1
|
Guo W, Song X, Liu J, Liu W, Chu X, Lei Z. Quantum Dots as a Potential Multifunctional Material for the Enhancement of Clinical Diagnosis Strategies and Cancer Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1088. [PMID: 38998693 PMCID: PMC11243735 DOI: 10.3390/nano14131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Quantum dots (QDs) represent a class of nanoscale wide bandgap semiconductors, and are primarily composed of metals, lipids, or polymers. Their unique electronic and optical properties, which stem from their wide bandgap characteristics, offer significant advantages for early cancer detection and treatment. Metal QDs have already demonstrated therapeutic potential in early tumor imaging and therapy. However, biological toxicity has led to the development of various non-functionalized QDs, such as carbon QDs (CQDs), graphene QDs (GQDs), black phosphorus QDs (BPQDs) and perovskite quantum dots (PQDs). To meet the diverse needs of clinical cancer treatment, functionalized QDs with an array of modifications (lipid, protein, organic, and inorganic) have been further developed. These advancements combine the unique material properties of QDs with the targeted capabilities of biological therapy to effectively kill tumors through photodynamic therapy, chemotherapy, immunotherapy, and other means. In addition to tumor-specific therapy, the fluorescence quantum yield of QDs has gradually increased with technological progress, enabling their significant application in both in vivo and in vitro imaging. This review delves into the role of QDs in the development and improvement of clinical cancer treatments, emphasizing their wide bandgap semiconductor properties.
Collapse
Affiliation(s)
- Wenqi Guo
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Xueru Song
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Jiaqi Liu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Wanyi Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Zengjie Lei
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| |
Collapse
|
2
|
Hbibi M, Mommadi O, Chouef S, Boussetta R, Belamkadem L, Moussaouy AE, Falyouni F, Duque CM, Vinasco JA, Duque CA. Finite confinement potentials, core and shell size effects on excitonic and electron-atom properties in cylindrical core/shell/shell quantum dots. Sci Rep 2022; 12:14854. [PMID: 36050513 PMCID: PMC9437040 DOI: 10.1038/s41598-022-19118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
The effects of confinement potentials of the first and second materials, core size and first shell thickness on the confinement of electron, electron-donor atom, and exciton in cylindrical core/shell/shell quantum dot (CSSQD) are studied taking into account the finite confinement potential model. The confinement of charge carriers in CSSQD with two finite confinement potentials models of the barrier materials are studied. Within the effective mass and parabolic band approximation, the 3D time-independent Schrödinger equation has been resolved. To obtain the ground state quasiparticles energies, we have used the variational technique. Our results show that the donor atom and exciton binding energy, as well as the electron energy, strongly depend on the core radius, first shell thickness, confinement potentials of the barrier materials, and their structures (A and B). Moreover, the confinement potential effect of the first material on the energies is more pronounced when their thickness is large and the core radius is small. So, the external potential effect is more significant when the first shell thickness and potential are small. Also, The binding energy of an on-center (off-center) donor atom is greater (weaker) than that of the exciton, whatever the structure of the confinement potential. In addition, the transition from a type-A to a type-B confinement system has been observed. The findings might be used to modify the electronic and excitonic properties in nanomaterials science.
Collapse
Affiliation(s)
- M Hbibi
- OAPM group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
| | - O Mommadi
- OAPM group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco.
| | - S Chouef
- OAPM group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
| | - R Boussetta
- OAPM group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
| | - L Belamkadem
- OAPM group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
| | - A El Moussaouy
- OAPM group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco.,The Regional Centre for the Professions of Education and Training, Oujda, 60000, Morocco
| | - F Falyouni
- OAPM group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
| | - C M Duque
- Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - J A Vinasco
- Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - C A Duque
- Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
3
|
Abstract
Silver sulfide quantum dots (Ag2S QDs) as a theragnostic agent have received much attention because they provide excellent optical and chemical properties to facilitate diagnosis and therapy simultaneously.
