1
|
Salamanna F, Contartese D, Tedesco G, Ruffilli A, Manzetti M, Viroli G, Traversari M, Faldini C, Giavaresi G. Efficacy of using autologous cells with graft substitutes for spinal fusion surgery: A systematic review and meta-analysis of clinical outcomes and imaging features. JOR Spine 2024; 7:e1347. [PMID: 38947860 PMCID: PMC11212337 DOI: 10.1002/jsp2.1347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Over the past several decades, there has been a notable increase in the total number of spinal fusion procedures worldwide. Advanced spinal fusion techniques, surgical approaches, and new alternatives in grafting materials and implants, as well as autologous cellular therapies, have been widely employed for treating spinal diseases. While the potential of cellular therapies to yield better clinical results is appealing, supportive data are needed to confirm this claim. This meta-analysis aims to compare the radiographic and clinical outcomes between graft substitutes with autologous cell therapies and graft substitutes alone. PubMed, Scopus, Web of Science, ClinicalTrials.gov, and the Cochrane Central Register of Controlled Trials were searched for studies comparing graft substitutes with autologous cell therapies and graft substitutes alone up to February 2024. The risk of bias of the included studies was evaluated using the Downs and Black checklist. The following outcomes were extracted for comparison: fusion success, complications/adverse events, Visual Analog Scale (VAS) score, and Oswestry Disability Index (ODI) score. Thirteen studies involving 836 patients were included, with 7 studies considered for the meta-analysis. Results indicated that the use of graft substitutes with autologous cell therapies demonstrated higher fusion success rates at 3, 6, and 12 months, lower VAS score at 6 months, and lower ODI score at 3, 6, and 12 months. The complication rate was similar between graft substitutes with autologous cell therapies and graft substitutes alone. Although the current literature remains limited, this meta-analysis suggests that the incorporation of cellular therapies such as bone marrow and platelet derivatives with graft substitutes is associated with a higher fusion rate and significant improvements in functional status and pain following spinal fusion. Future well-designed randomized clinical trials are needed to definitively assess the clinical effectiveness of cellular therapies in spinal fusion.
Collapse
Affiliation(s)
- F. Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - D. Contartese
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - G. Tedesco
- Department of Spine SurgeryIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - A. Ruffilli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor Science—DIBINEMUniversity of BolognaBolognaItaly
| | - M. Manzetti
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor Science—DIBINEMUniversity of BolognaBolognaItaly
| | - G. Viroli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor Science—DIBINEMUniversity of BolognaBolognaItaly
| | - M. Traversari
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - C. Faldini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor Science—DIBINEMUniversity of BolognaBolognaItaly
| | - G. Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| |
Collapse
|
2
|
Naruphontjirakul P, Li M, Boccaccini AR. Strontium and Zinc Co-Doped Mesoporous Bioactive Glass Nanoparticles for Potential Use in Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:575. [PMID: 38607110 PMCID: PMC11013354 DOI: 10.3390/nano14070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Mesoporous bioactive glass nanoparticles (MBGNs) have attracted significant attention as multifunctional nanocarriers for various applications in both hard and soft tissue engineering. In this study, multifunctional strontium (Sr)- and zinc (Zn)-containing MBGNs were successfully synthesized via the microemulsion-assisted sol-gel method combined with a cationic surfactant (cetyltrimethylammonium bromide, CTAB). Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs exhibited spherical shapes in the nanoscale range of 100 ± 20 nm with a mesoporous structure. Sr and Zn were co-substituted in MBGNs (60SiO2-40CaO) to induce osteogenic potential and antibacterial properties without altering their size, morphology, negative surface charge, amorphous nature, mesoporous structure, and pore size. The synthesized MBGNs facilitated bioactivity by promoting the formation of an apatite-like layer on the surface of the particles after immersion in Simulated Body Fluid (SBF). The effect of the particles on the metabolic activity of human mesenchymal stem cells was concentration-dependent. The hMSCs exposed to Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs at 200 μg/mL enhanced calcium deposition and osteogenic differentiation without osteogenic supplements. Moreover, the cellular uptake and internalization of Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs in hMSCs were observed. These novel particles, which exhibited multiple functionalities, including promoting bone regeneration, delivering therapeutic ions intracellularly, and inhibiting the growth of Staphylococcus aureus and Escherichia coli, are potential nanocarriers for bone regeneration applications.
Collapse
Affiliation(s)
- Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Meng Li
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.L.); (A.R.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.L.); (A.R.B.)
| |
Collapse
|
3
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Research Progress on Emerging Polysaccharide Materials Applied in Tissue Engineering. Polymers (Basel) 2022; 14:polym14163268. [PMID: 36015525 PMCID: PMC9413976 DOI: 10.3390/polym14163268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The development and application of polysaccharide materials are popular areas of research. Emerging polysaccharide materials have been widely used in tissue engineering fields such as in skin trauma, bone defects, cartilage repair and arthritis due to their stability, good biocompatibility and reproducibility. This paper reviewed the recent progress of the application of polysaccharide materials in tissue engineering. Firstly, we introduced polysaccharide materials and their derivatives and summarized the physicochemical properties of polysaccharide materials and their application in tissue engineering after modification. Secondly, we introduced the processing methods of polysaccharide materials, including the processing of polysaccharides into amorphous hydrogels, microspheres and membranes. Then, we summarized the application of polysaccharide materials in tissue engineering. Finally, some views on the research and application of polysaccharide materials are presented. The purpose of this review was to summarize the current research progress on polysaccharide materials with special attention paid to the application of polysaccharide materials in tissue engineering.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence:
| |
Collapse
|
4
|
Liu G, Chen J, Wang X, Liu Y, Ma Y, Tu X. Functionalized 3D-Printed ST2/Gelatin Methacryloyl/Polcaprolactone Scaffolds for Enhancing Bone Regeneration with Vascularization. Int J Mol Sci 2022; 23:ijms23158347. [PMID: 35955478 PMCID: PMC9368581 DOI: 10.3390/ijms23158347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Growth factors were often used to improve the bioactivity of biomaterials in order to fabricate biofunctionalized bone grafts for bone defect repair. However, supraphysiological concentrations of growth factors for improving bioactivity could lead to serious side effects, such as ectopic bone formation, radiculitis, swelling of soft tissue in the neck, etc. Therefore, safely and effectively applying growth factors in bone repair biomaterials comes to be an urgent problem that needs to be addressed. In this study, an appropriate concentration (50 ng/mL) of Wnt3a was used to pretreat the 3D-bioprinting gelatin methacryloyl(GelMA)/polycaprolactone(PCL) scaffold loaded with bone marrow stromal cell line ST2 for 24 h. This pretreatment promoted the cell proliferation, osteogenic differentiation, and mineralization of ST2 in the scaffold in vitro, and enhanced angiogenesis and osteogenesis after being implanted in critical-sized mouse calvarial defects. On the contrary, the inhibition of Wnt/β-catenin signaling in ST2 cells reduced the bone repair effect of this scaffold. These results suggested that ST2/GelMA/PCL scaffolds pretreated with an appropriate concentration of Wnt3a in culture medium could effectively enhance the osteogenic and angiogenic activity of bone repair biomaterials both in vitro and in vivo. Moreover, it would avoid the side effects caused by the supraphysiological concentrations of growth factors. This functionalized scaffold with osteogenic and angiogenic activity might be used as an outstanding bone substitute for bone regeneration and repair.
