novel and unique approaches to monitor the inflammatory progress in atherosclerosis. This review focuses on the development of various molecular probes for the diagnosis of plaques and thrombosis in atherosclerosis, along with perspectives of their diagnostic applications in cardiovascular diseases. Specifically, we summarize the biological targets that can be used for atherosclerosis and thrombosis imaging. Then we describe the emerging molecular imaging techniques based on the utilization of engineered nanoprobes together with their challenges in clinical translation.
Collapse
Affiliation(s)
- Ruirui Qiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Yan Y, Ding L, Liu L, Abualrejal MMA, Chen H, Wang Z. Renal-clearable hyaluronic acid functionalized NaGdF 4 nanodots with enhanced tumor accumulation. RSC Adv 2020; 10:13872-13878. [PMID: 35492986 PMCID: PMC9051644 DOI: 10.1039/c9ra08974h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Integration of high tumor-targeting capacity, controlling in vivo transport and low normal tissue retention into one engineered nanoparticle is a critical issue for future clinically translatable anti-cancer nanomedicines. Herein, hyaluronic acid functionalized 3.8 nm NaGdF4 nanodots (named NaGdF4 ND@HAs) have been prepared through conjugation of tryptone capped NaGdF4 nanodots (NaGdF4 ND@tryptone) with hyaluronic acid (HA, a naturally occurring glycosaminoglycan), which can recognize the overexpressed CD44 on cancer cell membranes. The as-prepared NaGdF4 ND@HAs have good paramagnetic properties (longitudinal relaxivity (r 1) = 7.57 × 10-3 M S-1) and low cytotoxicity. The in vivo experimental results demonstrate that the NaGdF4 ND@HAs can not only efficiently accumulate in mouse-bearing MDA-MB-231 tumors (ca. 5.3% injection dosage (ID) g-1 at 2 h post-injection), but also have an excellent renal clearance efficiency (ca. 75% injection dosage (ID) at 24 h post-injection). The as-prepared NaGdF4 ND@HAs have good paramagnetic properties with enhanced tumor-targeting capacity, which provides a useful strategy for the preparation of renal clearable magnetic resonance imaging (MRI) contrast agents for tumors.
Collapse
Affiliation(s)
- Yining Yan
- Department of Radiology, China-Japan Union Hospital of Jilin University Xiantai Street Changchun 130033 P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Lei Ding
- Department of Radiology, China-Japan Union Hospital of Jilin University Xiantai Street Changchun 130033 P. R. China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University Xiantai Street Changchun 130033 P. R. China
| | - Murad M A Abualrejal
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemical Engineering, University of Science and Technology of China Road Baohe District Hefei Anhui 230026 P. R. China
| | - Hongda Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemical Engineering, University of Science and Technology of China Road Baohe District Hefei Anhui 230026 P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
21
|
Prasad A, Rao A, Prakash GV. A study on up-conversion and energy transfer kinetics of KGdF4:Yb3+/Er3+ nanophosphors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Datta P, Ray S. Nanoparticulate formulations of radiopharmaceuticals: Strategy to improve targeting and biodistribution properties. J Labelled Comp Radiopharm 2020; 63:333-355. [PMID: 32220029 DOI: 10.1002/jlcr.3839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
Abstract
Application of nanotechnology principles in drug delivery has created opportunities for treatment of several diseases. Nanotechnology offers the advantage of overcoming the adverse biopharmaceutics or pharmacokinetic properties of drug molecules, to be determined by the transport properties of the particles themselves. Through the manipulation of size, shape, charge, and type of nanoparticle delivery system, variety of distribution profiles may be obtained. However, there still exists greater need to derive and standardize definitive structure property relationships for the distribution profiles of the delivery system. When applied to radiopharmaceuticals, the delivery systems assume greater significance. For the safety and efficacy of both diagnostics and therapeutic radiopharmaceuticals, selective localization in target tissue is even more important. At the same time, the synthesis and fabrication reactions of radiolabelled nanoparticles need to be completed in much shorter time. Moreover, the extensive understanding of the several interesting optical and magnetic properties of materials in nanoscale provides for achieving multiple objectives in nuclear medicine. This review discusses the various nanoparticle systems, which are applied for radionuclides and analyses the important bottlenecks that are required to be overcome for their more widespread clinical adaptation.
Collapse
Affiliation(s)
- Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
| | | |
Collapse
|
23
|
Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115646] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.