Collapse
Affiliation(s)
| | - Joon Myong Song
- College of Pharmacy
- Seoul National University
- Seoul 08826
- South Korea
| |
Collapse
|
4
|
Kumar H, Dutta PK. Thioglycolic acid modified chitosan: a template for in-situ synthesis of CdSe QDs for cell imaging. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1766981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hridyesh Kumar
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - P. K. Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
5
|
Singh N, Kumar P, Riaz U. Applications of near infrared and surface enhanced Raman scattering techniques in tumor imaging: A short review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117279. [PMID: 31234091 DOI: 10.1016/j.saa.2019.117279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Imaging technologies play a vital role in clinical oncology and have undergone massive growth over the past few decades. Research in the field of tumor imaging and biomedical diagnostics requires early detection of physiological alterations so as to provide curative treatment in real time. The objective of this review is to provide an insight about near infrared fluorescence (NIRF) and surface enhanced Raman scattering (SERS) imaging techniques that can be used to expand their capabilities for the early detection and diagnosis of cancer cells. Basic setup, principle and working of the instruments has been provided and common NIRF imaging agents as well as SERS tags are also discussed besides the analytical advantages/disadvantages of these techniques. This review can help researchers working in the field of molecular imaging to design cost effective fluorophores and SERS tags to overcome the limitations of both NIRF as well as SERS imaging technologies.
Collapse
Affiliation(s)
- Neetika Singh
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prabhat Kumar
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Su Y, Cockerill I, Wang Y, Qin YX, Chang L, Zheng Y, Zhu D. Zinc-Based Biomaterials for Regeneration and Therapy. Trends Biotechnol 2019; 37:428-441. [PMID: 30470548 PMCID: PMC6421092 DOI: 10.1016/j.tibtech.2018.10.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/20/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
Zinc has been described as the 'calcium of the twenty-first century'. Zinc-based degradable biomaterials have recently emerged thanks to their intrinsic physiological relevance, biocompatibility, biodegradability, and pro-regeneration properties. Zinc-based biomaterials mainly include: metallic zinc alloys, zinc ceramic nanomaterials, and zinc metal-organic frameworks (MOFs). Metallic zinc implants degrade at a desirable rate, matching the healing pace of local tissues, and stimulating remodeling and formation of new tissues. Zinc ceramic nanomaterials are also beneficial for tissue engineering and therapy thanks to their nanostructures and antibacterial properties. MOFs have large surface areas and are easily functionalized, making them ideal for drug delivery and cancer therapy. This review highlights recent developments in zinc-based biomaterials, discusses obstacles to overcome, and pinpoints directions for future research.
Collapse
Affiliation(s)
- Yingchao Su
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Irsalan Cockerill
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Lingqian Chang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China.
| | - Donghui Zhu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| |
Collapse
|
7
|
Chen X, Guo Z, Miao P. One-pot synthesis of GSH-Capped CdTe quantum dots with excellent biocompatibility for direct cell imaging. Heliyon 2018; 4:e00576. [PMID: 29862341 PMCID: PMC5968136 DOI: 10.1016/j.heliyon.2018.e00576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
In this work, we have developed one-pot aqueous synthesis of glutathione (GSH) binding CdTe quantum dots (QDs) for cell imaging. UV-Vis absorption spectrum, Fourier transform infrared spectrum, photoluminescence spectrum, and high-resolution transmission electron microscopy are applied to characterize the physical and chemical properties of the nanocomposites. The bioimaging efficiency of the GSH-capped CdTe QDs is further evaluated on Hela cells. The groups on the surface of QDs are able to bind to basic proteins, which are abundant in cell nuclei, enabling the application of QDs for direct cell imaging. Experimental results also indicate the GSH layer on the surface of QDs is able to reduce the cytotoxicity significantly. In conclusion, the as-prepared GSH-capped QDs are highly promising fluorescent probes for cell imaging in the near future.
Collapse
Affiliation(s)
- Xifeng Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China
| | - Zhenzhen Guo
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China
| |
Collapse
|
8
|
Song W, Di W, Qin W. Synthesis of mesoporous-silica-coated Gd2O3:Eu@silica particles as cell imaging and drug delivery agents. Dalton Trans 2017; 45:7443-9. [PMID: 27040176 DOI: 10.1039/c5dt04908c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous-silica-coated Gd2O3:Eu/silica nanoparticles were synthesized by a multistep chemical process and characterized by XRD, TEM and N2 adsorption/desorption isotherms in terms of size, morphology and porosity. The core Gd2O3:Eu obtained by this method was highly luminescent upon excitation, giving the function of cell imaging upon incubation with the human cervical carcinoma (HeLa) cells. The outer porous silica shell is able to load the anticancer drug with a relatively high loading efficiency and release the loaded drugs at a sustained rate. The HeLa cells can be killed effectively on incubation with the core-shell porous particles loaded with the anticancer drug DOX. Meanwhile, the accumulation of mesoporous nanoparticles loaded with drugs in the target location could be monitored via fluorescence imaging. Therefore, the core-shell hybrid nanoparticles presented in this work are potential multifunctional biomaterials for smart detection or diagnosis and therapy in future biomedical engineering.
