1
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
2
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
3
|
Lin M, Li W, Ni X, Sui Y, Li H, Chen X, Lu Y, Jiang M, Wang C. Growth factors in the treatment of Achilles tendon injury. Front Bioeng Biotechnol 2023; 11:1250533. [PMID: 37781529 PMCID: PMC10539943 DOI: 10.3389/fbioe.2023.1250533] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Achilles tendon (AT) injury is one of the most common tendon injuries, especially in athletes, the elderly, and working-age people. In AT injury, the biomechanical properties of the tendon are severely affected, leading to abnormal function. In recent years, many efforts have been underway to develop effective treatments for AT injuries to enable patients to return to sports faster. For instance, several new techniques for tissue-engineered biological augmentation for tendon healing, growth factors (GFs), gene therapy, and mesenchymal stem cells were introduced. Increasing evidence has suggested that GFs can reduce inflammation, promote extracellular matrix production, and accelerate AT repair. In this review, we highlighted some recent investigations regarding the role of GFs, such as transforming GF-β(TGF-β), bone morphogenetic proteins (BMP), fibroblast GF (FGF), vascular endothelial GF (VEGF), platelet-derived GF (PDGF), and insulin-like GF (IGF), in tendon healing. In addition, we summarized the clinical trials and animal experiments on the efficacy of GFs in AT repair. We also highlighted the advantages and disadvantages of the different isoforms of TGF-β and BMPs, including GFs combined with stem cells, scaffolds, or other GFs. The strategies discussed in this review are currently in the early stages of development. It is noteworthy that although these emerging technologies may potentially develop into substantial clinical treatment options for AT injury, definitive conclusions on the use of these techniques for routine management of tendon ailments could not be drawn due to the lack of data.
Collapse
Affiliation(s)
- Meina Lin
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Wei Li
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
- Medical School, Shandong Modern University, Jinan, China
| | - Xiang Ni
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yu Sui
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Huan Li
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xinren Chen
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yongping Lu
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Miao Jiang
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Kolliopoulos V, Polanek M, Xu H, Harley B. Inflammatory Licensed hMSCs Exhibit Enhanced Immunomodulatory Capacity in a Biomaterial Mediated Manner. ACS Biomater Sci Eng 2023; 9:4916-4928. [PMID: 37390452 PMCID: PMC10600978 DOI: 10.1021/acsbiomaterials.3c00290] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Craniomaxillofacial (CMF) bone injuries represent particularly challenging environments for regenerative healing due to their large sizes, irregular and unique defect shapes, angiogenic requirements, and mechanical stabilization needs. These defects also exhibit a heightened inflammatory environment that can complicate the healing process. This study investigates the influence of the initial inflammatory stance of human mesenchymal stem cells (hMSCs) on key osteogenic, angiogenic, and immunomodulatory criteria when cultured in a class of mineralized collagen scaffolds under development for CMF bone repair. We previously showed that changes in scaffold pore anisotropy and glycosaminoglycan content can significantly alter the regenerative activity of both MSCs and macrophages. While MSCs are known to adopt an immunomodulatory phenotype in response to inflammatory stimuli, here, we define the nature and persistence of MSC osteogenic, angiogenic, and immunomodulatory phenotypes in a 3D mineralized collagen environment, and further, whether changes to scaffold architecture and organic composition can blunt or accentuate this response as a function of inflammatory licensing. Notably, we found that a one-time licensing treatment of MSCs induced higher immunomodulatory potential compared to basal MSCs as observed by sustained immunomodulatory gene expression throughout the first 7 days as well as an increase in immunomodulatory cytokine (PGE2 and IL-6) expression throughout a 21-day culture period. Further, heparin scaffolds facilitated higher osteogenic cytokine secretion but lower immunomodulatory cytokine secretion compared to chondroitin-6-sulfate scaffolds. Anisotropic scaffolds facilitated higher secretion of both osteogenic protein OPG and immunomodulatory cytokines (PGE2 and IL-6) compared to isotropic scaffolds. These results highlight the importance of scaffold properties on the sustained kinetics of cell response to an inflammatory stimulus. The development of a biomaterial scaffold capable of interfacing with hMSCs to facilitate both immunomodulatory and osteogenic responses is an essential next step to determining the quality and kinetics of craniofacial bone repair.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Maxwell Polanek
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Hui Xu
- Tumor Engineering and Phenotyping (TEP) Shared Resource, Cancer Center at Illinois University of Illinois Urbana-Champaign, 405 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Brendan Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Menezes R, Sherman L, Rameshwar P, Arinzeh TL. Scaffolds containing GAG-mimetic cellulose sulfate promote TGF-β interaction and MSC Chondrogenesis over native GAGs. J Biomed Mater Res A 2023; 111:1135-1150. [PMID: 36708060 PMCID: PMC10277227 DOI: 10.1002/jbm.a.37496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/29/2023]
Abstract
Cartilage tissue engineering strategies seek to repair damaged tissue using approaches that include scaffolds containing components of the native extracellular matrix (ECM). Articular cartilage consists of glycosaminoglycans (GAGs) which are known to sequester growth factors. In order to more closely mimic the native ECM, this study evaluated the chondrogenic differentiation of mesenchymal stem cells (MSCs), a promising cell source for cartilage regeneration, on fibrous scaffolds that contained the GAG-mimetic cellulose sulfate. The degree of sulfation was evaluated, examining partially sulfated cellulose (pSC) and fully sulfated cellulose (NaCS). Comparisons were made with scaffolds containing native GAGs (chondroitin sulfate A, chondroitin sulfate C and heparin). Transforming growth factor-beta3 (TGF-β3) sequestration, as measured by rate of association, was higher for sulfated cellulose-containing scaffolds as compared to native GAGs. In addition, TGF-β3 sequestration and retention over time was highest for NaCS-containing scaffolds. Sulfated cellulose-containing scaffolds loaded with TGF-β3 showed enhanced chondrogenesis as indicated by a higher Collagen Type II:I ratio over native GAGs. NaCS-containing scaffolds loaded with TGF-β3 had the highest expression of chondrogenic markers and a reduction of hypertrophic markers in dynamic loading conditions, which more closely mimic in vivo conditions. Studies also demonstrated that TGF-β3 mediated its effect through the Smad2/3 signaling pathway where the specificity of TGF-β receptor (TGF- βRI)-phosphorylated SMAD2/3 was verified with a receptor inhibitor. Therefore, studies demonstrate that scaffolds containing cellulose sulfate enhance TGF-β3-induced MSC chondrogenic differentiation and show promise for promoting cartilage tissue regeneration.
Collapse
Affiliation(s)
- Roseline Menezes
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Lauren Sherman
- Department of Medicine, Rutgers University School of Medicine, Newark, New Jersey, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers University School of Medicine, Newark, New Jersey, USA
| | | |
Collapse
|
6
|
Menezes R, Vincent R, Osorno L, Hu P, Arinzeh TL. Biomaterials and tissue engineering approaches using glycosaminoglycans for tissue repair: Lessons learned from the native extracellular matrix. Acta Biomater 2023; 163:210-227. [PMID: 36182056 PMCID: PMC10043054 DOI: 10.1016/j.actbio.2022.09.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/30/2023]
Abstract
Glycosaminoglycans (GAGs) are an important component of the extracellular matrix as they influence cell behavior and have been sought for tissue regeneration, biomaterials, and drug delivery applications. GAGs are known to interact with growth factors and other bioactive molecules and impact tissue mechanics. This review provides an overview of native GAGs, their structure, and properties, specifically their interaction with proteins, their effect on cell behavior, and their mechanical role in the ECM. GAGs' function in the extracellular environment is still being understood however, promising studies have led to the development of medical devices and therapies. Native GAGs, including hyaluronic acid, chondroitin sulfate, and heparin, have been widely explored in tissue engineering and biomaterial approaches for tissue repair or replacement. This review focuses on orthopaedic and wound healing applications. The use of GAGs in these applications have had significant advances leading to clinical use. Promising studies using GAG mimetics and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Glycosaminoglycans (GAGs) are an important component of the native extracellular matrix and have shown promise in medical devices and therapies. This review emphasizes the structure and properties of native GAGs, their role in the ECM providing biochemical and mechanical cues that influence cell behavior, and their use in tissue regeneration and biomaterial approaches for orthopaedic and wound healing applications.
