1
|
Cheng Z, Fobian SF, Gurrieri E, Amin M, D'Agostino VG, Falahati M, Zalba S, Debets R, Garrido MJ, Saeed M, Seynhaeve ALB, Balcioglu HE, Ten Hagen TLM. Lipid-based nanosystems: the next generation of cancer immune therapy. J Hematol Oncol 2024; 17:53. [PMID: 39030582 PMCID: PMC11265205 DOI: 10.1186/s13045-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Immunotherapy has become an important part of the oncotherapy arsenal. Its applicability in various cancer types is impressive, as well as its use of endogenous mechanisms to achieve desired ends. However, off-target or on-target-off-tumor toxicity, limited activity, lack of control in combination treatments and, especially for solid tumors, low local accumulation, have collectively limited clinical use thereof. These limitations are partially alleviated by delivery systems. Lipid-based nanoparticles (NPs) have emerged as revolutionary carriers due to favorable physicochemical characteristics, with specific applications and strengths particularly useful in immunotherapeutic agent delivery. The aim of this review is to highlight the challenges faced by immunotherapy and how lipid-based NPs have been, and may be further utilized to address such challenges. We discuss recent fundamental and clinical applications of NPs in a range of areas and provide a detailed discussion of the main obstacles in immune checkpoint inhibition therapies, adoptive cellular therapies, and cytokine therapies. We highlight how lipid-based nanosystems could address these through either delivery, direct modulation of the immune system, or targeting of the immunosuppressive tumor microenvironment. We explore advanced and emerging liposomal and lipid nanoparticle (LNP) systems for nucleic acid delivery, intrinsic and extrinsic stimulus-responsive formulations, and biomimetic lipid-based nanosystems in immunotherapy. Finally, we discuss the key challenges relating to the clinical use of lipid-based NP immunotherapies, suggesting future research directions for the near term to realize the potential of these innovative lipid-based nanosystems, as they become the crucial steppingstone towards the necessary enhancement of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyun Cheng
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Seth-Frerich Fobian
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mohamadreza Amin
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann L B Seynhaeve
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Guo J, Liu C, Qi Z, Qiu T, Zhang J, Yang H. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioact Mater 2024; 36:330-357. [PMID: 38496036 PMCID: PMC10940734 DOI: 10.1016/j.bioactmat.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Guo
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Zhaoyang Qi
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Ting Qiu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| |
Collapse
|
3
|
Zhang G, Zhen C, Yang J, Wang J, Wang S, Fang Y, Shang P. Recent advances of nanoparticles on bone tissue engineering and bone cells. NANOSCALE ADVANCES 2024; 6:1957-1973. [PMID: 38633036 PMCID: PMC11019495 DOI: 10.1039/d3na00851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
With the development of biotechnology, biomaterials have been rapidly developed and shown great potential in bone regeneration therapy and bone tissue engineering. Nanoparticles have attracted the attention of researches and have applied in various fields especially in the biomedical field as the special physicochemical properties. Nanoparticles were found to regulate bone remodeling depending on their size, shape, composition, and charge. Therefore, in-depth research was necessary to provide the basic support to select the most suitable nanoparticles for bone relate diseases treatment. This article reviews the current development of nanoparticles in bone tissue engineering, focusing on drug delivery, gene delivery, and cell labeling. In addition, the research progress on the interaction of nanoparticles with bone cells, focusing on osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells, and the underlying mechanism were also reviewed. Finally, the current challenges and future research directions are discussed. Thus, detailed study of nanoparticles may reveal new therapeutic strategies to improve the effectiveness of bone regeneration therapy or other bone diseases.
Collapse
Affiliation(s)
- Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University Xi'an 710054 China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Shenghang Wang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Department of Spine Surgery, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital) Shenzhen 518109 China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd Huzhou 313300 China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| |
Collapse
|
4
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
5
|
Yuba E, Gupta RK. Preparation of glycopeptide-modified pH-sensitive liposomes for promoting antigen cross-presentation and induction of antigen-specific cellular immunity. Biomater Sci 2024; 12:1490-1501. [PMID: 38329387 DOI: 10.1039/d3bm01746j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cross-presentation, exogenous antigen presentation onto major histocompatibility complex class I molecules on antigen presenting cells, is crucially important for inducing antigen-specific cellular immune responses for cancer immunotherapy and for the treatment of infectious diseases. One strategy to induce cross-presentation is cytosolic delivery of an exogenous antigen using fusogenic or endosomolytic molecule-introduced nanocarriers. Earlier, we reported liposomes modified with pH-responsive polymers to achieve cytosolic delivery of an antigen. Polyglycidol-based or polysaccharide-based pH-responsive polymers can provide liposomes with delivery performance of antigenic proteins into cytosol via membrane fusion with endosomes responding to acidic pH, leading to induction of cross-presentation. Mannose residue was introduced to pH-responsive polysaccharides to increase uptake selectivity to antigen presenting cells and to improve cross-presentation efficiency. However, direct introduction of mannose residue into pH-responsive polysaccharides suppressed cytoplasmic delivery performance of liposomes. To avoid such interference, for this study, mannose-containing glycans were incorporated separately into pH-responsive polysaccharide-modified liposomes. Soybean agglutinin-derived glycopeptide was used as a ligand for lectins on antigen presenting cells. Incorporation of glycopeptide significantly increased the cellular uptake of liposomes by dendritic cell lines and increased cross-presentation efficiency. Liposomes incorporated both glycopeptide and pH-responsive polysaccharides exhibited strong adjuvant effects in vitro and induced the increase of dendritic cells, M1 macrophages, and effector T cells in the spleen. Subcutaneous administration of these liposomes induced antigen-specific cellular immunity, resulting in strong therapeutic effects in tumor-bearing mice. These results suggest that separate incorporation of glycopeptides and pH-responsive polysaccharides into antigen-loaded liposomes is an effective strategy to produce liposome-based nanovaccines to achieve antigen cross-presentation and induction of cellular immunity towards cancer immunotherapy.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | - Rajesh Kumar Gupta
- Protein Biochemistry Research Centre, Dr D. Y. Patil Biotechnology and Bioinformatics Institute, Dr D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India.
| |
Collapse
|
6
|
Yanagihara S, Kitayama Y, Yuba E, Harada A. Preparing Size-Controlled Liposomes Modified with Polysaccharide Derivatives for pH-Responsive Drug Delivery Applications. Life (Basel) 2023; 13:2158. [PMID: 38004298 PMCID: PMC10672248 DOI: 10.3390/life13112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The liposome particle size is an important parameter because it strongly affects content release from liposomes as a result of different bilayer curvatures and lipid packing. Earlier, we developed pH-responsive polysaccharide-derivative-modified liposomes that induced content release from the liposomes under weakly acidic conditions. However, the liposome used in previous studies size was adjusted to 100-200 nm. The liposome size effects on their pH-responsive properties were unclear. For this study, we controlled the polysaccharide-derivative-modified liposome size by extrusion through polycarbonate membranes having different pore sizes. The obtained liposomes exhibited different average diameters, in which the diameters mostly corresponded to the pore sizes of polycarbonate membranes used for extrusion. The amounts of polysaccharide derivatives per lipid were identical irrespective of the liposome size. Introduction of cholesterol within the liposomal lipid components suppressed the size increase in these liposomes for at least three weeks. These liposomes were stable at neutral pH, whereas the content release from liposomes was induced at weakly acidic pH. Smaller liposomes exhibited highly acidic pH-responsive content release compared with those from large liposomes. However, liposomes with 50 mol% cholesterol were not able to induce content release even under acidic conditions. These results suggest that control of the liposome size and cholesterol content is important for preparing stable liposomes at physiological conditions and for preparing highly pH-responsive liposomes for drug delivery applications.