Collapse
Affiliation(s)
- Weiye Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| | - Weihua Di
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| | - Weiping Qin
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
9
|
Xia C, Meeldijk JD, Gerritsen HC, de Mello Donega C. Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS 2/ZnS Core/Shell Colloidal Quantum Dots. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:4940-4951. [PMID: 28638177 PMCID: PMC5473174 DOI: 10.1021/acs.chemmater.7b01258] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/16/2017] [Indexed: 05/19/2023]
Abstract
Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the application of NIR-emitting CIS QDs is still hindered by large size and shape dispersions and low photoluminescence quantum yields (PLQYs). In this work, we develop an efficient pathway to synthesize highly luminescent NIR-emitting wurtzite CIS/ZnS QDs, starting from template Cu2-x S nanocrystals (NCs), which are converted by topotactic partial Cu+ for In3+ exchange into CIS NCs. These NCs are subsequently used as cores for the overgrowth of ZnS shells (≤1 nm thick). The CIS/ZnS core/shell QDs exhibit PL tunability from the first to the second NIR window (750-1100 nm), with PLQYs ranging from 75% (at 820 nm) to 25% (at 1050 nm), and can be readily transferred to water upon exchange of the native ligands for mercaptoundecanoic acid. The resulting water-dispersible CIS/ZnS QDs possess good colloidal stability over at least 6 months and PLQYs ranging from 39% (at 820 nm) to 6% (at 1050 nm). These PLQYs are superior to those of commonly available water-soluble NIR-fluorophores (dyes and QDs), making the hydrophilic CIS/ZnS QDs developed in this work promising candidates for further application as NIR emitters in bioimaging. The hydrophobic CIS/ZnS QDs obtained immediately after the ZnS shelling are also attractive as fluorophores in luminescent solar concentrators.
Collapse
Affiliation(s)
- Chenghui Xia
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
- Molecular
Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, Netherlands
| | - Johannes D. Meeldijk
- Electron
Microscopy Utrecht, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, Netherlands
| | - Hans C. Gerritsen
- Molecular
Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
10
|
O’Hara T, Seddon B, O’Connor A, McClean S, Singh B, Iwuoha E, Fuku X, Dempsey E. Quantum Dot Nanotoxicity Investigations Using Human Lung Cells and TOXOR Electrochemical Enzyme Assay Methodology. ACS Sens 2017; 2:165-171. [PMID: 28722443 DOI: 10.1021/acssensors.6b00673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have suggested that certain nanomaterials can interfere with optically based cytotoxicity assays resulting in underestimations of nanomaterial toxicity. As a result there has been growing interest in the use of whole cell electrochemical biosensors for nanotoxicity applications. Herein we report application of an electrochemical cytotoxicity assay developed in house (TOXOR) in the evaluation of toxic effects of mercaptosuccinic acid capped cadmium telluride quantum dots (MSA capped CdTe QDs), toward mammalian cells. MSA capped CdTe QDs were synthesized, characterized, and their cytotoxicity toward A549 human lung epithelial cells investigated. The internalization of QDs within cells was scrutinized via confocal microscopy. The cytotoxicity assay is based on the measurement of changes in cellular enzyme acid phosphatase upon 24 h exposure to QDs. Acid phosphatase catalyzes dephosphorylation of 2-naphthyl phosphate to 2-naphthol (determined by chronocoulometry) and is indicative of metabolic activity in cells. The 24 h IC50 (concentration resulting in 50% reduction in acid phosphatase activity) value for MSA capped CdTe QDs was found to be 118 ± 49 μg/mL using the TOXOR assay and was in agreement with the MTT assay (157 ± 31 μg/mL). Potential uses of this electrochemical assay include the screening of nanomaterials, environmental toxins, in addition to applications in the pharmaceutical, food, and health sectors.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel Iwuoha
- SensorLab,
Department of Chemistry, University of the Western Cape, Private Bag
X17, Bellville, 7535, South Africa
| | - Xolile Fuku
- SensorLab,
Department of Chemistry, University of the Western Cape, Private Bag
X17, Bellville, 7535, South Africa
| | | |
Collapse
|
11
|
Venegas FA, Saona LA, Monrás JP, Órdenes-Aenishanslins N, Giordana MF, Ulloa G, Collao B, Bravo D, Pérez-Donoso JM. Biological phosphorylated molecules participate in the biomimetic and biological synthesis of cadmium sulphide quantum dots by promoting H2S release from cellular thiols. RSC Adv 2017. [DOI: 10.1039/c7ra03578k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Developing methods with a low environmental impact for nanoparticle synthesis remains one of the greatest challenges in nanotechnology.