Collapse
Affiliation(s)
- Jiuyang He
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Zhang
- Universal Medical Imaging Diagnostic Research Center, Shanghai, 200233, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Minmin Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
| | - Jie Chen
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Quan Lu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Ryan Baldridge
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
25
|
All AH, Zeng X, Teh DBL, Yi Z, Prasad A, Ishizuka T, Thakor N, Hiromu Y, Liu X. Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803474. [PMID: 31432555 DOI: 10.1002/adma.201803474] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Optogenetics is an optical technique that exploits visible light for selective neuromodulation with spatio-temporal precision. Despite enormous effort, the effective stimulation of targeted neurons, which are located in deeper structures of the nervous system, by visible light, remains a technical challenge. Compared to visible light, near-infrared illumination offers a higher depth of tissue penetration owing to a lower degree of light attenuation. Herein, an overview of advances in developing new modalities for neural circuitry modulation utilizing upconversion-nanoparticle-mediated optogenetics is presented. These developments have led to minimally invasive optical stimulation and inhibition of neurons with substantially improved selectivity, sensitivity, and spatial resolution. The focus is to provide a comprehensive review of the mechanistic basis for evaluating upconversion parameters, which will be useful in designing, executing, and reporting optogenetic experiments.
Collapse
Affiliation(s)
- Angelo Homayoun All
- Department of Biomedical Engineering & Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xiao Zeng
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Daniel Boon Loong Teh
- Department of Medicine & Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, 117456, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Ankshita Prasad
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Toru Ishizuka
- Department of Integrative Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| | - Nitish Thakor
- Department of Biomedical Engineering & Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Medicine & Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yawo Hiromu
- Department of Integrative Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
26
|
Meynaghizadeh-Zargar R, Salehpour F, Hamblin MR, Mahmoudi J, Sadigh-Eteghad S. Potential Application of Upconverting Nanoparticles for Brain Photobiomodulation. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:596-605. [PMID: 31335302 DOI: 10.1089/photob.2019.4659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Brain photobiomodulation (PBM) describes the use of visible to near-infrared light for modulation or stimulation of the central nervous system in both healthy individuals and diseased conditions. Although the transcranial approach to delivering light to the head is the most common technique to stimulate the brain, delivery of light to deeper structures in the brain is still a challenge. The science of nanoparticle engineering in combination with biophotonic excitation could provide a way to overcome this problem. Upconversion is an anti-Stokes process that is capable of transforming low energy photons that penetrate tissue well to higher energy photons with a greater biological effect, but poor tissue penetration. Wavelengths in the third optical window are optimal for light penetration into brain tissue, followed by windows II, IV, and I. The combination of trivalent lanthanide ions within a crystalline host provides a nanostructure that exhibits the upconversion phenomenon. Upconverting nanoparticles (UCNPs) have been successfully used in various medical fields. Their ability to cross the brain-blood barrier and their low toxicity make them a good candidate for application in brain disorders. It is possible that delivery of UCNPs to the brainstem or deeper parts of the cerebral tissue, followed by irradiation using light wavelengths with good tissue penetration properties, could allow more efficient PBM of the brain.
Collapse
Affiliation(s)
| | - Farzad Salehpour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,ProNeuroLIGHT LLC, Phoenix, Arizona
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Wu B, Li Y, Nie N, Xu J, An C, Liu Y, Wang Y, Chen Y, Gong L, Li Q, Giusto E, Bunpetch V, Zhang D, Ouyang H, Zou X. Nano genome altas (NGA) of body wide organ responses. Biomaterials 2019; 205:38-49. [DOI: 10.1016/j.biomaterials.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/01/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
28
|
Functionalizing NaGdF4:Yb,Er Upconverting Nanoparticles with Bone-Targeting Phosphonate Ligands: Imaging and In Vivo Biodistribution. INORGANICS 2019. [DOI: 10.3390/inorganics7050060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) transform near infrared light (NIR) into higher-energy UV and visible light by multiphotonic processes. Owing to such unique feature, UCNPs have found application in optical imaging and have been investigated for the NIR light activation of prodrugs, including transition metal complexes of interest in photochemotherapy. Besides, UCNPs also function as magnetic resonance imaging (MRI) contrast agents and positron emission tomography (PET) probes when labelled with radionuclides such as 18F. In this contribution, we report on a new series of phosphonate-functionalized NaGdF4:Yb,Er UCNPs that show affinity for hydroxyapatite (inorganic constituent of bones), and we discuss their potential as bone targeting multimodal (MRI/PET) imaging agents. In vivo biodistribution studies of 18F-labelled NaGdF4:Yb,Er UCNPs in rats indicate that surface functionalization with phosphonates favours the accumulation of nanoparticles in bones over time. PET results reveal leakage of 18F− for phosphonate-functionalized NaGdF4:Yb,Er and control nanomaterials. However, Gd was detected in the femur for phosphonate-capped UCNPs by ex vivo analysis using ICP-MS, corresponding to 6–7% of the injected dose.