Collapse
Affiliation(s)
- Shin Yanagihara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan; (S.Y.); (Y.K.); (A.H.)
| | - Yukiya Kitayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan; (S.Y.); (Y.K.); (A.H.)
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan; (S.Y.); (Y.K.); (A.H.)
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan; (S.Y.); (Y.K.); (A.H.)
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
7
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
8
|
Moholkar DN, Kandimalla R, Gupta RC, Aqil F. Advances in lipid-based carriers for cancer therapeutics: Liposomes, exosomes and hybrid exosomes. Cancer Lett 2023; 565:216220. [PMID: 37209944 PMCID: PMC10325927 DOI: 10.1016/j.canlet.2023.216220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Cancer has recently surpassed heart disease as the leading cause of deaths worldwide for the age group 45-65 and has been the primary focus for biomedical researchers. Presently, the drugs involved in the first-line cancer therapy are raising concerns due to high toxicity and lack of selectivity to cancer cells. There has been a significant increase in research with innovative nano formulations to entrap the therapeutic payload to enhance efficacy and eliminate or minimize toxic effects. Lipid-based carriers stand out due to their unique structural properties and biocompatible nature. The two main leaders of lipid-based drug carriers: long known liposomes and comparatively new exosomes have been well-researched. The similarity between the two lipid-based carriers is the vesicular structure with the core's capability to carry the payload. While liposomes utilize chemically derived and altered phospholipid components, the exosomes are naturally occurring vesicles with inherent lipids, proteins, and nucleic acids. More recently, researchers have focused on developing hybrid exosomes by fusing liposomes and exosomes. Combining these two types of vesicles may offer some advantages such as high drug loading, targeted cellular uptake, biocompatibility, controlled release, stability in harsh conditions and low immunogenicity.
Collapse
Affiliation(s)
- Disha N Moholkar
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Raghuram Kandimalla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
9
|
Leng Q, Imtiyaz Z, Woodle MC, Mixson AJ. Delivery of Chemotherapy Agents and Nucleic Acids with pH-Dependent Nanoparticles. Pharmaceutics 2023; 15:1482. [PMID: 37242725 PMCID: PMC10222096 DOI: 10.3390/pharmaceutics15051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
With less than one percent of systemically injected nanoparticles accumulating in tumors, several novel approaches have been spurred to direct and release the therapy in or near tumors. One such approach depends on the acidic pH of the extracellular matrix and endosomes of the tumor. With an average pH of 6.8, the extracellular tumor matrix provides a gradient for pH-responsive particles to accumulate, enabling greater specificity. Upon uptake by tumor cells, nanoparticles are further exposed to lower pHs, reaching a pH of 5 in late endosomes. Based on these two acidic environments in the tumor, various pH-dependent targeting strategies have been employed to release chemotherapy or the combination of chemotherapy and nucleic acids from macromolecules such as the keratin protein or polymeric nanoparticles. We will review these release strategies, including pH-sensitive linkages between the carrier and hydrophobic chemotherapy agent, the protonation and disruption of polymeric nanoparticles, an amalgam of these first two approaches, and the release of polymers shielding drug-loaded nanoparticles. While several pH-sensitive strategies have demonstrated marked antitumor efficacy in preclinical trials, many studies are early in their development with several obstacles that may limit their clinical use.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | - Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| |
Collapse
|
10
|
Hu Y, Zhang W, Chu X, Wang A, He Z, Si CL, Hu W. Dendritic cell-targeting polymer nanoparticle-based immunotherapy for cancer: A review. Int J Pharm 2023; 635:122703. [PMID: 36758880 DOI: 10.1016/j.ijpharm.2023.122703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Cancer immunity is dependent on dynamic interactions between T cells and dendritic cells (DCs). Polymer-based nanoparticles target DC receptors to improve anticancer immune responses. In this paper, DC surface receptors and their specific coupling natural ligands and antibodies are reviewed and compared. Moreover, reaction mechanisms are described, and the synergistic effects of immune adjuvants are demonstrated. Also, extracellular-targeting antigen-delivery strategies and intracellular stimulus responses are reviewed to promote the rational design of polymer delivery systems.
Collapse
Affiliation(s)
- Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Xiaozhong Chu
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Aoran Wang
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Ziliang He
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Chuan-Ling Si
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
11
|
Peletta A, Lemoine C, Courant T, Collin N, Borchard G. Meeting vaccine formulation challenges in an emergency setting: Towards the development of accessible vaccines. Pharmacol Res 2023; 189:106699. [PMID: 36796463 DOI: 10.1016/j.phrs.2023.106699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Vaccination is considered one of the most successful strategies to prevent infectious diseases. In the event of a pandemic or epidemic, the rapid development and distribution of the vaccine to the population is essential to reduce mortality, morbidity and transmission. As seen during the COVID-19 pandemic, the production and distribution of vaccines has been challenging, in particular for resource-constrained settings, essentially slowing down the process of achieving global coverage. Pricing, storage, transportation and delivery requirements of several vaccines developed in high-income countries resulted in limited access for low-and-middle income countries (LMICs). The capacity to manufacture vaccines locally would greatly improve global vaccine access. In particular, for the development of classical subunit vaccines, the access to vaccine adjuvants is a pre-requisite for more equitable access to vaccines. Vaccine adjuvants are agents required to augment or potentiate, and possibly target the specific immune response to such type of vaccine antigens. Openly accessible or locally produced vaccine adjuvants may allow for faster immunization of the global population. For local research and development of adjuvanted vaccines to expand, knowledge on vaccine formulation is of paramount importance. In this review, we aim to discuss the optimal characteristics of a vaccine developed in an emergency setting by focusing on the importance of vaccine formulation, appropriate use of adjuvants and how this may help overcome barriers for vaccine development and production in LMICs, achieve improved vaccine regimens, delivery and storage requirements.
Collapse
Affiliation(s)
- Allegra Peletta
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| | - Céline Lemoine
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Thomas Courant
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Nicolas Collin
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| |
Collapse
|
12
|
Wang S, Chen Y, Guo J, Huang Q. Liposomes for Tumor Targeted Therapy: A Review. Int J Mol Sci 2023; 24:ijms24032643. [PMID: 36768966 PMCID: PMC9916501 DOI: 10.3390/ijms24032643] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Liposomes, the most widely studied nano-drug carriers in drug delivery, are sphere-shaped vesicles consisting of one or more phospholipid bilayers. Compared with traditional drug delivery systems, liposomes exhibit prominent properties that include targeted delivery, high biocompatibility, biodegradability, easy functionalization, low toxicity, improvements in the sustained release of the drug it carries and improved therapeutic indices. In the wake of the rapid development of nanotechnology, the studies of liposome composition have become increasingly extensive. The molecular diversity of liposome composition, which includes long-circulating PEGylated liposomes, ligand-functionalized liposomes, stimuli-responsive liposomes, and advanced cell membrane-coated biomimetic nanocarriers, endows their drug delivery with unique physiological functions. This review describes the composition, types and preparation methods of liposomes, and discusses their targeting strategies in cancer therapy.