Collapse
Affiliation(s)
- F. A. Venegas
- Universidad Andres Bello
- Bionanotechnology and Microbiology Laboratory
- Center for Bioinformatics and Integrative Biology (CBIB)
- Facultad de Ciencias Biológicas
- Santiago
| | - L. A. Saona
- Universidad Andres Bello
- Bionanotechnology and Microbiology Laboratory
- Center for Bioinformatics and Integrative Biology (CBIB)
- Facultad de Ciencias Biológicas
- Santiago
| | - J. P. Monrás
- Universidad Andres Bello
- Bionanotechnology and Microbiology Laboratory
- Center for Bioinformatics and Integrative Biology (CBIB)
- Facultad de Ciencias Biológicas
- Santiago
| | - N. Órdenes-Aenishanslins
- Universidad Andres Bello
- Bionanotechnology and Microbiology Laboratory
- Center for Bioinformatics and Integrative Biology (CBIB)
- Facultad de Ciencias Biológicas
- Santiago
| | - M. F. Giordana
- Centro Atómico Bariloche
- Comisión Nacional de Energía Atómica
- 8400 S.C. de Bariloche
- Argentina
| | - G. Ulloa
- Universidad Andres Bello
- Bionanotechnology and Microbiology Laboratory
- Center for Bioinformatics and Integrative Biology (CBIB)
- Facultad de Ciencias Biológicas
- Santiago
| | - B. Collao
- Universidad Andres Bello
- Bionanotechnology and Microbiology Laboratory
- Center for Bioinformatics and Integrative Biology (CBIB)
- Facultad de Ciencias Biológicas
- Santiago
| | - D. Bravo
- Laboratorio de Microbiología Oral
- Facultad de Odontología
- Universidad de Chile
- Santiago
- Chile
| | - J. M. Pérez-Donoso
- Universidad Andres Bello
- Bionanotechnology and Microbiology Laboratory
- Center for Bioinformatics and Integrative Biology (CBIB)
- Facultad de Ciencias Biológicas
- Santiago
| |
Collapse
|
12
|
Jiang X, Li BQ, Qu X, Yang H, Liu H. Thermal sensing with CdTe/CdS/ZnS quantum dots in human umbilical vein endothelial cells. J Mater Chem B 2017; 5:8983-8990. [DOI: 10.1039/c7tb02016c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An experimental methodology is presented to measure the temperature variation in cells with the usage of CdTe/CdS/ZnS core/shell/shell quantum dots as nanothermometers.