Collapse
|
5
|
Coyac BR, Wolf BJ, Bahat DJ, Arioka M, Brunski JB, Helms JA. A WNT protein therapeutic accelerates consolidation of a bone graft substitute in a pre-clinical sinus augmentation model. J Clin Periodontol 2022; 49:782-798. [PMID: 35713219 DOI: 10.1111/jcpe.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 11/30/2022]
Abstract
AIM Autologous bone grafts consolidate faster than bone graft substitutes (BGSs) but resorb over time, which compromises implant support. We hypothesized that differences in consolidation rates affected the mechanical properties of grafts and implant stability, and tested whether a pro-osteogenic protein, liposomal WNT3A (L-WNT3A), could accelerate graft consolidation. MATERIALS AND METHODS A transgenic mouse model of sinus augmentation with immunohistochemistry, enzymatic assays, and histology were used to quantitatively evaluate the osteogenic properties of autografts and BGSs. Composite and finite element modelling compared changes in the mechanical properties of grafts during healing until consolidation, and secondary implant stability following remodelling activities. BGSs were combined with L-WNT3A and tested for its osteogenic potential. RESULTS Compared with autografts, BGSs were bioinert and lacked osteoprogenitor cells. While in autografted sinuses, new bone arose evenly from all living autograft particles, new bone around BGSs solely initiated at the sinus floor, from the internal maxillary periosteum. WNT treatment of BGSs resulted in significantly higher expression levels of pro-osteogenic proteins (Osterix, Collagen I, alkaline phosphatase) and lower levels of bone-resorbing activity (tartrate-resistant acid phosphatase activity); together, these features culminated in faster new bone formation, comparable to that of an autograft. CONCLUSIONS WNT-treated BGSs supported faster consolidation, and because BGSs typically resist resorption, their use may be superior to autografts for sinus augmentation.
Collapse
Affiliation(s)
- Benjamin R Coyac
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA.,Department of Periodontology and Implant Dentistry, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Benjamin J Wolf
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Daniel J Bahat
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Masaki Arioka
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - John B Brunski
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| |
Collapse
|
6
|
Liu M, Shafiq M, Sun B, Wu J, Wang W, El-Newehy M, El-Hamshary H, Morsi Y, Ali O, Khan AUR, Mo X. Composite Superelastic Aerogel Scaffolds Containing Flexible SiO 2 Nanofibers Promote Bone Regeneration. Adv Healthc Mater 2022; 11:e2200499. [PMID: 35670086 DOI: 10.1002/adhm.202200499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Indexed: 11/08/2022]
Abstract
Repairing irregular-shaped bone defects poses enormous challenges. Scaffolds that can fully fit the defect site and simultaneously induce osteogenesis and angiogenesis hold great promise for bone defect healing. This study aimed to produce superelastic organic/inorganic composite aerogel scaffolds by blending silica nanofibers (SiO2 ) and poly (lactic acid)/gelatin (PLA/gel) nanofibers; the content of SiO2 nanofibers were varied from 0-60 wt% (e.g., PLA/gel, PLA/gel/SiO2 -L, PLA/gel/SiO2 -M, and PLA/gel/SiO2 -H for 0%, 20%, 40%, and 60% of SiO2 nanofibers, respectively) to produce a range of scaffolds. The PLA/gel/SiO2 -M scaffold had excellent elasticity and good mechanical properties. In vitro experiments demonstrated that the silicon ions released from PLA/gel/SiO2 -M scaffolds could promote the differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs) into osteoblasts, thereby enhancing alkaline phosphatase activity and bone-related genes expressions. Meanwhile, the released silicon ions also promoted the proliferation of human umbilical vein endothelial cells (HUVECs) and the expression of vascular endothelial growth factors, thereby promoting angiogenesis. The assessment of these scaffolds in a calvarial defect model in rats showed good potential of PLA/gel/SiO2 -M to induce bone regeneration as well as promote osteogenesis and angiogenesis. Overall, these superelastic scaffolds containing flexible SiO2 nanofibers can simultaneously induce osteogenesis and angiogenesis, which may have broad applications for tissue engineering applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mingyue Liu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Muhammad Shafiq
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Boroondara, VIC, 3122, Australia
| | - Onaza Ali
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Atta Ur Rehman Khan
- Department of Biotechnology, The University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
7
|
Fattahi R, Mohebichamkhorami F, Khani MM, Soleimani M, Hosseinzadeh S. Aspirin effect on bone remodeling and skeletal regeneration: Review article. Tissue Cell 2022; 76:101753. [PMID: 35180553 DOI: 10.1016/j.tice.2022.101753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 12/21/2022]
Abstract
Bone tissues are one of the most complex tissues in the body that regenerate and repair themselves spontaneously under the right physiological conditions. Within the limitations of treating bone defects, mimicking tissue engineering through the recruitment of scaffolds, cell sources and growth factors, is strongly recommended. Aspirin is one of the non-steroidal anti-inflammatory drugs (NSAIDs) and has been used in clinical studies for many years due to its anti-coagulant effect. On the other hand, aspirin and other NSAIDs activate cytokines and some mediators in osteoclasts, osteoblasts and their progenitor cells in a defect area, thereby promoting bone regeneration. It also stimulates angiogenesis by increasing migration of endothelial cells and the newly developed vessels are of emergency in bone fracture repair. This review covers the role of aspirin in bone tissue engineering and also, highlights its chemical reactions, mechanisms, dosages, anti-microbial and angiogenesis activities.
Collapse
Affiliation(s)
- Roya Fattahi
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Mohebichamkhorami
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Khani
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Simzar Hosseinzadeh
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
VICENTI G, OTTAVIANI G, BIZZOCA D, CARROZZO M, SIMONE F, GROSSO A, ZAVATTINI G, ELIA R, MARUCCIA M, SOLARINO G, MORETTI B. The role of biophysical stimulation with pemfs in fracture healing: from bench to bedside. MINERVA ORTHOPEDICS 2022. [DOI: 10.23736/s2784-8469.21.04116-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Huang C, Yu M, Li H, Wan X, Ding Z, Zeng W, Zhou Z. Research Progress of Bioactive Glass and Its Application in Orthopedics. ADVANCED MATERIALS INTERFACES 2021. [DOI: 10.1002/admi.202100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Huang
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Min Yu
- Department of Anesthesiology North‐Kuanren General Hospital No. 69 Xingguang Avenue, Yubei District Chongqing 401121 P. R. China
| | - Hao Li
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Xufeng Wan
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zichuan Ding
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Weinan Zeng
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zongke Zhou
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| |
Collapse
|
10
|
Abstract
BACKGROUND This manuscript is a review of the literature investigating the use of mesenchymal stem cells (MSCs) being applied in the setting of spinal fusion surgery. We mention the rates of pseudarthrosis, discuss current bone grafting options, and examine the preclinical and clinical outcomes of utilizing MSCs to assist in successfully fusing the spine. METHODS A thorough literature review was conducted to look at current and previous preclinical and clinical studies using stem cells for spinal fusion augmentation. Searches for PubMed/MEDLINE and ClinicalTrials.gov through January 2021 were conducted for literature mentioning stem cells and spinal fusion. RESULTS All preclinical and clinical studies investigating MSC use in spinal fusion were examined. We found 19 preclinical and 17 clinical studies. The majority of studies, both preclinical and clinical, were heterogeneous in design due to different osteoconductive scaffolds, cells, and techniques used. Preclinical studies showed promising outcomes in animal models when using appropriate osteoconductive scaffolds and factors for osteogenic differentiation. Similarly, clinical studies have promising outcomes but differ in their methodologies, surgical techniques, and materials used, making it difficult to adequately compare between the studies. CONCLUSION MSCs may be a promising option to use to augment grafting for spinal fusion surgery. MSCs must be used with appropriate osteoconductive scaffolds. Cell-based allografts and the optimization of their use have yet to be fully elucidated. Further studies are necessary to determine the efficacy of MSCs with different osteoconductive scaffolds and growth/osteogenic differentiation factors. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Stephen R Stephan
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Linda E Kanim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hyun W Bae
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
11
|
Liu D, He S, Chen S, Yang L, Yang J, Bao Q, Qin H, Zhao Y, Zong Z. Wnt/β-catenin signalling promotes more effective fracture healing in aged mice than in adult mice by inducing angiogenesis and cell differentiation. Sci Prog 2021; 104:368504211013223. [PMID: 33950750 PMCID: PMC10358591 DOI: 10.1177/00368504211013223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To investigate whether activating the Wnt/β-catenin signalling pathway differentially promotes fracture healing in aged and adult individuals. CatnbTM2Kem, Catnblox(ex3) and wild-type adult and aged mice were used in this study. The femur was electroporated through a hole with a diameter of 0.6 mm. On the 7th, 14th and 21st days after fracture establishment, repair of the femoral diaphyseal bone was examined using X-ray and CT, the levels of mRNAs related to Wnt/β-catenin signalling were detected using real-time polymerase chain reaction (RT-PCR), and angiogenesis and cell differentiation were observed using immunohistochemistry. The numbers of osteoclasts were determined by TRAP staining. Wnt/β-catenin activation accelerated fracture healing in adult mice, with more pronounced effects on aged mice. Compared with wild-type mice at the corresponding ages, Wnt/β-catenin signalling activation induced higher levels of angiogenesis and cell differentiation in aged mice than in adult mice and promoted fracture healing. The administration of medications targeting Wnt/β-catenin signalling to aged patients may accelerate fracture healing to a greater extent.