Collapse
Affiliation(s)
- Roseline Menezes
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Richard Vincent
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Laura Osorno
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Phillip Hu
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States; Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
7
|
Dewey MJ, Collins AJ, Tiffany A, Barnhouse VR, Lu C, Kolliopoulos V, Mutreja I, Hickok NJ, Harley BAC. Evaluation of bacterial attachment on mineralized collagen scaffolds and addition of manuka honey to increase mesenchymal stem cell osteogenesis. Biomaterials 2023; 294:122015. [PMID: 36701999 PMCID: PMC9928779 DOI: 10.1016/j.biomaterials.2023.122015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
The design of biomaterials to regenerate bone is likely to increasingly require modifications that reduce bacterial attachment and biofilm formation as infection during wound regeneration can significantly impede tissue repair and typically requires surgical intervention to restart the healing process. Further, much research on infection prevention in bone biomaterials has focused on modeling of non-resorbable metal alloy materials, whereas an expanding direction of bone regeneration has focused on development of bioresorbable materials. This represents a need for the prevention and understanding of infection in resorbable biomaterials. Here, we investigate the ability of a mineralized collagen biomaterial to natively resist infection and examine how the addition of manuka honey, previously identified as an antimicrobial agent, affects gram positive and negative bacterial colonization and mesenchymal stem cell osteogenesis and vasculature formation. We incorporate manuka honey into these scaffolds via either direct fabrication into the scaffold microarchitecture or via soaking the scaffold in a solution of manuka honey after fabrication. Direct incorporation results in a change in the surface characteristics and porosity of mineralized collagen scaffolds. Soaking scaffolds in honey concentrations higher than 10% had significant negative effects on mesenchymal stem cell metabolic activity. Soaking or incorporating 5% honey had no impact on endothelial cell tube formation. Although solutions of 5% honey reduced metabolic activity of mesenchymal stem cells, MSC-seeded scaffolds displayed increased calcium and phosphorous mineral formation, osteoprotegerin release, and alkaline phosphatase activity. Bacteria cultured on mineralized collagen scaffolds demonstrated surfaces covered in bacteria and no method of preventing infection, and using 10 times the minimal inhibitory concentration of antibiotics did not completely kill bacteria within the mineralized collagen scaffolds, indicating bioresorbable scaffold materials may act to shield bacteria from antibiotics. The addition of 5% manuka honey to scaffolds was not sufficient to prevent P. aeruginosa attachment or consistently reduce the activity of methicillin resistant staphylococcus aureus, and concentrations above 7% manuka honey are likely necessary to impact MRSA. Together, our results suggest bioresorbable scaffolds may create an environment conducive to bacterial growth, and potential trade-offs exist for the incorporation of low levels of honey in scaffolds to increase osteogenic potential of osteoprogenitors while high-levels of honey may be sufficient to reduce gram positive or negative bacteria activity but at the cost of reduced osteogenesis.
Collapse
Affiliation(s)
- Marley J Dewey
- Dept. of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alan J Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleczandria Tiffany
- Dept. of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Victoria R Barnhouse
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Crislyn Lu
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Vasiliki Kolliopoulos
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Isha Mutreja
- Department of Restorative Science, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Noreen J Hickok
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brendan A C Harley
- Dept. of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Dept. of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
8
|
The effect of intraurethral hyaluronic acid on healing and fibrosis in rats with experimentally induced urethral trauma. Int Urol Nephrol 2022; 54:757-761. [DOI: 10.1007/s11255-022-03128-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/16/2022] [Indexed: 11/25/2022]
|
9
|
Dewey MJ, Kolliopoulos V, Ngo MT, Harley BAC. Glycosaminoglycan content of a mineralized collagen scaffold promotes mesenchymal stem cell secretion of factors to modulate angiogenesis and monocyte differentiation. MATERIALIA 2021; 18:101149. [PMID: 34368658 PMCID: PMC8336934 DOI: 10.1016/j.mtla.2021.101149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Effective design of biomaterials to aid regenerative repair of craniomaxillofacial (CMF) bone defects requires approaches that modulate the complex interplay between exogenously added progenitor cells and cells in the wound microenvironment, such as osteoblasts, osteoclasts, endothelial cells, and immune cells. We are exploring the role of the glycosaminoglycan (GAG) content in a class of mineralized collagen scaffolds recently shown to promote osteogenesis and healing of craniofacial bone defects. We previously showed that incorporating chondroitin-6-sulfate or heparin improved mineral deposition by seeded human mesenchymal stem cells (hMSCs). Here, we examine the effect of varying scaffold GAG content on hMSC behavior, and their ability to modulate osteoclastogenesis, vasculogenesis, and the immune response. We report the role of hMSC-conditioned media produced in scaffolds containing chondroitin-6-sulfate (CS6), chondroitin-4-sulfate (CS4), or heparin (Heparin) GAGs on endothelial tube formation and monocyte differentiation. Notably, endogenous production by hMSCs within Heparin scaffolds most significantly inhibits osteoclastogenesis via secreted osteoprotegerin (OPG), while the secretome generated by CS6 scaffolds reduced pro-inflammatory immune response and increased endothelial tube formation. All conditioned media down-regulated many pro- and anti-inflammatory cytokines, such as IL6, IL-1β, and CCL18 and CCL17 respectively. Together, these findings demonstrate that modifying mineralized collagen scaffold GAG content can both directly (hMSC activity) and indirectly (production of secreted factors) influence overall osteogenic potential and mineral biosynthesis as well as angiogenic potential and monocyte differentiation towards osteoclastic and macrophage lineages. Scaffold GAG content is therefore a powerful stimulus to modulate reciprocal signaling between multiple cell populations within the bone healing microenvironment.
Collapse
Affiliation(s)
- Marley J Dewey
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Vasiliki Kolliopoulos
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mai T Ngo
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A C Harley
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
10
|
Dewey MJ, Harley BAC. Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Adv 2021; 11:17809-17827. [PMID: 34540206 PMCID: PMC8443006 DOI: 10.1039/d1ra02557k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterial design to repair craniomaxillofacial defects has largely focused on promoting bone regeneration, while there are many additional factors that influence this process. The bone microenvironment is complex, with various mechanical property differences between cortical and cancellous bone, a unique porous architecture, and multiple cell types that must maintain homeostasis. This complex environment includes a vascular architecture to deliver cells and nutrients, osteoblasts which form new bone, osteoclasts which resorb excess bone, and upon injury, inflammatory cells and bacteria which can lead to failure to repair. To create biomaterials able to regenerate these large missing portions of bone on par with autograft materials, design of these materials must include methods to overcome multiple obstacles to effective, efficient bone regeneration. These obstacles include infection and biofilm formation on the biomaterial surface, fibrous tissue formation resulting from ill-fitting implants or persistent inflammation, non-bone tissue formation such as cartilage from improper biomaterial signals to cells, and voids in bone infill or lengthy implant degradation times. Novel biomaterial designs may provide approaches to effectively induce osteogenesis and new bone formation, include design motifs that facilitate surgical handling, intraoperative modification and promote conformal fitting within complex defect geometries, induce a pro-healing immune response, and prevent bacterial infection. In this review, we discuss the bone injury microenvironment and methods of biomaterial design to overcome these obstacles, which if unaddressed, may result in failure of the implant to regenerate host bone.
Collapse
Affiliation(s)
- Marley J. Dewey
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Brendan A. C. Harley
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Dept of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory600 S. Mathews AveUrbanaIL 61801USA+1-217-333-5052+1-217-244-7112
| |
Collapse
|
11
|
Injectable chitosan-quince seed gum hydrogels encapsulated with curcumin loaded-halloysite nanotubes designed for tissue engineering application. Int J Biol Macromol 2021; 177:485-494. [PMID: 33621578 DOI: 10.1016/j.ijbiomac.2021.02.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 01/15/2023]
Abstract
The goal of tissue engineering is to assemble functional constructs that restore, maintain, or improve damaged tissues or organs. Hydrogels formed with natural polymers display high potential in artificial scaffolds for tissue repair as they can resemble the extracellular matrices. Thus, the aim of this study was to design nanocomposite hydrogels of chitosan/oxidized-modified quince seed gum/curcumin-loaded in halloysite nanotubes (CS/OX-QSG/CUR-HNTs) for tissue engineering applications. The produced hydrogels were analyzed for thermal stability, degradation, swelling ratio, gelling time and mechanical properties. The results showed that with increasing content of OX-QSG, thermal stability, swelling ratio, and degradation rate of hydrogels were improved. Notably, the optimal CS/OX-QSG hydrogel with ratio of 25:75 exhibited rapid gelation behavior (<50 s) and improved compressive strength (3.96 ± 0.64 MPa), representing the suitable hydrogel for application in tissue engineering. The MTT test showed that these hydrogels were non-toxic and any reduction or stop of NIH-3 T3 cells growth wasn't observed over time. In addition, CS/OX-QSG 25:75 hydrogels containing CUR-HNTs with 10 and 30% content was significantly (P < 0.05) enhanced cell growth and proliferation (around 150%). Obtained results illustrated that CS/OX-QSG hydrogels with ratio of 25:75 and the content of 30% CUR-HNTs can be an effective scaffold for application in tissue engineering.