Collapse
Affiliation(s)
- Shile Wang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Yanyu Chen
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Jiancheng Guo
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
- Correspondence:
| |
Collapse
|
13
|
Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y, El-Tanani M, Hromić-Jahjefendić A, Kapoor DN, Goyal R, Naikoo GA, Tambuwala MM. Nanomaterials and Their Impact on the Immune System. Int J Mol Sci 2023; 24:2008. [PMID: 36768330 PMCID: PMC9917130 DOI: 10.3390/ijms24032008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.
Collapse
Affiliation(s)
- Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Rasha M. Bashatwah
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
14
|
Fernandez-Fernandez A, Manchanda R, Kumari M. Lipid-engineered nanotherapeutics for cancer management. Front Pharmacol 2023; 14:1125093. [PMID: 37033603 PMCID: PMC10076603 DOI: 10.3389/fphar.2023.1125093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes significant mortality and morbidity worldwide, but existing pharmacological treatments are greatly limited by the inherent heterogeneity of cancer as a disease, as well as the unsatisfactory efficacy and specificity of therapeutic drugs. Biopharmaceutical barriers such as low permeability and poor water solubility, along with the absence of active targeting capabilities, often result in suboptimal clinical results. The difficulty of successfully reaching and destroying tumor cells is also often compounded with undesirable impacts on healthy tissue, including off-target effects and high toxicity, which further impair the ability to effectively manage the disease and optimize patient outcomes. However, in the last few decades, the development of nanotherapeutics has allowed for the use of rational design in order to maximize therapeutic success. Advances in the fabrication of nano-sized delivery systems, coupled with a variety of surface engineering strategies to promote customization, have resulted in promising approaches for targeted, site-specific drug delivery with fewer unwanted effects and better therapeutic efficacy. These nano systems have been able to overcome some of the challenges of conventional drug delivery related to pharmacokinetics, biodistribution, and target specificity. In particular, lipid-based nanosystems have been extensively explored due to their high biocompatibility, versatility, and adaptability. Lipid-based approaches to cancer treatment are varied and diverse, including liposomal therapeutics, lipidic nanoemulsions, solid lipid nanoparticles, nanostructured lipidic carriers, lipid-polymer nanohybrids, and supramolecular nanolipidic structures. This review aims to provide an overview of the use of diverse formulations of lipid-engineered nanotherapeutics for cancer and current challenges in the field, as researchers attempt to successfully translate these approaches from bench to clinic.
Collapse
Affiliation(s)
- Alicia Fernandez-Fernandez
- College of Healthcare Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
- *Correspondence: Alicia Fernandez-Fernandez,
| | - Romila Manchanda
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Manisha Kumari
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
15
|
Tahara Y, Mizuno R, Nishimura T, Mukai SA, Wakabayashi R, Kamiya N, Akiyoshi K, Goto M. A solid-in-oil-in-water emulsion: An adjuvant-based immune-carrier enhances vaccine effect. Biomaterials 2022; 282:121385. [DOI: 10.1016/j.biomaterials.2022.121385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
|
16
|
Membrane pH responsibility as a remote control for pore size arrangement and surface charge adjustment in order to efficient separation of doxorubicin antitumor drug. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Ni Q, Xu F, Wang Y, Li Y, Qing G, Zhang Y, Zhong J, Li J, Liang XJ. Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy. J Control Release 2022; 342:210-227. [PMID: 34998916 DOI: 10.1016/j.jconrel.2022.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
The past decade has witnessed a great progress in cancer immunotherapy with the sequential approvals of therapeutic cancer vaccine, immune checkpoint inhibitor and chimeric antigen receptor (CAR) T cell therapy. However, some hurdles still remain to the wide implementation of cancer immunotherapy, including low immune response, complex tumor heterogeneity, off-target immunotoxicity, poor solid tumor infiltration, and immune evasion-induced treatment tolerance. Owing to changeable physicochemical properties in response to endogenous or exogenous stimuli, nanomaterials hold the remarkable potential in incorporation of multiple agents, efficient biological barrier penetration, precise immunomodulator delivery, and controllable content release for boosting cancer immunotherapy. Herein, we review the recent advances in nanomaterials with changeable physicochemical property (NCPP) to develop cancer vaccine, remold tumor microenvironment and evoke direct T cell activation. Besides, we provide our outlook on this emerging field at the intersection of NCPP design and cancer immunotherapy.
Collapse
Affiliation(s)
- Qiankun Ni
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Fengfei Xu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Guangchao Qing
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhong
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Suzuki K, Yoshizaki Y, Horii K, Murase N, Kuzuya A, Ohya Y. Preparation of hyaluronic acid-coated polymeric micelles for nasal vaccine delivery. Biomater Sci 2022; 10:1920-1928. [DOI: 10.1039/d1bm01985f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyaluronic acid (HA)-coated biodegradable polymeric micelles were developed as nanoparticulate vaccine delivery systems to establish an effective nasal vaccine. We previously reported HA-coated micelles prepared by forming a polyion complex...
Collapse
|
19
|
Yanagihara S, Kasho N, Sasaki K, Shironaka N, Kitayama Y, Yuba E, Harada A. pH-Sensitive branched β-glucan-modified liposomes for activation of antigen presenting cells and induction of antitumor immunity. J Mater Chem B 2021; 9:7713-7724. [PMID: 34545900 DOI: 10.1039/d1tb00786f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Induction of cellular immunity is important for effective cancer immunotherapy. Although various antigen carriers for cancer immunotherapy have been developed to date, balancing efficient antigen delivery to antigen presenting cells (APCs) and their activation via innate immune receptors, both of which are crucially important for the induction of strong cellular immunity, remains challenging. For this study, branched β-glucan was selected as an intrinsically immunity-stimulating and biocompatible material. It was engineered to develop multifunctional liposomal cancer vaccines capable of efficient interactions with APCs and subsequent activation of the cells. Hydroxy groups of branched β-glucan (Aquaβ) were modified with 3-methylglutaric acid ester and decyl groups, respectively, to provide pH-sensitivity and anchoring capability to the liposomal membrane. The modification efficiency of Aquaβ derivatives to the liposomes was significantly high compared with linear β-glucan (curdlan) derivatives. Aquaβ derivative-modified liposomes released their contents in response to weakly acidic pH. As a model antigenic protein, ovalbumin (OVA)-loaded liposomes modified with Aquaβ derivatives interacted efficiently with dendritic cells, and induced inflammatory cytokine secretion from the cells. Subcutaneous administration of Aquaβ derivative-modified liposomes suppressed the growth of the E.G7-OVA tumor significantly compared with curdlan derivative-modified liposomes. Aquaβ derivative-modified liposomes induced the increase of CD8+ T cells, and polarized macrophages to the antitumor M1-phenotype within the tumor microenvironment. Therefore, pH-sensitive Aquaβ derivatives can be promising materials for liposomal antigen delivery systems to induce antitumor immune responses efficiently.