Collapse
Affiliation(s)
| | - Sihao He
- Army Medical University, Chongqing, China
| | - Sixu Chen
- Army Medical University, Chongqing, China
| | - Lei Yang
- Army Medical University, Chongqing, China
| | | | | | - Hao Qin
- Army Medical University, Chongqing, China
| | | | | |
Collapse
|
12
|
Li Z, Yuan X, Arioka M, Bahat D, Sun Q, Chen J, Helms JA. Pro-osteogenic Effects of WNT in a Mouse Model of Bone Formation Around Femoral Implants. Calcif Tissue Int 2021; 108:240-251. [PMID: 32990765 DOI: 10.1007/s00223-020-00757-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023]
Abstract
Wnt signaling maintains homeostasis in the bone marrow cavity: if Wnt signaling is inhibited then bone volume and density would decline. In this study, we identified a population of Wnt-responsive cells as osteoprogenitor in the intact trabecular bone region, which were responsible for bone development and turnover. If an implant was placed into the long bone, this Wnt-responsive population and their progeny contributed to osseointegration. We employed Axin2CreCreERT2/+;R26mTmG/+ transgenic mouse strain in which Axin2-positive, Wnt-responsive cells, and their progeny are permanently labeled by GFP upon exposure to tamoxifen. Each mouse received femoral implants placed into a site prepared solely by drilling, and a single-dose liposomal WNT3A protein was used in the treatment group. A lineage tracing strategy design allowed us to identify cells actively expressing Axin2 in response to Wnt signaling pathway. These tools demonstrated that Wnt-responsive cells and their progeny comprise a quiescent population residing in the trabecular region. In response to an implant placed, this population becomes mitotically active: cells migrated into the peri-implant region, up-regulated the expression of osteogenic proteins. Ultimately, those cells gave rise to osteoblasts that produced significantly more new bone in the peri-implant region. Wnt-responsive cells directly contributed to implant osseointegration. Using a liposomal WNT3A protein therapeutic, we showed that a single application at the time of implant placed was sufficient to accelerate osseointegration. The Wnt-responsive cell population in trabecular bone, activated by injury, ultimately contributes to implant osseointegration. Liposomal WNT3A protein therapeutic accelerates implant osseointegration in the long bone.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xue Yuan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Masaki Arioka
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daniel Bahat
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Qiang Sun
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jinlong Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Abdel-Aziz A, Waly MR, Abdel-Aziz MA, Sherif MM, Elhaddad H, Mostafa Zaky Abdelrazek BH. Economic Reliable Technique for Tunnel Grafting Using Iliac Crest Bone Graft in Two-Staged Revision Anterior Cruciate Ligament Surgery. Arthrosc Tech 2020; 9:e1917-e1925. [PMID: 33381401 PMCID: PMC7768218 DOI: 10.1016/j.eats.2020.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/16/2020] [Indexed: 02/03/2023] Open
Abstract
Revision anterior cruciate ligament surgery is a technically demanding procedure. Mal-positioned tunnels together with bone loss and its management are some of the difficulties and challenges faced. Two-staged procedures have successfully been used to tackle those challenges. We present a technique that is safe, reliable, reproducible, and economic in the management of bone defects faced in anterior cruciate ligament revision surgery by using iliac crest bone graft. Preoperative assessment of tunnel position and size is done by computed tomography. Tri-cortical iliac crest bone graft is harvested through a trap door. It is then shaped to fit the tunnels to be filled. It is tapered at the advancing end to facilitate introduction. Mounted on a passing pin and a drill bit, the graft is arthroscopically introduced into the femoral and tibial tunnels. The second stage is performed after the graft has incorporated, as seen on postoperative computed tomography, done at approximately 3 months after the first stage. Iliac crest provides a natural abundant reservoir for bone graft and has all the advantages of being an autograft. With good meticulous technique, complications can be avoided with less donor-site morbidity. This technique is safe, reliable, and reproducible. It provides an ample amount of graft and harvest does not rely on implants; hence, it is economic.
Collapse
Affiliation(s)
- Ahmed Abdel-Aziz
- Trauma and Orthopaedics, Kasr-Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Refaat Waly
- Trauma and Orthopaedics, Kasr-Alainy Faculty of Medicine, Cairo University, Cairo, Egypt,Address correspondence to Mohamed Refaat Waly, M.Sc., M.D., Lecturer of Trauma and Orthopaedics, Kasr-Alainy Faculty of Medicine, Cairo University, Mathaf El-Manial St., Cairo, Egypt, 11553.
| | - Mahmoud Ahmed Abdel-Aziz
- Trauma and Orthopaedics, Kasr-Alainy Faculty of Medicine, Cairo University, Cairo, Egypt,Student Hospital, Cairo University, Cairo, Egypt
| | | | - Hazem Elhaddad
- Trauma and Orthopaedics, Kasr-Alainy Faculty of Medicine, Cairo University, Cairo, Egypt,Cairo Fatemic Hospital, Cairo, Egypt
| | | |
Collapse
|
14
|
Liang J, Li W, Zhuang N, Wen S, Huang S, Lu W, Zhou Y, Liao G, Zhang B, Liu C. Experimental study on bone defect repair by BMSCs combined with a light-sensitive material: g-C 3N 4/rGO. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:248-265. [PMID: 32975477 DOI: 10.1080/09205063.2020.1827923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs), as seed cells, have played an important role in bone defect repair. However, efficiently amplifying and inducing BMSCs in vitro or vivo remains an urgent problem to be solved. Electrical stimulation has been beneficial to the proliferation and differentiation of BMSCs, but current electrical stimulation methods have a critical disadvantage in that they usually burn the skin. g-C3N4/rGO, a new photosensitive material, can produce photocurrent under natural light irradiation, thus reducing energy consumption. Our purpose was to explore whether this photocurrent can promote the proliferation and differentiation of BMSCs. g-C3N4/rGO synthesised under high temperature and pressure had negligible cytotoxicity as confirmed by methyl thiazolyl tetrazolium to BMSCs. Better osteogenesis was found in the blue light material group than in the light-shielding material group, exhibited by alizarin red staining, alkaline phosphatase activity, Western-Blot, and RT-qPCR. Animal experiments showed that the bone repair potential of the material group was significantly higher than that of the non-material group. Overall, we conclude that g-C3N4/rGO is a new non-toxic photosensitive material which can rapidly induce BMSCs into osteoblasts, accelerating bone regeneration and providing us with a feasible method of rapid bone repair.