Collapse
|
29
|
Li J, Huang J, Ao Y, Li S, Miao Y, Yu Z, Zhu L, Lan X, Zhu Y, Zhang Y, Yang X. Synergizing Upconversion Nanophotosensitizers with Hyperbaric Oxygen to Remodel the Extracellular Matrix for Enhanced Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22985-22996. [PMID: 29877702 DOI: 10.1021/acsami.8b07090] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photodynamic therapy (PDT) holds great promise as a noninvasive and selective cancer therapeutic treatment in preclinical research and clinical practice; however, it has limited efficacy in the ablation of deep-seated tumor because of hypoxia-associated circumstance and poor penetration of photosensitizers to cancer cells away from the blood vessels. To tackle the obstacles, we propose a therapeutic strategy that synergizes upconversion nanophotosensitizers (UNPSs) with hyperbaric oxygen (HBO) to remodel the extracellular matrix for enhanced photodynamic cancer therapy. The UNPSs are designed to have an Nd3+-sensitized sandwiched structure, wherein the upconversion core serves as light transducers to transfer energy to the neighboring photosensitizers to produce reactive oxygen species (ROS). With HBO, photodynamic process can generate abundant ROS in the intrinsically hypoxic tumor. It is revealed for the first time that HBO-assisted PDT decomposes collagen in the extracellular matrix of tumor and thus facilitates the diffusion of oxygen and penetration of UNPSs into the deeper area of tumor. Such a synergic effect eventually results in a significantly enhanced therapeutic efficacy at a low laser power density as compared with that using UNPSs alone. In view of its good biosafety, the HBO-assisted and UNPSs-mediated PDT provides new possibilities for treatment of solid tumors.
Collapse
Affiliation(s)
- Jingqiu Li
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Jinzhao Huang
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Yanxiao Ao
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Shiyu Li
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Yu Miao
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637459 , Singapore
| | - Lingtao Zhu
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Province Key Laboratory of Molecular Imaging , Huazhong University of Science and Technology , Wuhan 430022 , P. R. China
| | - Yanhong Zhu
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Yan Zhang
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Xiangliang Yang
- National Research Centre for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| |
Collapse
|
30
|
Sun L, Wei R, Feng J, Zhang H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Ansari L, Jaafari MR, Bastami TR, Malaekeh-Nikouei B. Improved anticancer efficacy of epirubicin by magnetic mesoporous silica nanoparticles: in vitro and in vivo studies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:594-606. [PMID: 29688064 DOI: 10.1080/21691401.2018.1464461] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of magnetic nanoparticles as delivery carriers to magnetically accumulate anticancer drug in cancer tissue has attracted immense interest. In the present study, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite core and silica shell were synthesized. The obtained MMSNs were characterized by DLS, XRD, FT-IR, TEM and VSM in order to investigate the nanoparticle characteristics. With the focus on in vivo validation of such magnetic drug delivery systems, we selected epirubicin (EPI) as the drug. The anticancer properties of EPI-loaded MMSNs were evaluated in a C-26 colon carcinoma model. Alongside monitoring of drug in the tissues with animal imaging system, the tissue distribution was also determined quantitavely. The average size of MMSNs determined with TEM images was about 18.68 ± 2.31 nm. The cellular uptake test indicated that geometric mean fluorescence intensity (MFI) of cells treated with MMSN + EPI in presence of external magnetic field was increasing 27% compared with free EPI. In addition, treatment with drug-loaded MMSNs with the aid of external magnetic gradient had significantly higher inhibition efficacy towards tumor growth than the free EPI treated mice. The targeted drug delivery through external magnet-attraction using EPI-loaded MMSNs resulted in high tumor cell uptake, which leads to elimination of cancer cells effectively.
Collapse
Affiliation(s)
- Legha Ansari
- a Nanotechnology Research Center , Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahmoud Reza Jaafari
- b Biotechnology Research Center , Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Tahereh Rohani Bastami
- c Department of Chemical Engineering, Faculty of Engineering , Quchan University of Advanced Technology , Quchan , Iran
| | - Bizhan Malaekeh-Nikouei
- a Nanotechnology Research Center , Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
32
|
Li C, Xu L, Liu Z, Li Z, Quan Z, Al Kheraif AA, Lin J. Current progress in the controlled synthesis and biomedical applications of ultrasmall (<10 nm) NaREF 4 nanoparticles. Dalton Trans 2018. [PMID: 29527602 DOI: 10.1039/c8dt00258d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The design and fabrication of rare earth upconversion nanoparticle (UCNP)-based nanomedical platforms have evoked increasing interest. However, their bio-safety is always the most worrisome problem. Most nanoparticles can accumulate in the internal organs, leading to acute toxicity, a long-term inflammatory response, or even fibrosis and cancer. In contrast, ultrasmall (sub-10 nm) nanoparticles have minimal safety risk because they can escape from macrophages, pass biological barriers, and be easily degraded or excreted from the body. In this review, we mainly introduce new progress in preparation strategies, imaging and drug delivery with regards to ultrasmall UCNPs, with an emphasis on rare earth fluorides, NaREF4. Finally, we discuss the future outlook and challenges relating to ultrasmall UCNPs.