Collapse
Affiliation(s)
- Xinbing Jiang
- Micro- and Nano-manufacturing Research Center
- State Key Laboratory for Manufacturing Systems Engineering
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Ben Q. Li
- Micro- and Nano-manufacturing Research Center
- State Key Laboratory for Manufacturing Systems Engineering
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Xiaoli Qu
- Micro- and Nano-manufacturing Research Center
- State Key Laboratory for Manufacturing Systems Engineering
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Huan Yang
- Micro- and Nano-manufacturing Research Center
- State Key Laboratory for Manufacturing Systems Engineering
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Hongzhong Liu
- Micro- and Nano-manufacturing Research Center
- State Key Laboratory for Manufacturing Systems Engineering
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| |
Collapse
|
13
|
|
14
|
Hu Z, Song B, Xu L, Zhong Y, Peng F, Ji X, Zhu F, Yang C, Zhou J, Su Y, Chen S, He Y, He S. Aqueous synthesized quantum dots interfere with the NF-κB pathway and confer anti-tumor, anti-viral and anti-inflammatory effects. Biomaterials 2016; 108:187-96. [PMID: 27639114 DOI: 10.1016/j.biomaterials.2016.08.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/14/2016] [Accepted: 08/30/2016] [Indexed: 01/26/2023]
Abstract
The NF-κB pathway plays crucial roles in inflammatory responses and cell survival. Aberrant constitutive NF-κB activation is associated with various human diseases including cancer and inflammatory and auto-immune diseases. Consequently, it is highly desirable to develop new kinds of inhibitors, which are highly efficacious for blocking the NF-κB pathway. In this study, by using a typical kind of aqueous synthesized quantum dots (QDs), i.e., CdTe QDs, as a model, we for the first time demonstrated that the QDs could selectively affect the cellular nuclear factor-κB (NF-κB) signaling pathway, but do not affect the AKT or ERK pathways. Typically, the QDs efficiently inhibited the activation of IKKα and IKKβ, resulting in the suppression of both the canonical and the non-canonical NF-κB signaling pathways. Inhibition of NF-κB by QDs downregulates anti-apoptotic genes and promotes apoptosis in cancer cells. The QDs induced NF-κB inhibition and cytotoxicity could be blocked by N-acetylcysteine due to the reduced cellular uptake of QDs. Importantly, inhibition of NF-κB by QDs displayed promising effects against the viral replication and in vivo bacterial endotoxin-induced inflammatory responses. These data suggest the QDs as potent inhibitors of the NF-κB signaling pathway, both in vitro and in vivo. Our findings highlight the potential of using QDs in the development of anti-cancer, anti-viral, and anti-inflammatory approaches, and also facilitate better understanding of QDs-related cellular behavior under the molecular level.
Collapse
Affiliation(s)
- Zhilin Hu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lei Xu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Yiling Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fei Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xiaoyuan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fang Zhu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Chengkui Yang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Jinying Zhou
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Yuanyuan Su
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Suning Chen
- Jiangsu Institute of Hematology (JIH), Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yao He
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Sudan He
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. NATURE NANOTECHNOLOGY 2016; 11:479-86. [PMID: 26925827 DOI: 10.1038/nnano.2015.338] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2015] [Indexed: 04/14/2023]
Abstract
Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division, Code 5611, US Naval Research Laboratory, Washington, Washington DC 20375, USA
- Sotera Defense Solutions, Columbia, Maryland 21046, USA
| | - Rong Liu
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Andre Nel
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, California 90095, USA
| | - Kelly Boeneman Gemill
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| | - Muhammad Bilal
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Yoram Cohen
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095-1592, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| |
Collapse
|
16
|
Das T, Poria DK, Purkayastha P. NIR-emitting chiral gold nanoclusters coated with γ-cyclodextrin are pH sensitive: Application as biomarker. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1105-1112. [DOI: 10.1016/j.nano.2015.12.386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022]
|
17
|
Cayuela A, Soriano ML, Carrillo-Carrión C, Valcárcel M. Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem Commun (Camb) 2016; 52:1311-26. [DOI: 10.1039/c5cc07754k] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The need for establishing the bases and definitions of photoluminescent nanodots is discussed and their state-of-the-art in analytical and biomedical research fields is highlighted.
Collapse
Affiliation(s)
- A. Cayuela
- Department of Analytical Chemistry
- University of Córdoba
- E-14071 Córdoba
- Spain
| | - M. L. Soriano
- Department of Analytical Chemistry
- University of Córdoba
- E-14071 Córdoba
- Spain
| | | | - M. Valcárcel
- Department of Analytical Chemistry
- University of Córdoba
- E-14071 Córdoba
- Spain
| |
Collapse
|
18
|
Zhou J, Yang Y, Zhang CY. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015; 115:11669-717. [DOI: 10.1021/acs.chemrev.5b00049] [Citation(s) in RCA: 472] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Zhou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
19
|
Cui H, Wang R, Zhou Y, Shu C, Song F, Zhong W. Dual-function fluorescent probe for cancer imaging and therapy. LUMINESCENCE 2015; 31:813-20. [PMID: 26387677 DOI: 10.1002/bio.3028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 12/23/2022]
Abstract
To date, several fluorescent probes modified by a single targeting agent have been explored. However, studies on the preparation of dual-function quantum dot (QD) fluorescent probes with dual-targeting action and a therapeutic effect are rare. Here, a dual-targeting CdTe/CdS QD fluorescent probe with a bovine serum albumin-glycyrrhetinic acid conjugate and arginine-glycine-aspartic acid was successfully prepared that could induce the apoptosis of liver cancer cells and showed enhanced targeting in in vitro cell imaging. Therefore, the as-prepared fluorescent probe in this work is an efficient diagnostic tool for the simultaneous detection of liver cancer and breast cancer cells.