Collapse
Affiliation(s)
- Jie Liang
- Department of Trauma and Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenhua Li
- Department of Trauma and Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Zhuang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sini Wen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shijia Huang
- Department of Trauma and Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhi Lu
- Laboratory of Biosafety, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yezhen Zhou
- Laboratory of Biosafety, School of Public Health, Southern Medical University, Guangzhou, China
| | - Gaozu Liao
- School of Environment, South China Normal University, Guangzhou, China
| | - Bao Zhang
- Laboratory of Biosafety, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chenglong Liu
- Department of Trauma and Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Lavanya K, Chandran SV, Balagangadharan K, Selvamurugan N. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110862. [DOI: 10.1016/j.msec.2020.110862] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023]
|
16
|
Coyac BR, Sun Q, Leahy B, Salvi G, Yuan X, Brunski JB, Helms JA. Optimizing autologous bone contribution to implant osseointegration. J Periodontol 2020; 91:1632-1644. [PMID: 32279310 DOI: 10.1002/jper.19-0524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Autologous bone can be harvested from the flutes of a conventional drill or from a bone scraper; here we compared whether autologous bone chips generated by a new slow-speed instrument were more osteogenic than the bone chips generated by conventional drills or bone scrapers. Additionally, we tested whether the osteogenic potential of bone chips could be further improved by exposure to a Wnt signaling (WNT) therapeutic. METHODS Osteotomies were prepared in fresh rat maxillary first molar extraction sockets using a conventional drill or a new osseo-shaping instrument; titanium alloy implants were placed immediately thereafter. Using molecular/cellular and histologic analyses, the fates of the resulting bone chips were analyzed. To test whether increasing WNT signaling improved osteogenesis in an immediate post-extraction implant environment, a WNT therapeutic was introduced at the time of implant placement. RESULTS Bone collected from a conventional drill exhibited extensive apoptosis; in contrast, bone generated by the new instrument remained in situ, which preserved their viability. Also preserved was the viability of the osteoprogenitor cells attached to the bone chips. Exogenous treatment with a WNT therapeutic increased the rate of osteogenesis around immediate post-extraction implants. CONCLUSIONS Compared with conventional drills or bone scrapers, a new cutting instrument enabled concomitant site preparation with autologous bone chip collection. Histology/histomorphometric analyses revealed that the bone chips generated by this new tool were more osteogenic and could be further enhanced by exposure to a WNT therapeutic. Even though gaps still existed in placebo controls and liposomal WNT3A (L-WNT3A) cases, the area of peri-implant bone was significantly greater in L-WNT3A treated sites.
Collapse
Affiliation(s)
- Benjamin R Coyac
- Department of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Qiang Sun
- Department of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA.,Department of Plastic Surgery, China Medical University Hospital, Shenyang, China
| | - Brian Leahy
- Department of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Giuseppe Salvi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Xue Yuan
- Department of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - John B Brunski
- Department of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Jill A Helms
- Department of Plastic and Reconstructive Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| |
Collapse
|
17
|
Salem HS, Axibal DP, Wolcott ML, Vidal AF, McCarty EC, Bravman JT, Frank RM. Two-Stage Revision Anterior Cruciate Ligament Reconstruction: A Systematic Review of Bone Graft Options for Tunnel Augmentation. Am J Sports Med 2020; 48:767-777. [PMID: 31116949 DOI: 10.1177/0363546519841583] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND No consensus is available regarding the optimal choice of bone graft material for bone tunnel augmentation in revision anterior cruciate ligament (ACL) surgery. PURPOSE To compare the outcomes of different bone graft materials for staged revision ACL reconstruction. STUDY DESIGN Systematic review. METHODS A systematic review using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines was performed. PubMed, EMBASE, and the Cochrane Library were queried through use of the terms anterior cruciate ligament and revision to identify all studies reporting outcomes of bone tunnel grafting in 2-stage revision ACL reconstruction. Data extracted included indications for 2-stage surgery, surgical technique, graft material, time between surgeries, rehabilitation protocols, physical examination findings, patient-reported outcomes, and radiographic and histologic findings. RESULTS The analysis included 7 studies with a total of 234 patients. The primary outcome in 2 studies was graft incorporation (mean follow-up, 8.8 months), whereas the other 5 studies reported clinical outcomes with follow-up mean ± SD of 4.2 ± 2.1 years. The indication for bone grafting and between-stage protocol varied among studies. Autograft was used in 4 studies: iliac crest bone autograft (ICBG, n = 3) and tibial bone autograft (TBA, n = 1). In 2 studies, the authors investigated the outcomes of allograft: allograft bone matrix (ABM) and allograft bone chips (AC). Finally, 1 study compared ICBG to a synthetic bone substitute. Radiographic evaluation of bone graft integration after the first stage was reported in 4 studies, with an average duration of 4.9 months. In 4 studies, the authors reported the time interval between first and second surgeries, with an average of 6.1 months for ICBG compared with 8.7 months for allogenic and synthetic grafts. Revision ACL graft failure rates were reported by 5 studies, including 1 study with ABM (6.1%), 1 study with AC (8.3%), 1 study with TBA (0%), and 2 studies with ICBG (0% and 2%). CONCLUSION The indications for staged ACL reconstruction and the rehabilitation protocol between stages need to be clearly established. The available data indicate that autograft for bone tunnel grafting in 2-stage ACL revision may be associated with a lower risk of revision ACL reconstruction graft failure compared with allograft bone.
Collapse
Affiliation(s)
- Hytham S Salem
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Derek P Axibal
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Armando F Vidal
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric C McCarty
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Rachel M Frank
- University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
18
|
Bone Regeneration, Reconstruction and Use of Osteogenic Cells; from Basic Knowledge, Animal Models to Clinical Trials. J Clin Med 2020; 9:jcm9010139. [PMID: 31947922 PMCID: PMC7019836 DOI: 10.3390/jcm9010139] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 01/02/2020] [Indexed: 01/01/2023] Open
Abstract
The deterioration of the human skeleton's capacity for self-renewal occurs naturally with age. Osteoporosis affects millions worldwide, with current treatments including pharmaceutical agents that target bone formation and/or resorption. Nevertheless, these clinical approaches often result in long-term side effects, with better alternatives being constantly researched. Mesenchymal stem cells (MSCs) derived from bone marrow and adipose tissue are known to hold therapeutic value for the treatment of a variety of bone diseases. The following review summarizes the latest studies and clinical trials related to the use of MSCs, both individually and combined with other methods, in the treatment of a variety of conditions related to skeletal health. For example, some of the most recent works noted the advantage of bone grafts based on biomimetic scaffolds combined with MSC and growth factor delivery, with a greatly increased regeneration rate and minimized side effects for patients. This review also highlights the continuing research into the mechanisms underlying bone homeostasis, including the key transcription factors and signalling pathways responsible for regulating the differentiation of osteoblast lineage. Paracrine factors and specific miRNAs are also believed to play a part in MSC differentiation. Furthering the understanding of the specific mechanisms of cellular signalling in skeletal remodelling is key to incorporating new and effective treatment methods for bone disease.
Collapse
|
19
|
Kanjevac T, Gustafson C, Ivanovska A, Ravanetti F, Cacchioli A, Bosnakovski D. Inflammatory Cytokines and Biodegradable Scaffolds in Dental Mesenchymal Stem Cells Priming. Curr Stem Cell Res Ther 2019; 14:320-326. [PMID: 30608044 DOI: 10.2174/1574888x14666190103170109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with wide-ranging clinical applications due to their ability to regenerate tissue from mesenchymal origin and their capability of suppressing immune responses, thus reducing the likelihood of graft versus host disease after transplantation. MSCs can be isolated from a variety of sources including bone marrow, adipose tissue, umbilical cord blood, and immature teeth. Dental stem cells (DSCs) possess progenitor and immunomodulatory abilities as the other MSC types and because they can be easily isolated, are considered as attractive therapeutic agents in regenerative dentistry. Recently, it has been shown that DSCs seeded onto newly developed synthetic biomaterial scaffolds have retained their potential for proliferation and at the same time have enhanced capabilities for differentiation and immunosuppression. The scaffolds are becoming more efficient at MSC priming as researchers learn how short peptide sequences alter the adhesive and proliferative capabilities of the scaffolds by stimulating or inhibiting classical osteogenic pathways. New findings on how to modulate the inflammatory microenvironment, which can prime DSCs for differentiation, combined with the use of next generation scaffolds may significantly improve their therapeutic potential. In this review, we summarize current findings regarding DSCs as a potential regenerative therapy, including stem cell priming with inflammatory cytokines, types of scaffolds currently being explored and the modulation of scaffolds to regulate immune response and promote growth.
