1
|
Hegde MM, Palkar P, Mutalik SP, Mutalik S, Goda JS, Rao BSS. Enhancing glioblastoma cytotoxicity through encapsulating O6-benzylguanine and temozolomide in PEGylated liposomal nanocarrier: an in vitro study. 3 Biotech 2024; 14:275. [PMID: 39450422 PMCID: PMC11499494 DOI: 10.1007/s13205-024-04123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Glioblastoma (GBM) (grade IV glioma) is the most fatal brain tumor, with a median survival of just 14 months despite current treatments. Temozolomide (TMZ), an alkylating agent used with radiation, faces challenges such as systemic toxicity, poor absorption, and drug resistance. To enhance TMZ effectiveness, we developed poly(ethylene glycol) (PEG) liposomes co-loaded with TMZ and O6-benzylguanine (O6-BG) for targeted glioma therapy. These liposomes, prepared using the thin-layer hydration method, had an average size of 146.33 ± 6.75 nm and a negative zeta potential (-49.6 ± 3.1 mV). Drug release was slower at physiological pH, with 66.84 ± 4.62% of TMZ and 69.70 ± 2.88% of O6-BG released, indicating stability at physiological conditions. The liposomes showed significantly higher cellular uptake (p < 0.05) than the free dye. The dual drug-loaded liposomes exhibited superior cytotoxicity against U87 glioma cells, with a lower IC50 value (3.99µg/mL) than the free drug combination, demonstrating enhanced anticancer efficacy. The liposome formulation induced higher apoptosis (19.42 ± 3.5%) by causing sub-G0/G1 cell cycle arrest. The novelty of our study lies in co-encapsulating TMZ and O6-BG within PEGylated liposomes, effectively overcoming drug resistance and improving targeted delivery for glioma treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04123-2.
Collapse
Affiliation(s)
- Manasa Manjunath Hegde
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pranoti Palkar
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
| | - Sadhana P. Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Srinivas Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayant Sastri Goda
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
- Department of Radiation Oncology, Advanced Centre for Treatment Research Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
| | - B. S. Satish Rao
- Manipal School of Life Sciences & Director-Research, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Weissberger D, Stenzel MH, Hunter L. Precious Cargo: The Role of Polymeric Nanoparticles in the Delivery of Covalent Drugs. Molecules 2024; 29:4949. [PMID: 39459317 PMCID: PMC11510600 DOI: 10.3390/molecules29204949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Covalent drugs can offer significant advantages over non-covalent drugs in terms of pharmacodynamics (i.e., target-binding properties). However, the development of covalent drugs is sometimes hampered by pharmacokinetic limitations (e.g., low bioavailability, rapid metabolism and toxicity due to off-target binding). Polymeric nanoparticles offer a potential solution to these limitations. Delivering covalent drugs via polymeric nanoparticles provides myriad benefits in terms of drug solubility, permeability, lifetime, selectivity, controlled release and the opportunity for synergistic administration alongside other drugs. In this short review, we examine each of these benefits in turn, illustrated through multiple case studies.
Collapse
Affiliation(s)
| | - Martina H. Stenzel
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Hernández-Parra H, Cortés H, Romero-Montero A, Borbolla-Jiménez FV, Magaña JJ, Del Prado-Audelo ML, Florán B, Leyva-Gómez G. Polymeric nanoparticles decorated with fragmented chitosan as modulation systems for neuronal drug uptake. Carbohydr Polym 2024; 336:122121. [PMID: 38670753 DOI: 10.1016/j.carbpol.2024.122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
This study aimed to modify chitosan (CS) by gamma irradiation and use it as a surface coating of nanoparticles (NPs) fabricated of poly lactic-co-glycolic acid (PLGA) to create mostly biocompatible nanosystems that can transport drugs to neurons. Gamma irradiation produced irradiated CS (CSγ) with a very low molecular weight (15.2-19.2 kDa). Coating NPs-PLGA with CSγ caused significant changes in their Z potential, making it slightly positive (from -21.7 ± 2.8 mV to +7.1 ± 2.3 mV) and in their particle size (184.4 0.4 ± 7.9 nm to 211.9 ± 14.04 nm). However, these changes were more pronounced in NPs coated with non-irradiated CS (Z potential = +54.0 ± 1.43 mV, size = 348.1 ± 16.44 nm). NPs coated with CSγ presented lower cytotoxicity and similar internalization levels in SH-SY5Y neuronal cells than NPs coated with non-irradiated CS, suggesting higher biocompatibility. Highly biocompatible NPs are desirable as nanocarriers to deliver drugs to the brain, as they help maintain the structure and function of the blood-brain barrier. Therefore, the NPs developed in this study could be evaluated as drug-delivery systems for treating brain diseases.
Collapse
Affiliation(s)
- Hector Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico; Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Fabiola V Borbolla-Jiménez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México, 14380, Mexico.
| | | | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
4
|
Bin Iqbal AJ, Shahriar R, Zubair A. First-principles study of a SiC nanosheet as an effective material for nitrosourea and carmustine anti-cancer drug delivery. NANOSCALE ADVANCES 2024; 6:2968-2979. [PMID: 38817439 PMCID: PMC11134228 DOI: 10.1039/d4na00050a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
The development of novel nanosheet-based drug delivery systems requires a systematic understanding of the interactions between the drug and the nanosheet carrier under various physiological environments. In this work, we investigated electronic and quantum molecular descriptors of a SiC monolayer adsorbed with the anticancer drugs nitrosourea (NU) and carmustine (BCNU) using density functional theory (DFT). Our calculations revealed negative adsorption energies for both drugs, indicating a spontaneous and energetically favorable adsorption process. Density of states and orbital population analysis studies revealed that both drugs are capable of significantly (>30%) narrowing the gap between HOMO and LUMO, depending on the configuration of the adsorption complex. Furthermore, the electronic and quantum molecular descriptors were investigated in gas and water mediums to explore the effect of the solvent on the adsorption process. Our calculations predict a higher narrowing of the HOMO-LUMO gap in the water phase compared to the gas phase. Besides, a modest reduction in global hardness and a marked increase in the global electrophilicity index were observed after the adsorption of the drug molecules by the SiC nanosheet, indicating its high reactivity towards both NU and BCNU. Changing the medium to water showed a maximum 2× increase in the global electrophilicity index of the nanosheet for NU and a maximum 7× increase for BCNU. Additionally, the thermodynamic study of the adsorption process indicates that the formation energies at high temperatures are smaller than those at low temperatures, unfolding the potential of SiC nanosheet for application in the phototherapy of these drugs.