Collapse
Affiliation(s)
- Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Sun T, Ai F, Zhu G, Wang F. Upconversion in Nanostructured Materials: From Optical Tuning to Biomedical Applications. Chem Asian J 2018; 13:373-385. [DOI: 10.1002/asia.201701660] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Tianying Sun
- Department Materials Science and Engineering; City University of Hong Kong; 83 Tat Chee Avenue Hong Kong SAR China
- City Universities of Hong Kong Shenzhen Research Institute; Shenzhen 518057 China
| | - Fujin Ai
- Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue Hong Kong SAR China
- City Universities of Hong Kong Shenzhen Research Institute; Shenzhen 518057 China
| | - Guangyu Zhu
- Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue Hong Kong SAR China
- City Universities of Hong Kong Shenzhen Research Institute; Shenzhen 518057 China
| | - Feng Wang
- Department Materials Science and Engineering; City University of Hong Kong; 83 Tat Chee Avenue Hong Kong SAR China
- City Universities of Hong Kong Shenzhen Research Institute; Shenzhen 518057 China
| |
Collapse
|
34
|
Chen L, Chen J, Qiu S, Wen L, Wu Y, Hou Y, Wang Y, Zeng J, Feng Y, Li Z, Shan H, Gao M. Biodegradable Nanoagents with Short Biological Half-Life for SPECT/PAI/MRI Multimodality Imaging and PTT Therapy of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702700. [PMID: 29194958 DOI: 10.1002/smll.201702700] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Rapid clearance of nanoagents is a critical criterion for their clinical translation. Herein, it is reported that biodegradable and renal clearable nanoparticles are potentially useful for image-guided photothermal therapy of tumors. The multifunctional nanoparticles with excellent colloidal stability are synthesized through coordination reactions between Fe3+ ions and gallic acid (GA)/polyvinyl pyrrolidone (PVP) in aqueous solution. Detailed characterization reveals that the resulting Fe3+ /GA/PVP complex nanoparticles (FGPNs) integrate strong near-infrared absorption with paramagnetism well. As a result, the FGPNs present outstanding performance for photoacoustic imaging and magnetic resonance imaging of tumors, and outstanding photothermal ablation effect for tumor therapy owing to their high photothermal conversion efficiency. More importantly, the pharmacokinetic behaviors of the FGPNs determined through 125 I labeling suggest that the FGPNs are readily degraded in vivo showing a short biological half-life, and the decomposition products are excreted through either renal clearance pathway or bowel elimination pathway via stomach, which highlights the characteristics of the current multifunctional theranostic agent and their potential in clinical translation.
Collapse
Affiliation(s)
- Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Jiayao Chen
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Shanshan Qiu
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Ling Wen
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yan Wu
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yi Hou
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yong Wang
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yuan Feng
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Hong Shan
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, P. R. China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
35
|
Chen J, Zhang D, Zou Y, Wang Z, Hao M, Zheng M, Xue X, Pan X, Lu Y, Wang J, Shi B. Developing a pH-sensitive Al(OH)3 layer-mediated UCNP@Al(OH)3/Au nanohybrid for photothermal therapy and fluorescence imaging in vivo. J Mater Chem B 2018; 6:7862-7870. [DOI: 10.1039/c8tb02213e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A pH-responsive and hydrophilic Al(OH)3 mediating layer makes possible the promising integration of photothermal therapy and fluorescence imaging based on upconversion nanoparticles (UCNPs).