Collapse
Affiliation(s)
- Tatjana Kanjevac
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Collin Gustafson
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, United States
| | - Ana Ivanovska
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | - Darko Bosnakovski
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, United States.,Faculty of Medical Sciences, University Goce Delcev, Stip, R. Macedonia
| |
Collapse
|
20
|
Abstract
There are a number of bone regeneration therapeutics available to aid spinal fusion; however, many are associated with pseudarthrosis, inflammation, and other complications. Mesenchymal stem cells for fusion has been promoted to mitigate these risks and achieve successful bony fusion. This article reviews the clinical studies available with use in spinal fusion. Preliminary results demonstrate that stem cells can provide high rates of fusion, comparable to autograft, without associated morbidity. Autologous and allogeneic stem cell sources showed similar rates of fusion in this review. Further research is required to evaluate which clinical situations are the optimum for stem cell use.
Collapse
Affiliation(s)
- Vivek P Shah
- Department of Orthopedic Surgery - Hsu Lab, Northwestern University, Chicago, IL 60611, USA.
| | - Wellington K Hsu
- Northwestern Department of Orthopedic Surgery, 259 East Erie Street 13th Floor Lavin Family Pavilion, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Sun Q, Li Z, Liu B, Yuan X, Guo S, Helms JA. Improving intraoperative storage conditions for autologous bone grafts: An experimental investigation in mice. J Tissue Eng Regen Med 2019; 13:2169-2180. [PMID: 31617958 DOI: 10.1002/term.2970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 08/27/2019] [Accepted: 09/26/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Qiang Sun
- Department of Plastic SurgeryThe First Hospital of China Medical University Shenyang China
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford School of Medicine Stanford CA
| | - Zhijun Li
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford School of Medicine Stanford CA
- Department of OrthopedicsTianjin Medical University General Hospital Tianjin China
| | - Bo Liu
- Ankasa Regenerative Therapeutics, Inc. South San Francisco CA
| | - Xue Yuan
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford School of Medicine Stanford CA
| | - Shu Guo
- Department of Plastic SurgeryThe First Hospital of China Medical University Shenyang China
| | - Jill A. Helms
- Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford School of Medicine Stanford CA
- Ankasa Regenerative Therapeutics, Inc. South San Francisco CA
| |
Collapse
|
22
|
Zhou K, Yu P, Shi X, Ling T, Zeng W, Chen A, Yang W, Zhou Z. Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair. ACS NANO 2019; 13:9595-9606. [PMID: 31381856 DOI: 10.1021/acsnano.9b04723] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydroxyapatite (HA), the traditional bone tissue replacement material was widely used in the clinical treatment of bone defects because of its excellent biocompatibility. However, the processing difficulty and poor osteoinductive ability greatly limit the application of HA. Although many strategies have been reported to improve the machinability and osteointegration ability, the performance including mechanical strength, porosity, cell adhesion, etc. of material still can not meet the requirements. In this work, a soft template method was developed and a porous scaffold with hierarchical pore structure, nano surface morphology, suitable porosity and pore size, and good biomechanical strength was successfully prepared. The hierarchical pore structure is beneficial for cell adhesion, fluid transfer, and cell ingrowth. Moreover, the loaded reduced graphene oxide (rGO) can improve the adhesion and promote the proliferation and spontaneous osteogenic differentiation bone marrow mesenchymal stem cells. The scaffold is then crushed, degraded and wrapped by the newly formed bone and the newly formed bone gradually replaces the scaffold. The degradation rate of the scaffold well matches the rate of the new bone formation. The hierarchical porous HA/rGO composite scaffolds can greatly accelerate the bone ingrowth in the scaffold and bone repair in critical bone defects, thus providing a clinical potential candidate for large segment bone tissue engineering.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Peng Yu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Xiaojun Shi
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Tingxian Ling
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Weinan Zeng
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Anjing Chen
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Zongke Zhou
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
23
|
Gao X, Lu A, Tang Y, Schneppendahl J, Liebowitz AB, Scibetta AC, Morris ER, Cheng H, Huard C, Amra S, Wang B, Hall MA, Lowe WR, Huard J. Influences of donor and host age on human muscle-derived stem cell-mediated bone regeneration. Stem Cell Res Ther 2018; 9:316. [PMID: 30463597 PMCID: PMC6249775 DOI: 10.1186/s13287-018-1066-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/14/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023] Open
Abstract
Background Human muscle-derived stem cells (hMDSCs) have been shown to regenerate bone efficiently when they were transduced with Lenti-viral bone morphogenetic protein 2 (LBMP2). However, whether the age of hMDSCs and the animal host affect the bone regeneration capacity of hMDSCs and mechanism are unknown which prompted the current study. Methods We isolated three gender-matched young and old populations of skeletal muscle stem cells, and tested the influence of cells’ age on in vitro osteogenic differentiation using pellet culture before and after Lenti-BMP2/green fluorescent protein (GFP) transduction. We further investigated effects of the age of hMDSCs and animal host on hMDSC-mediated bone regeneration in a critical-size calvarial bone defect model in vivo. Micro-computer tomography (CT), histology, and immunohistochemistry were used to evaluate osteogenic differentiation and mineralization in vitro and bone regeneration in vivo. Western blot, quantitative polymerase chain reaction (PCR), and oxidative stress assay were performed to detect the effects of age of hMDSCs on cell survival and osteogenic-related genes. Serum insulin-like growth factor 1 (IGF1) and receptor activator of nuclear factor-kappa B ligand (RANKL) were measured with an enzyme-linked immunosorbent assay (ELISA). Results We found LBMP2/GFP transduction significantly enhanced osteogenic differentiation of hMDSCs in vitro, regardless of donor age. We also found old were as efficient as young LBMP2/GFP-transduced hMDSCs for regenerating functional bone in young and old mice. These findings correlated with lower phosphorylated p38MAPK expression and similar expression levels of cell survival genes and osteogenic-related genes in old hMDSCs relative to young hMDSCs. Old cells exhibited equivalent resistance to oxidative stress. However, both young and old donor cells regenerated less bone in old than young hosts. Impaired bone regeneration in older hosts was associated with high bone remodeling due to higher serum levels of RANKL and lower level of IGF-1. Conclusion hMDSC-mediated bone regeneration was not impaired by donor age when hMDSCs were transduced with LBMP2/GFP, but the age of the host adversely affected hMDSC-mediated bone regeneration. Regardless of donor and host age, hMDSCs formed functional bone, suggesting a promising cell resource for bone regeneration. Electronic supplementary material The online version of this article (10.1186/s13287-018-1066-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xueqin Gao
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Aiping Lu
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | | | | | | | | | - Haizi Cheng
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Charles Huard
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Sarah Amra
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Mary A Hall
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Walter R Lowe
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA. .,Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA. .,Steadman Philippon Research Institute, Vail, CO, 81657, USA.
| |
Collapse
|
24
|
Leucht P, Lee S, Yim N. Wnt signaling and bone regeneration: Can't have one without the other. Biomaterials 2018; 196:46-50. [PMID: 29573821 DOI: 10.1016/j.biomaterials.2018.03.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Advances in the understanding of the complexities of the Wnt signaling pathway during development and tissue homeostasis have made the Wnt pathway one of the prime candidates for translational applications during tissue regeneration. Wnts are key components of the stem cell niche and are short range signaling molecules responsible for cellular decisions such as proliferation and differentiation. Systemic treatment using biologics targeting the Wnt signaling pathway have shown promising early results and will likely enter the clinical arena in the near future. This comprehensive review summarizes the intricacies how Wnts function in the context of the bone regeneration.