Collapse
|
12
|
Chan WW, Yeo DCL, Tan V, Singh S, Choudhury D, Naing MW. Additive Biomanufacturing with Collagen Inks. Bioengineering (Basel) 2020; 7:bioengineering7030066. [PMID: 32630194 PMCID: PMC7552643 DOI: 10.3390/bioengineering7030066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Collagen is a natural polymer found abundantly in the extracellular matrix (ECM). It is easily extracted from a variety of sources and exhibits excellent biological properties such as biocompatibility and weak antigenicity. Additionally, different processes allow control of physical and chemical properties such as mechanical stiffness, viscosity and biodegradability. Moreover, various additive biomanufacturing technology has enabled layer-by-layer construction of complex structures to support biological function. Additive biomanufacturing has expanded the use of collagen biomaterial in various regenerative medicine and disease modelling application (e.g., skin, bone and cornea). Currently, regulatory hurdles in translating collagen biomaterials still remain. Additive biomanufacturing may help to overcome such hurdles commercializing collagen biomaterials and fulfill its potential for biomedicine.
Collapse
Affiliation(s)
- Weng Wan Chan
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore City 138668, Singapore; (W.W.C.); (D.C.L.Y.); (V.T.); (S.S.)
| | - David Chen Loong Yeo
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore City 138668, Singapore; (W.W.C.); (D.C.L.Y.); (V.T.); (S.S.)
| | - Vernice Tan
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore City 138668, Singapore; (W.W.C.); (D.C.L.Y.); (V.T.); (S.S.)
| | - Satnam Singh
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore City 138668, Singapore; (W.W.C.); (D.C.L.Y.); (V.T.); (S.S.)
| | - Deepak Choudhury
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore City 138668, Singapore; (W.W.C.); (D.C.L.Y.); (V.T.); (S.S.)
- Correspondence: (D.C.); (M.W.N.)
| | - May Win Naing
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore City 138668, Singapore; (W.W.C.); (D.C.L.Y.); (V.T.); (S.S.)
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-04, Innovis, Singapore City 138634, Singapore
- Correspondence: (D.C.); (M.W.N.)
| |
Collapse
|
13
|
Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109697] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Dewey MJ, Nosatov AV, Subedi K, Harley B. Anisotropic mineralized collagen scaffolds accelerate osteogenic response in a glycosaminoglycan-dependent fashion. RSC Adv 2020; 10:15629-15641. [PMID: 32655857 PMCID: PMC7351350 DOI: 10.1039/d0ra01336f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regeneration of critically-sized craniofacial bone defects requires a template to promote cell activity and bone remodeling. However, induced regeneration becomes more challenging with increasing defect size. Methods of repair using allografts and autografts have inconsistent results, attributed to age-related regenerative capabilities of bone. We are developing a mineralized collagen scaffold to promote craniomaxillofacial bone regeneration as an alternative to repair. Here, we hypothesize modifying the pore anisotropy and glycosaminoglycan content of the scaffold will improve cell migration, viability, and subsequent bone formation. Using anisotropic and isotropic scaffold variants, we test the role of pore orientation on human mesenchymal stem cell (MSC) activity. We subsequently explore the role of glycosaminoglycan content, notably chondroitin-6-sulfate, chondroitin-4-sulfate, and heparin sulfate on mineralization. We find that while short term MSC migration and activity was not affected by pore orientation, increased bone mineral synthesis was observed in anisotropic scaffolds. Further, while scaffold glycosaminoglycan content did not impact cell viability, heparin sulfate and chondroitin-6-sulfate containing variants increased mineral formation at the late stage of in vitro culture, respectively. Overall, these findings show scaffold microstructural and proteoglycan modifications represent a powerful tool to improve MSC osteogenic activity. Mineralized collagen scaffolds were modified to include anisotropic pore architecture and one of three glycosaminoglycans in order to improve bone mineral formation in vitro.![]()
Collapse
Affiliation(s)
| | | | | | - Brendan Harley
- Dept. of Materials Science and Engineering, USA.,School of Chemical Sciences, USA.,Dept. Chemical and Biomolecular Engineering, USA.,Dept. of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory 600 S. Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|
15
|
Xu B, Ye J, Yuan FZ, Zhang JY, Chen YR, Fan BS, Jiang D, Jiang WB, Wang X, Yu JK. Advances of Stem Cell-Laden Hydrogels With Biomimetic Microenvironment for Osteochondral Repair. Front Bioeng Biotechnol 2020; 8:247. [PMID: 32296692 PMCID: PMC7136426 DOI: 10.3389/fbioe.2020.00247] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Osteochondral damage from trauma or osteoarthritis is a general joint disease that can lead to an increased social and economic burden in the modern society. The inefficiency of osteochondral defects is mainly due to the absence of suitable tissue-engineered substrates promoting tissue regeneration and replacing damaged areas. The hydrogels are becoming a promising kind of biomaterials for tissue regeneration. The biomimetic hydrogel microenvironment can be tightly controlled by modulating a number of biophysical and biochemical properties, including matrix mechanics, degradation, microstructure, cell adhesion, and intercellular interactions. In particular, advances in stem cell-laden hydrogels have offered new ideas for the cell therapy and osteochondral repair. Herein, the aim of this review is to underpin the importance of stem cell-laden hydrogels on promoting the development of osteochondral regeneration, especially in the field of manipulation of biomimetic microenvironment and utilization growth factors with various delivery methods.
Collapse
Affiliation(s)
- Bingbing Xu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fu-Zhen Yuan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bao-Shi Fan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Wen-Bo Jiang
- Clinical Translational R&D Center of 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Nguyen PK, Baek K, Deng F, Criscione JD, Tuan RS, Kuo CK. Tendon Tissue-Engineering Scaffolds. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Tiffany AS, Dewey MJ, Harley BAC. Sequential sequestrations increase the incorporation and retention of multiple growth factors in mineralized collagen scaffolds. RSC Adv 2020; 10:26982-26996. [PMID: 33767853 PMCID: PMC7990239 DOI: 10.1039/d0ra03872e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Trauma induced injuries of the mouth, jaw, face, and related structures present unique clinical challenges due to their large size and complex geometry. Growth factor signaling coordinates the behavior of multiple cell types following an injury, and effective coordination of growth factor availability within a biomaterial can be critical for accelerating bone healing. Mineralized collagen scaffolds are a class of degradable biomaterial whose biophysical and compositional parameters can be adjusted to facilitate cell invasion and tissue remodeling. Here we describe the use of modified simulated body fluid treatments to enable sequential sequestration of bone morphogenic protein 2 and vascular endothelial growth factor into mineralized collagen scaffolds for bone repair. We report the capability of these scaffolds to sequester 60–90% of growth factor from solution without additional crosslinking treatments and show high levels of retention for individual (>94%) and multiple growth factors (>88%) that can be layered into the material via sequential sequestration steps. Sequentially sequestering growth factors allows prolonged release of growth factors in vitro (>94%) and suggests the potential to improve healing of large-scale bone injury models in vivo. Future work will utilize this sequestration method to induce cellular activities critical to bone healing such as vessel formation and cell migration. Trauma induced injuries of the mouth, jaw, face, and related structures present unique clinical challenges due to their large size and complex geometry.![]()
Collapse
Affiliation(s)
- Aleczandria S Tiffany
- Dept. Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Marley J Dewey
- Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Yıldızhan M, Dundar M, Demirci B, Çulhacı N. The Effects of Hyaluronic Acid on Traumatic Urethral Inflammation. Urol Int 2019; 104:283-286. [PMID: 31865315 DOI: 10.1159/000504766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE This study investigated the possible beneficial effect of hyaluronic acid (HA) on traumatic urethral healing. METHODS A total of 40 adult male Wistar rats were randomized into four groups: control, sham (serum physiologic; SF group), HA 1.8%, and HA 3%. A tiny hook was introduced and drawn at the 12 o'clock position into the urethra for the SF and HA groups to create a urethral inflammation model. Either SF or HA was applied intraurethrally for 5 consecutive days. After a 15-day follow-up period (21st day of the study), penile tissue was harvested and evaluated histopathologically. RESULTS None of the groups showed inflammation at the end of study. Pathological findings such as calcification, hemorrhage, and stenosis were observed in the wound healing and these findings were present in all trauma groups. A significant increase in tissue thickness was observed in the group treated with saline (p = 0.004). No statistically significant difference was found in the two groups receiving HA treatment compared to the SF group. CONCLUSION These data suggest that HA does not provide a beneficial effect on the connective tissue repairment when it is applied locally during the acute period of urethral injury for 5 consecutive days. There is a need for further studies in which the duration of drug use is extended or the dosage is increased.