Collapse
Affiliation(s)
- Shin Yanagihara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | - Nozomi Kasho
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | - Koichi Sasaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | - Naoto Shironaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | - Yukiya Kitayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| |
Collapse
|
20
|
Mild hyperthermia-enhanced chemo-photothermal synergistic therapy using doxorubicin-loaded gold nanovesicles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Prasanna P, Kumar P, Kumar S, Rajana VK, Kant V, Prasad SR, Mohan U, Ravichandiran V, Mandal D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - A review. Biomed Pharmacother 2021; 141:111920. [PMID: 34328115 DOI: 10.1016/j.biopha.2021.111920] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The study of tropical diseases like leishmaniasis, a parasitic disease, has not received much attention even though it is the second-largest infectious disease after malaria. As per the WHO report, a total of 0.7-1.0 million new leishmaniasis cases, which are spread by 23 Leishmania species in more than 98 countries, are estimated with an alarming 26,000-65,000 death toll every year. Lack of potential vaccines along with the cost and toxicity of amphotericin B (AmB), the most common drug for the treatment of leishmaniasis, has raised the interest significantly for new formulations and drug delivery systems including nanoparticle-based delivery as anti-leishmanial agents. The size, shape, and high surface area to volume ratio of different NPs make them ideal for many biological applications. The delivery of drugs through liposome, polymeric, and solid-lipid NPs provides the advantage of high biocomatibilty of the carrier with reduced toxicity. Importantly, NP-based delivery has shown improved efficacy due to targeted delivery of the payload and synergistic action of NP and payload on the target. This review analyses the advantage of NP-based delivery over standard chemotherapy and natural product-based delivery system. The role of different physicochemical properties of a nanoscale delivery system is discussed. Further, different ways of nanoformulation delivery ranging from liposome, niosomes, polymeric, metallic, solid-lipid NPs were updated along with the possible mechanisms of action against the parasite. The status of current nano-vaccines and the future potential of NP-based vaccine are elaborated here.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vishnu Kant
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Utpal Mohan
- National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India; National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
22
|
Jarzebska NT, Mellett M, Frei J, Kündig TM, Pascolo S. Protamine-Based Strategies for RNA Transfection. Pharmaceutics 2021; 13:pharmaceutics13060877. [PMID: 34198550 PMCID: PMC8231816 DOI: 10.3390/pharmaceutics13060877] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
Protamine is a natural cationic peptide mixture mostly known as a drug for the neutralization of heparin and as a compound in formulations of slow-release insulin. Protamine is also used for cellular delivery of nucleic acids due to opposite charge-driven coupling. This year marks 60 years since the first use of Protamine as a transfection enhancement agent. Since then, Protamine has been broadly used as a stabilization agent for RNA delivery. It has also been involved in several compositions for RNA-based vaccinations in clinical development. Protamine stabilization of RNA shows double functionality: it not only protects RNA from degradation within biological systems, but also enhances penetration into cells. A Protamine-based RNA delivery system is a flexible and versatile platform that can be adjusted according to therapeutic goals: fused with targeting antibodies for precise delivery, digested into a cell penetrating peptide for better transfection efficiency or not-covalently mixed with functional polymers. This manuscript gives an overview of the strategies employed in protamine-based RNA delivery, including the optimization of the nucleic acid's stability and translational efficiency, as well as the regulation of its immunostimulatory properties from early studies to recent developments.
Collapse
Affiliation(s)
- Natalia Teresa Jarzebska
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Science, University of Zürich, 8091 Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Julia Frei
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Thomas M. Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
23
|
Lu L, Duong VT, Shalash AO, Skwarczynski M, Toth I. Chemical Conjugation Strategies for the Development of Protein-Based Subunit Nanovaccines. Vaccines (Basel) 2021; 9:563. [PMID: 34071482 PMCID: PMC8228360 DOI: 10.3390/vaccines9060563] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
The production of subunit nanovaccines relies heavily on the development of a vaccine delivery system that is safe and efficient at delivering antigens to the target site. Nanoparticles have been extensively investigated for vaccine delivery over the years, as they often possess self-adjuvanting properties. The conjugation of antigens to nanoparticles by covalent bonds ensures co-delivery of these components to the same subset of immune cells in order to trigger the desired immune responses. Herein, we review covalent conjugation strategies for grafting protein or peptide antigens onto other molecules or nanoparticles to obtain subunit nanovaccines. We also discuss the advantages of chemical conjugation in developing these vaccines.
Collapse
Affiliation(s)
| | | | | | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (L.L.); (V.T.D.); (A.O.S.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (L.L.); (V.T.D.); (A.O.S.)
| |
Collapse
|
24
|
Wang F, Ullah A, Fan X, Xu Z, Zong R, Wang X, Chen G. Delivery of nanoparticle antigens to antigen-presenting cells: from extracellular specific targeting to intracellular responsive presentation. J Control Release 2021; 333:107-128. [PMID: 33774119 DOI: 10.1016/j.jconrel.2021.03.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023]
Abstract
An appropriate delivery system can improve the immune effects of antigens against various infections or tumors. Antigen-presenting cells (APCs) are specialized to capture and process antigens in vivo, which link the innate and adaptive immune responses. Functionalization of vaccine delivery systems with targeting moieties to APCs is a promising strategy for provoking potent immune responses. Additionally, the internalization and intracellular distribution of antigens are closely related to the initiation of downstream immune responses. With a deeper understanding of the intracellular microenvironment and the mechanisms of antigen presentation, vehicles designed to respond to endogenous and external stimuli can modulate antigen processing and presentation pathways, which are critical to the types of immune response. Here, an overview of extracellular targeting delivery of antigens to APCs and intracellular stimulus-responsiveness strategies is provided, which might be helpful for the rational design of vaccine delivery systems.
Collapse
Affiliation(s)
- Fei Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Aftab Ullah
- Shantou University Medical College, Shantou 515041, China
| | - Xuelian Fan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhou Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rongling Zong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Gang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
25
|
Yuba E, Sugahara Y, Yoshizaki Y, Shimizu T, Kasai M, Udaka K, Kono K. Carboxylated polyamidoamine dendron-bearing lipid-based assemblies for precise control of intracellular fate of cargo and induction of antigen-specific immune responses. Biomater Sci 2021; 9:3076-3089. [PMID: 33681873 DOI: 10.1039/d0bm01813a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the establishment of advanced medicines such as cancer immunotherapy, high performance carriers that precisely deliver biologically active molecules must be developed to target organelles of the cells and to release their contents there. From the viewpoint of antigen delivery, endosomes are important target organelles because they contain immune-response-related receptors and proteins of various types. To obtain carriers for precision endosome delivery, a novel type of polyamidoamine dendron-based lipid having pH-sensitive terminal groups was synthesized for this study. Liposomes were prepared using these pH-sensitive dendron-based lipids and egg yolk phosphatidylcholine. Their pH-responsive properties and performance as an endosome delivery carrier were investigated. pH-Sensitive dendron lipid-based liposomes retained water-soluble molecules at neutral pH but released them under weakly acidic conditions. Particularly, liposomes containing CHexDL-G1U exhibited highly sensitive properties responding to very weakly acidic pH. These dendron lipid-based liposomes released the contents specifically in the endosome. The timing of content release can be controlled by selecting pH-sensitive dendron lipids for liposome preparation. Significant tumor regression was induced in tumor-bearing mice by the administration of CHexDL-G1U-modified liposomes containing the model antigenic protein. Furthermore, CHexDL-G1U-modified liposomes induced WT1 tumor antigenic peptide-specific helper T cell proliferation. The results demonstrate that dendron lipid-based liposomes are useful as a potent vaccine for cancer immunotherapy.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | - Yoshikatsu Sugahara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | - Yuta Yoshizaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | - Takeyuki Shimizu
- Department of Immunology, School of Medicine, Kochi University, Nankoku, Kochi 7838505, Japan
| | - Michiyuki Kasai
- Department of Immunology, School of Medicine, Kochi University, Nankoku, Kochi 7838505, Japan
| | - Keiko Udaka
- Department of Immunology, School of Medicine, Kochi University, Nankoku, Kochi 7838505, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| |
Collapse
|
26
|
Mthimkhulu NP, Mosiane KS, Nweke EE, Balogun M, Fru P. Prospects of Delivering Natural Compounds by Polymer-Drug Conjugates in Cancer Therapeutics. Anticancer Agents Med Chem 2021; 22:1699-1713. [PMID: 33874874 DOI: 10.2174/1871520621666210419094623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
Synthetic chemotherapeutics have played a crucial role in minimizing mostly palliative symptoms associated with cancer; however, they have also created other problems such as system toxicity due to a lack of specificity. This has led to the development of polymer-drug conjugates amongst other novel drug delivery systems. Most of the formulations designed using delivery systems consist of synthetic drugs and face issues such as drug resistance, which has already rendered drugs such as antibiotics ineffective. This is further exacerbated by toxicity due to long term use. Given these problems and the fact that conjugation of synthetic compounds to polymers has been relatively slow with no formulation on the market after a decade of extensive studies, the focus has shifted to using this platform with medicinal plant extracts to improve solubility, specificity and increase drug release of medicinal and herbal bioactives. In recent years, various plant extracts such as flavonoids, tannins and terpenoids have been studied extensively using this approach. The success of formulations developed using novel drug-delivery systems is highly dependent on the tumour microenvironment especially on the enhanced permeability and retention effect. As a result, the compromised lymphatic network and 'leaky' vasculature exhibited by tumour cells act as a guiding principle in the delivering of these formulations. This review focuses on the state of the polymer-drug conjugates and their exploration with natural compounds, the progress and difficulties thus far, and future directions concerning cancer treatment.