Collapse
Affiliation(s)
- Abdullah Jubair Bin Iqbal
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - Rifat Shahriar
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka Bangladesh
- Department of Electrical Engineering, University of Southern California Los Angeles California USA
| | - Ahmed Zubair
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka Bangladesh
| |
Collapse
|
5
|
Aanniz T, El Omari N, Elouafy Y, Benali T, Zengin G, Khalid A, Abdalla AN, Sakran AM, Bouyahya A. Innovative Encapsulation Strategies for Food, Industrial, and Pharmaceutical Applications. Chem Biodivers 2024; 21:e202400116. [PMID: 38462536 DOI: 10.1002/cbdv.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
Bioactive metabolites obtained from fruits and vegetables as well as many drugs have various capacities to prevent or treat various ailments. Nevertheless, their efficiency, in vivo, encounter many challenges resulting in lower efficacy as well as different side effects when high doses are used resulting in many challenges for their application. Indeed, demand for effective treatments with no or less unfavorable side effects is rising. Delivering active molecules to a particular site of action within the human body is an example of targeted therapy which remains a challenging field. Developments of nanotechnology and polymer science have great promise for meeting the growing demands of efficient options. Encapsulation of active ingredients in nano-delivery systems has become as a vitally tool for protecting the integrity of critical biochemicals, improving their delivery, enabling their controlled release and maintaining their biological features. Here, we examine a wide range of nano-delivery techniques, such as niosomes, polymeric/solid lipid nanoparticles, nanostructured lipid carriers, and nano-emulsions. The advantages of encapsulation in targeted, synergistic, and supportive therapies are emphasized, along with current progress in its application. Additionally, a revised collection of studies was given, focusing on improving the effectiveness of anticancer medications and addressing the problem of antimicrobial resistance. To sum up, this paper conducted a thorough analysis to determine the efficacy of encapsulation technology in the field of drug discovery and development.
Collapse
Affiliation(s)
- Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP, 1014, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, 46030, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ashraf M Sakran
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah, 21955, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
6
|
Dash BS, Lu YJ, Huang YS, Chen JP. Chitosan-coated magnetic graphene oxide for targeted delivery of doxorubicin as a nanomedicine approach to treat glioblastoma. Int J Biol Macromol 2024; 260:129401. [PMID: 38224798 DOI: 10.1016/j.ijbiomac.2024.129401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
In this study, magnetic graphene oxide (mGO) was first prepared and modified with chitosan to prepare chitosan-coated mGO (mGOC). Gastrin-releasing peptide (GRP)-conjugated mGOC (mGOCG) was then prepared from mGOC. The chemo drug doxorubicin (DOX) was adsorbed to mGOCG surface for dual active/magnetic targeted drug delivery. The DOX loading to mGOCG is 1.71 mg/mg, and drug release is pH-sensitive to facilitate drug delivery in endosomes. In vitro studies confirmed enhanced mGOCG endocytosis by U87 glioblastoma cells, with which enhanced cytotoxicity towards cancer cells could be achieved. This could be revealed from the drastically reduced half-maximal inhibitory concentration of mGOCG/DOX compared with DOX and mGOC/DOX. Furthermore, mGOCG/DOX can be localized under the influence of a magnetic field (MF) to exert this cytotoxic effect. An orthotopic brain tumor model by implanting U87 cells in the intracranial area of BALB/c nude mice was used to study the in vivo anti-tumor efficacy by intravenous injection of different samples and followed with bioluminescence imaging. The tumor size in the mGOCG/DOX + MF group demonstrated the best potency to suppress tumor growth and prolong animal survival time compared with mGOCG/DOX, mGOC/DOX, or DOX groups, indicating this new dual-targeting delivery system for DOX can effectively treat glioblastoma.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
| | - Ya-Shu Huang
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
7
|
Majumder R, Karmakar S, Mishra S, Mallick AB, Das Mukhopadhyay C. Functionalized Carbon Nano-Onions as a Smart Drug Delivery System for the Poorly Soluble Drug Carmustine for the Management of Glioblastoma. ACS APPLIED BIO MATERIALS 2024; 7:154-167. [PMID: 38088856 DOI: 10.1021/acsabm.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The drug delivery system for transporting anticancer agents to targeted tissues in the body is a challenging issue. In search of a suitable biocompatible carrier having controlled and sustained drug release properties of poorly soluble drugs, carbon nano-onions (CNOs) were loaded with an anticancer drug, bis-chloroethyl nitrosourea (BCNU/carmustine). CNOs being autofluorescent, drug-loaded functionalized CNOs (f-CNO-BCNU) can be detected in vivo. Transmission electron microscopy (TEM) and differential light scattering (DLS) techniques were used to analyze the sizes of these f-CNOs. The molecular study revealed that the f-CNO-BCNU readily and noncovalently binds with the folate receptors present on the cancer cell surface in excess. Computer modeling and molecular dynamics simulation followed by binding free energy calculation shows f-CNOs have -29.9 kcal/mol binding free energy, and it noncovalently binds the receptor FRα using loop dynamics of three essential loops present in the protein along with polar stabilization interactions provided by Asp55 and Glu86 residues present in the active site. The f-CNO effectively decreased cancer cell viability with a low IC50 value (the concentration that led to 50% killing of the cells). The cell-based Franz diffusion assay was performed to study the drug release profile. The f-CNO-BCNUs also decreased the mitochondrial membrane potential of U87 cells, increased reactive oxygen species release, and caused a loss of mitochondrial membrane integrity. The f-CNOs also increased the percentage of apoptotic cells observed by the Annexin V assay. Based on observed results, it can be concluded that the f-CNO-BCNU efficiently targets the cancer cells, enhances the bioavailability of carmustine, and can be used as a smart chemotherapeutic agent. This strategy offers better patient compliance and greater bioavailability of the drug.
Collapse
Affiliation(s)
- Rabindranath Majumder
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amitava Basu Mallick
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| |
Collapse
|
8
|
Kurawattimath V, Wilson B, Geetha KM. Nanoparticle-based drug delivery across the blood-brain barrier for treating malignant brain glioma. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Silver Nanoparticles Loaded on Polyethylene Terephthalate Films Grafted with Chitosan. Polymers (Basel) 2022; 15:polym15010125. [PMID: 36616475 PMCID: PMC9824822 DOI: 10.3390/polym15010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Currently, polyethylene terephthalate (PET) is one of the most widely used polymeric materials in different sectors such as medicine, engineering, and food, among others, due to its benefits, including biocompatibility, mechanical resistance, and tolerance to chemicals and/or abrasion. However, despite all these excellent characteristics, it is not capable of preventing the proliferation of microorganisms on its surface. Therefore, providing this property to PET remains a difficult challenge. Fortunately, different strategies can be applied to remove microorganisms from the PET surface. In this work, the surface of the PET film was functionalized with amino groups and later with a dicarboxylic acid, allowing a grafting reaction with chitosan chains. Finally, the chitosan coating was loaded with silver nanoparticles with an average size of 130 ± 37 nm, presenting these materials with an average cell viability of 80%. The characterization of these new PET-based materials showed considerable changes in surface morphology as well as increased surface hydrophilicity without significantly affecting their mechanical properties. In general, the implemented method can open an alternative pathway to design new PET-based materials due to its good cell viability with possible bacteriostatic activity due to the biocidal properties of silver nanoparticles and chitosan.