Collapse
Affiliation(s)
| | - Mehmet Dundar
- Department of Urology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Buket Demirci
- Department of Medical Pharmacology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Nil Çulhacı
- Department of Pathology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
19
|
Silva CR, Babo PS, Mithieux S, Domingues RM, Reis R, Gomes ME, Weiss A. Tuneable cellulose nanocrystal and tropoelastin-laden hyaluronic acid hydrogels. J Biomater Appl 2019; 34:560-572. [PMID: 31284811 DOI: 10.1177/0885328219859830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cristiana R Silva
- 1 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,2 ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Pedro S Babo
- 1 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,2 ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Suzanne Mithieux
- 3 Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.,4 School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| | - Rui Ma Domingues
- 1 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,2 ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,5 The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui Reis
- 1 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,2 ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,5 The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Manuela E Gomes
- 1 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,2 ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,5 The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Anthony Weiss
- 3 Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.,4 School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia.,6 Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Wigén J, Elowsson-Rendin L, Karlsson L, Tykesson E, Westergren-Thorsson G. Glycosaminoglycans: A Link Between Development and Regeneration in the Lung. Stem Cells Dev 2019; 28:823-832. [PMID: 31062651 DOI: 10.1089/scd.2019.0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
What can we learn from embryogenesis to increase our understanding of how regeneration of damaged adult lung tissue could be induced in serious lung diseases such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and asthma? The local tissue niche determines events in both embryogenesis and repair of the adult lung. Important constituents of the niche are extracellular matrix (ECM) molecules, including proteoglycans and glycosaminoglycans (GAGs). GAGs, strategically located in the pericellular and extracellular space, bind developmentally active growth factors (GFs) and morphogens such as fibroblast growth factors (FGFs), transforming growth factor-β (TGF-β), and bone morphogenetic proteins (BMPs) aside from cytokines. These interactions affect activities in many cells, including stem cells, important in development and tissue regeneration. Moreover, it is becoming clear that the "inherent code," such as sulfation of disaccharides of GAGs, is a strong determinant of cellular outcome. Sulfation patterns, deacetylations, and epimerizations of GAG chains function as tuning forks in gradient formation of morphogens, growth factors, and cytokines. Learning to tune these fine instruments, that is, interactions between GFs, chemokines, and cytokines with the specific disaccharide code of GAGs in the adult lung, could become the key to unlock inherent regenerative forces to override pathological remodeling. This review aims to provide an overview of the role GAGs play during development and similar events in regenerative efforts in the adult lung.
Collapse
Affiliation(s)
- Jenny Wigén
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | | | - Lisa Karlsson
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | - Emil Tykesson
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | | |
Collapse
|
21
|
Rohman G, Langueh C, Ramtani S, Lataillade JJ, Lutomski D, Senni K, Changotade S. The Use of Platelet-Rich Plasma to Promote Cell Recruitment into Low-Molecular-Weight Fucoidan-Functionalized Poly(Ester-Urea-Urethane) Scaffolds for Soft-Tissue Engineering. Polymers (Basel) 2019; 11:E1016. [PMID: 31181822 PMCID: PMC6631166 DOI: 10.3390/polym11061016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 01/12/2023] Open
Abstract
Due to their elastomeric behavior, polyurethane-based scaffolds can find various applications in soft-tissue engineering. However, their relatively inert surface has to be modified in order to improve cell colonization and control cell fate. The present study focuses on porous biodegradable scaffolds based on poly(ester-urea-urethane), functionalized concomitantly to the scaffold elaboration with low-molecular-weight (LMW) fucoidan; and their bio-activation with platelet rich plasma (PRP) formulations with the aim to promote cell response. The LMW fucoidan-functionalization was obtained in a very homogeneous way, and was stable after the scaffold sterilization and incubation in phosphate-buffered saline. Biomolecules from PRP readily penetrated into the functionalized scaffold, leading to a biological frame on the pore walls. Preliminary in vitro assays were assessed to demonstrate the improvement of scaffold behavior towards cell response. The scaffold bio-activation drastically improved cell migration. Moreover, cells interacted with all pore sides into the bio-activated scaffold forming cell bridges across pores. Our work brought out an easy and versatile way of developing functionalized and bio-activated elastomeric poly(ester-urea-urethane) scaffolds with a better cell response.
Collapse
Affiliation(s)
- Géraldine Rohman
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Credson Langueh
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Salah Ramtani
- LBPS team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, Unité de Thérapie Cellulaire et Réparation Tissulaire, Site du Centre de Transfusion Sanguine des Armées "Jean Julliard" de Clamart, BP 73, 91223 Brétigny-sur-Orge Cedex, France.
| | - Didier Lutomski
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Karim Senni
- Ecole de biologie Industrielle, 49 avenue des Genottes, 95885 Cergy Cedex, France.
| | - Sylvie Changotade
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| |
Collapse
|
22
|
Ren X, Zhou Q, Foulad D, Dewey MJ, Bischoff D, Miller TA, Yamaguchi DT, Harley BAC, Lee JC. Nanoparticulate mineralized collagen glycosaminoglycan materials directly and indirectly inhibit osteoclastogenesis and osteoclast activation. J Tissue Eng Regen Med 2019; 13:823-834. [PMID: 30803152 DOI: 10.1002/term.2834] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/20/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022]
Abstract
The ability of the extracellular matrix (ECM) to direct cell fate has generated the potential for developing a materials-only strategy for tissue regeneration. Previously, we described a nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) material that efficiently induced osteogenic differentiation of human mesenchymal stem cells (hMSCs) and calvarial bone healing without exogenous growth factors or progenitor cell expansion. In this work, we evaluated the interactions between MC-GAG and primary human osteoclasts (hOCs). In the absence of hMSCs, mineralized Col-GAG materials directly inhibited hOC viability, proliferation, and resorption in contrast to nonmineralized Col-GAG, which demonstrated a modest inhibition of resorptive activity only. Cocultures containing differentiating hMSCs with hOCs demonstrated increased hOC-mediated resorption only on Col-GAG while MC-GAG cocultures continued to inhibit resorption. Unlike Col-GAG, hMSCs on MC-GAG expressed increased amounts of osteoprotegerin (OPG) protein, the major endogenous osteoclast inhibitor. Interestingly, OPG expression was found to be antagonized by small mothers against decapentaplegic1/5 (Smad1/5) phosphorylation, an obligate pathway for osteogenic differentiation of hMSCs on MC-GAG, and potentiated by extracellular signal-regulated kinase (ERK1/2) phosphorylation. Collectively, these results suggested that the MC-GAG material both directly inhibited the osteoclast viability, proliferation, and resorptive activity as well as induced hMSCs to secrete osteoprotegerin, an antiosteoclastogenic factor, via a signalling pathway distinct from osteogenic differentiation.
Collapse
Affiliation(s)
- Xiaoyan Ren
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, California.,Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California.,UCLA Molecular Biology Institute, Los Angeles, California
| | - Qi Zhou
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, California.,Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California.,UCLA Molecular Biology Institute, Los Angeles, California
| | - David Foulad
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, California.,Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California.,UCLA Molecular Biology Institute, Los Angeles, California
| | - Marley J Dewey
- Department of Materials Science and Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - David Bischoff
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Timothy A Miller
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, California.,Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Dean T Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Justine C Lee
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, California.,Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California.,UCLA Molecular Biology Institute, Los Angeles, California
| |
Collapse
|
23
|
Nazir R, Bruyneel A, Carr C, Czernuszka J. Collagen type I and hyaluronic acid based hybrid scaffolds for heart valve tissue engineering. Biopolymers 2019; 110:e23278. [PMID: 30958569 DOI: 10.1002/bip.23278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
Tissue engineers have achieved limited success so far in designing an ideal scaffold for aortic valve; scaffolds lack in mechanical compatibility, appropriate degradation rate, and microstructural similarity. This paper, therefore, has demonstrated a carbodiimide-based sequential crosslinking technique to prepare aortic valve extracellular matrix mimicking (ECM) hybrid scaffolds from collagen type I and hyaluronic acid (HA), the building blocks of heart valve ECM, with tailorable crosslinking densities. Swelling studies revealed that crosslinking densities of parent networks increased with increasing the concentration of the crosslinking agents whereas crosslinking densities of hybrid scaffolds averaged from those of parent collagen and HA networks. Hybrid scaffolds also offered a wide range of pore size (66-126 μm) which fulfilled the criteria for valvular tissue regeneration. Scanning electron microscopy and images of Alcian blue-Periodic acid Schiff stained samples suggested that our crosslinking technique yielded an ECM mimicking microstructure with interlaced bands of collagen and HA in the hybrid scaffolds. The mutually reinforcing networks of collagen and HA also resulted in increased bending moduli up to 1660 kPa which spanned the range of natural aortic valves. Cardio sphere-derived cells (CDCs) from rat hearts showed that crosslinking density affected the available cell attachment sites on the surface of the scaffold. Increased bending moduli of CDCs seeded scaffolds up to two folds (2-6 kPa) as compared to the non-seeded scaffolds (1 kPa) suggested that an increase in crosslinking density of the scaffolds could not only increase the in vitro bending modulus but also prevented its disintegration in the cell culture medium.
