1
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
2
|
Hashemi M, Finklea FB, Hammons H, Tian Y, Young N, Kim E, Halloin C, Triebert W, Zweigerdt R, Mitra AK, Lipke EA. Hydrogel microsphere stem cell encapsulation enhances cardiomyocyte differentiation and functionality in scalable suspension system. Bioact Mater 2025; 43:423-440. [PMID: 39399838 PMCID: PMC11471139 DOI: 10.1016/j.bioactmat.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024] Open
Abstract
A reliable suspension-based platform for scaling engineered cardiac tissue (ECT) production from human induced pluripotent stem cells (hiPSCs) is crucial for regenerative therapies. Here, we compared the production and functionality of ECTs formed using our scaffold-based, engineered tissue microsphere differentiation approach with those formed using the prevalent scaffold-free aggregate platform. We utilized a microfluidic system for the rapid (1 million cells/min), high density (30, 40, 60 million cells/ml) encapsulation of hiPSCs within PEG-fibrinogen hydrogel microspheres. HiPSC-laden microspheres and aggregates underwent suspension-based cardiac differentiation in chemically defined media. In comparison to aggregates, microspheres maintained consistent size and shape initially, over time, and within and between batches. Initial size and shape coefficients of variation for microspheres were eight and three times lower, respectively, compared to aggregates. On day 10, microsphere cardiomyocyte (CM) content was 27 % higher and the number of CMs per initial hiPSC was 250 % higher than in aggregates. Contraction and relaxation velocities of microspheres were four and nine times higher than those of aggregates, respectively. Microsphere contractile functionality also improved with culture time, whereas aggregate functionality remained unchanged. Additionally, microspheres displayed improved β-adrenergic signaling responsiveness and uniform calcium transient propagation. Transcriptomic analysis revealed that while both microspheres and aggregates demonstrated similar gene regulation patterns associated with cardiomyocyte differentiation, heart development, cardiac muscle contraction, and sarcomere organization, the microspheres exhibited more pronounced transcriptional changes over time. Taken together, these results highlight the capability of the microsphere platform for scaling up biomanufacturing of ECTs in a suspension-based culture platform.
Collapse
Affiliation(s)
| | - Ferdous B. Finklea
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Hanna Hammons
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Nathan Young
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Emma Kim
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Amit Kumar Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | - Elizabeth A. Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| |
Collapse
|
3
|
Hayashi Y, Fujii T, Kim S, Ozeki T, Badylak SF, D'Amore A, Mutsuga M, Wagner WR. Intervening to Preserve Function in Ischemic Cardiomyopathy with a Porous Hydrogel and Extracellular Matrix Composite in a Rat Myocardial Infarction Model. Adv Healthc Mater 2024:e2402757. [PMID: 39491520 DOI: 10.1002/adhm.202402757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Multiple hydrogels are developed for injection therapy after myocardial infarction, with some incorporating substances promoting tissue regeneration and others emphasizing mechanical effects. In this study, porosity and extracellular matrix-derived digest (ECM) are incorporated, into a mechanically optimized, thermoresponsive, degradable hydrogel (poly(N-isopropylacrylamide-co-N-vinylpyrrolidone-co-MAPLA)) and evaluate whether this biomaterial injectate can abrogate adverse remodeling in rat ischemic cardiomyopathy. After myocardial infarction, rats are divided into four groups: NP (non-porous hydrogel) without either ECM or porosity, PM (porous hydrogel) from the same synthetic copolymer with mannitol beads as porogens, and PME with porosity and ECM digest added to the synthetic copolymer. PBS injection alone is a control group. Intramyocardial injections occurred 3 days after myocardial infarction followed by serial echocardiography and histological assessments 8 weeks after infarction. Echocardiographic function and neovascularization improved in the PME group compared to the other hydrogels and PBS injection. The PME group also demonstrated improved LV geometry and macrophage polarization (toward M2) compared to PBS, whereas differences are not observed in the NP or PM groups versus control. These results demonstrate further functional improvement may be achieved in hydrogel injection therapy for ischemic cardiomyopathy by incorporating porosity and ECM digest, representing combined mechanical and biological effects.
Collapse
Affiliation(s)
- Yasunari Hayashi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 4668550, Japan
| | - Taro Fujii
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 4668550, Japan
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Agricultural and Biological Engineering, Mississippi State University, MS, 39762, USA
| | - Takahiro Ozeki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 4668550, Japan
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Fondazione RiMED, Palermo, 90133, Italy
| | - Masato Mutsuga
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 4668550, Japan
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
4
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
5
|
Luo L, Li Y, Bao Z, Zhu D, Chen G, Li W, Xiao Y, Wang Z, Zhang Y, Liu H, Chen Y, Liao Y, Cheng K, Li Z. Pericardial Delivery of SDF-1α Puerarin Hydrogel Promotes Heart Repair and Electrical Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302686. [PMID: 37665792 DOI: 10.1002/adma.202302686] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2023] [Indexed: 09/06/2023]
Abstract
The stromal-derived factor 1α/chemokine receptor 4 (SDF-1α/CXCR4) axis contributes to myocardial protection after myocardial infarction (MI) by recruiting endogenous stem cells into the ischemic tissue. However, excessive inflammatory macrophages are also recruited simultaneously, aggravating myocardial damage. More seriously, the increased inflammation contributes to abnormal cardiomyocyte electrical coupling, leading to inhomogeneities in ventricular conduction and retarded conduction velocity. It is highly desirable to selectively recruit the stem cells but block the inflammation. In this work, SDF-1α-encapsulated Puerarin (PUE) hydrogel (SDF-1α@PUE) is capable of enhancing endogenous stem cell homing and simultaneously polarizing the recruited monocyte/macrophages into a repairing phenotype. Flow cytometry analysis of the treated heart tissue shows that endogenous bone marrow mesenchymal stem cells, hemopoietic stem cells, and immune cells are recruited while SDF-1α@PUE efficiently polarizes the recruited monocytes/macrophages into the M2 type. These macrophages influence the preservation of connexin 43 (Cx43) expression which modulates intercellular coupling and improves electrical conduction. Furthermore, by taking advantage of the improved "soil", the recruited stem cells mediate an improved cardiac function by preventing deterioration, promoting neovascular architecture, and reducing infarct size. These findings demonstrate a promising therapeutic platform for MI that not only facilitates heart regeneration but also reduces the risk of cardiac arrhythmias.
Collapse
Affiliation(s)
- Li Luo
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Yuetong Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Ziwei Bao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Guoqin Chen
- Cardiology Department of Panyu Central Hospital and Cardiovascular Disease Institute of Panyu District, Guangzhou, 511400, P. R. China
| | - Weirun Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Yingxian Xiao
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Zhenzhen Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yixin Zhang
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yanmei Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, 10032, USA
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| |
Collapse
|
6
|
Zhang L, Bei Z, Li T, Qian Z. An injectable conductive hydrogel with dual responsive release of rosmarinic acid improves cardiac function and promotes repair after myocardial infarction. Bioact Mater 2023; 29:132-150. [PMID: 37621769 PMCID: PMC10444974 DOI: 10.1016/j.bioactmat.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Myocardial infarction (MI) causes irreversible damage to the heart muscle, seriously threatening the lives of patients. Injectable hydrogels have attracted extensive attention in the treatment of MI. By promoting the coupling of mechanical and electrical signals between cardiomyocytes, combined with synergistic therapeutic strategies targeting the pathological processes of inflammation, proliferation, and fibrotic remodeling after MI, it is expected to improve the therapeutic effect. In this study, a pH/ROS dual-responsive injectable hydrogel was developed by modifying xanthan gum and gelatin with reversible imine bond and boronic ester bond double crosslinking. By encapsulating polydopamine-rosmarinic acid nanoparticles to achieve on-demand drug release in response to the microenvironment of MI, thereby exerting anti-inflammatory, anti-apoptotic, and anti-fibrosis effects. By adding conductive composites to improve the conductivity and mechanical strength of the hydrogel, restore electrical signal transmission in the infarct area, promote synchronous contraction of cardiomyocytes, avoid induced arrhythmias, and induce angiogenesis. Furthermore, the multifunctional hydrogel promoted the expression of cardiac-specific markers to restore cardiac function after MI. The in vivo and in vitro results demonstrate the effectiveness of this synergistic comprehensive treatment strategy in MI treatment, showing great application potential to promote the repair of infarcted hearts.
Collapse
Affiliation(s)
- Linghong Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Department of Pediatric Cardiac Surgery, West China the Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Ghassemi K, Inouye K, Takhmazyan T, Bonavida V, Yang JW, de Barros NR, Thankam FG. Engineered Vesicles and Hydrogel Technologies for Myocardial Regeneration. Gels 2023; 9:824. [PMID: 37888397 PMCID: PMC10606880 DOI: 10.3390/gels9100824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Increased prevalence of cardiovascular disease and potentially life-threatening complications of myocardial infarction (MI) has led to emerging therapeutic approaches focusing on myocardial regeneration and restoration of physiologic function following infarction. Extracellular vesicle (EV) technology has gained attention owing to the biological potential to modulate cellular immune responses and promote the repair of damaged tissue. Also, EVs are involved in local and distant cellular communication following damage and play an important role in initiating the repair process. Vesicles derived from stem cells and cardiomyocytes (CM) are of particular interest due to their ability to promote cell growth, proliferation, and angiogenesis following MI. Although a promising candidate for myocardial repair, EV technology is limited by the short retention time of vesicles and rapid elimination by the body. There have been several successful attempts to address this shortcoming, which includes hydrogel technology for the sustained bioavailability of EVs. This review discusses and summarizes current understanding regarding EV technology in the context of myocardial repair.
Collapse
Affiliation(s)
- Kaitlyn Ghassemi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Keiko Inouye
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Tatevik Takhmazyan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Victor Bonavida
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| | - Jia-Wei Yang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (J.-W.Y.); (N.R.d.B.)