Collapse
Affiliation(s)
- Jian Chen
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Dongya Zhang
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Yan Zou
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Zhongjie Wang
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Mingcong Hao
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy
- Nankai University
- Tianjin 300350
- China
| | - Xiaoxi Pan
- School of Food Science and Nutrition
- University of Leeds
- Leeds
- UK
| | - Yiqing Lu
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Jiefei Wang
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation
- Henan University
- Kaifeng 475004
- China
| |
Collapse
|
36
|
Mancic L, Djukic-Vukovic A, Dinic I, Nikolic MG, Rabasovic MD, Krmpot AJ, Costa AMLM, Marinkovic BA, Mojovic L, Milosevic O. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv 2018; 8:27429-27437. [PMID: 35540002 PMCID: PMC9083799 DOI: 10.1039/c8ra04178d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/25/2018] [Indexed: 11/21/2022] Open
Abstract
The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery. Their successful conjugation to biocompatible agents is crucial for specific molecules recognition and usually requires multiple steps which may lead to low reproducibility. Here, we report a simple and rapid one-step procedure for in situ synthesis of biocompatible amino-functionalized NaYF4:Yb,Er UCNPs that could be used for NIR-driven fluorescence cell labeling. X-ray diffraction showed that UCNPs synthesized through chitosan-assisted solvothermal processing are monophasic and crystallize in a cubic α phase. Scanning and transmission electron microscopy revealed that the obtained crystals are spherical in shape with a mean diameter of 120 nm. Photoluminescence spectra indicated weaker green (2H11/2, 4S3/2 → 4I15/2) and stronger red emission (4F9/2 → 4I15/2), as a result of enhanced non-radiative 4I11/2 → 4I13/2 Er3+ relaxation. The presence of chitosan groups at the surface of UCNPs was confirmed by Fourier transform infrared spectroscopy, thermogravimetry and X-ray photoelectron spectroscopy. This provides their enhanced internalization in cells, at low concentration of 10 μg ml−1, without suppression of cell viability after 24 h of exposure. Furthermore, upon 980 nm laser irradiation, the amino-functionalized NaYF4:Yb,Er UCNPs were successfully used in vitro for labeling of two human cell types, normal gingival and oral squamous cell carcinoma. The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery.![]()
Collapse
Affiliation(s)
- Lidija Mancic
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts
- Belgrade
- Serbia
| | - Aleksandra Djukic-Vukovic
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- University of Belgrade
- Serbia
| | - Ivana Dinic
- Innovation Center of the Faculty of Chemistry
- University of Belgrade
- Serbia
| | - Marko G. Nikolic
- Photonic Center
- Institute of Physics Belgrade
- University of Belgrade
- Belgrade
- Serbia
| | - Mihailo D. Rabasovic
- Photonic Center
- Institute of Physics Belgrade
- University of Belgrade
- Belgrade
- Serbia
| | - Aleksandar J. Krmpot
- Photonic Center
- Institute of Physics Belgrade
- University of Belgrade
- Belgrade
- Serbia
| | - Antonio M. L. M. Costa
- Department of Chemical and Materials Engineering
- Pontifical Catholic University of Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Bojan A. Marinkovic
- Department of Chemical and Materials Engineering
- Pontifical Catholic University of Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Ljiljana Mojovic
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- University of Belgrade
- Serbia
| | - Olivera Milosevic
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts
- Belgrade
- Serbia
| |
Collapse
|
37
|
Controlled Synthesis of Monodisperse Hexagonal NaYF₄:Yb/Er Nanocrystals with Ultrasmall Size and Enhanced Upconversion Luminescence. Molecules 2017; 22:molecules22122113. [PMID: 29194418 PMCID: PMC6150031 DOI: 10.3390/molecules22122113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 11/21/2022] Open
Abstract
The ability to synthesize upconversion nanocrystals (UCNCs) with tailored upconversion luminescence and controlled size is of great importance for biophotonic applications. However, until now, limited success has been met to prepare bright, ultrasmall, and monodispersed β-NaYF4:Yb3+/Er3+ UCNCs. In this work, we report on a synthetic method to produce monodisperse hexagonal NaYF4:Yb3+/Er3+ nanocrystals of ultrasmall size (5.4 nm) through a precise control of the reaction temperature and the ratio of Na+/Ln3+/F−. We determined the optimum activator concentration of Er3+ to be 6.5 mol % for these UCNCs, yielding about a 5-fold higher upconversion luminescence (UCL) intensity than the commonly used formula of NaYF4:30% Yb3+/2% Er3+. Moreover, a thin epitaxial shell (thickness, 1.9 nm) of NaLnF4 (Ln = Y, Gd, Lu) was grown onto these ultrasmall NaYF4:Yb3+/Er3+ NCs, enhancing its UCL by about 85-, 70- and 50-fold, respectively. The achieved sub-10-nm core and core–shell hexagonal NaYF4:Yb3+/Er3+ UCNCs with enhanced UCL have strong potential applications in bioapplications such as bioimaging and biosensing.