Collapse
Affiliation(s)
- Rabia Nazir
- Department of Materials, University of Oxford, Oxford, UK.,Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore, Pakistan
| | - Arne Bruyneel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jan Czernuszka
- Department of Materials, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Silva CR, Babo PS, Gulino M, Costa L, Oliveira JM, Silva-Correia J, Domingues RM, Reis RL, Gomes ME. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater 2018; 77:155-171. [PMID: 30031163 DOI: 10.1016/j.actbio.2018.07.035] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Bioengineered soft tissues on any meaningful scale or complexity must incorporate aspects of the functional tissue, namely a vasculature, providing cells oxygen and nutrients critical for their survival. However, the ability of tissue engineering strategies to promote a fast revascularization is critically limited. Particularly in endodontic regenerative therapies, the complicated anatomy of the root canal system, and the narrow apical access limit the supply of new blood vessels and pulp tissue ingrowth. Here we characterize the viscoelastic and microstructural properties of a class of injectable hyaluronic acid (HA) hydrogels formed in situ, reinforced with cellulose nanocrystals (CNCs) and enriched with platelet lysate (PL), and test its ability to promote cells recruitment and proangiogenic activity in vitro. The incorporation of CNCs enhanced the stability of the materials against hydrolytic and enzymatic degradation. Moreover, the release of the chemotactic and pro-angiogenic growth factors (GFs) (PDGF and VEGF) from the PL-laden hydrogels showed an improved sustained profile proportional to the amount of incorporated CNCs. The PL-laden hydrogels exhibited preferential supportive properties of encapsulated human dental pulp cells (hDPCs) in in vitro culture conditions. Finally, PL-laden hydrogels stimulated chemotactic and pro-angiogenic activity by promoting hDPCs recruitment and cell sprouting in hDPCs/human umbilical vein endothelial cell co-cultures in vitro, and in an ex vivo model. These results support the use of the combined system as a scaffold for GFs delivery and cells recruitment, thereby exhibiting great clinical potential in treating injuries in vascularized tissues. STATEMENT OF SIGNIFICANCE Innovative strategies for improved chemotactic and pro-angiogenic features of TE constructs are needed. In this study, we developed an injectable HA/CNC/PL hydrogel with improved structural and biologic properties, that not only provide a sustained release of chemotactic and proangiogenic GFs from PL but also enhance the cells' viability and angiogenic activity. As a result of their unique traits, the developed hydrogels are ideally suited to simultaneously act as a GFs controlled delivery system and as a supportive matrix for cell culture, recruitment, and revascularization induction, holding great potential for the regeneration of vascularized soft tissues, such as the dentin-pulp complex.
Collapse
|
25
|
Taraballi F, Sushnitha M, Tsao C, Bauza G, Liverani C, Shi A, Tasciotti E. Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Adv Healthc Mater 2018; 7:e1800490. [PMID: 29995315 DOI: 10.1002/adhm.201800490] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Indexed: 12/31/2022]
Abstract
Regenerative medicine technologies rely heavily on the use of well-designed biomaterials for therapeutic applications. The success of implantable biomaterials hinges upon the ability of the chosen biomaterial to negotiate with the biological barriers in vivo. The most significant of these barriers is the immune system, which is composed of a highly coordinated organization of cells that induce an inflammatory response to the implanted biomaterial. Biomimetic platforms have emerged as novel strategies that aim to use the principle of biomimicry as a means of immunomodulation. This principle has manifested itself in the form of biomimetic scaffolds that imitate the composition and structure of biological cells and tissues. Recent work in this area has demonstrated the promising potential these technologies hold in overcoming the barrier of the immune system and, thereby, improve their overall therapeutic efficacy. In this review, a broad overview of the use of these strategies across several diseases and future avenues of research utilizing these platforms is provided.
Collapse
Affiliation(s)
- Francesca Taraballi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| | - Manuela Sushnitha
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Bioengineering Rice University Houston TX 77005 USA
| | - Christopher Tsao
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Center for NanoHealth Swansea University Medical School Swansea University Bay Singleton Park Wales Swansea SA2 8PP UK
| | - Chiara Liverani
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Biosciences Laboratory Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS Via Piero Maroncelli 40 47014 Meldola FC Italy
| | - Aaron Shi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Wiess School of Natural Sciences Rice University Houston TX 77251‐1892 USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| |
Collapse
|
26
|
Grier WK, Tiffany AS, Ramsey MD, Harley BA. Incorporating β-cyclodextrin into collagen scaffolds to sequester growth factors and modulate mesenchymal stem cell activity. Acta Biomater 2018; 76:116-125. [PMID: 29944975 DOI: 10.1016/j.actbio.2018.06.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
The development of biomaterials for a range of tissue engineering applications increasingly requires control over the bioavailability of biomolecular cues such as growth factors in order to promote desired cell responses. While efforts have predominantly concentrated on covalently-bound or freely-diffusible incorporation of biomolecules in porous, three-dimensional biomaterials, opportunities exist to exploit transient interactions to concentrate growth factor activity over desired time frames. Here, we report the incorporation of β-cyclodextrin into a model collagen-GAG scaffold as a means to exploit the passive sequestration and release of growth factors via guest-host interactions to control mesenchymal stem cell differentiation. Collagen-GAG scaffolds that incorporate β-cyclodextrin show improved sequestration as well as extended retention and release of TGF-β1. We further show extended retention and release of TGF-β1 and BMP-2 from β-cyclodextrin modified scaffolds was sufficient to influence the metabolic activity and proliferation of mesenchymal stem cells as well as differential activation of Smad 2/3 and Smad 1/5/8 pathways associated with differential osteo-chondral differentiation. Further, gene expression analysis showed TGF-β1 release from β-cyclodextrin CG scaffolds promoted early chondrogenic-specific differentiation. Ultimately, this work establishes a novel method for the incorporation and display of growth factors within CG scaffolds via supramolecular interactions. Such a design framework offers opportunities to selectively alter the bioavailability of multiple biomolecules within a three-dimensional collagen-GAG scaffold to enhance cell activity for a range of musculoskeletal regenerative medicine applications. STATEMENT OF SIGNIFICANCE We describe the incorporation of β-cyclodextrin into a model CG-scaffold under development for musculoskeletal tissue engineering applications. We show β-cyclodextrin modified scaffolds promote the sequestration of soluble TGF-β1 and BMP-2 via guest-host interactions, leading to extended retention and release. Further, β-cyclodextrin modified CG scaffolds promote TGF-β1 or BMP-2 specific Smad signaling pathway activation associated with divergent osseous versus chondrogenic differentiation pathways in mesenchymal stem cells.
Collapse
|
27
|
Biodiversity of CS–proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem J 2018; 475:587-620. [DOI: 10.1042/bcj20170820] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
Abstract
Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.
Collapse
|
28
|
Farrugia BL, Lord MS, Whitelock JM, Melrose J. Harnessing chondroitin sulphate in composite scaffolds to direct progenitor and stem cell function for tissue repair. Biomater Sci 2018; 6:947-957. [DOI: 10.1039/c7bm01158j] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review details the inclusion of chondroitin sulphate in bioscaffolds for superior functional properties in tissue regenerative applications.
Collapse
Affiliation(s)
- B. L. Farrugia
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
| | - M. S. Lord
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
| | - J. M. Whitelock
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
| | - J. Melrose
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
- Raymond Purves Bone and Joint Research Laboratory
- Kolling Institute Northern Sydney Local Health District
| |
Collapse
|
29
|
Brougham CM, Levingstone TJ, Shen N, Cooney GM, Jockenhoevel S, Flanagan TC, O'Brien FJ. Freeze-Drying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds. Adv Healthc Mater 2017; 6. [PMID: 28758358 DOI: 10.1002/adhm.201700598] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 01/01/2023]
Abstract
The biofabrication of large natural biomaterial scaffolds into complex 3D shapes which have a controlled microarchitecture remains a major challenge. Freeze-drying (or lyophilization) is a technique used to generate scaffolds in planar 3D geometries. Here we report the development of a new biofabrication process to form a collagen-based scaffold into a large, complex geometry which has a large height to width ratio, and a controlled porous microarchitecture. This biofabrication process is validated through the successful development of a heart valve shaped scaffold, fabricated from a collagen-glycosaminoglycan co-polymer. Notably, despite the significant challenges in using freeze-drying to create such a structure, the resultant scaffold has a uniform, homogenous pore architecture throughout. This is achieved through optimization of the freeze-drying mold and the freezing parameters. We believe this to be the first demonstration of using freeze-drying to create a large, complex scaffold geometry with a controlled, porous architecture for natural biomaterials. This study validates the potential of using freeze-drying for development of organ-specific scaffold geometries for tissue engineering applications, which up until now might not have been considered feasible.