Collapse
|
10
|
Ruiz-Molina D, Mao X, Alfonso-Triguero P, Lorenzo J, Bruna J, Yuste VJ, Candiota AP, Novio F. Advances in Preclinical/Clinical Glioblastoma Treatment: Can Nanoparticles Be of Help? Cancers (Basel) 2022; 14:4960. [PMID: 36230883 PMCID: PMC9563739 DOI: 10.3390/cancers14194960] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GB) is the most aggressive and frequent primary malignant tumor in the central nervous system (CNS), with unsatisfactory and challenging treatment nowadays. Current standard of care includes surgical resection followed by chemotherapy and radiotherapy. However, these treatments do not much improve the overall survival of GB patients, which is still below two years (the 5-year survival rate is below 7%). Despite various approaches having been followed to increase the release of anticancer drugs into the brain, few of them demonstrated a significant success, as the blood brain barrier (BBB) still restricts its uptake, thus limiting the therapeutic options. Therefore, enormous efforts are being devoted to the development of novel nanomedicines with the ability to cross the BBB and specifically target the cancer cells. In this context, the use of nanoparticles represents a promising non-invasive route, allowing to evade BBB and reducing systemic concentration of drugs and, hence, side effects. In this review, we revise with a critical view the different families of nanoparticles and approaches followed so far with this aim.
Collapse
Affiliation(s)
- Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Xiaoman Mao
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Paula Alfonso-Triguero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital-ICO (IDIBELL), Avinguda de la Gran Via de l’Hospitalet, 199-203, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Victor J. Yuste
- Instituto de Neurociencias. Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
11
|
Attia M, Glickman RD, Romero G, Chen B, Brenner AJ, Ye JY. Optimized metal-organic-framework based magnetic nanocomposites for efficient drug delivery and controlled release. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Torres ID, Loureiro JA, Coelho MAN, Carmo Pereira M, Ramalho MJ. Drug delivery in glioblastoma therapy: a review on nanoparticles targeting MGMT-mediated resistance. Expert Opin Drug Deliv 2022; 19:1397-1415. [DOI: 10.1080/17425247.2022.2124967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Inês David Torres
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel A N Coelho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
13
|
Brain targeted delivery of carmustine using chitosan coated nanoparticles via nasal route for glioblastoma treatment. Int J Biol Macromol 2022; 221:435-445. [PMID: 36067850 DOI: 10.1016/j.ijbiomac.2022.08.210] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
This study aims to develop chitosan-coated PLGA nanoparticles intended for nose-to-brain delivery of carmustine. Formulations were prepared by the double emulsion solvent evaporation method and optimized by using Box-Behnken Design. The optimized nanoparticles were obtained to satisfactory levels in terms of particle size, PDI, entrapment efficiency, and drug loading. In vitro drug release and ex-vivo permeation showed sustained release and enhanced permeability (approx. 2 fold) of carmustine compared to drug suspension. The AUC0-t of brain obtained with carmustine-loaded nanoparticles via nasal administration in Albino Wistar rats was 2.8 and 14.7 times that of intranasal carmustine suspension and intravenous carmustine, respectively. The MTT assay on U87 MG cell line showed a significant decrease (P < 0.05) in the IC50 value of the formulation (71.23 μg ml-1) as compared to drug suspension (90.02 μg ml-1).These findings suggest chitosan coated nanoparticles could be used to deliver carmustine via intranasal administration to treat Glioblastoma multiforme.
Collapse
|
14
|
Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022; 27:molecules27175436. [PMID: 36080203 PMCID: PMC9457551 DOI: 10.3390/molecules27175436] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
In past decades, anticancer research has led to remarkable results despite many of the approved drugs still being characterized by high systemic toxicity mainly due to the lack of tumor selectivity and present pharmacokinetic drawbacks, including low water solubility, that negatively affect the drug circulation time and bioavailability. The stability studies, performed in mild conditions during their development or under stressing exposure to high temperature, hydrolytic medium or light source, have demonstrated the sensitivity of anticancer drugs to many parameters. For this reason, the formation of degradation products is assessed both in pharmaceutical formulations and in the environment as hospital waste. To date, numerous formulations have been developed for achieving tissue-specific drug targeting and reducing toxic side effects, as well as for improving drug stability. The development of prodrugs represents a promising strategy in targeted cancer therapy for improving the selectivity, efficacy and stability of active compounds. Recent studies show that the incorporation of anticancer drugs into vesicular systems, such as polymeric micelles or cyclodextrins, or the use of nanocarriers containing chemotherapeutics that conjugate to monoclonal antibodies can improve solubility, pharmacokinetics, cellular absorption and stability. In this study, we summarize the latest advances in knowledge regarding the development of effective highly stable anticancer drugs formulated as stable prodrugs or entrapped in nanosystems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fedora Grande
- Correspondence: (G.I.); (F.G.); Tel.: +39-0984-493268 (G.I.)
| |
Collapse
|
15
|
La Barbera L, Mauri E, D’Amelio M, Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives. Front Neurosci 2022; 16:939855. [PMID: 35992936 PMCID: PMC9387393 DOI: 10.3389/fnins.2022.939855] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive and multifactorial neurodegenerative disorder whose primary causes are mostly unknown. Due to the increase in life expectancy of world population, including developing countries, AD, whose incidence rises dramatically with age, is at the forefront among neurodegenerative diseases. Moreover, a definitive cure is not yet within reach, imposing substantial medical and public health burdens at every latitude. Therefore, the effort to devise novel and effective therapeutic strategies is still of paramount importance. Genetic, functional, structural and biochemical studies all indicate that new and efficacious drug delivery strategies interfere at different levels with various cellular and molecular targets. Over the last few decades, therapeutic development of nanomedicine at preclinical stage has shown to progress at a fast pace, thus paving the way for its potential impact on human health in improving prevention, diagnosis, and treatment of age-related neurodegenerative disorders, including AD. Clinical translation of nano-based therapeutics, despite current limitations, may present important advantages and innovation to be exploited in the neuroscience field as well. In this state-of-the-art review article, we present the most promising applications of polymeric nanoparticle-mediated drug delivery for bypassing the blood-brain barrier of AD preclinical models and boost pharmacological safety and efficacy. In particular, novel strategic chemical functionalization of polymeric nanocarriers that could be successfully employed for treating AD are thoroughly described. Emphasis is also placed on nanotheranostics as both potential therapeutic and diagnostic tool for targeted treatments. Our review highlights the emerging role of nanomedicine in the management of AD, providing the readers with an overview of the nanostrategies currently available to develop future therapeutic applications against this chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D’Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Manuele Gori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| |
Collapse
|
16
|
Khan I, Baig MH, Mahfooz S, Imran MA, Khan MI, Dong JJ, Cho JY, Hatiboglu MA. Nanomedicine for Glioblastoma: Progress and Future Prospects. Semin Cancer Biol 2022; 86:172-186. [PMID: 35760272 DOI: 10.1016/j.semcancer.2022.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma is the most aggressive form of brain tumor, accounting for the highest mortality and morbidity rates. Current treatment for patients with glioblastoma includes maximal safe tumor resection followed by radiation therapy with concomitant temozolomide (TMZ) chemotherapy. The addition of TMZ to the conformal radiation therapy has improved the median survival time only from 12 months to 16 months in patients with glioblastoma. Despite these aggressive treatment strategies, patients' prognosis remains poor. This therapeutic failure is primarily attributed to the blood-brain barrier (BBB) that restricts the transport of TMZ from reaching the tumor site. In recent years, nanomedicine has gained considerable attention among researchers and shown promising developments in clinical applications, including the diagnosis, prognosis, and treatment of glioblastoma tumors. This review sheds light on the morphological and physiological complexity of the BBB. It also explains the development of nanomedicine strategies to enhance the permeability of drug molecules across the BBB.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Mohd Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae Yong Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea.