Collapse
Affiliation(s)
- Philipp Leucht
- NYU Langone Health, Departments of Orthopaedic Surgery and Cell Biology, New York, NY, USA.
| | - Sooyeon Lee
- NYU Langone Health, Departments of Orthopaedic Surgery and Cell Biology, New York, NY, USA
| | - Nury Yim
- NYU Langone Health, Departments of Orthopaedic Surgery and Cell Biology, New York, NY, USA
| |
Collapse
|
25
|
Yuan X, Pei X, Zhao Y, Tulu US, Liu B, Helms JA. A Wnt-Responsive PDL Population Effectuates Extraction Socket Healing. J Dent Res 2018; 97:803-809. [PMID: 29420105 DOI: 10.1177/0022034518755719] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stem cells residing in the periodontal ligament (PDL) support the homeostasis of the periodontium, but their in vivo identity, source(s), and function(s) remain poorly understood. Here, using a lineage-tracing mouse strain, we identified a quiescent Wnt-responsive population in the PDL that became activated in response to tooth extraction. The Wnt-responsive population expanded by proliferation, then migrated from the PDL remnants that remained attached to bundle bone, into the socket. Once there, the Wnt-responsive progeny upregulated osteogenic protein expression, differentiated into osteoblasts, and generated the new bone that healed the socket. Using a liposomal WNT3A protein therapeutic, we showed that a single application at the time of extraction was sufficient to accelerate extraction socket healing 2-fold. Collectively, these data identify a new stem cell population in the intact periodontium that is directly responsible for alveolar bone healing after tooth removal.
Collapse
Affiliation(s)
- X Yuan
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - X Pei
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA, USA.,2 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Zhao
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA, USA.,3 Department of Oral Basic Science, School of Dentistry, Lanzhou University, Lanzhou, China
| | - U S Tulu
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - B Liu
- 4 Ankasa Regenerative Therapeutics, South San Francisco, CA, USA
| | - J A Helms
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
26
|
Chen T, Li J, Córdova LA, Liu B, Mouraret S, Sun Q, Salmon B, Helms J. A WNT protein therapeutic improves the bone-forming capacity of autografts from aged animals. Sci Rep 2018; 8:119. [PMID: 29311710 PMCID: PMC5758817 DOI: 10.1038/s41598-017-18375-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/04/2017] [Indexed: 02/05/2023] Open
Abstract
Autografts tend to be unreliable in older patients. Some of these age-related skeletal changes appear to be attributable to a decline in endogenous WNT signaling. We used a functional in vivo transplantation assay to demonstrate that the bone-forming capacity of an autograft can be traced back to a Wnt-responsive cell population associated with the mineralized bone matrix fraction of a bone graft. Micro-CT imaging, flow cytometry and quantitative analyses demonstrate that this mineralized fraction declines with age, along with a waning in endogenous Wnt signaling; together these factors contribute to the age-related deterioration in autograft efficacy. Using a lipid formulation to stabilize the hydrophobic WNT3A protein, we demonstrate that osteogenic capacity can be restored by incubating the bone graft ex vivo with WNT3A. Compared to control bone grafts, WNT-treated bone grafts give rise to three times more bone. These preclinical results establish a pivotal role for WNT signaling in the age-related decline of autologous bone grafting efficacy, and demonstrate a means to restore that efficacy via local, transient amplification of endogenous Wnt signaling.
Collapse
Affiliation(s)
- Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 400000, China.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jingtao Li
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA.,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610007, China
| | - Luis A Córdova
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Bo Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA.,Ankasa Regenerative Therapeutics, Inc. 329 Oyster Point Blvd. Suite 3306, South San Francisco, CA, 94080, USA
| | - Sylvain Mouraret
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA.,Department of Periodontology, Service of Odontology, Rothschild Hospital, AP-HP, Paris 7 - Denis, Diderot University, U.F.R. of Odontology, Paris, France
| | - Qiang Sun
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA.,Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Benjamin Salmon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA.,Paris Descartes - Sorbonne Paris Cite University, Dental School, EA2496, Montrouge, France and Dental Medicine Department, Bretonneau Hospital, HUPNVS, AP-HP, Paris, France
| | - Jill Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, 94305, USA. .,Ankasa Regenerative Therapeutics, Inc. 329 Oyster Point Blvd. Suite 3306, South San Francisco, CA, 94080, USA.
| |
Collapse
|
27
|
Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J. Biomaterials and Bioactive Agents in Spinal Fusion. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:540-551. [DOI: 10.1089/ten.teb.2017.0072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui M. Duarte
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Pedro Varanda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Rui L. Reis
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Ana Rita C. Duarte
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Jorge Correia-Pinto
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Pediatric Surgery Department, Hospital de Braga, Braga, Portugal
| |
Collapse
|
28
|
Effect of the Chemical Composition of Simulated Body Fluids on Aerogel-Based Bioactive Composites. JOURNAL OF COMPOSITES SCIENCE 2017. [DOI: 10.3390/jcs1020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Salmon B, Liu B, Shen E, Chen T, Li J, Gillette M, Ransom RC, Ezran M, Johnson CA, Castillo AB, Shen WJ, Kraemer FB, Smith AA, Helms JA. WNT-activated bone grafts repair osteonecrotic lesions in aged animals. Sci Rep 2017; 7:14254. [PMID: 29079746 PMCID: PMC5660190 DOI: 10.1038/s41598-017-14395-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/10/2017] [Indexed: 02/05/2023] Open
Abstract
The Wnt pathway is a new target in bone therapeutic space. WNT proteins are potent stem cell activators and pro-osteogenic agents. Here, we gained insights into the molecular and cellular mechanisms responsible for liposome-reconstituted recombinant human WNT3A protein (L-WNT3A) efficacy to treat osteonecrotic defects. Skeletal injuries were coupled with cryoablation to create non-healing osteonecrotic defects in the diaphysis of the murine long bones. To replicate clinical therapy, osteonecrotic defects were treated with autologous bone graft, which were simulated by using bone graft material from syngeneic ACTB-eGFP-expressing mice. Control osteonecrotic defects received autografts alone; test sites received autografts treated ex vivo with L-WNT3A. In vivo µCT monitored healing over time and immunohistochemistry were used to track the fate of donor cells and assess their capacity to repair osteonecrotic defects according to age and WNT activation status. Collectively, analyses demonstrated that cells from the autograft directly contributed to repair of an osteonecrotic lesion, but this contribution diminished as the age of the donor increased. Pre-treating autografts from aged animals with L-WNT3A restored osteogenic capacity to autografts back to levels observed in autografts from young animals. A WNT therapeutic approach may therefore have utility in the treatment of osteonecrosis, especially in aged patients.
Collapse
Affiliation(s)
- B Salmon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
- Paris Descartes University - Sorbonne Paris Cité, EA 2496 - Orofacial Pathologies, Imaging and Biotherapies Lab and Dental Medicine Department, Bretonneau Hospital, HUPNVS, AP-HP, Paris, France
| | - B Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - E Shen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - T Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Li
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Gillette
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - R C Ransom
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - M Ezran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - C A Johnson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - A B Castillo
- Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, NY, USA
| | - W J Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - F B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - A A Smith
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - J A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
30
|
Janeczek AA, Scarpa E, Horrocks MH, Tare RS, Rowland CA, Jenner D, Newman TA, Oreffo RO, Lee SF, Evans ND. PEGylated liposomes associate with Wnt3A protein and expand putative stem cells in human bone marrow populations. Nanomedicine (Lond) 2017; 12:845-863. [PMID: 28351228 DOI: 10.2217/nnm-2016-0386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To fabricate PEGylated liposomes which preserve the activity of hydrophobic Wnt3A protein, and to demonstrate their efficacy in promoting expansion of osteoprogenitors from human bone marrow. METHODS PEGylated liposomes composed of several synthetic lipids were tested for their ability to preserve Wnt3A activity in reporter and differentiation assays. Single-molecule microspectroscopy was used to test for direct association of protein with liposomes. RESULTS Labeled Wnt3A protein directly associated with all tested liposome preparations. However, Wnt3A activity was preserved or enhanced in PEGylated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes but not in PEGylated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes. PEGylated Wnt3A liposomes associated with skeletal stem cell populations in human bone marrow and promoted osteogenesis. CONCLUSION Active Wnt protein-containing PEGylated liposomes may have utility for systemic administration for bone repair.