Collapse
Affiliation(s)
- Claire M. Brougham
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- School of Mechanical and Design Engineering; Dublin Institute of Technology; Bolton St Dublin 1 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Royal College of Surgeons in Ireland and Trinity College Dublin; Dublin 2 Ireland
| | - Tanya J. Levingstone
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Royal College of Surgeons in Ireland and Trinity College Dublin; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- School of Mechanical and Manufacturing Engineering; Dublin City University; Dublin 9 Ireland
| | - Nian Shen
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Department of Women's Health; Research Institute of Women's Health; University Hospital of the Eberhard Karls University Tübingen; 72074 Tübingen Germany
- Department of Cell and Tissue Engineering; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; 70569 Stuttgart Germany
| | - Gerard M. Cooney
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik; RWTH Aachen University; 52074 Aachen Germany
| | | | - Fergal J. O'Brien
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Royal College of Surgeons in Ireland and Trinity College Dublin; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
30
|
Ngo MT, Harley BA. The Influence of Hyaluronic Acid and Glioblastoma Cell Coculture on the Formation of Endothelial Cell Networks in Gelatin Hydrogels. Adv Healthc Mater 2017; 6:10.1002/adhm.201700687. [PMID: 28941173 PMCID: PMC5719875 DOI: 10.1002/adhm.201700687] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is the most common and deadly form of brain cancer. Interactions between GBM cells and vasculature in vivo contribute to poor clinical outcomes, with GBM-induced vessel co-option, regression, and subsequent angiogenesis strongly influencing GBM invasion. Here, elements of the GBM perivascular niche are incorporated into a methacrylamide-functionalized gelatin hydrogel as a means to examine GBM-vessel interactions. The complexity of 3D endothelial cell networks formed from human umbilical vein endothelial cells and normal human lung fibroblasts as a function of hydrogel properties and vascular endothelial growth factor (VEGF) presentation is presented. While overall length and branching of the endothelial cell networks decrease with increasing hydrogel stiffness and incorporation of brain-mimetic hyaluronic acid, it can be separately altered by changing the vascular cell seeding density. It is shown that covalent incorporation of VEGF supports network formation as robustly as continuously available soluble VEGF. The impact of U87-MG GBM cells on the endothelial cell networks is subsequently investigated. GBM cells localize in proximity to the endothelial cell networks and hasten network regression in vitro. Together, this in vitro platform recapitulates the close association between GBM cells and vessel structures as well as elements of vessel co-option and regression preceding angiogenesis in vivo.
Collapse
Affiliation(s)
- Mai T Ngo
- 193 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Brendan A Harley
- 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| |
Collapse
|
31
|
Lee JC, Volpicelli EJ. Bioinspired Collagen Scaffolds in Cranial Bone Regeneration: From Bedside to Bench. Adv Healthc Mater 2017; 6:10.1002/adhm.201700232. [PMID: 28585295 PMCID: PMC5831258 DOI: 10.1002/adhm.201700232] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/11/2017] [Indexed: 12/24/2022]
Abstract
Calvarial defects are common reconstructive dilemmas secondary to a variety of etiologies including traumatic brain injury, cerebrovascular disease, oncologic resection, and congenital anomalies. Reconstruction of the calvarium is generally undertaken for the purposes of cerebral protection, contour restoration for psychosocial well-being, and normalization of neurological dysfunction frequently found in patients with massive cranial defects. Current methods for reconstruction using autologous grafts, allogeneic grafts, or alloplastic materials have significant drawbacks that are unique to each material. The combination of wide medical relevance and the need for a better clinical solution render defects of the cranial skeleton an ideal target for development of regenerative strategies focused on calvarial bone. With the improved understanding of the instructive properties of tissue-specific extracellular matrices and the advent of precise nanoscale modulation in materials science, strategies in regenerative medicine have shifted in paradigm. Previously considered to be simple carriers of stem cells and growth factors, increasing evidence exists for differential materials directing lineage specific differentiation of progenitor cells and tissue regeneration. In this work, we review the clinical challenges for calvarial reconstruction, the anatomy and physiology of bone, and extracellular matrix-inspired, collagen-based materials that have been tested for in vivo cranial defect healing.
Collapse
Affiliation(s)
- Justine C Lee
- Greater Los Angeles Veterans Affairs Research Service, Los Angeles, California
- University of California Los Angeles Division of Plastic and Reconstructive Surgery, Los Angeles, California
| | - Elizabeth J Volpicelli
- Greater Los Angeles Veterans Affairs Research Service, Los Angeles, California
- University of California Los Angeles Division of Plastic and Reconstructive Surgery, Los Angeles, California
| |
Collapse
|
32
|
Ayala-Caminero R, Pinzón-Herrera L, Martinez CAR, Almodovar J. Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve regeneration. MRS COMMUNICATIONS 2017; 7:391-415. [PMID: 29515936 PMCID: PMC5836791 DOI: 10.1557/mrc.2017.90] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/28/2017] [Indexed: 05/09/2023]
Abstract
Understanding peripheral nerve repair requires the evaluation of 3D structures that serve as platforms for 3D cell culture. Multiple platforms for 3D cell culture have been developed, mimicking peripheral nerve growth and function, in order to study tissue repair or diseases. To recreate an appropriate 3D environment for peripheral nerve cells, key factors are to be considered including: selection of cells, polymeric biomaterials to be used, and fabrication techniques to shape and form the 3D scaffolds for cellular culture. This review focuses on polymeric 3D platforms used for the development of 3D peripheral nerve cell cultures.
Collapse
Affiliation(s)
- Radamés Ayala-Caminero
- Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico, 00681-9000, USA
| | - Luis Pinzón-Herrera
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayaguez, Puerto Rico, 00681-9000, USA
| | - Carol A Rivera Martinez
- Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico, 00681-9000, USA
| | - Jorge Almodovar
- Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico, 00681-9000, USA
| |
Collapse
|
33
|
Gelatin Scaffolds Containing Partially Sulfated Cellulose Promote Mesenchymal Stem Cell Chondrogenesis. Tissue Eng Part A 2017; 23:1011-1021. [DOI: 10.1089/ten.tea.2016.0461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
34
|
Heparin/Collagen 3D Scaffold Accelerates Hepatocyte Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells. Tissue Eng Regen Med 2017; 14:443-452. [PMID: 30603500 DOI: 10.1007/s13770-017-0048-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 12/26/2022] Open
Abstract
Both mature and stem cell-derived hepatocytes lost their phenotype and functionality under conventional culture conditions. However, the 3D scaffolds containing the main extracellular matrix constitutions, such as heparin, may provide appropriate microenvironment for hepatocytes to be functional. The current study aimed to investigate the efficacy of the differentiation capability of hepatocytes derived from human Wharton's jelly mesenchymal stem cells (WJ-MSCs) in 3D heparinized scaffold. In this case, the human WJ-MSCs were cultured on the heparinized and non-heparinized 2D collagen gels or within 3D scaffolds in the presence of hepatogenic medium. Immunostaining was performed for anti-alpha fetoprotein, cytokeratin-18 and -19 antibodies. RT-PCR was performed for detection of hepatic nuclear factor-4 (HNF-4), albumin, cytokeratin-18 and -19, glucose-6-phosphatase (G6P), c-met and Cyp2B. The results indicated that hepatogenic media induced the cells to express early liver-specific markers including HNF4, albumin, cytokeratin-18 and 19 in all conditions. The cells cultured on both heparinized culture conditions expressed late liver-specific markers such as G6P and Cyp2B as well. Besides, the hepatocytes differentiated in 3D heparinized scaffolds stored more glycogen that indicated they were more functional. Non-heparinized 2D gel was the superior condition for cholangiocyte differentiation as indicated by higher levels of cytokeratin 19 expression. In conclusion, the heparinized 3D scaffolds provided a microenvironment to mimic Disse space. Therefore, 3D heparinized collagen scaffold can be suggested as a good vehicle for hepatocyte differentiation.
Collapse
|
35
|
Tong S, Xu DP, Liu ZM, Du Y, Wang XK. Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation. J Craniofac Surg 2016; 27:509-15. [PMID: 26890455 DOI: 10.1097/scs.0000000000002296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The objective of the study was to discuss the biocompatibility of the vascular endothelial growth factor-silk fibroin-chitosan (VEGF-SF-CS) scaffolds. To offer an ideal scaffold for bone tissue engineering, the author added vascular endothelial growth factor (VEGF) into silk fibroin-chitosan (SF-CS) scaffold directly to reconstruct a three-dimensional scaffold for the first time, SF-CS scaffold was loaded with VEGF and evaluated as a growth factor-delivery device. Human fetal osteoblast cell was seeded on the VEGF-SF-CS scaffolds and SF-CS scaffolds. On VEGF-SF-CS and SF-CS scaffolds, the cell adhesion rate was increased as time went on. Scanning electron microscopy: the cells grew actively and had normal multiple fissions, granular and filamentous substrates could be seen around the cells, and cell microfilaments were closely connected with the scaffolds. The cells could not only show the attached growth on surfaces of the scaffolds, but also extend into the scaffolds. Cell Counting Kit-8 and alkaline phosphatase analysis proved that the VEGF could significantly promote human fetal osteoblast1.19 cells growth and proliferation in the SF-CS scaffolds, but the enhancement of osteoblasts cell proliferation and activity by VEGF was dependent on time.