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (J.-W.Y.); (N.R.d.B.)
| | - Finosh G. Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.G.); (K.I.); (T.T.); (V.B.)
| |
Collapse
|
8
|
Avendaño R, Midgett D, Melvinsdottir I, Thorn SL, Uman S, Pickell Z, Lee SR, Liu Z, Mamarian M, Duncan JS, Spinale FG, Burdick JA, Sinusas AJ. Improvement in cardiac function and regional LV strain following intramyocardial injection of a theranostic hydrogel early postmyocardial infarction in a porcine model. J Appl Physiol (1985) 2023; 135:405-420. [PMID: 37318987 PMCID: PMC10538987 DOI: 10.1152/japplphysiol.00342.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Myocardial infarction (MI) is often complicated by left ventricular (LV) remodeling and heart failure. We evaluated the feasibility of a multimodality imaging approach to guide delivery of an imageable hydrogel and assessed LV functional changes with therapy. Yorkshire pigs underwent surgical occlusions of branches of the left anterior descending and/or circumflex artery to create an anterolateral MI. We evaluated the hemodynamic and mechanical effects of intramyocardial delivery of an imageable hydrogel in the central infarct area (Hydrogel group, n = 8) and a Control group (n = 5) early post-MI. LV and aortic pressure and ECG were measured and contrast cineCT angiography was performed at baseline, 60 min post-MI, and 90 min post-hydrogel delivery. LV hemodynamic indices, pressure-volume measures, and normalized regional and global strains were measured and compared. Both Control and Hydrogel groups demonstrated a decline in heart rate, LV pressure, stroke volume, ejection fraction, and pressure-volume loop area, and an increase in myocardial performance (Tei) index and supply/demand (S/D) ratio. After hydrogel delivery, Tei index and S/D ratio were reduced to baseline levels, diastolic and systolic functional indices either stabilized or improved, and radial strain and circumferential strain increased significantly in the MI regions (ENrr: +52.7%, ENcc: +44.1%). However, the Control group demonstrated a progressive decline in all functional indices to levels significantly below those of Hydrogel group. Thus, acute intramyocardial delivery of a novel imageable hydrogel to MI region resulted in rapid stabilization or improvement in LV hemodynamics and function.NEW & NOTEWORTHY Our study demonstrates that contrast cineCT imaging can be used to evaluate the acute effects of intramyocardial delivery of a therapeutic hydrogel to the central MI region early post MI, which resulted in a rapid stabilization of LV hemodynamics and improvement in regional and global LV function.
Collapse
Affiliation(s)
- Ricardo Avendaño
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Dan Midgett
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Inga Melvinsdottir
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Stephanie L Thorn
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Zachary Pickell
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Shin Rong Lee
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Zhao Liu
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Marina Mamarian
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - James S Duncan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Francis G Spinale
- Department of Cell Biology & Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Jason A Burdick
- Biofrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, United States
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
9
|
Ciarleglio G, Toto E, Santonicola MG. Conductive and Thermo-Responsive Composite Hydrogels with Poly(N-isopropylacrylamide) and Carbon Nanotubes Fabricated by Two-Step Photopolymerization. Polymers (Basel) 2023; 15:polym15041022. [PMID: 36850305 PMCID: PMC9962410 DOI: 10.3390/polym15041022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Biocompatible and conductive polymer hydrogels are the subject of intensive research in the bioengineering field because of their use in bioelectronic devices and for the fabrication of electro-responsive tissues and drug delivery systems. In this study, we report the synthesis of conductive composite hydrogels consisting of a poly(N-isopropylacrylamide) (PNIPAM) matrix embedding carboxyl-functionalized multi-walled carbon nanotubes (MWCNT-COOH) using a two-step photopolymerization method. Thermo-responsive hydrogels with controlled hydrophilicity and conductivity were prepared by varying the carbon nanotube concentration in the range 0.5-3 wt%. The thermal response of the PNIPAM-based composite hydrogels was measured by differential scanning calorimetry with both ultrapure water and PBS solution as swelling liquid. Results show that the endothermic peak associated with the temperature-induced volume phase transition (VPT) shifts to higher temperatures upon increasing the concentration of the nanotubes, indicating that more energy is required to dissociate the hydrogen bonds of the polymer/filler network. In PBS solution, the swelling ratios and the VPT temperatures of the composite hydrogels are reduced because of salt-induced screening of the oppositely charged polymer/filler assembly, and the electrical resistivity decreases by a factor of 10 with respect to the water-swollen hydrogels.
Collapse
|
10
|
Tian G, Ren T. Mechanical stress regulates the mechanotransduction and metabolism of cardiac fibroblasts in fibrotic cardiac diseases. Eur J Cell Biol 2023; 102:151288. [PMID: 36696810 DOI: 10.1016/j.ejcb.2023.151288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Fibrotic cardiac diseases are characterized by myocardial fibrosis that results in maladaptive cardiac remodeling. Cardiac fibroblasts (CFs) are the main cell type responsible for fibrosis. In response to stress or injury, intrinsic CFs develop into myofibroblasts and produce excess extracellular matrix (ECM) proteins. Myofibroblasts are mechanosensitive cells that can detect changes in tissue stiffness and respond accordingly. Previous studies have revealed that some mechanical stimuli control fibroblast behaviors, including ECM formation, cell migration, and other phenotypic traits. Further, metabolic alteration is reported to regulate fibrotic signaling cascades, such as the transforming growth factor-β pathway and ECM deposition. However, the relationship between metabolic changes and mechanical stress during fibroblast-to-myofibroblast transition remains unclear. This review aims to elaborate on the crosstalk between mechanical stress and metabolic changes during the pathological transition of cardiac fibroblasts.
Collapse
Affiliation(s)
- Geer Tian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China; Binjiang Institute of Zhejiang University, 66 Dongxin Road, Hangzhou 310053, PR China
| | - Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
11
|
Wu Z, Li W, Cheng S, Liu J, Wang S. Novel fabrication of bioengineered injectable chitosan hydrogel loaded with conductive nanoparticles to improve therapeutic potential of mesenchymal stem cells in functional recovery after ischemic myocardial infarction. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102616. [PMID: 36374915 DOI: 10.1016/j.nano.2022.102616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, myocardial regeneration through stem cell transplantation and tissue engineering has been viewed as a promising technique for treating myocardial infarction. As a result, the researcher attempts to see whether co-culturing modified mesenchymal stem cells with Au@Ch-SF macro-hydrogel and H9C2 may help with tissue regeneration and cardiac function recovery. The gold nanoparticles (Au) incorporated into the chitosan-silk fibroin hydrogel (Au@Ch-SF) were validated using spectral and microscopic examinations. The most essential elements of hydrogel groups were investigated in detail, including weight loss, mechanical strength, and drug release rate. Initially, the cardioblast cells (H9C2 cells) was incubated with Au@Ch-SF macro-hydrogel, followed by mesenchymal stem cells (2 × 105) were transplanted into the Au@Ch-SF macro-hydrogel+H9C2 culture at the ratio of 2:1. Further, cardiac phenotype development, cytokines expression and tissue regenerative performance of modified mesenchymal stem cells treatment were studied through various in vitro and in vivo analyses. The Au@Ch-SF macro-hydrogel gelation time was much faster than that of Ch and Ch-SF hydrogels, showing that Ch and SF exhibited greater intermolecular interactions. The obtained Au@Ch-SF macro-hydrogel has no toxicity on mesenchymal stem cells (MS) or cardiac myoblast (H9C2) cells, according to the biocompatibility investigation. MS cells co-cultured with Au@Ch-SF macro-hydrogel and H9C2 cells also stimulated cardiomyocyte fiber restoration, which has been confirmed in myocardial infarction rats using -MHC and Cx43 myocardial indicators. We developed a novel method of co-cultured therapy using MS cells, Au@Ch-SF macro-hydrogel, and H9C2 cells which could promote the regenerative activities in myocardial ischemia cells. These study findings show that co-cultured MS therapy might be effective for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Zheng Wu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Wenzheng Li
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Shujuan Cheng
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| | - Jinghua Liu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China.
| | - Shaoping Wang
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, PR China; Department of 28 Division of Cardiovascular, Beijing Institute of Heart, Lung and Blood Vessel Diseases, PR China
| |
Collapse
|
12
|
Joddar B, Natividad-Diaz SL, Padilla AE, Esparza AA, Ramirez SP, Chambers DR, Ibaroudene H. Engineering approaches for cardiac organoid formation and their characterization. Transl Res 2022; 250:46-67. [PMID: 35995380 PMCID: PMC10370285 DOI: 10.1016/j.trsl.2022.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Cardiac organoids are 3-dimensional (3D) structures composed of tissue or niche-specific cells, obtained from diverse sources, encapsulated in either a naturally derived or synthetic, extracellular matrix scaffold, and include exogenous biochemical signals such as essential growth factors. The overarching goal of developing cardiac organoid models is to establish a functional integration of cardiomyocytes with physiologically relevant cells, tissues, and structures like capillary-like networks composed of endothelial cells. These organoids used to model human heart anatomy, physiology, and disease pathologies in vitro have the potential to solve many issues related to cardiovascular drug discovery and fundamental research. The advent of patient-specific human-induced pluripotent stem cell-derived cardiovascular cells provide a unique, single-source approach to study the complex process of cardiovascular disease progression through organoid formation and incorporation into relevant, controlled microenvironments such as microfluidic devices. Strategies that aim to accomplish such a feat include microfluidic technology-based approaches, microphysiological systems, microwells, microarray-based platforms, 3D bioprinted models, and electrospun fiber mat-based scaffolds. This article discusses the engineering or technology-driven practices for making cardiac organoid models in comparison with self-assembled or scaffold-free methods to generate organoids. We further discuss emerging strategies for characterization of the bio-assembled cardiac organoids including electrophysiology and machine-learning and conclude with prospective points of interest for engineering cardiac tissues in vitro.
Collapse
Affiliation(s)
- Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas.
| | - Sylvia L Natividad-Diaz
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas
| | - Andie E Padilla
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Aibhlin A Esparza
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Salma P Ramirez
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | | | | |
Collapse
|
13
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
14
|
Hamami R, Simaan-Yameen H, Gargioli C, Seliktar D. Comparison of Four Different Preparation Methods for Making Injectable Microgels for Tissue Engineering and Cell Therapy. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Rogozinski N, Yanez A, Bhoi R, Lee MY, Yang H. Current methods for fabricating 3D cardiac engineered constructs. iScience 2022; 25:104330. [PMID: 35602954 PMCID: PMC9118671 DOI: 10.1016/j.isci.2022.104330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
3D cardiac engineered constructs have yielded not only the next generation of cardiac regenerative medicine but also have allowed for more accurate modeling of both healthy and diseased cardiac tissues. This is critical as current cardiac treatments are rudimentary and often default to eventual heart transplants. This review serves to highlight the various cell types found in cardiac tissues and how they correspond with current advanced fabrication methods for creating cardiac engineered constructs capable of shedding light on various pathologies and providing the therapeutic potential for damaged myocardium. In addition, insight is given toward the future direction of the field with an emphasis on the creation of specialized and personalized constructs that model the region-specific microtopography and function of native cardiac tissues.