Collapse
Affiliation(s)
- Agnieszka A Janeczek
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Edoardo Scarpa
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Rahul S Tare
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Caroline A Rowland
- Microbiology Group, Chemical, Biological & Radiological Division, Dstl, Porton Down, Salisbury, SP4 0JQ, UK
| | - Dominic Jenner
- Microbiology Group, Chemical, Biological & Radiological Division, Dstl, Porton Down, Salisbury, SP4 0JQ, UK
| | - Tracey A Newman
- Clinical & Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Building 85, Life Sciences Building, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Richard Oc Oreffo
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nicholas D Evans
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
31
|
Hao Z, Song Z, Huang J, Huang K, Panetta A, Gu Z, Wu J. The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 2017; 5:1382-1392. [DOI: 10.1039/c7bm00146k] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone tissue engineering uses the principles and methods of engineering and life sciences to study bone structure, function and growth mechanism for the purposes of repairing, maintaining and improving damaged bone tissue.
Collapse
Affiliation(s)
- Zhichao Hao
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
| | - Zhenhua Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Keqing Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | | | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| |
Collapse
|
32
|
Abstract
Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone--the best option--is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body's own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.
Collapse
|
33
|
Huang L, Salmon B, Yin X, Helms JA. From restoration to regeneration: periodontal aging and opportunities for therapeutic intervention. Periodontol 2000 2016; 72:19-29. [PMID: 27501489 PMCID: PMC6190904 DOI: 10.1111/prd.12127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the march of time our bodies start to wear out: eyesight fades, skin loses its elasticity, teeth and bones become more brittle and injuries heal more slowly. These universal features of aging can be traced back to our stem cells. Aging has a profound effect on stem cells: DNA mutations naturally accumulate over time and our bodies have evolved highly specialized mechanisms to remove these damaged cells. Whilst obviously beneficial, this repair mechanism also reduces the pool of available stem cells and this, in turn, has a dramatic effect on tissue homeostasis and on our rate of healing. Simply put: fewer stem cells means a decline in tissue function and slower healing. Despite this seemingly intractable situation, research over the past decade now demonstrates that some of the effects of aging are reversible. Nobel prize-winning research demonstrates that old cells can become young again, and lessons learned from these experiments-in-a-dish are now being translated into human therapies. Scientists and clinicians around the world are identifying and characterizing methods to activate stem cells to reinvigorate the body's natural regenerative process. If this research in dental regenerative medicine pans out, the end result will be tissue homeostasis and healing back to the levels we appreciated when we were young.
Collapse
Affiliation(s)
- Lan Huang
- Orthodontic Department, Stomatology Hospital of Chongqing Medical University; Chongqing Key Laboratory of Oral Disease and Biomedical Sciences; Chongqing Municipal Key Laboratory, Chongqing, 401147, China
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305
| | - Benjamin Salmon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305
- Dental School, University Paris Descartes PRES Sorbonne Paris Cite, EA 2496, Montrouge, France and AP-HP Odontology Department Bretonneau, Hopitaux Universitaires Paris Nord Val de Seine, Paris, France
| | - Xing Yin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jill A. Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305
| |
Collapse
|
34
|
Zhang W, Wang S, Yin H, Chen E, Xue D, Zheng Q, Gao X, Pan Z. Dihydromyricetin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro partially via the activation of Wnt/β-catenin signaling pathway. Fundam Clin Pharmacol 2016; 30:596-606. [PMID: 27469984 DOI: 10.1111/fcp.12225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/06/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023]
Abstract
Substantial evidence has demonstrated that the decreased osteogenic differentiation of bone mesenchymal stem cells (BMSCs) is closely related to bone metabolic diseases. Thus, it is very important to develop several potentially useful therapeutic agents to enhance BMSC osteogenesis. Flavonoids show promise in enhancing bone mass. Dihydromyricetin (DMY), a type of flavonoid, has not yet been investigated regarding its effects on BMSC osteogenesis. To investigate the effects of DMY on osteogenesis, human BMSCs were induced with or without DMY. We found that DMY (0.1-50 μm) exhibited no cytotoxic effect on proliferation, but increased alkaline phosphatase activity, osteoblast-specific gene expression, and mineral deposition. It also enhanced active β-catenin expression and reduced dickkopf-1(DKK1) and sclerostin expression. The Wnt/β-catenin signaling pathway inhibitor (DKK1 and β-catenin-specific siRNA) decreased the enhanced bone mineral formation caused by DMY. Taken together, these findings reveal that DMY enhances osteogenic differentiation of human BMSCs partly through Wnt/β-catenin in vitro.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Houfa Yin
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Deting Xue
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qiang Zheng
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xiang Gao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhijun Pan
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
35
|
Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone 2016; 86:119-30. [PMID: 26946132 PMCID: PMC4833637 DOI: 10.1016/j.bone.2016.02.020] [Citation(s) in RCA: 717] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 02/29/2016] [Indexed: 12/20/2022]
Abstract
The reconstitution of lost bone is a subject that is germane to many orthopedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral role. Acute inflammation is initiated by endogenous or exogenous adverse stimuli, and can become chronic in nature if not resolved by normal homeostatic mechanisms. Dysregulated inflammation leads to increased bone resorption and suppressed bone formation. Crosstalk among inflammatory cells (polymorphonuclear leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing (cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) is essential to the formation, repair and remodeling of bone. In this review, the authors provide a comprehensive summary of the literature related to inflammation and bone repair. Special emphasis is placed on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair.
Collapse
Affiliation(s)
- Florence Loi
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Luis A Córdova
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Sergio Livingstone Polhammer 943, Independencia, 8380000 Santiago, Chile.
| | - Jukka Pajarinen
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Tzu-hua Lin
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Zhenyu Yao
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Stuart B Goodman
- 300 Pasteur Drive, Edwards Building, Room R116, Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; 300 Pasteur Drive, Edwards Building, Room R114, Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Tang Z, Wei J, Yu Y, Zhang J, Liu L, Tang W, Long J, Zheng X, Jing W. γ-Secretase inhibitor reverts the Notch signaling attenuation of osteogenic differentiation in aged bone marrow mesenchymal stem cells. Cell Biol Int 2016; 40:439-47. [PMID: 26801333 DOI: 10.1002/cbin.10583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023]
Abstract
The age-related changes in cell viability and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) play pivotal roles in the fracture healing process, especially in geriatric individuals. This study was designed to explore the age-related changes in murine BMSCs and the regulation of osteogenic differentiation in aged BMSCs in vitro. Notch signaling pathway took part in the regulation of osteogensis, while the relationship between Notch and the osteogenic differentiation in aged BMSCs has not been reported yet. BMSCs harvested from the bone marrow of young, adult, and aged C57BL/6 mice were cultured in osteogenic and adipogenic differentiation media. Histochemical staining results indicated that the osteogenic ability of BMSCs gradually decreased with aging, whereas the adipogenic ability increased. Cell activity assays showed that the proliferative and migrated capacity did not decline with aging significantly. According to real-time PCR and Western blotting results, the aged cells exhibited higher Notch signaling expression level than the younger ones did. After the aged BMSCs being treated with γ-secretase inhibitor, however, Notch activity was changed and the aging-imparied osteogenic ability reverted to a normal level. This study demonstrated that the decreased bone formation capacity in aged BMSCs had relationship with the transdifferentiation between osteogenesis and adipogenesis, which would be regulated by Notch signaling pathway and the attenuated osteogenesis in aged BMSCs could be promoted when the inhibition of Notch pathway.