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey; Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey.
| |
Collapse
|
17
|
Alshememry A, Kalam MA, Almoghrabi A, Alzahrani A, Shahid M, Khan AA, Haque A, Ali R, Alkholief M, Binkhathlan Z, Alshamsan A. Chitosan-coated poly (lactic-co-glycolide) nanoparticles for dual delivery of doxorubicin and naringin against MCF-7 cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Cao Y, Noori M, Nazari M, Ng Kay Lup A, Soltani A, Erfani-Moghadam V, Salehi A, Aghaei M, Lutfor Rahman M, Sani Sarjadi M, Sarkar SM, Su CH. Molecular docking evaluation of celecoxib on the boron nitride nanostructures for alleviation of cardiovascular risk and inflammatory. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Zhao Z, Shen J, Zhang L, Wang L, Xu H, Han Y, Jia J, Lu Y, Yu R, Liu H. Injectable postoperative enzyme-responsive hydrogels for reversing temozolomide resistance and reducing local recurrence after glioma operation. Biomater Sci 2021; 8:5306-5316. [PMID: 32573615 DOI: 10.1039/d0bm00338g] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioma is the most aggressive primary malignant brain tumor. The eradication of the gliomas by performing neurosurgery has not been successful due to the diffuse nature of malignant gliomas. Temozolomide (TMZ) is the first-line agent in treating gliomas after surgery, and its therapeutic efficacy is limited mainly due to the high activity levels of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) in glioma cells. Herein, we used an injectable matrix metalloproteinase (MMP) enzyme responsive hydrogel that loaded TMZ and O6-benzylamine (BG) (MGMT inhibitor) for eradicating residual TMZ-resistant gliomas after surgery. The hydrogels exhibited three features: (1) TMZ and BG could be encapsulated within the hydrophobic lamellae of the hydrogel to form Tm (TMZ + BG) hydrogels; (2) The hydrogels could release TMZ and BG in response to the high concentration of MMP enzymes after glioma surgery; (3) The hydrogels could increase local TMZ concentration and reduce side effects of BG. In vivo, the Tm (TMZ + BG) hydrogels inhibited the MGMT expression and sensitized TMZ-resistant glioma cells to TMZ. Moreover, the Tm (TMZ + BG) hydrogels effectively reduced the recurrence of TMZ-resistant glioma after surgery and significantly enhanced the efficiency of TMZ to inhibit glioma growth. Together, these data suggest that an MMP-responsive hydrogel is a promising localized drug delivery method to inhibit TMZ-resistant glioma recurrence after surgery.
Collapse
Affiliation(s)
- Zongren Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Jiawei Shen
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China. and Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Lansheng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Haoyue Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Yuhan Han
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Jun Jia
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Yang Lu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China. and Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China. and Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| |
Collapse
|
20
|
Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003937. [PMID: 34026447 PMCID: PMC8132167 DOI: 10.1002/advs.202003937] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/20/2020] [Indexed: 05/04/2023]
Abstract
Neurological disorders such as Alzheimer's disease, stroke, and brain cancers are difficult to treat with current drugs as their delivery efficacy to the brain is severely hampered by the presence of the blood-brain barrier (BBB). Drug delivery systems have been extensively explored in recent decades aiming to circumvent this barrier. In particular, polymeric nanoparticles have shown enormous potentials owing to their unique properties, such as high tunability, ease of synthesis, and control over drug release profile. However, careful analysis of their performance in effective drug transport across the BBB should be performed using clinically relevant testing models. In this review, polymeric nanoparticle systems for drug delivery to the central nervous system are discussed with an emphasis on the effects of particle size, shape, and surface modifications on BBB penetration. Moreover, the authors critically analyze the current in vitro and in vivo models used to evaluate BBB penetration efficacy, including the latest developments in the BBB-on-a-chip models. Finally, the challenges and future perspectives for the development of polymeric nanoparticles to combat neurological disorders are discussed.
Collapse
Affiliation(s)
- Weisen Zhang
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Ami Mehta
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- IITB Monash Research AcademyBombayMumbai400076India
| | - Ziqiu Tong
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Lars Esser
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVIC3168Australia
- Department of Materials Science and EngineeringMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
21
|
Sivanesan I, Muthu M, Gopal J, Hasan N, Kashif Ali S, Shin J, Oh JW. Nanochitosan: Commemorating the Metamorphosis of an ExoSkeletal Waste to a Versatile Nutraceutical. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:821. [PMID: 33806968 PMCID: PMC8005131 DOI: 10.3390/nano11030821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Chitin (poly-N-acetyl-D-glucosamine) is the second (after cellulose) most abundant organic polymer. In its deacetylated form-chitosan-becomes a very interesting material for medical use. The chitosan nano-structures whose preparation is described in this article shows unique biomedical value. The preparation of nanochitosan, as well as the most vital biomedical applications (antitumor, drug delivery and other medical uses), have been discussed in this review. The challenges confronting the progress of nanochitosan from benchtop to bedside clinical settings have been evaluated. The need for inclusion of nano aspects into chitosan research, with improvisation from nanotechnological inputs has been prescribed for breaking down the limitations. Future perspectives of nanochitosan and the challenges facing nanochitosan applications and the areas needing research focus have been highlighted.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India; (M.M.); (J.G.)
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India; (M.M.); (J.G.)