Collapse
Affiliation(s)
- Nicholas Rogozinski
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Apuleyo Yanez
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Rahulkumar Bhoi
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| |
Collapse
|
16
|
Midgett DE, Thorn SL, Ahn SS, Uman S, Avendano R, Melvinsdottir I, Lysyy T, Kim JS, Duncan JS, Humphrey JD, Papademetris X, Burdick JA, Sinusas AJ. CineCT platform for in vivo and ex vivo measurement of 3D high resolution Lagrangian strains in the left ventricle following myocardial infarction and intramyocardial delivery of theranostic hydrogel. J Mol Cell Cardiol 2022; 166:74-90. [PMID: 35227737 PMCID: PMC9035115 DOI: 10.1016/j.yjmcc.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) produces acute changes in strain and stiffness within the infarct that can affect remote areas of the left ventricle (LV) and drive pathological remodeling. We hypothesized that intramyocardial delivery of a hydrogel within the MI region would lower wall stress and reduce adverse remodeling in Yorkshire pigs (n = 5). 99mTc-Tetrofosmin SPECT imaging defined the location and geometry of induced MI and border regions in pigs, and in vivo and ex vivo contrast cine computed tomography (cineCT) quantified deformations of the LV myocardium. Serial in vivo cineCT imaging provided data in hearts from control pigs (n = 3) and data from pigs (n = 5) under baseline conditions before MI induction, post-MI day 3, post-MI day 7, and one hour after intramyocardial delivery of a hyaluronic acid (HA)-based hydrogel with shear-thinning and self-healing properties to the central infarct area. Isolated, excised hearts underwent similar cineCT imaging using an ex vivo perfused heart preparation with cyclic LV pressurization. Deformations were evaluated using nonlinear image registration of cineCT volumes between end-diastole (ED) and end-systole (ES), and 3D Lagrangian strains were calculated from the displacement gradients. Post-MI day 3, radial, circumferential, maximum principal, and shear strains were reduced within the MI region (p < 0.04) but were unchanged in normal regions (p > 0.6), and LV end diastolic volume (LV EDV) increased (p = 0.004), while ejection fraction (EF) and stroke volume (SV) decreased (p < 0.02). Post-MI day 7, radial strains in MI border zones increased (p = 0.04) and dilation of LV EDV continued (p = 0.052). There was a significant negative linear correlation between regional radial and maximum principal/shear strains and percent infarcted tissue in all hearts (R2 > 0.47, p < 0.004), indicating that cineCT strain measures could predict MI location and degree of injury. Post-hydrogel day 7 post-MI, LV EDV was significantly reduced (p = 0.009), EF increased (p = 0.048), and radial (p = 0.021), maximum principal (p = 0.051), and shear strain (p = 0.047) increased within regions bordering the infarct. A smaller strain improvement within the infarct and normal regions was also noted on average along with an improvement in SV in 4 out of 5 hearts. CineCT provides a reliable method to assess regional changes in strains post-MI and the therapeutic effects of intramyocardial hydrogel delivery.
Collapse
Affiliation(s)
- D E Midgett
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America; Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - S L Thorn
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - S S Ahn
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - S Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - R Avendano
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - I Melvinsdottir
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - T Lysyy
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States of America
| | - J S Kim
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States of America
| | - J S Duncan
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States of America
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - X Papademetris
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States of America
| | - J A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - A J Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America; Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States of America.
| |
Collapse
|
17
|
Cohen T, Kossover O, Peled E, Bick T, Hasanov L, Chun TT, Cool S, Lewinson D, Seliktar D. A combined cell and growth factor delivery for the repair of a critical size tibia defect using biodegradable hydrogel implants. J Tissue Eng Regen Med 2022; 16:380-395. [PMID: 35119200 PMCID: PMC9303443 DOI: 10.1002/term.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
The ability to repair critical‐sized long‐bone injuries using growth factor and cell delivery was investigated using hydrogel biomaterials. Physiological doses of the recombinant human bone morphogenic protein‐2 (rhBMP2) were delivered in a sustained manner from a biodegradable hydrogel containing peripheral human blood‐derived endothelial progenitor cells (hEPCs). The biodegradable implants made from polyethylene glycol (PEG) and denatured fibrinogen (PEG‐fibrinogen, PF) were loaded with 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs. The safety and efficacy of the implant were tested in a rodent model of a critical‐size long‐bone defect. The hydrogel implants were formed ex‐situ and placed into defects in the tibia of athymic nude rats and analyzed for bone repair after 13 weeks following surgery. The hydrogels containing a combination of 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs were compared to control hydrogels containing 7.7 μg/ml of rhBMP2 only, 2.5 × 106 cells/ml hEPCs only, or bare hydrogels. Assessments of bone repair include histological analysis, bone formation at the site of implantation using quantitative microCT, and assessment of implant degradation. New bone formation was detected in all treated animals, with the highest amounts found in the treatments that included animals that combined the PF implant with rhBMP2. Moreover, statistically significant increases in the tissue mineral density (TMD), trabecular number and trabecular thickness were observed in defects treated with rhBMP2 compared to non‐rhBMP2 defects. New bone formation was significantly higher in the hEPC‐treated defects compared to bare hydrogel defects, but there were no significant differences in new bone formation, trabecular number, trabecular thickness or TMD at 13 weeks when comparing the rhBMP2 + hEPCs‐treated defects to rhBMP2‐treated defects. The study concludes that the bone regeneration using hydrogel implants containing hEPCs are overshadowed by enhanced osteogenesis associated with sustained delivery of rhBMP2.
Collapse
Affiliation(s)
- Talia Cohen
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Peled
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Orthopedic Surgery, Rambam Medical Center, Haifa, Israel
| | - Tova Bick
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Lena Hasanov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tan Tuan Chun
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Simon Cool
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Dina Lewinson
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Zhou J, Liu W, Zhao X, Xian Y, Wu W, Zhang X, Zhao N, Xu F, Wang C. Natural Melanin/Alginate Hydrogels Achieve Cardiac Repair through ROS Scavenging and Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100505. [PMID: 34414693 PMCID: PMC8529445 DOI: 10.1002/advs.202100505] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/24/2021] [Indexed: 05/04/2023]
Abstract
The efficacy of cardiac regenerative strategies for myocardial infarction (MI) treatment is greatly limited by the cardiac microenvironment. The combination of reactive oxygen species (ROS) scavenging to suppress the oxidative stress damage and macrophage polarization to regenerative M2 phenotype in the MI microenvironment can be desirable for MI treatment. Herein, melanin nanoparticles (MNPs)/alginate (Alg) hydrogels composed of two marine-derived natural biomaterials, MNPs obtained from cuttlefish ink and alginate extracted from ocean algae, are proposed. Taking advantage of the antioxidant property of MNPs and mechanical support from injectable alginate hydrogels, the MNPs/Alg hydrogel is explored for cardiac repair by regulating the MI microenvironment. The MNPs/Alg hydrogel is found to eliminate ROS against oxidative stress injury of cardiomyocytes. More interestingly, the macrophage polarization to regenerative M2 macrophages can be greatly promoted in the presence of MNPs/Alg hydrogel. An MI rat model is utilized to evaluate the feasibility of the as-prepared MNPs/Alg hydrogel for cardiac repair in vivo. The antioxidant, anti-inflammatory, and proangiogenesis effects of the hydrogel are investigated in detail. The present study opens up a new way to utilize natural biomaterials for MI treatment and allows to rerecognize the great value of natural biomaterials in cardiac repair.
Collapse
Affiliation(s)
- Jin Zhou
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Wei Liu
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Xiaoyi Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yifan Xian
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Wei Wu
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Xiao Zhang
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Nana Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Fu‐Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| |
Collapse
|
19
|
Zhang Y, Cai Z, Shen Y, Lu Q, Gao W, Zhong X, Yao K, Yuan J, Liu H. Hydrogel-load exosomes derived from dendritic cells improve cardiac function via Treg cells and the polarization of macrophages following myocardial infarction. J Nanobiotechnology 2021; 19:271. [PMID: 34496871 PMCID: PMC8424987 DOI: 10.1186/s12951-021-01016-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Backgroud Myocardial infarction (MI) is one of the leading causes of global death. Dendritic cell-derived exosomes (DEXs) provide us with the possibility of improving cardiac function after MI but are limited by low retention times and short-lived therapeutic effects. In this study, we developed a novel drug delivery system incorporating alginate hydrogel that continuously releases DEXs and investigated the mechanisms underlying the action of DEXs in the improvement of cardiac function after MI. Results We incorporated DEXs with alginate hydrogel (DEXs-Gel) and investigated controlled released ability and rheology, and found that DEXs-Gel release DEXs in a sustainable mammer and prolonged the retention time of DEXs but had no detrimental effects on the migration in vivo. Then DEXs-Gel was applicated in the MI model mice, we found that DEXs-Gel siginificantly enhanced the therapeutic effects of DEXs with regards to improving cardiac function after MI. Flow cytometry and immunofluorescence staining revealed that DEXs significantly upregulated the infiltration of Treg cells and M2 macrophages into the border zoom after MI, and DEXs activated regulatory T (Treg) cells and shifted macrophages to reparative M2 macrophages, both in vitro and in vivo. Conclusion Our novel delivery method provides an innovative tool for enhancing the therapeutic effects of DEXs after MI. Further analysis revealed that DEXs exert effect by activating Treg cells and by modifying the polarization of macrophages. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Youming Zhang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Zichun Cai
- Department of Cardiology, Shanghai East Hospital of Clinical Medical College, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yunli Shen
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Qizheng Lu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Wei Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xin Zhong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Kang Yao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Haibo Liu
- Department of Cardiology, QingPu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, People's Republic of China.
| |
Collapse
|
20
|
Qian B, Yang Q, Wang M, Huang S, Jiang C, Shi H, Long Q, Zhou M, Zhao Q, Ye X. Encapsulation of lyophilized platelet-rich fibrin in alginate-hyaluronic acid hydrogel as a novel vascularized substitution for myocardial infarction. Bioact Mater 2021; 7:401-411. [PMID: 34466741 PMCID: PMC8379365 DOI: 10.1016/j.bioactmat.2021.05.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular diseases such as myocardial infarction (MI) are among the major causes of death worldwide. Although intramyocardial injection of hydrogels can effectively enhance the ventricular wall, this approach is limited because of its restriction to the poor vascularization in the infarcted myocardium. Here, we reported a new type of hydrogel composed of alginate (ALG) and hyaluronic acid (HA) with lyophilized platelet-rich fibrin (Ly-PRF) for releasing abundant growth factors to realize their respective functions. The results of in vitro studies demonstrated favorable mechanical property and release ability of ALG-HA with Ly-PRF. When injected into the infarcted myocardium, this composite hydrogel preserved heart function and the Ly-PRF within the hydrogel promoted angiogenesis and increased vascular density in both infarcted and border zone, which rescued the ischemic myocardium. These beneficial effects were also accompanied by macrophage polarization and regulation of myocardial fibrosis. Moreover, the autologous origin of Ly-PRF with ALG-HA hydrogel offers myriad advantages including safety profile, easiness to obtain and cost-effectiveness. Overall, this study demonstrated the versatile therapeutic effects of a novel composite hydrogel ALG-HA with Ly-PRF, which optimizes a promising vascularized substitution strategy for improving cardiac function after MI.