Collapse
Affiliation(s)
- Hongjing Cui
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Ran Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Ying Zhou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Chang Shu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Fengjuan Song
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Wenying Zhong
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
20
|
Ding Z, Annie Bligh S, Tao L, Quan J, Nie H, Zhu L, Gong X. Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:469-79. [DOI: 10.1016/j.msec.2014.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/16/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
21
|
Chen C, Zhang P, Zhang L, Gao D, Gao G, Yang Y, Li W, Gong P, Cai L. Long-decay near-infrared-emitting doped quantum dots for lifetime-based in vivo pH imaging. Chem Commun (Camb) 2015; 51:11162-5. [DOI: 10.1039/c5cc03046c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-decay near-infrared-emitting doped quantum dots were synthesized for lifetime-based in vivo pH imaging.
Collapse
Affiliation(s)
- Chi Chen
- Guangdong Key Laboratory of Nanomedicine
- CAS Key Laboratory of Health Informatics
- Shenzhen Bioactive Materials Engineering Lab for Medicine
- Institute of Biomedicine and Biotechnology Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine
- CAS Key Laboratory of Health Informatics
- Shenzhen Bioactive Materials Engineering Lab for Medicine
- Institute of Biomedicine and Biotechnology Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Li Zhang
- Guangdong Key Laboratory of Nanomedicine
- CAS Key Laboratory of Health Informatics
- Shenzhen Bioactive Materials Engineering Lab for Medicine
- Institute of Biomedicine and Biotechnology Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Duyang Gao
- Guangdong Key Laboratory of Nanomedicine
- CAS Key Laboratory of Health Informatics
- Shenzhen Bioactive Materials Engineering Lab for Medicine
- Institute of Biomedicine and Biotechnology Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Guanhui Gao
- Guangdong Key Laboratory of Nanomedicine
- CAS Key Laboratory of Health Informatics
- Shenzhen Bioactive Materials Engineering Lab for Medicine
- Institute of Biomedicine and Biotechnology Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Yong Yang
- Guangdong Key Laboratory of Nanomedicine
- CAS Key Laboratory of Health Informatics
- Shenzhen Bioactive Materials Engineering Lab for Medicine
- Institute of Biomedicine and Biotechnology Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine
- CAS Key Laboratory of Health Informatics
- Shenzhen Bioactive Materials Engineering Lab for Medicine
- Institute of Biomedicine and Biotechnology Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine
- CAS Key Laboratory of Health Informatics
- Shenzhen Bioactive Materials Engineering Lab for Medicine
- Institute of Biomedicine and Biotechnology Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine
- CAS Key Laboratory of Health Informatics
- Shenzhen Bioactive Materials Engineering Lab for Medicine
- Institute of Biomedicine and Biotechnology Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| |
Collapse
|
22
|
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 2015; 44:4792-4834. [DOI: 10.1039/c4cs00532e] [Citation(s) in RCA: 564] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Colourful cells and tissues: semiconductor quantum dots and their versatile applications in multiplexed bioimaging research.
Collapse
Affiliation(s)
- K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| |
Collapse
|
23
|
Sharma N, Ojha H, Bharadwaj A, Pathak DP, Sharma RK. Preparation and catalytic applications of nanomaterials: a review. RSC Adv 2015. [DOI: 10.1039/c5ra06778b] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present review systematically summarizes the synthesis and specific catalytic applications of nanomaterials such as MSN, nanoparticles, LD hydroxides, nanobubbles, quantum dots,etc.