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia; (N.H.); (S.K.A.)
| | - Syed Kashif Ali
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia; (N.H.); (S.K.A.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
22
|
Patel D, Wairkar S, Yergeri MC. Current Developments in Targeted Drug Delivery Systems for Glioma. Curr Pharm Des 2021; 26:3973-3984. [PMID: 32329681 DOI: 10.2174/1381612826666200424161929] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Glioma is one of the most commonly observed tumours, representing about 75% of brain tumours in the adult population. Generally, glioma treatment includes surgical resection followed by radiotherapy and chemotherapy. The current chemotherapy for glioma involves the use of temozolomide, doxorubicin, monoclonal antibodies, etc. however, the clinical outcomes in patients are not satisfactory. Primarily, the blood-brain barrier hinders these drugs from reaching the target leading to the recurrence of glioma post-surgery. In addition, these drugs are not target-specific and affect the healthy cells of the body. Therefore, glioma-targeted drug delivery is essential to reduce the rate of recurrence and treat the condition with more reliable alternatives. METHODS A literature search was conducted to understand glioma pathophysiology, its current therapeutic approaches for targeted delivery using databases like Pub Med, Web of Science, Scopus, and Google Scholar, etc. Results: This review gives an insight to challenges associated with current treatments, factors influencing drug delivery in glioma, and recent advancements in targeted drug delivery. CONCLUSION The promising results could be seen with nanotechnology-based approaches, like polymeric, lipidbased, and hybrid nanoparticles in the treatment of glioma. Biotechnological developments, such as carrier peptides and gene therapy, are future prospects in glioma therapy. Therefore, these targeted delivery systems will be beneficial in clinical practices for glioma treatment.
Collapse
Affiliation(s)
- Dhrumi Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India
| | - Mayur C Yergeri
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India
| |
Collapse
|
23
|
|
24
|
Cortés H, Alcalá-Alcalá S, Caballero-Florán IH, Bernal-Chávez SA, Ávalos-Fuentes A, González-Torres M, González-Del Carmen M, Figueroa-González G, Reyes-Hernández OD, Floran B, Del Prado-Audelo ML, Leyva-Gómez G. A Reevaluation of Chitosan-Decorated Nanoparticles to Cross the Blood-Brain Barrier. MEMBRANES 2020; 10:E212. [PMID: 32872576 PMCID: PMC7559907 DOI: 10.3390/membranes10090212] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) is a sophisticated and very selective dynamic interface composed of endothelial cells expressing enzymes, transport systems, and receptors that regulate the passage of nutrients, ions, oxygen, and other essential molecules to the brain, regulating its homeostasis. Moreover, the BBB performs a vital function in protecting the brain from pathogens and other dangerous agents in the blood circulation. Despite its crucial role, this barrier represents a difficult obstacle for the treatment of brain diseases because many therapeutic agents cannot cross it. Thus, different strategies based on nanoparticles have been explored in recent years. Concerning this, chitosan-decorated nanoparticles have demonstrated enormous potential for drug delivery across the BBB and treatment of Alzheimer's disease, Parkinson's disease, gliomas, cerebral ischemia, and schizophrenia. Our main objective was to highlight the high potential of chitosan adsorption to improve the penetrability through the BBB of nanoformulations for diseases of CNS. Therefore, we describe the BBB structure and function, as well as the routes of chitosan for crossing it. Moreover, we define the methods of decoration of nanoparticles with chitosan and provide numerous examples of their potential utilization in a variety of brain diseases. Lastly, we discuss future directions, mentioning the need for extensive characterization of proposed nanoformulations and clinical trials for evaluation of their efficacy.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico;
| | - Sergio Alcalá-Alcalá
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
| | - Arturo Ávalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico;
| | | | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico 09230, Mexico;
| | - Octavio D. Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico 09230, Mexico;
| | - Benjamín Floran
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de Mexico 14380, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
| |
Collapse
|
25
|
Shi H, Sun S, Xu H, Zhao Z, Han Z, Jia J, Wu D, Lu J, Liu H, Yu R. Combined Delivery of Temozolomide and siPLK1 Using Targeted Nanoparticles to Enhance Temozolomide Sensitivity in Glioma. Int J Nanomedicine 2020; 15:3347-3362. [PMID: 32494134 PMCID: PMC7229804 DOI: 10.2147/ijn.s243878] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Temozolomide (TMZ) is the first-line chemotherapeutic option to treat glioma; however, its efficacy and clinical application are limited by its drug resistance properties. Polo-like kinase 1 (PLK1)-targeted therapy causes G2/M arrest and increases the sensitivity of glioma to TMZ. Therefore, to limit TMZ resistance in glioma, an angiopep-2 (A2)-modified polymeric micelle (A2PEC) embedded with TMZ and a small interfering RNA (siRNA) targeting PLK1 (siPLK1) was developed (TMZ-A2PEC/siPLK). MATERIALS AND METHODS TMZ was encapsulated by A2-PEG-PEI-PCL (A2PEC) through the hydrophobic interaction, and siPLK1 was complexed with the TMZ-A2PEC through electrostatic interaction. Then, an angiopep-2 (A2) modified polymeric micelle (A2PEC) embedding TMZ and siRNA targeting polo-like kinase 1 (siPLK1) was developed (TMZ-A2PEC/siPLK). RESULTS In vitro experiments indicated that TMZ-A2PEC/siPLK effectively enhanced the cellular uptake of TMZ and siPLK1 and resulted in significant cell apoptosis and cytotoxicity of glioma cells. In vivo experiments showed that glioma growth was inhibited, and the survival time of the animals was prolonged remarkably after TMZ-A2PEC/siPLK1 was injected via their tail vein. DISCUSSION The results demonstrate that the combination of TMZ and siPLK1 in A2PEC could enhance the efficacy of TMZ in treating glioma.
Collapse
Affiliation(s)
- Hui Shi
- Clinical Medical College, Nanjing Medical University, Nanjing, People’s Republic of China
- The Second People’s Hospital of Lianyungang, Lianyungang, People’s Republic of China
| | - Shuo Sun
- Clinical Medical College, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Haoyue Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Zongren Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Zhengzhong Han
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jun Jia
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Dongmei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People’s Republic of China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Rutong Yu
- Clinical Medical College, Nanjing Medical University, Nanjing, People’s Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
26
|
Aparicio-Blanco J, Sanz-Arriazu L, Lorenzoni R, Blanco-Prieto MJ. Glioblastoma chemotherapeutic agents used in the clinical setting and in clinical trials: Nanomedicine approaches to improve their efficacy. Int J Pharm 2020; 581:119283. [DOI: 10.1016/j.ijpharm.2020.119283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
|
27
|
|
28
|
Rezaei V, Rabiee A, Khademi F. Glioblastoma multiforme: a glance at advanced therapies based on nanotechnology. J Chemother 2020; 32:107-117. [PMID: 31984871 DOI: 10.1080/1120009x.2020.1713508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glioblastoma multiforme (GBM, grade IV) is the most common malignant and invasive central nervous system tumor with poor survival outcome. Various pathogenesis signatures such as genetic mutation, hypoxia, necrosis and neo-angiogenesis are involved in GBM. Standard treatment includes surgical resection along with radiation therapy and temozolomide (TMZ) chemotherapy that do not improve the overall survival of patients. In this review, we focused on the diagnosis, risk factors and novel therapies, using advanced therapies such as nanotechnology in drug delivery, gene therapy and hyperthermia that have promising roles in the treatment of aggressive brain tumors.