Collapse
Key Words
- ALG, alginate
- BZ, border zone
- Drug delivery
- HA, hyaluronic acid
- IZ, infarcted zone
- Injectable hydrogel
- LVEDd, left ventricular end-diastolic diameter
- LVEF, left ventricular ejection fractions
- LVESd, left ventricular end-systolic diameter
- LVFS, left ventricular fractional shortening
- Ly-PRF, lyophilized platelet-rich fibrin
- Lyophilized platelet-rich fibrin
- MI, myocardial infarction
- Myocardial infarction
- PET-CT, positron emission tomography-computerized tomography
- PRF, platelet-rich fibrin
- PRP, platelet rich plasma
- SUV, standardized uptake value
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling
- Vascularization
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Bei Qian
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Qi Yang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Mingliang Wang
- Department of Cardiology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Chenyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Hongpeng Shi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Qiang Long
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Mi Zhou
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
21
|
Ebhodaghe SO. Natural Polymeric Scaffolds for Tissue Engineering Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2144-2194. [PMID: 34328068 DOI: 10.1080/09205063.2021.1958185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polymeric scaffolds can be used for tissue engineering applications such as cell delivery and cell-free supporting of native tissues. This is because of their desirable properties such as; high biocompatibility, tunable mechanical strength and conductivity, large surface area, porous- and extracellular matrix (ECM)-mimicked structures. Specifically, their less toxicity and biocompatibility makes them suitable for several tissue engineering applications. For these reasons, several biopolymeric scaffolds are currently being explored for numerous tissue engineering applications. To date, research on the nature, chemistry, and properties of nanocomposite biopolymers are been reported, while the need for a comprehensive research note on more tissue engineering application of these biopolymers remains. As a result, this present study comprehensively reviews the development of common natural biopolymers as scaffolds for tissue engineering applications such as cartilage tissue engineering, cornea repairs, osteochondral defect repairs, and nerve regeneration. More so, the implications of research findings for further studies are presented, while the impact of research advances on future research and other specific recommendations are added as well.
Collapse
|
22
|
Wang X, Senapati S, Akinbote A, Gnanasambandam B, Park PSH, Senyo SE. Microenvironment stiffness requires decellularized cardiac extracellular matrix to promote heart regeneration in the neonatal mouse heart. Acta Biomater 2020; 113:380-392. [PMID: 32590172 PMCID: PMC7428869 DOI: 10.1016/j.actbio.2020.06.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
The transient period of regeneration potential in the postnatal heart suggests molecular changes with maturation influence the cardiac response to damage. We have previously demonstrated that injury and exercise can stimulate cardiomyocyte proliferation in the adult heart suggesting a sensitivity to exogenous signals. Here, we consider whether exogenous fetal ECM and mechanically unloading interstitial matrix can drive regeneration after myocardial infarction (MI) surgery in low-regenerative hearts of day5 mice. Compared to controls, exogenous fetal ECM increases cardiac function and lowers fibrosis at 3 weeks post-injury and this effect can be augmented by softening heart tissue. In vitro experiments support a mechano-sensitivity to exogenous ECM signaling. We tested potential mechanisms and observed that fetal ECM increases nuclear YAP localization which could be enhanced by pharmacological stabilization of the cytoskeleton. Blocking YAP expression lowered fetal ECM effects though not completely. Lastly we observed mechanically unloading heart interstitial matrix increased agrin expression, an extracellular node in the YAP signaling pathway. Collectively, these data support a combined effect of exogenous factors and mechanical activity in altering agrin expression, cytoskeletal remodeling, and YAP signaling in driving cardiomyocyte cell cycle activity and regeneration in postnatal non-regenerative mice. STATEMENT OF SIGNIFICANCE: With the purpose of developing regenerative strategies, we investigate the influence of the local niche on the cardiac injury response. We conclude tissue stiffness, as anticipated in aging or disease, impairs regenerative therapeutics. Most novel, mechanical unloading facilitates enhanced cardiac regeneration only after cells are pushed into a permissive state by fetal biomolecules. Specifically, mechanical unloading appears to increase extracellular agrin expression that amplifies fetal-stimulation of nuclear YAP signaling which correlates with observed increases of cell cycle activity in cardiomyocytes. The results further suggest the cytoskeleton is critical to this interaction between mechanical unloading and independently actived YAP signaling. Using animal models, tissue explants, and cells, this work indicates that local mechanical stimuli can augment proliferating-permissive cardiomyocytes in the natural cardiac niche.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Subhadip Senapati
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, United States
| | - Akinola Akinbote
- Department of Macromolecular Science & Engineering, Case Western Reserve University, United States
| | - Bhargavee Gnanasambandam
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Paul S-H Park
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, United States
| | - Samuel E Senyo
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States.
| |
Collapse
|
23
|
Nayak SP, Rai S, Pradhan S, Mantri J. RELAS: A reliable authentication system for patient monitoring using IoT. INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS 2020. [DOI: 10.3233/kes-200032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Samaleswari Pr. Nayak
- Department of Computer Science and Engineering, Silicon Institute of Technology, Bhubaneswar, India
| | - S.C. Rai
- Department of IT, Silicon Institute of Technology, Bhubaneswar, India
| | - Sipali Pradhan
- Department of Computer Application, North Orissa University, Bhubaneswar, India
| | - J.K. Mantri
- Department of Computer Application, North Orissa University, Bhubaneswar, India
| |
Collapse
|
24
|
Sack KL, Aliotta E, Choy JS, Ennis DB, Davies NH, Franz T, Kassab GS, Guccione JM. Intra-myocardial alginate hydrogel injection acts as a left ventricular mid-wall constraint in swine. Acta Biomater 2020; 111:170-180. [PMID: 32428678 PMCID: PMC7368390 DOI: 10.1016/j.actbio.2020.04.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Despite positive initial outcomes emerging from preclinical and early clinical investigation of alginate hydrogel injection therapy as a treatment for heart failure, the lack of knowledge about the mechanism of action remains a major shortcoming that limits the efficacy of treatment design. To identify the mechanism of action, we examined previously unobtainable measurements of cardiac function from in vivo, ex vivo, and in silico states of clinically relevant heart failure (HF) in large animals. High-resolution ex vivo magnetic resonance imaging and histological data were used along with state-of-the-art subject-specific computational model simulations. Ex vivo data were incorporated in detailed geometric computational models for swine hearts in health (n = 5), ischemic HF (n = 5), and ischemic HF treated with alginate hydrogel injection therapy (n = 5). Hydrogel injection therapy mitigated elongation of sarcomere lengths (1.68 ± 0.10μm [treated] vs. 1.78 ± 0.15μm [untreated], p<0.001). Systolic contractility in treated animals improved substantially (ejection fraction = 43.9 ± 2.8% [treated] vs. 34.7 ± 2.7% [untreated], p<0.01). The in silico models realistically simulated in vivo function with >99% accuracy and predicted small myofiber strain in the vicinity of the solidified hydrogel that was sustained for up to 13 mm away from the implant. These findings suggest that the solidified alginate hydrogel material acts as an LV mid-wall constraint that significantly reduces adverse LV remodeling compared to untreated HF controls without causing negative secondary outcomes to cardiac function. STATEMENT OF SIGNIFICANCE: Heart failure is considered a growing epidemic and hence an important health problem in the US and worldwide. Its high prevalence (5.8 million and 23 million, respectively) is expected to increase by 25% in the US alone by 2030. Heart failure is associated with high morbidity and mortality, has a 5-year mortality rate of 50%, and contributes considerably to the overall cost of health care ($53.1 billion in the US by 2030). Despite positive initial outcomes emerging from preclinical and early clinical investigation of alginate hydrogel injection therapy as a treatment for heart failure, the lack of knowledge concerning the mechanism of action remains a major shortcoming that limits the efficacy of treatment design. To understand the mechanism of action, we combined high-resolution ex vivo magnetic resonance imaging and histological data in swine with state-of-the-art subject-specific computational model simulations. The in silico models realistically simulated in vivo function with >99% accuracy and predicted small myofiber strain in the vicinity of the solidified hydrogel that was sustained for up to 13 mm away from the implant. These findings suggest that the solidified alginate hydrogel material acts as a left ventricular mid-wall constraint that significantly reduces adverse LV remodeling compared to untreated heart failure controls without causing negative secondary outcomes to cardiac function. Moreover, if the hydrogel can be delivered percutaneously rather than via the currently used open-chest procedure, this therapy may become routine for heart failure treatment. A minimally invasive procedure would be in the best interest of this patient population; i.e., one that cannot tolerate general anesthesia and surgery, and it would be significantly more cost-effective than surgery.