Collapse
Affiliation(s)
- Navneet Sharma
- Division of CBRN Defence
- Institute of Nuclear Medicine and Allied Sciences
- India
| | - Himanshu Ojha
- Division of Radiation Biosciences
- Institute of Nuclear Medicine and Allied Sciences
- India
| | - Ambika Bharadwaj
- Division of CBRN Defence
- Institute of Nuclear Medicine and Allied Sciences
- India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research
- University of Delhi
- New Delhi 10017
- India
| | - Rakesh Kumar Sharma
- Division of CBRN Defence
- Institute of Nuclear Medicine and Allied Sciences
- India
| |
Collapse
|
24
|
Ji X, Peng F, Zhong Y, Su Y, He Y. Fluorescent quantum dots: Synthesis, biomedical optical imaging, and biosafety assessment. Colloids Surf B Biointerfaces 2014; 124:132-9. [DOI: 10.1016/j.colsurfb.2014.08.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/27/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
|
25
|
Chen C, Zhang P, Gao G, Gao D, Yang Y, Liu H, Wang Y, Gong P, Cai L. Near-infrared-emitting two-dimensional codes based on lattice-strained core/(doped) shell quantum dots with long fluorescence lifetime. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6313-7. [PMID: 25066411 DOI: 10.1002/adma.201402369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/30/2014] [Indexed: 05/09/2023]
Abstract
Lattice-strained CdTe/CdS:Cu quantum dots (QDs) with a widely tunable near-infrared (NIR) fluorescence emission spectrum (700-910 nm) and long lifetime (up to 1 μs) are synthesized. Based on the multiemission and multi-lifetime of the well-defined QDs, NIR-emitting two-dimensional (2D) codes are achieved by embedding as-prepared QDs into agarose beads. This provides a new strategy for fluorescent 2D codes.
Collapse
Affiliation(s)
- Chi Chen
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Bioactive Materials Engineering Lab for Medicine, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang HN, Park JS, Jeon SY, Park W, Na K, Park KH. The effect of quantum dot size and poly(ethylenimine) coating on the efficiency of gene delivery into human mesenchymal stem cells. Biomaterials 2014; 35:8439-49. [PMID: 24985737 DOI: 10.1016/j.biomaterials.2014.06.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/10/2014] [Indexed: 01/13/2023]
Abstract
Quantum dot (QDs) have been employed as bioimaging agents and delivery vehicles for gene therapeutics in several types of cells. In this study, we fabricated multiple QD bundled nanoparticles (NPs) to investigate the effect of QD size and poly(ethylenimine) (PEI) coating on the efficiency of gene delivery into human mesenchymal stem cells (hMSCs). Several types of QDs, which exhibit different ranges of particle size and fluorescence when employed, were coated with PEI to alter their negative charges and to enable them to be bundled into larger particles. Using specific wavelengths of QDs for bioimaging, gene-complexed QD bundled NPs were easily detected in the hMSCs using several different methods such as fluorescence-activated cell sorter, confocal laser scanning microscopy, and in vivo optical imaging. These PEI-coated, bundled QD NPs exhibited significantly higher gene transfection efficacy than single-type QDs. Particularly, the largest QD bundled NPs examined, QD655, had a much higher uptake capability and greater gene expression ability than the other QD NPs (QD525, QD565, and QD605). We believe that our findings help to enrich knowledge of design considerations that will aid in the engineering of QD NPs for stem cell application in the future.
Collapse
Affiliation(s)
- Han Na Yang
- Department of Biomedical Science, College of Life Science, CHA University, 3F, Yatap Acecore, 502 Yatap-dong Bundang-gu, Seongam-si, Gyeonggi-do, Republic of Korea
| | - Ji Sun Park
- Department of Biomedical Science, College of Life Science, CHA University, 3F, Yatap Acecore, 502 Yatap-dong Bundang-gu, Seongam-si, Gyeonggi-do, Republic of Korea
| | - Su Yeon Jeon
- Department of Biomedical Science, College of Life Science, CHA University, 3F, Yatap Acecore, 502 Yatap-dong Bundang-gu, Seongam-si, Gyeonggi-do, Republic of Korea
| | - Wooram Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Keun-Hong Park
- Department of Biomedical Science, College of Life Science, CHA University, 3F, Yatap Acecore, 502 Yatap-dong Bundang-gu, Seongam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
27
|
|
28
|
Sang F, Huang X, Ren J. Characterization and separation of semiconductor quantum dots and their conjugates by capillary electrophoresis. Electrophoresis 2014; 35:793-803. [DOI: 10.1002/elps.201300528] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology; Harbin Institute of Technology; Weihai P. R. China
| | - Xiangyi Huang
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai P. R. China
| | - Jicun Ren
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai P. R. China
| |
Collapse
|