Collapse
Affiliation(s)
- Vahid Rezaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Rabiee
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Khademi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Khorrampour R, Raissi H. Molecular insight into adsorption affinities of Carmustine drug on boron and nitrogen doped functionalized single-walled carbon nanotubes using density functional theory including dispersion correction calculations and molecular dynamics simulation. J Biomol Struct Dyn 2019; 38:4817-4826. [DOI: 10.1080/07391102.2019.1692071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Heidar Raissi
- Chemistry Department, University of Birjand, Birjand, Iran
| |
Collapse
|
30
|
McDannold N, Zhang Y, Supko JG, Power C, Sun T, Peng C, Vykhodtseva N, Golby AJ, Reardon DA. Acoustic feedback enables safe and reliable carboplatin delivery across the blood-brain barrier with a clinical focused ultrasound system and improves survival in a rat glioma model. Am J Cancer Res 2019; 9:6284-6299. [PMID: 31534551 PMCID: PMC6735504 DOI: 10.7150/thno.35892] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/22/2019] [Indexed: 02/05/2023] Open
Abstract
The blood-brain barrier (BBB) restricts delivery of most chemotherapy agents to brain tumors. Here, we investigated a clinical focused ultrasound (FUS) device to disrupt the BBB in rats and enhance carboplatin delivery to the brain using the F98 glioma model. Methods: In each rat, 2-3 volumetric sonications (5 ms bursts at 1.1 Hz for 75s) targeted 18-27 locations in one hemisphere. Sonication was combined with Definity microbubbles (10 µl/kg) and followed by intravenous carboplatin (50 mg/kg). Closed-loop feedback control was performed based on acoustic emissions analysis. Results: Safety and reliability were established in healthy rats after three sessions with carboplatin; BBB disruption was induced in every target without significant damage evident in MRI or histology. In tumor-bearing rats, concentrations of MRI contrast agent (Gadavist) were 1.7 and 3.3 times higher in the tumor center and margin, respectively, than non-sonicated tumors (P<0.001). Tissue-to-plasma ratios of intact carboplatin concentrations were increased by 7.3 and 2.9 times in brain and tumor respectively, at one hour after FUS and 4.2 and 2.4 times at four hours. Tumor volume doubling time in rats receiving FUS and carboplatin increased by 96% and 126% compared to rats that received carboplatin alone and non-sonicated controls, respectively (P<0.05); corresponding increases in median survival were 48% and 66% (P<0.01). Conclusion: Overall, this work demonstrates that actively-controlled BBB disruption with a clinical device can enhance carboplatin delivery without neurotoxicity at level that reduces tumor growth and improves survival in an aggressive and infiltrative rat glioma model.
Collapse
|
31
|
Yu S, Xu X, Feng J, Liu M, Hu K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 2019; 560:282-293. [DOI: 10.1016/j.ijpharm.2019.02.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
|
32
|
Shanmuganathan R, Edison TNJI, LewisOscar F, Kumar P, Shanmugam S, Pugazhendhi A. Chitosan nanopolymers: An overview of drug delivery against cancer. Int J Biol Macromol 2019; 130:727-736. [PMID: 30771392 DOI: 10.1016/j.ijbiomac.2019.02.060] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 01/26/2023]
Abstract
Cancer is becoming a major reason for death troll worldwide due to the difficulty in finding an efficient, cost effective and target specific method of treatment or diagnosis. The variety of cancer therapy used in the present scenario have painful side effects, low effectiveness and high cost, which are some major drawbacks of the available therapies. Apart from the conventional cancer therapy, nanotechnology has grown extremely towards treating cancer. Nanotechnology is a promising area of science focusing on developing target specific drug delivery system for carrying small or large active molecules to diagnose and treat cancer cells. In the field of nanoscience, Chitosan nanopolymers (ChNPs) are been emerging as a potential carrier due to their biodegradability and biocompatibility. The easy modification and versatility in administration route of ChNPs has attracted attention of researchers towards loading chemicals, proteins and gene drugs for target specific therapy of cancer cells. Therefore, the present review deals with the growing concern towards cancer therapy, introduction of ChNPs, mode of action and other strategies employed by researchers till date towards cancer treatment and diagnosis ChNPs.
Collapse
Affiliation(s)
| | | | | | - Ponnuchamy Kumar
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, India
| | | | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
33
|
Mortazavifar A, Raissi H, Akbari A. DFT and MD investigations on the functionalized boron nitride nanotube as an effective drug delivery carrier for Carmustine anticancer drug. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Theoretical study of boron nitride nanotubes as drug delivery vehicles of some anticancer drugs. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2284-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
A Systematic Study of ZnO/CuO Core/Shell Nanostructures Pegylated by Microwave Assistant Reverse Micelles (RM) Method. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1416-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Analysis of the structures, energetics, and vibrational frequencies for the hydrogen-bonded interaction of nucleic acid bases with Carmustine pharmaceutical agent: a detailed computational approach. Struct Chem 2018. [DOI: 10.1007/s11224-018-1102-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Khorram R, Raissi H, Morsali A, Shahabi M. The computational study of the γ-Fe2O3 nanoparticle as Carmustine drug delivery system: DFT approach. J Biomol Struct Dyn 2018; 37:454-464. [DOI: 10.1080/07391102.2018.1429312] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rabeeh Khorram
- Chemistry Department, Payame Noor University, Mashhad, Iran
| | - Heidar Raissi
- Chemistry Department, University of Birjand, Birjand, Iran
| | - Ali Morsali
- Chemistry Department, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahnaz Shahabi
- Chemistry Department, University of Birjand, Birjand, Iran
| |
Collapse
|
38
|
Fisusi FA, Schätzlein AG, Uchegbu IF. Nanomedicines in the treatment of brain tumors. Nanomedicine (Lond) 2018; 13:579-583. [PMID: 29376468 DOI: 10.2217/nnm-2017-0378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Funmilola A Fisusi
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.,Drug Research & Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Andreas G Schätzlein
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.,Nanomerics Ltd., New Bridge Street House, 30-34 New Bridge Street, London, EC4V 6BJ, UK
| | - Ijeoma F Uchegbu
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.,Nanomerics Ltd., New Bridge Street House, 30-34 New Bridge Street, London, EC4V 6BJ, UK
| |
Collapse
|
39
|
Tsou YH, Zhang XQ, Zhu H, Syed S, Xu X. Drug Delivery to the Brain across the Blood-Brain Barrier Using Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701921. [PMID: 29045030 DOI: 10.1002/smll.201701921] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/09/2017] [Indexed: 05/24/2023]
Abstract
A major obstacle facing brain diseases such as Alzheimer's disease, multiple sclerosis, brain tumors, and strokes is the blood-brain barrier (BBB). The BBB prevents the passage of certain molecules and pathogens from the circulatory system into the brain. Therefore, it is nearly impossible for therapeutic drugs to target the diseased cells without the assistance of carriers. Nanotechnology is an area of growing public interest; nanocarriers, such as polymer-based, lipid-based, and inorganic-based nanoparticles can be engineered in different sizes, shapes, and surface charges, and they can be modified with functional groups to enhance their penetration and targeting capabilities. Hence, understanding the interaction between nanomaterials and the BBB is crucial. In this Review, the components and properties of the BBB are revisited and the types of nanocarriers that are most commonly used for brain drug delivery are discussed. The properties of the nanocarriers and the factors that affect drug delivery across the BBB are elaborated upon in this review. Additionally, the most recent developments of nanoformulations and nonconventional drug delivery strategies are highlighted. Finally, challenges and considerations for the development of brain targeting nanomedicines are discussed. The overall objective is to broaden the understanding of the design and to develop nanomedicines for the treatment of brain diseases.