Collapse
Affiliation(s)
- Nompumelelo P Mthimkhulu
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| | - Karabo S Mosiane
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| | - Ekene E Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| | - Mohammed Balogun
- Biopolymer Modification and Therapeutics Lab, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001. South Africa
| | - Pascaline Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| |
Collapse
|
27
|
Recent progress in cancer immunotherapy approaches based on nanoparticle delivery devices. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00527-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021; 16. [DOI: 10.1088/1748-605x/abe35a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
|
29
|
Spanedda MV, Bourel-Bonnet L. Cyclic Anhydrides as Powerful Tools for Bioconjugation and Smart Delivery. Bioconjug Chem 2021; 32:482-496. [PMID: 33662203 DOI: 10.1021/acs.bioconjchem.1c00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic anhydrides are potent tools for bioconjugation; therefore, they are broadly used in the functionalization of biomolecules and carriers. The pH-dependent stability and reactivity, as well as the physical properties, can be tuned by the structure of the cyclic anhydride used; thus, their application in smart delivery systems has become very important. This review intends to cover the last updates in the use of cyclic anhydrides as pH-sensitive linkers, their differences in reactivity, and the latest applications found in bioconjugation chemistry or chemical biology, and when possible, in drug delivery.
Collapse
Affiliation(s)
- Maria Vittoria Spanedda
- Laboratoire de Conception et Application de Molécules Bioactives, 3Bio team, ITI InnoVec, UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch Cedex, France
| | - Line Bourel-Bonnet
- Laboratoire de Conception et Application de Molécules Bioactives, 3Bio team, ITI InnoVec, UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch Cedex, France
| |
Collapse
|
30
|
Cuzzubbo S, Mangsbo S, Nagarajan D, Habra K, Pockley AG, McArdle SEB. Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments. Front Immunol 2021; 11:615240. [PMID: 33679703 PMCID: PMC7927599 DOI: 10.3389/fimmu.2020.615240] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Although the discovery and characterization of multiple tumor antigens have sparked the development of many antigen/derived cancer vaccines, many are poorly immunogenic and thus, lack clinical efficacy. Adjuvants are therefore incorporated into vaccine formulations to trigger strong and long-lasting immune responses. Adjuvants have generally been classified into two categories: those that ‘depot’ antigens (e.g. mineral salts such as aluminum hydroxide, emulsions, liposomes) and those that act as immunostimulants (Toll Like Receptor agonists, saponins, cytokines). In addition, several novel technologies using vector-based delivery of antigens have been used. Unfortunately, the immune system declines with age, a phenomenon known as immunosenescence, and this is characterized by functional changes in both innate and adaptive cellular immunity systems as well as in lymph node architecture. While many of the immune functions decline over time, others paradoxically increase. Indeed, aging is known to be associated with a low level of chronic inflammation—inflamm-aging. Given that the median age of cancer diagnosis is 66 years and that immunotherapeutic interventions such as cancer vaccines are currently given in combination with or after other forms of treatments which themselves have immune-modulating potential such as surgery, chemotherapy and radiotherapy, the choice of adjuvants requires careful consideration in order to achieve the maximum immune response in a compromised environment. In addition, more clinical trials need to be performed to carefully assess how less conventional form of immune adjuvants, such as exercise, diet and psychological care which have all be shown to influence immune responses can be incorporated to improve the efficacy of cancer vaccines. In this review, adjuvants will be discussed with respect to the above-mentioned important elements.
Collapse
Affiliation(s)
- Stefania Cuzzubbo
- Université de Paris, PARCC, INSERM U970, 75015, Paris, France.,Laboratoire de Recherches Biochirurgicales (Fondation Carpentier), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Sara Mangsbo
- Ultimovacs AB, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Divya Nagarajan
- Department of Immunology, Genetics and Clinical pathology Rudbeck laboratories, Uppsala University, Uppsala, Sweden
| | - Kinana Habra
- The School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Alan Graham Pockley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephanie E B McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
31
|
Kim H, Lee S, Ki CS. Modular formation of hyaluronic acid/β-glucan hybrid nanogels for topical dermal delivery targeting skin dendritic cells. Carbohydr Polym 2021; 252:117132. [DOI: 10.1016/j.carbpol.2020.117132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 01/13/2023]
|
32
|
Thakur N, Thakur S, Chatterjee S, Das J, Sil PC. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front Chem 2020; 8:597806. [PMID: 33409265 PMCID: PMC7779678 DOI: 10.3389/fchem.2020.597806] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of many forms of cancer by stimulating body's own immune system. This therapy not only eradicates tumor cells by inducing strong anti-tumor immune response but also prevent their recurrence. The clinical cancer immunotherapy faces some insurmountable challenges including high immune-mediated toxicity, lack of effective and targeted delivery of cancer antigens to immune cells and off-target side effects. However, nanotechnology offers some solutions to overcome those limitations, and thus can potentiate the efficacy of immunotherapy. This review focuses on the advancement of nanoparticle-mediated delivery of immunostimulating agents for efficient cancer immunotherapy. Here we have outlined the use of the immunostimulatory nanoparticles as a smart carrier for effective delivery of cancer antigens and adjuvants, type of interactions between nanoparticles and the antigen/adjuvant as well as the factors controlling the interaction between nanoparticles and the receptors on antigen presenting cells. Besides, the role of nanoparticles in targeting/activating immune cells and modulating the immunosuppressive tumor microenvironment has also been discussed extensively. Finally, we have summarized some theranostic applications of the immunomodulatory nanomaterials in treating cancers based on the earlier published reports.