Collapse
|
38
|
Lai WF, Rogach AL, Wong WT. Molecular design of upconversion nanoparticles for gene delivery. Chem Sci 2017; 8:7339-7358. [PMID: 29163885 PMCID: PMC5672820 DOI: 10.1039/c7sc02956j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Due to their large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, upconversion nanoparticles (UCNPs) have attracted an increasing amount of research interests, and have shown great potential for enhancing the practical utility of gene therapy, whose versatility has been limited by existing gene delivery technologies that are basically mono-functional in nature. Despite this, up to now in-depth analysis of the development of UCNPs for gene delivery has been scant in the literature, even though there has been an upsurge of reviews on the chemistry of UCNPs and their applications in bioimaging and drug delivery. To fill this gap, this review aims to present the latest advances in the development and applications of UCNPs as gene carriers. Prior to describing the prominent works published in the field, a critical view on the properties, chemistry and molecular design of UCNPs for gene delivery is provided. With a synopsis of the recent advances in UCNP-mediated gene delivery, challenges and opportunities could be illuminated for clinical translation of works in this nascent field of research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences , Health Science Centre , Shenzhen University , Shenzhen , China
- Department of Applied Biology & Chemical Technology , The Hong Kong Polytechnic University , Hong Kong . ;
| | - Andrey L Rogach
- Department of Materials Science and Engineering & Centre for Functional Photonics (CFP) , City University of Hong Kong , Hong Kong
| | - Wing-Tak Wong
- Department of Applied Biology & Chemical Technology , The Hong Kong Polytechnic University , Hong Kong . ;
| |
Collapse
|
39
|
Gulzar A, Xu J, Yang P, He F, Xu L. Upconversion processes: versatile biological applications and biosafety. NANOSCALE 2017; 9:12248-12282. [PMID: 28829477 DOI: 10.1039/c7nr01836c] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lanthanide-doped photon upconverting nanomaterials are evolving as a new class of imaging contrast agents, offering highly promising prospects in the area of biomedical applications. Owing to their ability to convert long-wavelength near-infrared excitation radiation into shorter-wavelength emissions, these nanomaterials are well suited to yield properties of low imaging background, large anti-Stokes shift, along with high optical penetration depth of NIR light for deep tissue optical imaging or light-activated drug release and therapy. Such materials have potential for significant advantages in analytical applications compared to molecular fluorophores and quantum dots. The use of IR radiation as an excitation source diminishes autofluorescence and scattering of excitation radiation, which leads to a reduction of background in optical experiments. The upconverting nanocrystals show exceptional photostability and are constituted of materials that are not significantly toxic to biological organisms. Excitation at long wavelengths also minimizes damage to biological materials. In this detailed review, various mechanisms operating for the upconversion process, and methods that are utilized to synthesize and decorate upconverting nanoparticles are investigated to elucidate by what means absorption and emission can be tuned. Up-to-date reports concerning cellular internalization, biodistribution, excretion, cytotoxicity and in vivo toxic effects of UCNPs are discussed. Specifically, studies which assessed the relationship between the chemical and physical properties of UCNPs and their biodistribution, excretion, and toxic effects are reviewed in detail. Finally, we also deliberate the challenges of guaranteeing the biosafety of UCNPs in vivo.
Collapse
Affiliation(s)
- Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | | | | | | | | |
Collapse
|
40
|
Gao Y, Liu L, Shen B, Chen X, Wang L, Wang L, Feng W, Huang C, Li F. Amphiphilic PEGylated Lanthanide-Doped Upconversion Nanoparticles for Significantly Passive Accumulation in the Peritoneal Metastatic Carcinomatosis Models Following Intraperitoneal Administration. ACS Biomater Sci Eng 2017; 3:2176-2184. [PMID: 33440565 DOI: 10.1021/acsbiomaterials.7b00416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inorganic nanoparticles have emerged as attractive materials for cancer research, because of their exceptional physical properties and multifunctional engineering. However, inorganic nanoparticle accumulation in the tumors located in the abdominal cavity after intravenous (IV) administration is confined because of the peritoneum-plasma barrier. To improve this situation, we developed lanthanide-doped upconversion nanoparticles (UCNPs), coated by amphiphilic polyethylene glycol (P-PEG), serving as a representative of inorganic nanoparticles. Following intraperitoneal (IP) administration into the peritoneal metastatic carcinomatosis models, UCNPs coated by P-PEG (P-PEG-UCNPs) passively accumulated in the cancerous tissues at a larger amount than that in the main normal organs. On the basis of spatial proximity, P-PEG-UCNPs administrated via the IP route exhibited higher passive accumulation in the tumors in the abdominal cavity compared to that via the IV route. It is suggested that IP administration could be a promising strategy for inorganic nanoparticles to be efficaciously applied in peritoneal cancer research.
Collapse
Affiliation(s)
- Yilin Gao
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Lang Liu
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P.R. China
| | - Bin Shen
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Xiaofeng Chen
- Center of Analysis and Measurement, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Li Wang
- Center of Analysis and Measurement, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Liya Wang
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P.R. China
| | - Wei Feng
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Chunhui Huang
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Fuyou Li
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| |
Collapse
|
41
|
Zhai X, Wang Y, Liu X, Liu S, Lei P, Yao S, Song S, Zhou L, Feng J, Zhang H. A Simple Strategy for the Controlled Synthesis of Ultrasmall Hexagonal-Phase NaYF4
:Yb,Er Upconversion Nanocrystals. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuesong Zhai
- School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 P.R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| | - Xiaojuan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| | - Shihu Liu
- School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 P.R. China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Shuang Yao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| |
Collapse
|
42
|
Goel S, England CG, Chen F, Cai W. Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Adv Drug Deliv Rev 2017; 113:157-176. [PMID: 27521055 PMCID: PMC5299094 DOI: 10.1016/j.addr.2016.08.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022]
Abstract
Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. In this review, we discuss the recent advances in radionanomedicine, exemplifying the ability to tailor the physicochemical properties of nanomaterials to achieve optimal in vivo pharmacokinetics and targeted molecular imaging in living subjects. Innovations in development of facile and robust radiolabeling strategies and biomedical applications of such radionanoprobes in cancer theranostics are highlighted. Imminent issues in clinical translation of radiolabeled nanomaterials are also discussed, with emphasis on multidisciplinary efforts needed to quickly move these promising agents from bench to bedside.