Collapse
Affiliation(s)
- Yung-Hao Tsou
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xue-Qing Zhang
- Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - He Zhu
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Sahla Syed
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xiaoyang Xu
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
40
|
Theoretical Prediction of Adsorption Properties of Carmustine Drug on Various Sites of the Outer Surface of the Single-Walled Boron Nitride Nanotube and Investigation of Urea Effect on Drug Delivery by DFT and MD. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1309-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Assessment of solvent effects on the interaction of Carmustine drug with the pristine and COOH-functionalized single-walled carbon nanotubes: A DFT perspective. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Varan C, Bilensoy E. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1446-1456. [PMID: 28900598 PMCID: PMC5530721 DOI: 10.3762/bjnano.8.144] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/20/2017] [Indexed: 05/20/2023]
Abstract
Background: Brain tumors are the most common tumors among adolescents. Although some chemotherapeutics are known to be effective against brain tumors based on cell culture studies, the same effect is not observed in clinical trials. For this reason, the development of drug delivery systems is important to treat brain tumors and prevent tumor recurrence. The aim of this study was to develop core-shell polymeric nanoparticles with positive charge by employing a chitosan coating. Additionally, an implantable formulation for the chemotherapeutic nanoparticles was developed as a bioadhesive film to be applied at the tumor site following surgical operation for brain glioma treatment. To obtain positively charged, implantable nanoparticles, the effects of preparation technique, chitosan coating concentration and presence of surfactants were evaluated to obtain optimal nanoparticles with a diameter of less than 100 nm and a net positive surface charge to facilitate cellular internalization of drug-loaded nanoparticles. Hydroxypropyl cellulose films were prepared to incorporate these nanoparticle dispersions to complete the implantable drug delivery system. Results: The diameter of core-shell nanoparticles were in the range of 70-270 nm, depending on the preparation technique, polymer type and coating. Moreover, the chitosan coating significantly altered the surface charge of the nanoparticles to net positive values of +30 to +50 mV. The model drug docetaxel was successfully loaded into all particles, and the drug release rate from the nanoparticles was slowed down to 48 h by dispersing the nanoparticles in a hydroxypropyl cellulose film. Cell culture studies revealed that docetaxel-loaded nanoparticles cause higher cytotoxicity compared to the free docetaxel solution in DMSO. Conclusion: Docetaxel-loaded nanoparticles dispersed in a bioadhesive film were shown to be suitable for application of chemotherapeutics directly to the action site during surgical operation. The system was found to release chemotherapeutics for several days at the tumor site and neighboring tissue. This can be suggested to result in a more effective brain tumor treatment when compared to chemotherapeutics administered as an intravenous bolus infusion.
Collapse
Affiliation(s)
- Cem Varan
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, 06800, Turkey
| | - Erem Bilensoy
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, 06800, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| |
Collapse
|
43
|
Liu C, Yao S, Li X, Wang F, Jiang Y. iRGD-mediated core-shell nanoparticles loading carmustine and O 6-benzylguanine for glioma therapy. J Drug Target 2016; 25:235-246. [PMID: 27646474 DOI: 10.1080/1061186x.2016.1238091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
iRGD (internalizing RGD) with high affinity to αν integrins was reported to enhance tumor penetrability by binding to neuropilin-1 (NRP-1). Based on our previous study, chitosan surface-modified poly (lactide-co-glycolides) nanoparticles (PLGA/CS NPs), loaded with carmustine (BCNU) and its sensitizer (O6-benzylguanine, BG) showed stronger anti-tumor effect than free drugs. In present study, PLGA/CS NPs (NPs) with core-shell structure were prepared and modified with iRGD or mPEG. F98, C6 or U87 cell lines with different receptors levels were selected for in vitro and in vivo studies. After administration of iRGD-mediated NPs, including iRGD-modified NPs (iRGD-NPs) and co-administration of iRGD and NPs (iRGD + NPs), their effects on glioma were compared with NPs. iRGD-NPs showed stronger cytotoxicity and cellular uptake than other groups. iRGD-NPs and iRGD + NPs displayed deeper tumor penetration and stronger anti-invasion effect on three dimensional (3D) glioma spheroids than NPs. On F98 glioma-bearing mice model, iRGD-mediated NPs showed enhanced crossing BBB ability and brain tumor accumulation levels. Correspondingly, the median survival time of iRGD + NPs, iRGD-NPs and NPs groups were 58, 49 and 34.5 days, respectively. Present studies supported the iRGD-mediated strategy to improve the efficacy of antitumor drug delivery system. Importantly, co-administration of iRGD may be a greater way over the conjugation of iRGD.
Collapse
Affiliation(s)
- Chang Liu
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| | - Sen Yao
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| | - Xuqian Li
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| | - Feng Wang
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| | - Yanyan Jiang
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| |
Collapse
|
44
|
Mujokoro B, Adabi M, Sadroddiny E, Adabi M, Khosravani M. Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1092-102. [PMID: 27612807 DOI: 10.1016/j.msec.2016.07.080] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/10/2016] [Accepted: 07/31/2016] [Indexed: 11/18/2022]
Abstract
Glioblastoma is a malignant brain tumor and leads to death in most patients. Chemotherapy is a common method for brain cancer in clinics. However, the recent advancements in the chemotherapy of brain tumors have not been efficient enough. With the advancement of nanotechnology, the used drugs can enhance chemotherapy efficiency and increase the access to brain cancers. Combination of therapeutic agents has been recently attracted great attention for glioblastoma chemotherapy. One of the early benefits of combination therapies is the high potential to provide synergistic effects and decrease adverse side effects associated with high doses of single anticancer drugs. Therefore, brain tumor treatments with combination drugs can be considered as a crucial approach for avoiding tumor growth. This review investigates current progress in nano-mediated co-delivery of therapeutic agents with focus on glioblastoma chemotherapy prognosis.