Collapse
Affiliation(s)
- Kevin L Sack
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California at San Francisco, Box 0118, UC Hall Room U-158, San Francisco, CA, United States; Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Eric Aliotta
- Department of Radiological Sciences, University of California, Los Angeles, California, USA
| | - Jenny S Choy
- California Medical Innovations Institute, Inc., San Diego, California, USA
| | - Daniel B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, California, USA
| | - Neil H Davies
- Cardiovascular Research Unit, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa; Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Ghassan S Kassab
- California Medical Innovations Institute, Inc., San Diego, California, USA
| | - Julius M Guccione
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California at San Francisco, Box 0118, UC Hall Room U-158, San Francisco, CA, United States.
| |
Collapse
|
25
|
Pupkaite J, Sedlakova V, Eren Cimenci C, Bak M, McLaughlin S, Ruel M, Alarcon EI, Suuronen EJ. Delivering More of an Injectable Human Recombinant Collagen III Hydrogel Does Not Improve Its Therapeutic Efficacy for Treating Myocardial Infarction. ACS Biomater Sci Eng 2020; 6:4256-4265. [PMID: 33463355 DOI: 10.1021/acsbiomaterials.0c00418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Injectable hydrogels are a promising method to enhance repair in the heart after myocardial infarction (MI). However, few studies have compared different strategies for the application of biomaterial treatments. In this study, we use a clinically relevant mouse MI model to assess the therapeutic efficacy of different treatment protocols for intramyocardial injection of a recombinant human collagen III (rHCIII) thermoresponsive hydrogel. Comparing a single hydrogel injection at an early time point (3 h) versus injections at multiple time points (3 h, 1 week, and 2 weeks) post-MI revealed that the single injection group led to superior cardiac function, reduced scar size and inflammation, and increased vascularization. Omitting the 3 h time point and delivering the hydrogel at 1 and 2 weeks post-MI led to poorer cardiac function. The positive effects of the single time point injection (3 h) on scar size and vascular density were lost when the hydrogel's collagen concentration was increased from 1% to 2%, and it did not confer any additional functional improvement. This study shows that early treatment with a rHCIII hydrogel can improve cardiac function post-MI but that injecting more rHCIII (by increased concentration or more over time) can reduce its efficacy, thus highlighting the importance of investigating optimal treatment strategies of biomaterial therapy for MI.
Collapse
Affiliation(s)
- Justina Pupkaite
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada.,Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping 582 25, Sweden
| | - Veronika Sedlakova
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada
| | - Cagla Eren Cimenci
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Madison Bak
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Sarah McLaughlin
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Marc Ruel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| | - Erik J Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7 Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada
| |
Collapse
|
26
|
Yang X, Mohseni M, Bas O, Meinert C, New EJ, Castro NJ. Type II Photoinitiator and Tuneable Poly(Ethylene Glycol)-Based Materials Library for Visible Light Photolithography. Tissue Eng Part A 2020; 26:292-304. [PMID: 31910098 DOI: 10.1089/ten.tea.2019.0282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stereolithography (SL) has several advantages over traditional biomanufacturing techniques such as fused deposition modeling, including increased speed, accuracy, and efficiency. While SL has been broadly used in tissue engineering for the fabrication of three-dimensional scaffolds that can mimic the in vivo environment for cell growth and tissue regeneration, lithographic printing is usually performed on single-component materials cured with ultraviolet light, severely limiting the versatility and cytocompatibility of such systems. In this study, we report a highly tunable, low-cost photoinitiator system that we used to establish a systematic library of crosslinked materials based on low molecular weight poly(ethylene glycol) diacrylate. We assessed the physicochemical properties, photocrosslinking efficiency, cost performance, and biocompatibility to demonstrate the capability of manufacturing a multimaterial complex tissue scaffold. [Figure: see text] Impact statement Stereolithography (SL) has advantages over traditional biomanufacturing techniques, including accuracy and efficiency. While SL has been broadly used for fabricating three-dimensional scaffolds that can mimic the in vivo environment for cell growth and tissue regeneration, lithographic printing is usually performed on single-component materials cured with ultraviolet light, severely limiting the versatility and cytocompatibility of such systems. In this study, we report a highly tunable photoinitiator system and establish a systematic library of crosslinked materials based on poly(ethylene glycol) diacrylate. We assessed the physicochemical properties, photocrosslinking efficiency and biocompatibility to demonstrate the capability of manufacturing a multimaterial complex tissue scaffold.
Collapse
Affiliation(s)
- Xin Yang
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Mina Mohseni
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Onur Bas
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, Australia
| | - Christoph Meinert
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, Australia.,The University of Sydney Nano Institute, Sydney, Australia
| | - Nathan J Castro
- Joint Quantum Institute and Physical Measurements Laboratory, NIST/University of Maryland, College Park, Maryland
| |
Collapse
|
27
|
Wang RM, Christman KL. Injectable biopolymers in the treatment of heart failure and cardiac remodeling. EMERGING TECHNOLOGIES FOR HEART DISEASES 2020:333-355. [DOI: 10.1016/b978-0-12-813706-2.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Roberts IV, Bukhary D, Valdivieso CYL, Tirelli N. Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromol Biosci 2019; 20:e1900283. [PMID: 31769933 DOI: 10.1002/mabi.201900283] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Indexed: 12/19/2022]
Abstract
This review focuses on fibrin, starting from biological mechanisms (its production from fibrinogen and its enzymatic degradation), through its use as a medical device and as a biomaterial, and finally discussing the techniques used to add biological functions and/or improve its mechanical performance through its molecular engineering. Fibrin is a material of biological (human, and even patient's own) origin, injectable, adhesive, and remodellable by cells; further, it is nature's most common choice for an in situ forming, provisional matrix. Its widespread use in the clinic and in research is therefore completely unsurprising. There are, however, areas where its biomedical performance can be improved, namely achieving a better control over mechanical properties (and possibly higher modulus), slowing down degradation or incorporating cell-instructive functions (e.g., controlled delivery of growth factors). The authors here specifically review the efforts made in the last 20 years to achieve these aims via biomimetic reactions or self-assembly, as much via formation of hybrid materials.
Collapse
Affiliation(s)
- Iwan Vaughan Roberts
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Deena Bukhary
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | | | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| |
Collapse
|
29
|
Kossover O, Cohen N, Lewis JA, Berkovitch Y, Peled E, Seliktar D. Growth Factor Delivery for the Repair of a Critical Size Tibia Defect Using an Acellular, Biodegradable Polyethylene Glycol-Albumin Hydrogel Implant. ACS Biomater Sci Eng 2019; 6:100-111. [PMID: 33463206 DOI: 10.1021/acsbiomaterials.9b00672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Growth factor delivery using acellular matrices presents a promising alternative to current treatment options for bone repair in critical-size injuries. However, supra-physiological doses of the factors can introduce safety concerns that must be alleviated, mainly by sustaining delivery of smaller doses using the matrix as a depot. We developed an acellular, biodegradable hydrogel implant composed of poly(ethylene glycol) (PEG) and denatured albumin to be used for sustained delivery of bone morphogenic protein-2 (BMP2). In this study, poly(ethylene glycol)-albumin (PEG-Alb) hydrogels were produced and loaded with 7.7 μg/mL of recombinant human BMP2 (rhBMP2) to be tested for safety and performance in a critical-size long-bone defect, using a rodent model. The hydrogels were formed ex situ in a 5 mm long cylindrical mold of 3 mm diameter, implanted into defects made in the tibia of Sprague-Dawley rats and compared to non-rhBMP2 control hydrogels at 13 weeks following surgery. The hydrogels were also compared to the more established PEG-fibrinogen (PEG-Fib) hydrogels we have tested previously. Comprehensive in vitro characterization as well as in vivo assessments that include: histological analyses, including safety parameters (i.e., local tolerance and toxicity), assessment of implant degradation, bone formation, as well as repair tissue density using quantitative microCT analysis were performed. The in vitro assessments demonstrated similarities between the mechanical and release properties of the PEG-Alb hydrogels to those of the PEG-Fib hydrogels. Safety analysis presented good local tolerance in the bone defects and no signs of toxicity. A significantly larger amount of bone was detected at 13 weeks in the rhBMP2-treated defects as compared to non-rhBMP2 defects. However, no significant differences were noted in bone formation at 13 weeks when comparing the PEG-Alb-treated defects to PEG-Fib-treated defects (with or without BMP2). The study concludes that hydrogel scaffolds made from PEG-Alb containing 7.7 μg/mL of rhBMP2 are effective in accelerating the bridging of boney defects in the tibia.
Collapse
Affiliation(s)
- Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalie Cohen
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 320003, Israel
| | - Jacob A Lewis
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yulia Berkovitch
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Eli Peled
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 320003, Israel.,Department of Orthopedic Surgery, Rambam Medical Center, Haifa 3200000, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
30
|
Lv K, Li Q, Zhang L, Wang Y, Zhong Z, Zhao J, Lin X, Wang J, Zhu K, Xiao C, Ke C, Zhong S, Wu X, Chen J, Yu H, Zhu W, Li X, Wang B, Tang R, Wang J, Huang J, Hu X. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. Am J Cancer Res 2019; 9:7403-7416. [PMID: 31695776 PMCID: PMC6831299 DOI: 10.7150/thno.32637] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/26/2022] Open
Abstract
Bone marrow mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have been widely used for treating myocardial infarction (MI). However, low retention and short-lived therapeutic effects are still significant challenges. This study aimed to determine whether incorporation of MSC-derived sEVs in alginate hydrogel increases their retention in the heart thereby improving therapeutic effects. Methods: The optimal sodium alginate hydrogel incorporating sEVs system was determined by its release ability of sEVs and rheology of hydrogel. Ex vivo fluorescence imaging was utilized to evaluate the retention of sEVs in the heart. Immunoregulation and effects of sEVs on angiogenesis were analyzed by immunofluorescence staining. Echocardiography and Masson's trichrome staining were used to estimate cardiac function and infarct size. Results: The delivery of sEVs incorporated in alginate hydrogel (sEVs-Gel) enhanced their retention in the heart. Compared with sEVs only treatment (sEVs), sEVs-Gel treatment significantly decreased cardiac cell apoptosis and promoted the polarization of macrophages at day 3 after MI. sEVs-Gel treatment also increased scar thickness and angiogenesis at four weeks post-infarction. Measurement of cardiac function and infarct size were significantly better in the sEVs-Gel group than in the group treated with sEVs only. Conclusion: Delivery of sEVs incorporated in alginate hydrogel provides a novel approach of cell-free therapy and optimizes the therapeutic effect of sEVs for MI.