Collapse
Affiliation(s)
- Zhaolong Tang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junjun Wei
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunbo Yu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiankang Zhang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jie Long
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaohui Zheng
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Yin X, Li J, Chen T, Mouraret S, Dhamdhere G, Brunski JB, Zou S, Helms JA. Rescuing failed oral implants via Wnt activation. J Clin Periodontol 2016; 43:180-92. [PMID: 26718012 DOI: 10.1111/jcpe.12503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2015] [Indexed: 02/05/2023]
Abstract
AIM Implant osseointegration is not always guaranteed and once fibrous encapsulation occurs clinicians have few options other than implant removal. Our goal was to test whether a WNT protein therapeutic could rescue such failed implants. MATERIAL AND METHODS Titanium implants were placed in over-sized murine oral osteotomies. A lack of primary stability was verified by mechanical testing. Interfacial strains were estimated by finite element modelling and histology coupled with histomorphometry confirmed the lack of peri-implant bone. After fibrous encapsulation was established peri-implant injections of a liposomal formulation of WNT3A protein (L-WNT3A) or liposomal PBS (L-PBS) were then initiated. Quantitative assays were employed to analyse the effects of L-WNT3A treatment. RESULTS Implants in gap-type interfaces exhibited high interfacial strains and no primary stability. After verification of implant failure, L-WNT3A or L-PBS injections were initiated. L-WNT3A induced a rapid, significant increase in Wnt responsiveness in the peri-implant environment, cell proliferation and osteogenic protein expression. The amount of peri-implant bone and bone in contact with the implant were significantly higher in L-WNT3A cases. CONCLUSIONS These data demonstrate L-WNT3A can induce peri-implant bone formation even in cases where fibrous encapsulation predominates.
Collapse
Affiliation(s)
- Xing Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Jingtao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Tao Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Sylvain Mouraret
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Girija Dhamdhere
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - John B Brunski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
38
|
Aquino-Martínez R, Rodríguez-Carballo E, Gámez B, Artigas N, Carvalho-Lobato P, Manzanares-Céspedes MC, Rosa JL, Ventura F. Mesenchymal Stem Cells Within Gelatin/CaSO4 Scaffolds Treated Ex Vivo with Low Doses of BMP-2 and Wnt3a Increase Bone Regeneration. Tissue Eng Part A 2016; 22:41-52. [DOI: 10.1089/ten.tea.2015.0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rubén Aquino-Martínez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Natalia Artigas
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Patricia Carvalho-Lobato
- Unitat d'Anatomia i Embriologia Humana, Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Maria Cristina Manzanares-Céspedes
- Unitat d'Anatomia i Embriologia Humana, Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
39
|
Schimke MM, Marozin S, Lepperdinger G. Patient-Specific Age: The Other Side of the Coin in Advanced Mesenchymal Stem Cell Therapy. Front Physiol 2015; 6:362. [PMID: 26696897 PMCID: PMC4667069 DOI: 10.3389/fphys.2015.00362] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Multipotential mesenchymal stromal cells (MSC) are present as a rare subpopulation within any type of stroma in the body of higher animals. Prominently, MSC have been recognized to reside in perivascular locations, supposedly maintaining blood vessel integrity. During tissue damage and injury, MSC/pericytes become activated, evade from their perivascular niche and are thus assumed to support wound healing and tissue regeneration. In vitro MSC exhibit demonstrated capabilities to differentiate into a wide variety of tissue cell types. Hence, many MSC-based therapeutic approaches have been performed to address bone, cartilage, or heart regeneration. Furthermore, prominent studies showed efficacy of ex vivo expanded MSC to countervail graft-vs.-host-disease. Therefore, additional fields of application are presently conceived, in which MSC-based therapies potentially unfold beneficial effects, such as amelioration of non-healing conditions after tendon or spinal cord injury, as well as neuropathies. Working along these lines, MSC-based scientific research has been forged ahead to prominently occupy the clinical stage. Aging is to a great deal stochastic by nature bringing forth changes in an individual fashion. Yet, is aging of stem cells or/and their corresponding niche considered a determining factor for outcome and success of clinical therapies?
Collapse
Affiliation(s)
- Magdalena M Schimke
- Department of Cell Biology and Physiology, Stem Cell Research, Aging and Regeneration, University Salzburg Salzburg, Austria
| | - Sabrina Marozin
- Department of Cell Biology and Physiology, Stem Cell Research, Aging and Regeneration, University Salzburg Salzburg, Austria
| | - Günter Lepperdinger
- Department of Cell Biology and Physiology, Stem Cell Research, Aging and Regeneration, University Salzburg Salzburg, Austria
| |
Collapse
|
40
|
Littman N, Abo A. Proceedings: Using Stem Cell Therapies to Reestablish Osteogenic Capability for Bone Regeneration. Stem Cells Transl Med 2015; 4:1247-50. [PMID: 26483540 DOI: 10.5966/sctm.2015-0202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The California Institute for Regenerative Medicine (CIRM) has invested approximately $70 million in programs targeting various orthopedic indications, including osteoporosis, bone fracture healing, vertebral compression fractures, and several others. The present article serves to outline the current state of CIRM's more advanced programs, comparing and contrasting them with the current standard of care and several other novel approaches under development. SIGNIFICANCE This report describes CIRM bone programs that are in contrast to current cell therapy approaches. These projects aim to enhance stem cell activity for bone regeneration.
Collapse
Affiliation(s)
- Neil Littman
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Arie Abo
- California Institute for Regenerative Medicine, San Francisco, California, USA
| |
Collapse
|
41
|
Yin X, Li J, Salmon B, Huang L, Lim WH, Liu B, Hunter DJ, Ransom RC, Singh G, Gillette M, Zou S, Helms JA. Wnt Signaling and Its Contribution to Craniofacial Tissue Homeostasis. J Dent Res 2015; 94:1487-94. [PMID: 26285808 DOI: 10.1177/0022034515599772] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A new field of dental medicine seeks to exploit nature's solution for repairing damaged tissues, through the process of regeneration. Most adult mammalian tissues have limited regenerative capacities, but in lower vertebrates, the molecular machinery for regeneration is an elemental part of their genetic makeup. Accumulating data suggest that the molecular pathways responsible for the regenerative capacity of teleosts, amphibians, and reptiles have fallen into disuse in mammals but that they can be "jumpstarted" by the selective activation of key molecules. The Wnt family of secreted proteins constitutes one such critical pathway: Wnt proteins rank among the most potent and ubiquitous stem cell self-renewing factors, with tremendous potential for promoting human tissue regeneration. Wnt reporter and lineage-tracing strains of mice have been employed to create molecular maps of Wnt responsiveness in the craniofacial tissues, and these patterns of Wnt signaling colocalize with stem/progenitor populations in the rodent incisor apex, the dental pulp, the alveolar bone, the periodontal ligament, the cementum, and oral mucosa. The importance of Wnt signaling in both the maintenance and healing of these craniofacial tissues is summarized, and the therapeutic potential of Wnt-based strategies to accelerate healing through activation of endogenous stem cells is highlighted.
Collapse
Affiliation(s)
- X Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - J Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - B Salmon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA Dental School, University Paris Descartes PRES Sorbonne Paris Cite, Montrouge, France; and AP-HP Odontology Department Bretonneau, Hopitaux Universitaires Paris Nord Val de Seine, Paris, France
| | - L Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA Orthodontic Department, Stomatology Hospital of Chongqing Medical University; Chongqing Key Laboratory of Oral Disease and Biomedical Sciences; and Chongqing Municipal Key Laboratory, Chongqing, China
| | - W H Lim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - B Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - D J Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - R C Ransom
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - G Singh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - M Gillette
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - S Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|