Collapse
Affiliation(s)
- Shuang Tong
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
36
|
Tong S, Xu DP, Liu ZM, Du Y, Wang XK. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Int J Mol Med 2016; 38:367-80. [PMID: 27352815 PMCID: PMC4935461 DOI: 10.3892/ijmm.2016.2651] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
The role of transforming growth factor-β1 (TGF-β1) in normal human fracture healing has been previously demonstrated. The objective of the present study was to examine the biocompatibility of TGF-β1-silk fibroin-chitosan (TGF-β1-SF-CS) three-dimensional (3D) scaffolds in order to construct an ideal scaffold for bone tissue engineering. We added TGF-β1 directly to the SF-CS scaffold to construct a 3D scaffold for the first time, to the best of our knowledge, and performed evaluations to determine whether it may have potential applications as a growth factor delivery device. Bone marrow-derived mesenchymal stem cells (BMSCs) were seeded on the TGF-β1-SF-CS scaffolds and the silk fibroin-chitosan (SF-CS) scaffolds. On the TGF-β1‑SF-CS and the SF-CS scaffolds, the cell adhesion rate increased in a time‑dependent manner. Using a Cell Counting Kit-8 (CCK-8) assay and analyzing the alkaline phosphatase (ALP) expression proved that TGF-β1 significantly enhanced the growth and proliferation of BMSCs on the SF-CS scaffolds in a time-dependent manner. To examine the in vivo biocompatibility and osteogenesis of the TGF-β1‑SF-CS scaffolds, the TGF-β1-SF-CS scaffolds and the SF-CS scaffolds were implanted in rabbit mandibles and studied histologically and microradiographically. The 3D computed tomography (CT) scan and histological examinations of the samples showed that the TGF-β1-SF-CS scaffolds exhibited good biocompatibility and extensive osteoconductivity with the host bone after 8 weeks. Moreover, the introduction of TGF-β1 to the SF-CS scaffolds markedly enhanced the efficiency of new bone formation, and this was confirmed using bone mineral density (BMD) and biomechanical evaluation, particularly at 8 weeks after implantation. We demonstrated that the TGF-β1‑SF-CS scaffolds possessed as good biocompatibility and osteogenesis as the hybrid ones. Taken together, these findings indicate that the TGF-β1-SF-CS scaffolds fulfilled the basic requirements of bone tissue engineering, and have the potential to be applied in orthopedic, reconstructive and maxillofacial surgery. Thus, TGF-β1-SF-CS composite scaffolds represent a promising, novel type of scaffold for use in bone tissue engineering.
Collapse
Affiliation(s)
- Shuang Tong
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang, Liaoning 110002, P.R. China
| | - Da-Peng Xu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang, Liaoning 110002, P.R. China
| | - Zi-Mei Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang, Liaoning 110002, P.R. China
| | - Yang Du
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang, Liaoning 110002, P.R. China
| | - Xu-Kai Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
37
|
Hortensius RA, Harley BA. Naturally derived biomaterials for addressing inflammation in tissue regeneration. Exp Biol Med (Maywood) 2016; 241:1015-24. [PMID: 27190254 DOI: 10.1177/1535370216648022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissue regeneration strategies have traditionally relied on designing biomaterials that closely mimic features of the native extracellular matrix (ECM) as a means to potentially promote site-specific cellular behaviors. However, inflammation, while a necessary component of wound healing, can alter processes associated with successful tissue regeneration following an initial injury. These processes can be further magnified by the implantation of a biomaterial within the wound site. In addition to designing biomaterials to satisfy biocompatibility concerns as well as to replicate elements of the composition, structure, and mechanics of native tissue, we propose that ECM analogs should also include features that modulate the inflammatory response. Indeed, strategies that enhance, reduce, or even change the temporal phenotype of inflammatory processes have unique potential as future pro-regenerative analogs. Here, we review derivatives of three natural materials with intrinsic anti-inflammatory properties and discuss their potential to address the challenges of inflammation in tissue engineering and chronic wounds.
Collapse
Affiliation(s)
| | - Brendan Ac Harley
- Department of Chemical and Biological Engineering, University of Illinois, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Yaylaci SU, Sen M, Bulut O, Arslan E, Guler MO, Tekinay AB. Chondrogenic Differentiation of Mesenchymal Stem Cells on Glycosaminoglycan-Mimetic Peptide Nanofibers. ACS Biomater Sci Eng 2016; 2:871-878. [DOI: 10.1021/acsbiomaterials.6b00099] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seher Ustun Yaylaci
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Merve Sen
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Ozlem Bulut
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Elif Arslan
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Mustafa O. Guler
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Ayse B. Tekinay
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
39
|
Mozdzen LC, Rodgers R, Banks JM, Bailey RC, Harley BA. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Acta Biomater 2016; 33:25-33. [PMID: 26850145 DOI: 10.1016/j.actbio.2016.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/24/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Tendon is a highly aligned connective tissue which transmits force from muscle to bone. Each year, people in the US sustain more than 32 million tendon injuries. To mitigate poor functional outcomes due to scar formation, current surgical techniques rely heavily on autografts. Biomaterial platforms and tissue engineering methods offer an alternative approach to address these injuries. Scaffolds incorporating aligned structural features can promote expansion of adult tenocytes and mesenchymal stem cells capable of tenogenic differentiation. However, appropriate balance between scaffold bioactivity and mechanical strength of these constructs remains challenging. The high porosity required to facilitate cell infiltration, nutrient and oxygen biotransport within three-dimensional constructs typically results in insufficient biomechanical strength. Here we describe the use of three-dimensional printing techniques to create customizable arrays of acrylonitrile butadiene styrene (ABS) fibers that can be incorporated into a collagen scaffold under development for tendon repair. Notably, mechanical performance of scaffold-fiber composites (elastic modulus, peak stress, strain at peak stress, and toughness) can be selectively manipulated by varying fiber-reinforcement geometry without affecting the native bioactivity of the collagen scaffold. Further, we report an approach to functionalize ABS fibers with activity-inducing growth factors via sequential oxygen plasma and carbodiimide crosslinking treatments. Together, we report an adaptable approach to control both mechanical strength and presence of biomolecular cues in a manner orthogonal to the architecture of the collagen scaffold itself. STATEMENT OF SIGNIFICANCE Tendon injuries account for more than 32 million injuries each year in the US alone. Current techniques use allografts to mitigate poor functional outcomes, but are not ideal platforms to induce functional regeneration following injury. Tissue engineering approaches using biomaterial substrates have significant potential for addressing these defects. However, the high porosity required to facilitate cell infiltration and nutrient transport often dictates that the resultant biomaterials has insufficient biomechanical strength. Here we describe the use of three-dimensional printing techniques to generate customizable fiber arrays from ABS polymer that can be incorporated into a collagen scaffold under development for tendon repair applications. Notably, the mechanical performance of the fiber-scaffold composite can be defined by the fiber array independent of the bioactivity of the collagen scaffold design. Further, the fiber array provides a substrate for growth factor delivery to aid healing.
Collapse
|
40
|
Hortensius RA, Ebens JH, Harley BAC. Immunomodulatory effects of amniotic membrane matrix incorporated into collagen scaffolds. J Biomed Mater Res A 2016; 104:1332-42. [PMID: 26799369 DOI: 10.1002/jbm.a.35663] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 01/08/2023]
Abstract
Adult tendon wound repair is characterized by the formation of disorganized collagen matrix which leads to decreases in mechanical properties and scar formation. Studies have linked this scar formation to the inflammatory phase of wound healing. Instructive biomaterials designed for tendon regeneration are often designed to provide both structural and cellular support. In order to facilitate regeneration, success may be found by tempering the body's inflammatory response. This work combines collagen-glycosaminoglycan scaffolds, previously developed for tissue regeneration, with matrix materials (hyaluronic acid and amniotic membrane) that have been shown to promote healing and decreased scar formation in skin studies. The results presented show that scaffolds containing amniotic membrane matrix have significantly increased mechanical properties and that tendon cells within these scaffolds have increased metabolic activity even when the media is supplemented with the pro-inflammatory cytokine interleukin-1 beta. Collagen scaffolds containing hyaluronic acid or amniotic membrane also temper the expression of genes associated with the inflammatory response in normal tendon healing (TNF-α, COLI, MMP-3). These results suggest that alterations to scaffold composition, to include matrix known to decrease scar formation in vivo, can modify the inflammatory response in tenocytes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1332-1342, 2016.
Collapse
Affiliation(s)
- Rebecca A Hortensius
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Jill H Ebens
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
41
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
42
|
Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells. Biomolecules 2016; 6:12. [PMID: 26784249 PMCID: PMC4808806 DOI: 10.3390/biom6010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12) cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-d-glucosamine (GlcNAc6) was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S–Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering.