Collapse
|
31
|
Zargar SM, Mehdikhani M, Rafienia M. Reduced graphene oxide–reinforced gellan gum thermoresponsive hydrogels as a myocardial tissue engineering scaffold. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519876080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Myocardial infarction is one of the most prevalent diseases around the world. Cardiac tissue engineering is a new approach to repair and revive the structure and functionality of cardiac damaged tissue. In this study, gellan gum/reduced graphene oxide composite hydrogels were fabricated, characterized, and evaluated. The hydrogels were prepared using the solvent casting method and characterized via scanning electron microscopy and Fourier-transform infrared spectroscopy. Compressive mechanical analysis, injectability as well as electrical conductivity test were run. Furthermore, water swelling and degradation analyses were conducted. MTT assay was performed using rat myoblasts (H9C2) to determine the cytotoxicity of our samples. Results showed that reduced graphene oxide fillers dispersed acceptably and enhanced the compressive modulus and electrical conductivity of gellan gum hydrogels. However, in this regard, compressive strength and ductility were not significantly boosted with reduced graphene oxide addition. The water-swelling ratio (%) rised in the presence of reduced graphene oxide, whereas the degradation rate was not significantly affected by them. Meanwhile, synthesized hydrogels showed suitable injectability. MTT assay results revealed that gellan gum hydrogels containing 1% and 2% reduced graphene oxide were not cytotoxic. According to the findings, gellan gum/2% reduced graphene oxide composite hydrogel can be a promising candidate for repairing and healing infarcted myocardial tissue.
Collapse
Affiliation(s)
- Seyed Mohammad Zargar
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mehdi Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Affiliation(s)
- Partho P Sengupta
- Division of Cardiology, WVU Heart & Vascular Institute, West Virginia University, Morgantown, West Virginia
| | - Y Chandrashekhar
- Division of Cardiology, University of Minnesota and Veterans Affairs Medical Center, Minneapolis, Minnesota.
| |
Collapse
|
33
|
Yosef A, Kossover O, Mironi‐Harpaz I, Mauretti A, Melino S, Mizrahi J, Seliktar D. Fibrinogen-Based Hydrogel Modulus and Ligand Density Effects on Cell Morphogenesis in Two-Dimensional and Three-Dimensional Cell Cultures. Adv Healthc Mater 2019; 8:e1801436. [PMID: 31081289 DOI: 10.1002/adhm.201801436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/08/2019] [Indexed: 12/15/2022]
Abstract
There is a need to further explore the convergence of mechanobiology and dimensionality with systematic investigations of cellular response to matrix mechanics in 2D and 3D cultures. Here, a semisynthetic hydrogel capable of supporting both 2D and 3D cell culture is applied to investigate cell response to matrix modulus and ligand density. The culture materials are fabricated from adducts of polyethylene glycol (PEG) or PluronicF127 and fibrinogen fragments, formed into hydrogels by free-radical polymerization, and characterized by shear rheology. Control over the modulus of the materials is accomplished by changing the concentration of synthetic PEG-diacrylate crosslinker (0.5% w/v), and by altering the molecular length of the PEG (10 and 20 kDa). Control over ligand density is accomplished by changing fibrinogen concentrations from 3 to 12 mg mL-1 . In 2D culture, cell motility parameters, including cell speed and persistence time are significantly increased with increasing modulus. In both 2D and 3D culture, cells express vinculin and there is evidence of focal adhesion formation in the high stiffness materials. The modulus- and ligand-dependent morphogenesis response from the cells in 2D culture is contradictory to the same measured response in 3D culture. In 2D culture, anchorage-dependent cells become more elongated and significantly increase their size with increasing ligand density and matrix modulus. In 3D culture, the same anchorage-dependent cells become less spindled and significantly reduce their size in response to increasing ligand density and matrix modulus. These differences arise from dimensionality constraints, most notably the encapsulation of cells in a non-porous hydrogel matrix. These insights underscore the importance of mechanical properties in regulating cell morphogenesis in a 3D culture milieu. The versatility of the hydrogel culture environment further highlights the significance of a modular approach when developing materials that aim to optimize the cell culture environment.
Collapse
Affiliation(s)
- Andrei Yosef
- Faculty of Biomedical EngineeringTechnion—Israel Institute of Technology Haifa 32000 Israel
| | - Olga Kossover
- Faculty of Biomedical EngineeringTechnion—Israel Institute of Technology Haifa 32000 Israel
| | - Iris Mironi‐Harpaz
- Faculty of Biomedical EngineeringTechnion—Israel Institute of Technology Haifa 32000 Israel
| | - Arianna Mauretti
- Department of Chemical Sciences and TechnologiesUniversity of Rome “Tor Vergata” Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Sonia Melino
- Department of Chemical Sciences and TechnologiesUniversity of Rome “Tor Vergata” Via della Ricerca Scientifica 1 00133 Rome Italy
- CIMER Center of Regenerative MedicineTor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Joseph Mizrahi
- Faculty of Biomedical EngineeringTechnion—Israel Institute of Technology Haifa 32000 Israel
| | - Dror Seliktar
- Faculty of Biomedical EngineeringTechnion—Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
34
|
Kuraitis D, Hosoyama K, Blackburn NJR, Deng C, Zhong Z, Suuronen EJ. Functionalization of soft materials for cardiac repair and regeneration. Crit Rev Biotechnol 2019; 39:451-468. [PMID: 30929528 DOI: 10.1080/07388551.2019.1572587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coronary artery disease is a leading cause of death in developed nations. As the disease progresses, myocardial infarction can occur leaving areas of dead tissue in the heart. To compensate, the body initiates its own repair/regenerative response in an attempt to restore function to the heart. These efforts serve as inspiration to researchers who attempt to capitalize on the natural regenerative processes to further augment repair. Thus far, researchers are exploiting these repair mechanisms in the functionalization of soft materials using a variety of growth factor-, ligand- and peptide-incorporating approaches. The goal of functionalizing soft materials is to best promote and direct the regenerative responses that are needed to restore the heart. This review summarizes the opportunities for the use of functionalized soft materials for cardiac repair and regeneration, and some of the different strategies being developed.
Collapse
Affiliation(s)
- Drew Kuraitis
- a Division of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , Canada
| | - Katsuhiro Hosoyama
- a Division of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , Canada
| | - Nick J R Blackburn
- a Division of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , Canada
| | - Chao Deng
- b Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , People's Republic of China
| | - Zhiyuan Zhong
- b Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , People's Republic of China
| | - Erik J Suuronen
- a Division of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , Canada
| |
Collapse
|
35
|
Kambe Y, Yamaoka T. Biodegradation of injectable silk fibroin hydrogel prevents negative left ventricular remodeling after myocardial infarction. Biomater Sci 2019; 7:4153-4165. [DOI: 10.1039/c9bm00556k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Random collagen fiber networks formed by a slowly degrading silk fibroin hydrogel injection prevented left ventricular enlargement after myocardial infarction.
Collapse
Affiliation(s)
- Yusuke Kambe
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center (NCVC) Research Institute
- Suita
- Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center (NCVC) Research Institute
- Suita
- Japan
| |
Collapse
|
36
|
Li H, Gao J, Shang Y, Hua Y, Ye M, Yang Z, Ou C, Chen M. Folic Acid Derived Hydrogel Enhances the Survival and Promotes Therapeutic Efficacy of iPS Cells for Acute Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24459-24468. [PMID: 29974744 DOI: 10.1021/acsami.8b08659] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stem cell therapy has obtained extensive consensus to be an effective method for post myocardial infarction (MI) intervention. Induced pluripotent stem (iPS) cells, which are able to differentiate into multiple cell types, have the potential to generate cardiovascular lineage cells for myocardial repair after ischemic damage, but their poor retention rate significantly hinders the therapeutic efficacy. In the present study, we developed a supramolecular hydrogel which is formed by the self-assembly of folic acid (FA)-modified peptide via a biocompatible method (glutathione reduction) and suitable for cell encapsulation and transplantation. The iPS cells labeled with CM-Dil were transplanted into the MI hearts of mice with or without FA hydrogel encapsulation. The results corroborated that the FA hydrogel significantly improved the retention and survival of iPS cells in MI hearts post injection, leading to augmentation of the therapeutic efficacy of iPS cells including better cardiac function and much less adverse heart remodeling, by subsequent differentiation toward cardiac cells and stimulation of neovascularization. This study reported a novel supramolecular hydrogel based on FA-peptides capable of improving the therapeutic capacity of iPS cells, which held big potential in the treatment of MI.
Collapse
Affiliation(s)
- Hekai Li
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Yuna Shang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Yongquan Hua
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Min Ye
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Caiwen Ou
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Minsheng Chen
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| |
Collapse
|
37
|
Pérez-Luna VH, González-Reynoso O. Encapsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels 2018; 4:E61. [PMID: 30674837 PMCID: PMC6209244 DOI: 10.3390/gels4030061] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Hydrogels are materials specially suited for encapsulation of biological elements. Their large water content provides an environment compatible with most biological molecules. Their crosslinked nature also provides an ideal material for the protection of encapsulated biological elements against degradation and/or immune recognition. This makes them attractive not only for controlled drug delivery of proteins, but they can also be used to encapsulate cells that can have therapeutic applications. Thus, hydrogels can be used to create systems that will deliver required therapies in a controlled manner by either encapsulation of proteins or even cells that produce molecules that will be released from these systems. Here, an overview of hydrogel encapsulation strategies of biological elements ranging from molecules to cells is discussed, with special emphasis on therapeutic applications.
Collapse
Affiliation(s)
- Víctor H Pérez-Luna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, IL 60616, USA.
| | - Orfil González-Reynoso
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco C.P. 44430, Mexico.
| |
Collapse
|
38
|
Sack KL, Aliotta E, Choy JS, Ennis DB, Davies NH, Franz T, Kassab GS, Guccione JM. Effect of intra-myocardial Algisyl-LVR™ injectates on fibre structure in porcine heart failure. J Mech Behav Biomed Mater 2018; 87:172-179. [PMID: 30071487 DOI: 10.1016/j.jmbbm.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 11/30/2022]
Abstract
Recent preclinical trials have shown that alginate injections are a promising treatment for ischemic heart disease. Although improvements in heart function and global structure have been reported following alginate implants, the underlying structure is poorly understood. Using high resolution ex vivo MRI and DT-MRI of the hearts of normal control swine (n = 8), swine with induced heart failure (n = 5), and swine with heart failure and alginate injection treatment (n = 6), we visualized and quantified the fibre distribution and implant material geometry. Our findings show that the alginate injectates form solid ellipsoids with a retention rate of 68.7% ± 21.3% (mean ± SD) and a sphericity index of 0.37 ± 0.03. These ellipsoidal shapes solidified predominantly at the mid-wall position with an inclination of -4.9° ± 31.4° relative to the local circumferential direction. Overall, the change to left ventricular wall thickness and myofiber orientation was minor and was associated with heart failure and not the presence of injectates. These results show that alginate injectates conform to the pre-existing tissue structure, likely expanding along directions of least resistance as mass is added to the injection sites. The alginate displaces the myocardial tissue predominantly in the longitudinal direction, causing minimal disruption to the surrounding myofiber orientations.