Collapse
Affiliation(s)
- Neelam Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Saloni Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Joydeep Das
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
33
|
Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci 2020; 15:576-590. [PMID: 33193861 PMCID: PMC7610208 DOI: 10.1016/j.ajps.2019.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Vaccines therapeutics manipulate host's immune system and have broad potential for cancer prevention and treatment. However, due to poor immunogenicity and limited safety, fewer cancer vaccines have been successful in clinical trials. Over the past decades, nanotechnology has been exploited to deliver cancer vaccines, eliciting long-lasting and effective immune responses. Compared to traditional vaccines, cancer vaccines delivered by nanomaterials can be tuned towards desired immune profiles by (1) optimizing the physicochemical properties of the nanomaterial carriers, (2) modifying the nanomaterials with targeting molecules, or (3) co-encapsulating with immunostimulators. In order to develop vaccines with desired immunogenicity, a thorough understanding of parameters that affect immune responses is required. Herein, we discussed the effects of physicochemical properties on antigen presentation and immune response, including but not limited to size, particle rigidity, intrinsic immunogenicity. Furthermore, we provided a detailed overview of recent preclinical and clinical advances in nanotechnology for cancer vaccines, and considerations for future directions in advancing the vaccine platform to widespread anti-cancer applications.
Collapse
Affiliation(s)
- Jingjing Liu
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Lei Miao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | - Jiying Sui
- Affiliated Hospital of Shandong Academy of Medical Sciences, Ji'nan 250012, China
| | - Yanyun Hao
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Guihua Huang
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| |
Collapse
|
34
|
Zhang J, Shi W, Xue G, Ma Q, Cui H, Zhang L. Improved Therapeutic Efficacy of Topotecan Against A549 Lung Cancer Cells with Folate-targeted Topotecan Liposomes. Curr Drug Metab 2020; 21:902-909. [PMID: 32851958 DOI: 10.2174/1389200221999200820163337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Among all cancers, lung cancer has high mortality among patients in most of the countries in the world. Targeted delivery of anticancer drugs can significantly reduce the side effects and dramatically improve the effects of the treatment. Folate, a suitable ligand, can be modified to the surface of tumor-selective drug delivery systems because it can selectively bind to the folate receptor, which is highly expressed on the surface of lung tumor cells. OBJECTIVE This study aimed to construct a kind of folate-targeted topotecan liposomes for investigating their efficacy and mechanism of action in the treatment of lung cancer in preclinical models. METHODS We conjugated topotecan liposomes with folate, and the liposomes were characterized by particle size, entrapment efficiency, cytotoxicity to A549 cells and in vitro release profile. Technical evaluations were performed on lung cancer A549 cells and xenografted A549 cancer cells in female nude mice, and the pharmacokinetics of the drug were evaluated in female SD rats. RESULTS The folate-targeted topotecan liposomes were proven to show effectiveness in targeting lung tumors. The anti-tumor effects of these liposomes were demonstrated by the decreased tumor volume and improved therapeutic efficacy. The folate-targeted topotecan liposomes also lengthened the topotecan blood circulation time. CONCLUSION The folate-targeted topotecan liposomes are effective drug delivery systems and can be easily modified with folate, enabling the targeted liposomes to deliver topotecan to lung cancer cells and kill them, which could be used as potential carriers for lung chemotherapy.
Collapse
Affiliation(s)
- Jingxin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiyue Shi
- College of Agriculture, Purdue University, West Lafayette, IN 47907, United States
| | - Gangqiang Xue
- Department of Pharmaceutic Preparation, The Fourth Hospital of Shijiazhuang City, Shijiazhuang, Heibei Province, China
| | - Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
pH-Responsive Nanoparticles for Cancer Immunotherapy: A Brief Review. NANOMATERIALS 2020; 10:nano10081613. [PMID: 32824578 PMCID: PMC7466692 DOI: 10.3390/nano10081613] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 01/06/2023]
Abstract
Immunotherapy has recently become a promising strategy for the treatment of a wide range of cancers. However, the broad implementation of cancer immunotherapy suffers from inadequate efficacy and toxic side effects. Integrating pH-responsive nanoparticles into immunotherapy is a powerful approach to tackle these challenges because they are able to target the tumor tissues and organelles of antigen-presenting cells (APCs) which have a characteristic acidic microenvironment. The spatiotemporal control of immunotherapeutic drugs using pH-responsive nanoparticles endows cancer immunotherapy with enhanced antitumor immunity and reduced off-tumor immunity. In this review, we first discuss the cancer-immunity circle and how nanoparticles can modulate the key steps in this circle. Then, we highlight the recent advances in cancer immunotherapy with pH-responsive nanoparticles and discuss the perspective for this emerging area.
Collapse
|
36
|
Yuba E, Fukaya Y, Yanagihara S, Kasho N, Harada A. Development of Mannose-Modified Carboxylated Curdlan-Coated Liposomes for Antigen Presenting Cell Targeted Antigen Delivery. Pharmaceutics 2020; 12:pharmaceutics12080754. [PMID: 32796567 PMCID: PMC7465930 DOI: 10.3390/pharmaceutics12080754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 02/03/2023] Open
Abstract
Specific delivery to antigen presenting cells (APC) and precise control of the intracellular fate of antigens are crucial to induce cellular immunity that directly and specifically attacks cancer cells. We previously achieved cytoplasmic delivery of antigen and activation of APC using carboxylated curdlan-modified liposomes, which led to the induction of cellular immunity in vivo. APCs express mannose receptors on their surface to recognize pathogen specifically and promote cross-presentation of antigen. In this study, mannose-residue was additionally introduced to carboxylated curdlan as a targeting moiety to APC for further improvement of polysaccharide-based antigen carriers. Mannose-modified curdlan derivatives were synthesized by the condensation between amino group-introduced mannose and carboxy group in pH-sensitive curdlan. Mannose residue-introduced carboxylated curdlan-modified liposomes showed higher pH-sensitivity than that of liposomes modified with conventional carboxylated curdlan. The introduction of mannose-residue to the liposomes induced aggregation in the presence of Concanavalin A, indicating that mannose residues were presented onto liposome surface. Mannose residue-introduced carboxylated curdlan-modified liposomes exhibited high and selective cellular association to APC. Furthermore, mannose residue-introduced carboxylated curdlan-modified liposomes promoted cross-presentation of antigen and induced strong antitumor effects on tumor-bearing mice. Therefore, these liposomes are promising as APC-specific antigen delivery systems for the induction of antigen-specific cellular immunity.
Collapse
Affiliation(s)
- Eiji Yuba
- Correspondence: (E.Y.); (A.H.); Tel.: +81-72-254-9330 (E.Y.); Fax: +81-72-254-9330 (E.Y.)
| | | | | | | | - Atsushi Harada
- Correspondence: (E.Y.); (A.H.); Tel.: +81-72-254-9330 (E.Y.); Fax: +81-72-254-9330 (E.Y.)
| |
Collapse
|
37
|
Abdalla AME, Xiao L, Miao Y, Huang L, Fadlallah GM, Gauthier M, Ouyang C, Yang G. Nanotechnology Promotes Genetic and Functional Modifications of Therapeutic T Cells Against Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903164. [PMID: 32440473 PMCID: PMC7237845 DOI: 10.1002/advs.201903164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Indexed: 05/24/2023]
Abstract
Growing experience with engineered chimeric antigen receptor (CAR)-T cells has revealed some of the challenges associated with developing patient-specific therapy. The promising clinical results obtained with CAR-T therapy nevertheless demonstrate the urgency of advancements to promote and expand its uses. There is indeed a need to devise novel methods to generate potent CARs, and to confer them and track their anti-tumor efficacy in CAR-T therapy. A potentially effective approach to improve the efficacy of CAR-T cell therapy would be to exploit the benefits of nanotechnology. This report highlights the current limitations of CAR-T immunotherapy and pinpoints potential opportunities and tremendous advantages of using nanotechnology to 1) introduce CAR transgene cassettes into primary T cells, 2) stimulate T cell expansion and persistence, 3) improve T cell trafficking, 4) stimulate the intrinsic T cell activity, 5) reprogram the immunosuppressive cellular and vascular microenvironments, and 6) monitor the therapeutic efficacy of CAR-T cell therapy. Therefore, genetic and functional modifications promoted by nanotechnology enable the generation of robust CAR-T cell therapy and offer precision treatments against cancer.