Collapse
Affiliation(s)
- Shreya Goel
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feng Chen
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Weibo Cai
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA.
| |
Collapse
|
43
|
Gong L, Wang Y, Liu J. Bioapplications of renal-clearable luminescent metal nanoparticles. Biomater Sci 2017; 5:1393-1406. [DOI: 10.1039/c7bm00257b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This review summarizes the recent synthetic strategies of the renal-clearable luminescent metal nanoparticles, and discusses the biological behaviors and current disease-related applications of this type of biomaterials in tumor targeting, kidney disease and antimicrobial investigations.
Collapse
Affiliation(s)
- Lingshan Gong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yaping Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
44
|
Li Q, Wang Z, Chen Y, Zhang G. Elemental bio-imaging of PEGylated NaYF4:Yb/Tm/Gd upconversion nanoparticles in mice by laser ablation inductively coupled plasma mass spectrometry to study toxic side effects on the spleen, liver and kidneys. Metallomics 2017; 9:1150-1156. [DOI: 10.1039/c7mt00132k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The distribution of PEGylated NaYF4:Yb/Tm/Gd (PEG-UCNPs) and imaging in mice spleen, liver and kidney were examined by laser ablation inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Qing Li
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Zheng Wang
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Yirui Chen
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Guoxia Zhang
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| |
Collapse
|
45
|
Sun R, Yin T, Huang P, Gao G, Shapter JG, Shen Y, Zhang J, Cui D. Hydrothermal Synthesis of Monodispersed
BaGdF
5
:Yb/Er Nanoparticles for
CT
and
MR
Imaging. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201600713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Rongjin Sun
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Technology, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Ting Yin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Technology, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Huang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Technology, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Guo Gao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Technology, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Joseph George Shapter
- School of Chemical and Physical Sciences Flinders University Adelaide 5042 Australia
| | - Yulan Shen
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200240 China
| | - Jingjing Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Technology, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Technology, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
46
|
Chen C, Li C, Shi Z. Current Advances in Lanthanide-Doped Upconversion Nanostructures for Detection and Bioapplication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600029. [PMID: 27840794 PMCID: PMC5096256 DOI: 10.1002/advs.201600029] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/05/2016] [Indexed: 04/14/2023]
Abstract
Along with the development of science and technology, lanthanide-doped upconversion nanostructures as a new type of materials have taken their place in the field of nanomaterials. Upconversion luminescence is a nonlinear optical phenomenon, which absorbs two or more photons and emits one photon. Compared with traditional luminescence materials, upconversion nanostructures have many advantages, such as weak background interference, long lifetime, low excitation energy, and strong tissue penetration. These interesting nanostructures can be applied in anticounterfeit, solar cell, detection, bioimaging, therapy, and so on. This review is focused on the current advances in lanthanide-doped upconversion nanostructures, covering not only basic luminescence mechanism, synthesis, and modification methods but also the design and fabrication of upconversion nanostructures, like core-shell nanoparticles or nanocomposites. At last, this review emphasizes the application of upconversion nanostructure in detection and bioimaging and therapy. Learning more about the advances of upconversion nanostructures can help us better exploit their excellent performance and use them in practice.
Collapse
Affiliation(s)
- Cailing Chen
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
47
|
Nanoprobes for two-photon excitation time-resolved imaging of living animals: In situ analysis of tumor-targeting dynamics of nanocarriers. Biomaterials 2016; 100:152-61. [DOI: 10.1016/j.biomaterials.2016.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
48
|
Ruggiero E, Garino C, Mareque-Rivas JC, Habtemariam A, Salassa L. Upconverting Nanoparticles Prompt Remote Near-Infrared Photoactivation of Ru(II)-Arene Complexes. Chemistry 2016; 22:2801-11. [PMID: 26785101 DOI: 10.1002/chem.201503991] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 12/28/2022]
Abstract
The synthesis and full characterisation (including X-ray diffraction studies and DFT calculations) of two new piano-stool Ru(II) -arene complexes, namely [(η(6) -p-cym)Ru(bpy)(m-CCH-Py)][(PF)6]2 (1) and [(η(6) -p-cym)Ru(bpm)(m-CCH-Py)][(PF)6]2 (2; p-cym=p-cymene, bpy=2,2'-bipyridine, bpm=2,2'-bipyrimidine, and m-CCH-Py=3-ethynylpyridine), is described and discussed. The reaction of the m-CCH-Py ligand of 1 and 2 with diethyl-3-azidopropyl phosphonate by Cu-catalysed click chemistry affords [(η(6) -p-cym)Ru(bpy)(P-Trz-Py)][(PF)6]2 (3) and [(η(6) -p-cym)Ru(bpm)(P-Trz-Py)][(PF)6]2 (4; P-Trz-Py=[3-(1-pyridin-3-yl-[1,2,3]triazol-4-yl)-propyl]phosphonic acid diethyl ester). Upon light excitation at λ=395 nm, complexes 1-4 photodissociate the monodentate pyridyl ligand and form the aqua adduct ions [(η(6) -p-cym)Ru(bpy)(H2O)](2+) and [(η(6) -p-cym)Ru(bpm)(H2O)](2+). Thulium -doped upconverting nanoparticles (UCNPs) are functionalised with 4, thus exploiting their surface affinity for the phosphonate group in the complex. The so-obtained nanosystem UCNP@4 undergoes near-infrared (NIR) photoactivation at λ=980 nm, thus producing the corresponding reactive aqua species that binds the DNA-model base guanosine 5'-monophosphate.