Collapse
|
43
|
Hu J, Seeberger PH, Yin J. Using carbohydrate-based biomaterials as scaffolds to control human stem cell fate. Org Biomol Chem 2016; 14:8648-58. [DOI: 10.1039/c6ob01124a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the current state and applications of several important and extensively studied natural polysaccharide and glycoprotein scaffolds that can control the stem cell fate.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi Medical School
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Peter H. Seeberger
- Department of Biomolecular Systems
- Max Planck Institute of Colloids and Interfaces
- 14476 Potsdam
- Germany
| | - Jian Yin
- Wuxi Medical School
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
44
|
Rother S, Salbach-Hirsch J, Moeller S, Seemann T, Schnabelrauch M, Hofbauer LC, Hintze V, Scharnweber D. Bioinspired Collagen/Glycosaminoglycan-Based Cellular Microenvironments for Tuning Osteoclastogenesis. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23787-23797. [PMID: 26452150 DOI: 10.1021/acsami.5b08419] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Replicating the biocomplexity of native extracellular matrices (ECM) is critical for a deeper understanding of biochemical signals influencing bone homeostasis. This will foster the development of bioinspired biomaterials with adjustable bone-inducing properties. Collagen-based coatings containing single HA derivatives have previously been reported to promote osteogenic differentiation and modulate osteoclastogenesis and resorption depending on their sulfation degree. However, the potential impact of different GAG concentrations as well as the interplay of multiple GAGs in these coatings is not characterized in detail to date. These aspects were addressed in the current study by integrating HA and different sulfate-modified HA derivatives (sHA) during collagen in vitro fibrillogenesis. Besides cellular microenvironments with systematically altered single-GAG concentrations, matrices containing both low and high sHA (sHA1, sHA4) were characterized by biochemical analysis such as agarose gel electrophoresis, performed for the first time with sHA derivatives. The morphology and composition of the collagen coatings were altered in a GAG sulfation- and concentration-dependent manner. In multi-GAG microenvironments, atomic force microscopy revealed intermediate collagen fibril structures with thin fibrils and microfibrils. GAG sulfation altered the surface charge of the coatings as demonstrated by ζ-potential measurements revealed for the first time as well. This highlights the prospect of GAG-containing matrices to adjust defined surface charge properties. The sHA4- and the multi-GAG coatings alike significantly enhanced the viability of murine osteoclast-precursor-like RAW264.7 cells. Although in single-GAG matrices there was no dose-dependent effect on cell viability, osteoclastogenesis was significantly suppressed only on sHA4-coatings in a dose-dependent fashion. The multi-GAG coatings led to an antiosteoclastogenic effect in-between those with single-GAGs which cannot simply be attributed to the overall content of sulfate groups. These data suggest that the interplay of sGAGs influences bone cell behavior. Whether these findings translate into favorable biomaterial properties needs to be validated in vivo.
Collapse
Affiliation(s)
- Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , Budapester Straße 27, 01069 Dresden, Germany
| | - Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Bone Diseases of Medicine III, Technische Universität Dresden Medical Center , Fetscherstraße 74, 01307 Dresden, Germany
| | - Stephanie Moeller
- Biomaterials Department, INNOVENT e.V. , Prüssingstraße 27 B, 07745 Jena, Germany
| | - Thomas Seemann
- Biomaterials Department, INNOVENT e.V. , Prüssingstraße 27 B, 07745 Jena, Germany
| | | | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases of Medicine III, Technische Universität Dresden Medical Center , Fetscherstraße 74, 01307 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , Budapester Straße 27, 01069 Dresden, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , Budapester Straße 27, 01069 Dresden, Germany
| |
Collapse
|
45
|
Pence JC, Clancy KBH, Harley BAC. The induction of pro-angiogenic processes within a collagen scaffold via exogenous estradiol and endometrial epithelial cells. Biotechnol Bioeng 2015; 112:2185-94. [PMID: 25944769 DOI: 10.1002/bit.25622] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/23/2022]
Abstract
Nutrient transport remains a major limitation in the design of biomaterials. One approach to overcome this constraint is to incorporate features to induce angiogenesis-mediated microvasculature formation. Angiogenesis requires a temporal presentation of both pro- and anti-angiogenic factors to achieve stable vasculature, leading to increasingly complex biomaterial design scheme. The endometrium, the lining of the uterus and site of embryo implantation, exemplifies a non-pathological model of rapid growth, shedding, and re-growth of dense vascular networks regulated by the dynamic actions of estradiol and progesterone. In this study, we examined the individual and combined response of endometrial epithelial cells and human umbilical vein endothelial cells to exogenous estradiol within a three-dimensional collagen scaffold. While endothelial cells did not respond to exogenous estradiol, estradiol directly stimulated endometrial epithelial cell transduction pathways and resulted in dose-dependent increases in endogenous VEGF production. Co-culture experiments using conditioned media demonstrated estradiol stimulation of endometrial epithelial cells can induce functional changes in endothelial cells within the collagen biomaterial. We also report the effect of direct endometrial epithelial and endothelial co-culture as well as covalent immobilization of estradiol within the collagen biomaterial. These efforts establish the suitability of an endometrial-inspired model for promoting pro-angiogenic events within regenerative medicine applications. These results also suggest the potential for developing biomaterial-based models of the endometrium.
Collapse
Affiliation(s)
- Jacquelyn C Pence
- Department of Chemical Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kathryn B H Clancy
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Brendan A C Harley
- Department of Chemical Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.
| |
Collapse
|
46
|
Domingues RMA, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, Mano JF, Motta A, Reis RL, Gomes ME. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjug Chem 2015; 26:1571-81. [DOI: 10.1021/acs.bioconjchem.5b00209] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rui M. A. Domingues
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, Department
of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark −
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Marta Silva
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, Department
of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark −
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Pavel Gershovich
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, Department
of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark −
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Sefano Betta
- Department
of Industrial Engineering and Biotech Research Centre, University of Trento, 38123 Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 38123 Trento, Italy
| | - Pedro Babo
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, Department
of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark −
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Sofia G. Caridade
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, Department
of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark −
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - João F. Mano
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, Department
of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark −
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Antonella Motta
- Department
of Industrial Engineering and Biotech Research Centre, University of Trento, 38123 Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 38123 Trento, Italy
| | - Rui L. Reis
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, Department
of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark −
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, Department
of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark −
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
47
|
Zuo Q, Guo R, Liu Q, Hong A, Shi Y, Kong Q, Huang Y, He L, Xue W. Heparin-conjugated alginate multilayered microspheres for controlled release of bFGF. Biomed Mater 2015; 10:035008. [DOI: 10.1088/1748-6041/10/3/035008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Ryan CNM, Sorushanova A, Lomas AJ, Mullen AM, Pandit A, Zeugolis DI. Glycosaminoglycans in Tendon Physiology, Pathophysiology, and Therapy. Bioconjug Chem 2015; 26:1237-51. [DOI: 10.1021/acs.bioconjchem.5b00091] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Kinneberg KRC, Nelson A, Stender ME, Aziz AH, Mozdzen LC, Harley BAC, Bryant SJ, Ferguson VL. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold. Ann Biomed Eng 2015; 43:2618-29. [PMID: 26001970 DOI: 10.1007/s10439-015-1337-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bi-layer hydrogel interpenetrated with a fibrous collagen scaffold. 'Soft' 10% (w/w) and 'stiff' 30% (w/w) PEGDM was formed into mono- or bi-layer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single-(hydrogel only) or multi-phase (hydrogel + fibrous scaffold penetrating throughout the stiff layer and extending >500 μm into the soft layer). Including a fibrous scaffold into both soft and stiff mono-layer hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. Finite element simulations predicted substantially reduced stress and strain gradients across the soft-stiff hydrogel interface in multi-phase, bilayer hydrogels. When combining two low moduli constituent materials, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function-the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion.
Collapse
Affiliation(s)
- K R C Kinneberg
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive; UCB 427, Boulder, CO, 80309, USA
| | - A Nelson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - M E Stender
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive; UCB 427, Boulder, CO, 80309, USA
| | - A H Aziz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - L C Mozdzen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - B A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - S J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Material Science & Engineering Program, University of Colorado, Boulder, CO, USA
| | - V L Ferguson
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive; UCB 427, Boulder, CO, 80309, USA. .,BioFrontiers Institute, University of Colorado, Boulder, CO, USA. .,Material Science & Engineering Program, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
50
|
A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid. BIOMED RESEARCH INTERNATIONAL 2015; 2015:508656. [PMID: 26090416 PMCID: PMC4452235 DOI: 10.1155/2015/508656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
Abstract
GY785 is an exopolysaccharide produced by a mesophilic bacterial strain Alteromonas infernus discovered in the deep-sea hydrothermal vents. GY785 highly sulfated derivative (GY785 DRS) was previously demonstrated to be a promising molecule driving the efficient mesenchymal stem cell chondrogenesis for cartilage repair. This glycosaminoglycan- (GAG-) like compound was modified in a classical solvent (N,N′-dimethylformamide). However, the use of classical solvents limits the polysaccharide solubility and causes the backbone degradation. In the present study, a one-step efficient sulfation process devoid of side effects (e.g., polysaccharide depolymerization and/or degradation) was developed to produce GAG-like derivatives. The sulfation of GY785 derivative (GY785 DR) was carried out using ionic liquid as a reaction medium. The successful sulfation of this anionic and highly branched heteropolysaccharide performed in ionic liquid would facilitate the production of new molecules of high specificity for biological targets such as tissue engineering or regenerative medicine.
Collapse
|