Collapse
Affiliation(s)
- Ahmed M. E. Abdalla
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Department of BiochemistryCollege of Applied ScienceUniversity of BahriKhartoum1660/11111Sudan
| | - Lin Xiao
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Yu Miao
- Department of Vascular SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Lixia Huang
- Hubei Key Laboratory of Purification and Application of Plant Anti‐Cancer Active IngredientsSchool of Chemistry and Life SciencesHubei University of EducationWuhan430205China
| | - Gendeal M. Fadlallah
- Department of Chemistry and BiologyFaculty of EducationUniversity of GeziraWad‐Medani2667Sudan
| | - Mario Gauthier
- Department of ChemistryUniversity of WaterlooWaterlooN2L 3G1Canada
| | - Chenxi Ouyang
- Department of Vascular SurgeryFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Guang Yang
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
38
|
Huang Y, Zeng J. Recent development and applications of nanomaterials for cancer
immunotherapy. NANOTECHNOLOGY REVIEWS 2020; 9:367-384. [DOI: 10.1515/ntrev-2020-0027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Immunotherapy, which utilizes the patient’s own immune system to fight against
cancer, further results in durable antitumor responses and reduces metastasis and
recurrence, has become one of the most effective and important cancer therapies along
with surgery, radiotherapy, and chemotherapy. Nanomaterials with the advantages of
large specific surface, delivery function, and controllable surface chemistry are
used to deliver antigens or adjuvants, or both, help to boost immune responses with
the imaging function or just act as adjuvants themselves and modulate tumor
microenvironment (TME). In this review, recent development and applications of
nanomaterials for cancer immunotherapy including delivery systems based on
nanomaterials, uniting imaging, self-adjuvants, targeting functions, artificial
antigen presenting cells, and TME modulation are focused and discussed.
Collapse
Affiliation(s)
- Yao Huang
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005 , China
| | - Jinhua Zeng
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005 , China
| |
Collapse
|
39
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
40
|
Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Semin Cancer Biol 2020; 80:87-106. [PMID: 32068087 DOI: 10.1016/j.semcancer.2020.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Plant lectins, a natural source of glycans with a therapeutic potential may lead to the discovery of new targeted therapies. Glycans extracted from plant lectins are known to act as ligands for C-type lectin receptors (CLRs) that are primarily present on immune cells. Plant-derived glycosylated lectins offer diversity in their N-linked oligosaccharide structures that can serve as a unique source of homogenous and heterogenous glycans. Among the plant lectins-derived glycan motifs, Man9GlcNAc2Asn exhibits high-affinity interactions with CLRs that may resemble glycan motifs of pathogens. Thus, such glycan domains when presented along with antigens complexed with a nanocarrier of choice may bewilder the immune cells and direct antigen cross-presentation - a cytotoxic T lymphocyte immune response mediated by CD8+ T cells. Glycan structure analysis has attracted considerable interest as glycans are looked upon as better therapeutic alternatives than monoclonal antibodies due to their cost-effectiveness, reduced toxicity and side effects, and high specificity. Furthermore, this approach will be useful to understand whether the multivalent glycan presentation on the surface of nanocarriers can overcome the low-affinity lectin-ligand interaction and thereby modulation of CLR-dependent immune response. Besides this, understanding how the heterogeneity of glycan structure impacts the antigen cross-presentation is pivotal to develop alternative targeted therapies. In the present review, we discuss the findings on structural analysis of glycans from natural lectins performed using GlycanBuilder2 - a software tool based on a thorough literature review of natural lectins. Additionally, we discuss how multiple parameters like the orientation of glycan ligands, ligand density, simultaneous targeting of multiple CLRs and design of antigen delivery nanocarriers may influence the CLR targeting efficacy. Integrating this information will eventually set the ground for new generation immunotherapeutic vaccine design for the treatment of various human malignancies.
Collapse
|
41
|
Martin JD, Cabral H, Stylianopoulos T, Jain RK. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol 2020; 17:251-266. [PMID: 32034288 DOI: 10.1038/s41571-019-0308-z] [Citation(s) in RCA: 399] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Multiple nanotherapeutics have been approved for patients with cancer, but their effects on survival have been modest and, in some examples, less than those of other approved therapies. At the same time, the clinical successes achieved with immunotherapy have revolutionized the treatment of multiple advanced-stage malignancies. However, the majority of patients do not benefit from the currently available immunotherapies and many develop immune-related adverse events. By contrast, nanomedicines can reduce - but do not eliminate - the risk of certain life-threatening toxicities. Thus, the combination of these therapeutic classes is of intense research interest. The tumour microenvironment (TME) is a major cause of the failure of both nanomedicines and immunotherapies that not only limits delivery, but also can compromise efficacy, even when agents accumulate in the TME. Coincidentally, the same TME features that impair nanomedicine delivery can also cause immunosuppression. In this Perspective, we describe TME normalization strategies that have the potential to simultaneously promote the delivery of nanomedicines and reduce immunosuppression in the TME. Then, we discuss the potential of a combined nanomedicine-based TME normalization and immunotherapeutic strategy designed to overcome each step of the cancer-immunity cycle and propose a broadly applicable 'minimal combination' of therapies designed to increase the number of patients with cancer who are able to benefit from immunotherapy.
Collapse
Affiliation(s)
- John D Martin
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Yuba E. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. J Mater Chem B 2020; 8:1093-1107. [PMID: 31960007 DOI: 10.1039/c9tb02470k] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Liposomes are a promising nanocarrier for drug delivery because of their biocompatibility and the encapsulation capacity of drugs. Liposomes can be functionalized easily by introduction of functional materials such as stimulus-responsive materials. Temperature-responsive liposomes and pH-responsive liposomes are representative stimulus-responsive liposomes that can deliver drugs to locally heated target tissues and intracellular organelles. Here, temperature-responsive liposomes for the selective release of cargo and pH-responsive liposomes for the induction of antigen-specific immunity are overviewed. Temperature-responsive polymer-modified liposomes immediately released drugs in response to heating, which achieved selective drug release at a tumour after topical heating of tumour-bearing mice. Introduction of MR-detectable molecules enabled the tracing of liposome accumulation into target sites to optimize the heating timing. These liposomes can also be combined with magnetic nanoparticles or carbon nanomaterials to attain magnetic field-responsive, electric field-responsive and light-responsive properties to support on-demand drug release or control of biological reactions using these external stimuli. pH-Responsive liposomes were produced by modification of poly(carboxylic acid) derivatives or by pH-responsive amphiphiles. These liposomes delivered antigenic proteins into the cytosol of antigen presenting cells, which induced cross-presentation and antigen-specific cellular immunity. Adjuvant molecules or bioactive polysaccharide-based pH-responsive polymers improved their immunity-inducing effect further, leading to tumour regression in tumour-bearing mice. Precise design and control of the structures of stimulus-responsive materials and combination with functional materials are expected to create novel methodologies to control biological functions and to produce highly potent liposomal drugs that can achieve selective release of bioactive molecules.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
43
|
Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315:1-22. [DOI: 10.1016/j.jconrel.2019.09.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
|
44
|
Kim CG, Kye YC, Yun CH. The Role of Nanovaccine in Cross-Presentation of Antigen-Presenting Cells for the Activation of CD8 + T Cell Responses. Pharmaceutics 2019; 11:E612. [PMID: 31731667 PMCID: PMC6920862 DOI: 10.3390/pharmaceutics11110612] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 01/30/2023] Open
Abstract
Explosive growth in nanotechnology has merged with vaccine development in the battle against diseases caused by bacterial or viral infections and malignant tumors. Due to physicochemical characteristics including size, viscosity, density and electrostatic properties, nanomaterials have been applied to various vaccination strategies. Nanovaccines, as they are called, have been the subject of many studies, including review papers from a material science point of view, although a mode of action based on a biological and immunological understanding has yet to emerge. In this review, we discuss nanovaccines in terms of CD8+ T cell responses, which are essential for antiviral and anticancer therapies. We focus mainly on the role and mechanism, with particular attention to the functional aspects, of nanovaccines in inducing cross-presentation, an unconventional type of antigen-presentation that activates CD8+ T cells upon administration of exogenous antigens, in dendritic cells followed by activation of antigen-specific CD8+ T cell responses. Two major intracellular mechanisms that nanovaccines harness for cross-presentation are described; one is endosomal swelling and rupture, and the other is membrane fusion. Both processes eventually allow exogenous vaccine antigens to be exported from phagosomes to the cytosol followed by loading on major histocompatibility complex class I, triggering clonal expansion of CD8+ T cells. Advancement of nanotechnology with an enhanced understanding of how nanovaccines work will contribute to the design of more effective and safer nanovaccines.