Collapse
Affiliation(s)
- Emmanuel Ruggiero
- CIC biomaGUNE, Paseo de Miramón182, 20009, Donostia-San Sebastián, Euskadi, Spain
| | - Claudio Garino
- Department of Chemistry and NIS Centre of Excellence, University of Turin, via Pietro Giuria 7, 10125, Turin, Italy
| | - Juan C Mareque-Rivas
- CIC biomaGUNE, Paseo de Miramón182, 20009, Donostia-San Sebastián, Euskadi, Spain.,Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Abraha Habtemariam
- CIC biomaGUNE, Paseo de Miramón182, 20009, Donostia-San Sebastián, Euskadi, Spain. .,Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Luca Salassa
- CIC biomaGUNE, Paseo de Miramón182, 20009, Donostia-San Sebastián, Euskadi, Spain. .,Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC) P.K., 1072, Donostia-San Sebastián, Euskadi, Spain.
| |
Collapse
|
49
|
Generalova AN, Rocheva VV, Nechaev AV, Khochenkov DA, Sholina NV, Semchishen VA, Zubov VP, Koroleva AV, Chichkov BN, Khaydukov EV. PEG-modified upconversion nanoparticles for in vivo optical imaging of tumors. RSC Adv 2016. [DOI: 10.1039/c5ra25304g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biocompatible PEG-containing UCNPs were designed for in vivo passive targeting of tumor associated with UCNP efficient accumulation and tumor contrast visualization.
Collapse
Affiliation(s)
- A. N. Generalova
- Institute on Laser and Information Technologies of the Russian Academy of Sciences
- Shatura
- Russia
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
- Moscow
| | - V. V. Rocheva
- Institute on Laser and Information Technologies of the Russian Academy of Sciences
- Shatura
- Russia
| | - A. V. Nechaev
- Institute on Laser and Information Technologies of the Russian Academy of Sciences
- Shatura
- Russia
- M.V. Lomonosov Moscow State University of Fine Chemical Technology
- Moscow
| | - D. A. Khochenkov
- Federal State Scientific Institution N.N. Blokhin Russian Cancer Research Center
- Moscow
- Russia
| | - N. V. Sholina
- Institute on Laser and Information Technologies of the Russian Academy of Sciences
- Shatura
- Russia
- Federal State Scientific Institution N.N. Blokhin Russian Cancer Research Center
- Moscow
| | - V. A. Semchishen
- Institute on Laser and Information Technologies of the Russian Academy of Sciences
- Shatura
- Russia
| | - V. P. Zubov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
- Moscow
- Russia
| | | | - B. N. Chichkov
- Institute on Laser and Information Technologies of the Russian Academy of Sciences
- Shatura
- Russia
- Laser Zentrum Hannover
- Hannover
| | - E. V. Khaydukov
- Institute on Laser and Information Technologies of the Russian Academy of Sciences
- Shatura
- Russia
| |
Collapse
|
50
|
Wang S, Bi A, Zeng W, Cheng Z. Upconversion nanocomposites for photo-based cancer theranostics. J Mater Chem B 2016; 4:5331-5348. [DOI: 10.1039/c6tb00709k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Upconversion nanoparticles (UCNPs) are able to convert long wavelength excitation light into high energy ultraviolet (UV) or visible emissions, and they have attracted significant attention because of their distinct photochemical properties including sharp emission bands, low autofluorescence, high tissue penetration depth and minimal photodamage to tissues.
Collapse
Affiliation(s)
- Shuailiang Wang
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Anyao Bi
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Wenbin Zeng
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS)
- Canary Center at Stanford for Cancer Early Detection
- Department of Radiology and Bio-X Program
- School of Medicine
- Stanford University
| |
Collapse
|