Collapse
Affiliation(s)
- Basil Mujokoro
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Adabi
- Young Researchers and Elite Club, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
AN in vitro evaluation of a carmustine-loaded Nano-co-Plex for potential magnetic-targeted intranasal delivery to the brain. Int J Pharm 2016; 500:196-209. [PMID: 26806465 DOI: 10.1016/j.ijpharm.2016.01.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 01/02/2023]
Abstract
Targeted delivery of carmustine (BCNU), an efficient brain tumor therapeutic, has been challenged with bioavailability issues due to the Blood Brain Barrier (BBB). The currently effective delivery approach is by implants at the site of the tumor, but this is highly invasive. The intranasal route, which is non-invasive and bypasses the BBB, may be alternative route for delivering BCNU to the brain. In this work, polyvinyl alcohol/polyethyleneimine/fIuorecein isothiocyanate complex (Polyplex) coated iron-oxide nanoparticles (Magnetite) were synthesized employing co-precipitation, epoxidation and EDC/NHS coupling reactions. The Polyplex coated magnetite (Nano-co-Plex) was loaded with BCNU for potential magnetically targeted delivery to the brain following intranasal administration. The Nano-co-Plex was characterized employing Thermogravimetric analysis (TGA), Superconducting Quantum Interference Device (SQUID) magnetometry, Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), X-ray Diffractometry (XRD), Transmission Electron Microscopy (TEM) and Zetasize analysis. Results revealed superparamagnetic hexagonally shaped "core-shell" nanoparticles with cell labeling attributes, of size ranging between 30-50 nm, and a zeta potential value of + 32 ± 2 mV. The Nano-co-Plex synthesized was found to possess high degree of crystallinity with 32% Polyplex coating. The loading and release studies indicated a time-dependent loading with maximum loading capacity of 176.82 μg BCNU/mg of the carrier and maximum release of 75.8% of the loaded BCNU. Cytotoxicity of the BCNU-loaded Nano-co-Plex displayed superiority over the conventional BCNU towards human glioblastoma (HG) cells. Cell studies revealed enhanced uptake and internalization of BCNU-loaded Nano-co-plex in HG cells in the presence of an external magnetic field. These Nano-co-Plexes may be ideal as an intranasal magnetic drug targeting device for BCNU delivery.
Collapse
|
46
|
Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, Jung Y, Merlin D. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials 2015. [PMID: 25701040 DOI: 10.1016/j.biomaterials] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomedicine options for colon cancer therapy have been limited by the lack of suitable carriers capable of delivering sufficient drug into tumors to cause lethal toxicity. To circumvent this limitation, we fabricated a camptothecin (CPT)-loaded poly(lactic-co-glycolic acid) nanoparticle (NP) with dual-surface functionalization-Pluronic F127 and chitosan-for inhibiting multi-drug resistant gene 1 (MDR1) expression and enhancing tumor uptake. The resultant spherical NPs-P/C had a desirable particle size (∼268 nm), slightly positive zeta-potential, and the ability to efficiently down-regulate the expression of MDR1. In vitro cytotoxicity tests revealed that the 24 and 48 h IC50 values of NPs-P/C1 were 2.03 and 0.67 μm, respectively, which were much lower than those for free CPT and other NPs. Interestingly, NPs-P/C1 showed the highest cellular uptake efficiency (approximately 85.5%) among the different drug formulations. Most importantly, treatment of colon tumor-bearing mice with various drug formulations confirmed that the introduction of Pluronic F127 and chitosan to the NP surface significantly enhanced the therapeutic efficacy of CPT, induced tumor cell apoptosis, and reduced systemic toxicity. Collectively, these findings suggest that our one-step-fabricated, dual-surface-functionalized NPs may hold promise as a readily scalable and effective drug carrier with clinical potential in colon cancer therapy.
Collapse
Affiliation(s)
- Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA.
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Na Wei
- Department of Chemistry, Georgia State University, Atlanta, 30302, USA
| | - Mark T Baker
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Yunjin Jung
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| |
Collapse
|
47
|
Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:320941. [PMID: 25866775 PMCID: PMC4383356 DOI: 10.1155/2015/320941] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 01/01/2023]
Abstract
Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.
Collapse
Affiliation(s)
- Arijit Bhowmik
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Rajni Khan
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Mrinal Kanti Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
48
|
Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, Jung Y, Merlin D. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials 2015; 48:147-60. [PMID: 25701040 DOI: 10.1016/j.biomaterials.2015.01.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/03/2015] [Accepted: 01/20/2015] [Indexed: 12/22/2022]
Abstract
Nanomedicine options for colon cancer therapy have been limited by the lack of suitable carriers capable of delivering sufficient drug into tumors to cause lethal toxicity. To circumvent this limitation, we fabricated a camptothecin (CPT)-loaded poly(lactic-co-glycolic acid) nanoparticle (NP) with dual-surface functionalization-Pluronic F127 and chitosan-for inhibiting multi-drug resistant gene 1 (MDR1) expression and enhancing tumor uptake. The resultant spherical NPs-P/C had a desirable particle size (∼268 nm), slightly positive zeta-potential, and the ability to efficiently down-regulate the expression of MDR1. In vitro cytotoxicity tests revealed that the 24 and 48 h IC50 values of NPs-P/C1 were 2.03 and 0.67 μm, respectively, which were much lower than those for free CPT and other NPs. Interestingly, NPs-P/C1 showed the highest cellular uptake efficiency (approximately 85.5%) among the different drug formulations. Most importantly, treatment of colon tumor-bearing mice with various drug formulations confirmed that the introduction of Pluronic F127 and chitosan to the NP surface significantly enhanced the therapeutic efficacy of CPT, induced tumor cell apoptosis, and reduced systemic toxicity. Collectively, these findings suggest that our one-step-fabricated, dual-surface-functionalized NPs may hold promise as a readily scalable and effective drug carrier with clinical potential in colon cancer therapy.
Collapse
Affiliation(s)
- Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA.
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Na Wei
- Department of Chemistry, Georgia State University, Atlanta, 30302, USA
| | - Mark T Baker
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Yunjin Jung
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| |
Collapse
|
49
|
Kuo YC, Wang CC. Carmustine-loaded catanionic solid lipid nanoparticles with serotonergic 1B receptor subtype antagonist for in vitro targeted delivery to inhibit brain cancer growth. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013; 65:1866-79. [PMID: 24120656 PMCID: PMC5812459 DOI: 10.1016/j.addr.2013.09.019] [Citation(s) in RCA: 491] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022]
Abstract
Nanomedicine is an emerging form of therapy that focuses on alternative drug delivery and improvement of the treatment efficacy while reducing detrimental side effects to normal tissues. Cancer drug resistance is a complicated process that involves multiple mechanisms. Here we discuss the major forms of drug resistance and the new possibilities that nanomedicines offer to overcome these treatment obstacles. Novel nanomedicines that have a high ability for flexible, fast drug design and production based on tumor genetic profiles can be created making drug selection for personal patient treatment much more intensive and effective. This review aims to demonstrate the advantage of the young medical science field, nanomedicine, for overcoming cancer drug resistance. With the advanced design and alternative mechanisms of drug delivery known for different nanodrugs including liposomes, polymer conjugates, micelles, dendrimers, carbon-based, and metallic nanoparticles, overcoming various forms of multi-drug resistance looks promising and opens new horizons for cancer treatment.
Collapse
Affiliation(s)
- Janet L Markman
- Nanomedicine Research Center, Department of Neurosurgery at Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | | | | |
Collapse
|