Collapse
Affiliation(s)
- K L Sack
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa; Department of Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - E Aliotta
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - J S Choy
- California Medical Innovations Institute, Inc., San Diego, CA, USA
| | - D B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - N H Davies
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - T Franz
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa; Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - G S Kassab
- California Medical Innovations Institute, Inc., San Diego, CA, USA
| | - J M Guccione
- Department of Surgery, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Di Franco S, Amarelli C, Montalto A, Loforte A, Musumeci F. Biomaterials and heart recovery: cardiac repair, regeneration and healing in the MCS era: a state of the "heart". J Thorac Dis 2018; 10:S2346-S2362. [PMID: 30123575 PMCID: PMC6081365 DOI: 10.21037/jtd.2018.01.85] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/12/2018] [Indexed: 01/31/2023]
Abstract
Regenerative medicine is an emerging interdisciplinary field of scientific research that, supported by tissue engineering is, nowadays, a valuable and reliable solution dealing with the actual organs shortage and the unresolved limits of biological or prosthetic materials used in repair and replacement of diseased or damaged human tissues and organs. Due to the improvements in design and materials, and to the changing of clinical features of patients treated for valvular heart disease the distance between the ideal valve and the available prostheses has been shortened. We will then deal with the developing of new tools aiming at replacing or repair cardiac tissues that still represent an unmet clinical need for the surgeons and indeed for their patients. In the effort of improving treatment for the cardiovascular disease (CVD), scientists struggle with the lack of self-regenerative capacities of finally differentiated cardiovascular tissues. In this context, using several converging technological approaches, regenerative medicine moves beyond traditional transplantation and replacement therapies and can restore tissue impaired function. It may also play an essential role in surgery daily routine, leading to produce devices such as injectable hydrogels, cardiac patches, bioresorbable stents and vascular grafts made by increasingly sophisticated biomaterial scaffolds; tailored devices promptly fabricated according to surgeon necessity and patient anatomy and pathology will hopefully represent a daily activity in the next future. The employment of these devices, still far from the in vitro reproduction of functional organs, has the main aim to achieve a self-renewal process in damaged tissues simulating endogenous resident cell populations. In this field, the collaboration and cooperation between cardiothoracic surgeons and bioengineers appear necessary to modify these innovative devices employed in preclinical studies according to the surgeon's needs.
Collapse
Affiliation(s)
- Sveva Di Franco
- Department of Anaesthesiology and Critical Care Medicine, L. Vanvitelli University, Naples, Italy
| | - Cristiano Amarelli
- Department of Cardiovascular Surgery and Transplants, Monaldi Hospital, Azienda dei Colli, Naples, Italy
| | - Andrea Montalto
- Department of Heart and Vessels, Cardiac Surgery Unit and Heart Transplantation Center, S. Camillo-Forlanini Hospital, Rome, Italy
| | - Antonio Loforte
- Department of Cardiovascular Surgery and Transplantation, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - Francesco Musumeci
- Department of Heart and Vessels, Cardiac Surgery Unit and Heart Transplantation Center, S. Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
40
|
Sheffield C, Meyers K, Johnson E, Rajachar RM. Application of Composite Hydrogels to Control Physical Properties in Tissue Engineering and Regenerative Medicine. Gels 2018; 4:E51. [PMID: 30674827 PMCID: PMC6209271 DOI: 10.3390/gels4020051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022] Open
Abstract
The development of biomaterials for the restoration of the normal tissue structure⁻function relationship in pathological conditions as well as acute and chronic injury is an area of intense investigation. More recently, the use of tailored or composite hydrogels for tissue engineering and regenerative medicine has sought to bridge the gap between natural tissues and applied biomaterials more clearly. By applying traditional concepts in engineering composites, these hydrogels represent hierarchical structured materials that translate more closely the key guiding principles required for improved recovery of tissue architecture and functional behavior, including physical, mass transport, and biological properties. For tissue-engineering scaffolds in general, and more specifically in composite hydrogel materials, each of these properties provide unique qualities that are essential for proper augmentation and repair following disease and injury. The broad focus of this review is on physical properties in particular, static and dynamic mechanical properties provided by composite hydrogel materials and their link to native tissue architecture and, ultimately, tissue-specific applications for composite hydrogels.
Collapse
Affiliation(s)
- Cassidy Sheffield
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Kaylee Meyers
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Emil Johnson
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Rupak M Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
41
|
Cell encapsulation utilizing PEG-fibrinogen hydrogel supports viability and enhances productivity under stress conditions. Cytotechnology 2018; 70:1075-1083. [PMID: 29468479 DOI: 10.1007/s10616-018-0204-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/10/2018] [Indexed: 02/05/2023] Open
Abstract
Recent advances in the bioengineering field have introduced new opportunities enabling cell encapsulation in three-dimensional (3D) structures using either various natural or synthetic materials. However, such hydrogel scaffolds have not been fully biocompatible for cell cultivation due to the lack of physical stability or bioactivity. Here, we utilized a uniquely fabricated semi-synthetic 3D polyethylene glycol-fibrinogen (PEG-Fb) hydrogel scaffold, which exhibits both high stability and high bioactivity, to encapsulate HEK293 cells for the production of human recombinant acetylcholine esterase (AChE). To examine the beneficial bioactive effect of the PEG-Fb scaffold over 2D surfaces, an experimental system was established to compare the viability, proliferation and AChE secretion of encapsulated cells versus non-encapsulated surface-adherent cells in serum starvation. Our results show that the transfer of surface-adherent HEK293 cells from fully enriched medium with 10% FCS to 0.2% FCS resulted in an eightfold reduction in cell number and a fourfold reduction in AChE production. In contrast, the encapsulated cells were highly viable and about twofold more efficient in AChE production. In addition, they had round morphology with a twofold larger cell diameter, supporting the observation of increased AChE production. These results suggest a role of the PEG-Fb scaffold in providing a supportive microenvironment in reduced serum conditions that enhances encapsulated cell functions, opening new directions to study the implementation of this platform in large-scale pharmaceutical protein production.
Collapse
|
42
|
Sack KL, Davies NH, Guccione JM, Franz T. Personalised computational cardiology: Patient-specific modelling in cardiac mechanics and biomaterial injection therapies for myocardial infarction. Heart Fail Rev 2018; 21:815-826. [PMID: 26833320 PMCID: PMC4969231 DOI: 10.1007/s10741-016-9528-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Predictive computational modelling in biomedical research offers the potential to integrate diverse data, uncover biological mechanisms that are not easily accessible through experimental methods and expose gaps in knowledge requiring further research. Recent developments in computing and diagnostic technologies have initiated the advancement of computational models in terms of complexity and specificity. Consequently, computational modelling can increasingly be utilised as enabling and complementing modality in the clinic—with medical decisions and interventions being personalised. Myocardial infarction and heart failure are amongst the leading causes of death globally despite optimal modern treatment. The development of novel MI therapies is challenging and may be greatly facilitated through predictive modelling. Here, we review the advances in patient-specific modelling of cardiac mechanics, distinguishing specificity in cardiac geometry, myofibre architecture and mechanical tissue properties. Thereafter, the focus narrows to the mechanics of the infarcted heart and treatment of myocardial infarction with particular attention on intramyocardial biomaterial delivery.
Collapse
Affiliation(s)
- Kevin L Sack
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Private Bag X3, 7935, Observatory, South Africa
| | - Neil H Davies
- Cardiovascular Research Unit, MRC IUCHRU, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Julius M Guccione
- Department of Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Private Bag X3, 7935, Observatory, South Africa.
| |
Collapse
|
43
|
Noshadi I, Hong S, Sullivan KE, Sani ES, Portillo-Lara R, Tamayol A, Shin SR, Gao AE, Stoppel WL, Black LD, Khademhosseini A, Annabi N. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater Sci 2017; 5:2093-2105. [PMID: 28805830 PMCID: PMC5614854 DOI: 10.1039/c7bm00110j] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photocrosslinkable materials have been frequently used for constructing soft and biomimetic hydrogels for tissue engineering. Although ultraviolet (UV) light is commonly used for photocrosslinking such materials, its use has been associated with several biosafety concerns such as DNA damage, accelerated aging of tissues, and cancer. Here we report an injectable visible light crosslinked gelatin-based hydrogel for myocardium regeneration. Mechanical characterization revealed that the compressive moduli of the engineered hydrogels could be tuned in the range of 5-56 kPa by changing the concentrations of the initiator, co-initiator and co-monomer in the precursor formulation. In addition, the average pore sizes (26-103 μm) and swelling ratios (7-13%) were also shown to be tunable by varying the hydrogel formulation. In vitro studies showed that visible light crosslinked GelMA hydrogels supported the growth and function of primary cardiomyocytes (CMs). In addition, the engineered materials were shown to be biocompatible in vivo, and could be successfully delivered to the heart after myocardial infarction in an animal model to promote tissue healing. The developed visible light crosslinked hydrogel could be used for the repair of various soft tissues such as the myocardium and for the treatment of cardiovascular diseases with enhanced therapeutic functionality.