Collapse
Affiliation(s)
- Cheol Gyun Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, Korea
| |
Collapse
|
45
|
Theerasilp M, Crespy D. pH-Responsive Nanofibers for Precise and Sequential Delivery of Multiple Payloads. ACS APPLIED BIO MATERIALS 2019; 2:4283-4290. [PMID: 35021443 DOI: 10.1021/acsabm.9b00551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Effective combination therapies can be achieved by programming materials for controlling release sequence, timing, and dose of multiple payloads. Herein, we synthesize dextran esters by coesterification of dextran, which display responsive properties at a precise pH threshold between 5.0 and 7.0. Multilayers electrospun nanofibers are prepared so that three different payloads are entrapped in three different dextran esters. The release of the three drugs can be sequentially and independently activated by a gradual increase of pH value. Because both pH threshold and release kinetics are matching conditions encountered by aliments along the gastrointestinal tract, these dextran ester multilayer nanofibers are promising for oral drug delivery.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
46
|
Miyazaki M, Yuba E, Hayashi H, Harada A, Kono K. Development of pH-Responsive Hyaluronic Acid-Based Antigen Carriers for Induction of Antigen-Specific Cellular Immune Responses. ACS Biomater Sci Eng 2019; 5:5790-5797. [PMID: 33405671 DOI: 10.1021/acsbiomaterials.9b01278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Maiko Miyazaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Hayashi
- Sciencelin, 1-1-35, Nishiawaji, Higashiyodogawa-ku, Osaka, Osaka 533-0031, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
47
|
Kunc F, Moore CJ, Sully RE, Hall AJ, Gubala V. Polycarboxylated Dextran as a Multivalent Linker: Synthesis and Target Recognition of the Antibody-Nanoparticle Bioconjugates in PBS and Serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4909-4917. [PMID: 30817890 DOI: 10.1021/acs.langmuir.8b03833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) functionalized with antibodies on their surface are used in a wide range of research applications. However, the bioconjugation chemistry between the antibodies and the surface of nanoparticles can be very challenging, often accompanied by several undesired effects such as nanoparticle aggregation, antibody denaturation, or poor target recognition of the surface-bound antibodies. Here, we report on a synthesis of fluorescent silica nanoparticle-antibody (NP-Ab) conjugates, in which polycarboxylated dextran is used as the multivalent linker. First, we present a synthetic methodology to prepare polycarboxylated dextrans with molecular weights of 6, 40, and 70 kDa. Second, we used water-soluble, polycarboxylated dextrans as a multivalent spacers/linkers to immobilize antibodies onto fluorescent silica nanoparticles. The prepared NP-Ab conjugates were tested in a direct binding assay format in both phosphate-buffered saline buffer and whole serum to investigate the role of the spacer/linker in the capacity of the NP-Ab to specifically recognize their target in "clean" and also in complex media. We have compared the dextran conjugates with two standards: (a) NP-Ab with antibodies attached on the surface of nanoparticles through the classical physical adsorption method and (b) NP-Ab where an established poly(amidoamine) (PAMAM) dendrimer was used as the linker. Our results showed that the polycarboxylated 6 kDa dextran facilitates antibody immobilization efficiency of nearly 92%. This was directly translated into the improved molecular recognition of the NP-Ab, which was measured by a direct binding assay. The signal-to-noise ratio in buffered solution for the 6 kDa dextran NP-Ab conjugates was 81, nearly 3 times higher than that of PAMAM G4.5 conjugates and 9 times higher than the physically adsorbed NP-Ab sample. In whole serum, the effect of 6 kDa dextran was more hindered due to the formation of protein corona but the signal-to-noise ratio was at least double that of the physically adsorbed NP-Ab conjugates.
Collapse
Affiliation(s)
- Filip Kunc
- National Research Council Canada , 100 Sussex Drive , Ottawa , Ontario K1N 0R6 , Canada
| | - Colin J Moore
- Italian Institute of Technology , 30 Via Morego , Genoa 16163 , Italy
| | - Rachel E Sully
- Medway School of Pharmacy , Universities of Greenwich and Kent , Anson Building, Central Avenue , Chatham ME4 4TB , U.K
| | - Andrew J Hall
- Medway School of Pharmacy , Universities of Greenwich and Kent , Anson Building, Central Avenue , Chatham ME4 4TB , U.K
| | - Vladimir Gubala
- Medway School of Pharmacy , Universities of Greenwich and Kent , Anson Building, Central Avenue , Chatham ME4 4TB , U.K
| |
Collapse
|
48
|
Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA. Nanoparticle systems for cancer vaccine. Nanomedicine (Lond) 2019; 14:627-648. [PMID: 30806568 PMCID: PMC6439506 DOI: 10.2217/nnm-2018-0147] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
As effective tools for public health, vaccines prevent disease by priming the body's adaptive and innate immune responses against an infection. Due to advances in understanding cancers and their relationship with the immune system, there is a growing interest in priming host immune defenses for a targeted and complete antitumor response. Nanoparticle systems have shown to be promising tools for effective antigen delivery as vaccines and/or for potentiating immune response as adjuvants. Here, we highlight relevant physiological processes involved in vaccine delivery, review recent advances in the use of nanoparticle systems for vaccines and discuss pertinent challenges to viably translate nanoparticle-based vaccines and adjuvants for public use.
Collapse
Affiliation(s)
- Ru Wen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Afoma C Umeano
- Department of Molecular & Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Kou
- Department of Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian Xu
- Laboratory of Cancer Biology & Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 54000, Pakistan
| |
Collapse
|
49
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
50
|
Sang W, Zhang Z, Dai Y, Chen X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev 2019; 48:3771-3810. [DOI: 10.1039/c8cs00896e] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review aims to summarize various synergistic combination cancer immunotherapy strategies based on nanomaterials.
Collapse
Affiliation(s)
- Wei Sang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Zhan Zhang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Yunlu Dai
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|