Collapse
Affiliation(s)
- Iman Noshadi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Seonki Hong
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kelly E. Sullivan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115-5000, USA
| | - Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115-5000, USA
- Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, 64700, Mexico
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Albert E. Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular, and Developmental Biology Program, Sackler School for Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115-5000, USA
| |
Collapse
|
44
|
Wang H, Rodell CB, Lee ME, Dusaj NN, Gorman JH, Burdick JA, Gorman RC, Wenk JF. Computational sensitivity investigation of hydrogel injection characteristics for myocardial support. J Biomech 2017; 64:231-235. [PMID: 28888476 DOI: 10.1016/j.jbiomech.2017.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/11/2017] [Accepted: 08/22/2017] [Indexed: 10/18/2022]
Abstract
Biomaterial injection is a potential new therapy for augmenting ventricular mechanics after myocardial infarction (MI). Recent in vivo studies have demonstrated that hydrogel injections can mitigate the adverse remodeling due to MI. More importantly, the material properties of these injections influence the efficacy of the therapy. The goal of the current study is to explore the interrelated effects of injection stiffness and injection volume on diastolic ventricular wall stress and thickness. To achieve this, finite element models were constructed with different hydrogel injection volumes (150µL and 300 µL), where the modulus was assessed over a range of 0.1kPa to 100kPa (based on experimental measurements). The results indicate that a larger injection volume and higher stiffness reduce diastolic myofiber stress the most, by maintaining the wall thickness during loading. Interestingly, the efficacy begins to taper after the hydrogel injection stiffness reaches a value of 50kPa. This computational approach could be used in the future to evaluate the optimal properties of the hydrogel.
Collapse
Affiliation(s)
- Hua Wang
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States
| | - Christopher B Rodell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Madonna E Lee
- Gorman Cardiovascular Research Group and Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Neville N Dusaj
- Departments of Chemistry and Physics, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group and Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert C Gorman
- Gorman Cardiovascular Research Group and Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Jonathan F Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States; Department of Surgery, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
45
|
Rufaihah AJ, Yasa IC, Ramanujam VS, Arularasu SC, Kofidis T, Guler MO, Tekinay AB. Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction. Acta Biomater 2017; 58:102-112. [PMID: 28600129 DOI: 10.1016/j.actbio.2017.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
Myocardial infarction remains one of the top leading causes of death in the world and the damage sustained in the heart eventually develops into heart failure. Limited conventional treatment options due to the inability of the myocardium to regenerate after injury and shortage of organ donors require the development of alternative therapies to repair the damaged myocardium. Current efforts in repairing damage after myocardial infarction concentrates on using biologically derived molecules such as growth factors or stem cells, which carry risks of serious side effects including the formation of teratomas. Here, we demonstrate that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization in cardiovascular tissue after myocardial infarction, without the addition of any biologically derived factors or stem cells. When the GAG mimetic nanofiber gels were injected in the infarct site of rodent myocardial infarct model, increased VEGF-A expression and recruitment of vascular cells was observed. This was accompanied with significant degree of neovascularization and better cardiac performance when compared to the control saline group. The results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair. STATEMENT OF SIGNIFICANCE We present a synthetic bioactive peptide nanofiber system can enhance cardiac function and enhance cardiovascular regeneration after myocardial infarction (MI) without the addition of growth factors, stem cells or other biologically derived molecules. Current state of the art in cardiac repair after MI utilize at least one of the above mentioned biologically derived molecules, thus our approach is ground-breaking for cardiovascular therapy after MI. In this work, we showed that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization and cardiomyocyte differentiation for the regeneration of cardiovascular tissue after myocardial infarction in a rat infarct model. When the peptide nanofiber gels were injected in infarct site at rodent myocardial infarct model, recruitment of vascular cells was observed, neovascularization was significantly induced and cardiac performance was improved. These results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair.
Collapse
|
46
|
Effect of Thermoresponsive Poly(L-lactic acid)-poly(ethylene glycol) Gel Injection on Left Ventricular Remodeling in a Rat Myocardial Infarction Model. Tissue Eng Regen Med 2017; 14:507-516. [PMID: 30603505 DOI: 10.1007/s13770-017-0067-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Some gel types have been reported to prevent left ventricular (LV) remodeling in myocardial infarction (MI) animal models. In this study, we tested biodegradable thermoresponsive gels. Poly(L-lactic acid)-poly(ethylene glycol) (PLLA-PEG) and poly(D-lactic acid)-poly(ethylene glycol) (PDLA-PEG) were synthesized by the polycondensation of l- and D-lactic acids in the presence of PEG and succinic acid. Each of these block copolymers was used to prepare particles dispersed in an aqueous medium and mixed together to obtain a PLLA-PEG/PDLA-PEG suspension, which was found to show a sol-to-gel transition around the body temperature by the stereocomplex formation of enantiomeric PLLA and PDLA sequences. In the present study, the G' of the PLLA-PEG/PDLA-PEG suspension in the rheological measurement remained as low as 1 Pa at 20 °C and increased 2 kPa at 37 °C. The sol-gel systems of PLLA-PEG/PDLA-PEG might be applicable to gel therapy. The effect of the PLLA-PEG/PDLA-PEG gel injection was compared with that of a calcium-crosslinked alginate gel and saline in a rat MI model. The percent fractional shortening improved in the PLLA-PEG/PDLA-PEG (20.8 ± 4.1%) and alginate gel (21.1 ± 4.8%) compared with the saline (14.2 ± 2.8%) with regard to the echocardiograph 4 weeks after the injection (p < 0.05). There were reduced infarct sizes in both PLLA-PEG/PDLA-PEG gel and alginate gel compared with the saline injection (p < 0.05). Moreover, a greater reduction in LV cavity area was observed with the PLLA-PEG/PDLA-PEG gel than with the alginate gel (p = 0.06). These results suggest that the PLLA-PEG/PDLA-PEG gel should have high therapeutic potential in gel therapy for LV remodeling after MI.
Collapse
|
47
|
Hao T, Li J, Yao F, Dong D, Wang Y, Yang B, Wang C. Injectable Fullerenol/Alginate Hydrogel for Suppression of Oxidative Stress Damage in Brown Adipose-Derived Stem Cells and Cardiac Repair. ACS NANO 2017; 11:5474-5488. [PMID: 28590722 DOI: 10.1021/acsnano.7b00221] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stem cell implantation strategy has exhibited potential to treat the myocardial infarction (MI), however, the low retention and survival limit their applications due to the reactive oxygen species (ROS) microenvironment after MI. In this study, the fullerenol nanoparticles are introduced into alginate hydrogel to create an injectable cell delivery vehicle with antioxidant activity. Results suggest that the prepared hydrogels exhibit excellent injectable and mechanical strength. In addition, the fullerenol/alginate hydrogel can effectively scavenge the superoxide anion and hydroxyl radicals. Based on these results, the biological behaviors of brown adipose-derived stem cells (BADSCs) seeded in fullerenol/alginate hydrogel were investigated in the presence of H2O2. Results suggest that the fullerenol/alginate hydrogels have no cytotoxicity effects on BADSCs. Moreover, they can suppress the oxidative stress damage of BADSCs and improve their survival capacity under ROS microenvironment via activating the ERK and p38 pathways while inhibiting JNK pathway. Further, the addition of fullerenol can improve the cardiomyogenic differentiation of BADSCs even under ROS microenvironment. To assess its therapeutic effects in vivo, the fullerenol/alginate hydrogel loaded with BADSCs were implanted in the MI area in rats. Results suggest that the fullerenol/alginate hydrogel can effectively decrease ROS level in MI zone, improve the retention and survival of implanted BADSCs, and induce angiogenesis, which in turn promote cardiac functional recovery. Therefore, the fullerenol/alginate hydrogel can act as injectable cell delivery vehicles for cardiac repair.
Collapse
Affiliation(s)
- Tong Hao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
| | - Fanglian Yao
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Dianyu Dong
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
| | - Boguang Yang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
| |
Collapse
|
48
|
Hydrogel based approaches for cardiac tissue engineering. Int J Pharm 2017; 523:454-475. [DOI: 10.1016/j.ijpharm.2016.10.061] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2023]
|
49
|
Fei J, Zhang H, Wang A, Qin C, Xue H, Li J. Biofluid-Triggered Burst Release from an Adaptive Covalently Assembled Dipeptide Nanocontainer for Emergency Treatment. Adv Healthc Mater 2017; 6. [PMID: 28177202 DOI: 10.1002/adhm.201601198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/09/2017] [Indexed: 11/09/2022]
Abstract
The construction of quickly dissociating containers holding bioactive components that meet the extreme requirements of emergency treatment is highly desirable but remains a great challenge. Here the use of small-molecule-induced dynamic covalent assembly is reported for simple and tunable fabrication of a biocompatible diphenylalanine-based nanocontainer toward rapidly responsive cargo delivery. The assembled nanocontainer can adaptively encapsulate various charged or neutral molecules. Upon biofluid trigger, the encapsulated molecules and bioactive proteins are released in a burst (within 5 s) from the nanocontainer due to highly sensitive deprotonation-mediated disruption of hydrogen bonding. This highlighted feature allows the nanocontainer as an excellent "fast dissolving" delivery vehicle available in spray dosage form for medical emergencies, as demonstrated by in vivo application for massive hemorrhage.
Collapse
Affiliation(s)
- Jinbo Fei
- Beijing National Laboratory for Molecular Sciences; CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - He Zhang
- Beijing National Laboratory for Molecular Sciences; CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- School of Chemistry and Chemical Engineering; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Anhe Wang
- National Center for Nanoscience and Technology; Beijing 100190 China
| | - Chenchen Qin
- Beijing National Laboratory for Molecular Sciences; CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- School of Chemistry and Chemical Engineering; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences; CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- School of Chemistry and Chemical Engineering; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences; CAS Key Lab of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- School of Chemistry and Chemical Engineering; University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
50
|
MacArthur JW, Steele AN, Goldstone AB, Cohen JE, Hiesinger W, Woo YJ. Injectable Bioengineered Hydrogel Therapy in the Treatment of Ischemic Cardiomyopathy. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:30. [PMID: 28337717 DOI: 10.1007/s11936-017-0530-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OPINION STATEMENT Over the past two decades, the field of cardiovascular medicine has seen the rapid development of multiple different modalities for the treatment of ischemic myocardial disease. Most research efforts have focused on strategies aimed at coronary revascularization, with significant technological advances made in percutaneous coronary interventions as well as coronary artery bypass graft surgery. However, recent research efforts have shifted towards ways to address the downstream effects of myocardial infarction on both cellular and molecular levels. To this end, the broad application of injectable hydrogel therapy after myocardial infarction has stimulated tremendous interest. In this article, we will review what hydrogels are, how they can be bioengineered in unique ways to optimize therapeutic potential, and how they can be used as part of a treatment strategy after myocardial infarction.
Collapse
Affiliation(s)
- John W MacArthur
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Jeffrey E Cohen
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA.
| |
Collapse
|