1
|
Waidi YO, Debnath S, Datta S, Chatterjee K. 3D-Printed Silk Proteins for Bone Tissue Regeneration and Associated Immunomodulation. Biomacromolecules 2024; 25:5512-5540. [PMID: 39133748 DOI: 10.1021/acs.biomac.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Current bone repair methods have limitations, prompting the exploration of innovative approaches. Tissue engineering emerges as a promising solution, leveraging biomaterials to craft scaffolds replicating the natural bone environment, facilitating cell growth and differentiation. Among fabrication techniques, three-dimensional (3D) printing stands out for its ability to tailor intricate scaffolds. Silk proteins (SPs), known for their mechanical strength and biocompatibility, are an excellent choice for engineering 3D-printed bone tissue engineering (BTE) scaffolds. This article comprehensively reviews bone biology, 3D printing, and the unique attributes of SPs, specifically detailing criteria for scaffold fabrication such as composition, structure, mechanics, and cellular responses. It examines the structural, mechanical, and biological attributes of SPs, emphasizing their suitability for BTE. Recent studies on diverse 3D printing approaches using SPs-based for BTE are highlighted, alongside advancements in their 3D and four-dimensional (4D) printing and their role in osteo-immunomodulation. Future directions in the use of SPs for 3D printing in BTE are outlined.
Collapse
Affiliation(s)
- Yusuf Olatunji Waidi
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Sudipto Datta
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
2
|
Piszko PJ, Piszko A, Kiryk S, Kiryk J, Horodniczy T, Struzik N, Wiśniewska K, Matys J, Dobrzyński M. Bone Regeneration Capabilities of Scaffolds Containing Chitosan and Nanometric Hydroxyapatite-Systematic Review Based on In Vivo Examinations. Biomimetics (Basel) 2024; 9:503. [PMID: 39194482 DOI: 10.3390/biomimetics9080503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
In this systematic review, the authors aimed to investigate the state of knowledge on in vivo evaluations of chitosan and nanometric hydroxyapatite (nanohydroxyapatite, nHAp) scaffolds for bone-tissue regeneration. In March 2024, an electronic search was systematically conducted across the PubMed, Cochrane, and Web of Science databases using the keywords (hydroxyapatite) AND (chitosan) AND (scaffold) AND (biomimetic). Methodologically, the systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol to the letter. Initially, a total of 375 studies were screened, and 164 duplicates were removed. A further 188 articles were excluded because they did not correspond to the predefined topics, and an additional 3 articles were eliminated due to the inability to obtain the full text. The final compilation included 20 studies. All publications indicated a potential beneficial effect of the scaffolds in in vivo bone defect repair. A beneficial effect of hydroxyapatite as a scaffold component was observed in 16 studies, including greater mechanical resistance, cellular differentiation, and enhanced bone damage regeneration. The addition of chitosan and apatite ceramics, which combined the strengths of both materials, had the potential to become a useful bone-tissue engineering material.
Collapse
Affiliation(s)
- Paweł J Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Aleksandra Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Sylwia Kiryk
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Jan Kiryk
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Tomasz Horodniczy
- Ortho.pl Centrum Zdrowego Uśmiechu, Buforowa 34, 52-131 Wrocław, Poland
| | - Natalia Struzik
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-368 Wrocław, Poland
| | - Kamila Wiśniewska
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Jacek Matys
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| |
Collapse
|
3
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
4
|
Han Y, Wu Y, Wang F, Li G, Wang J, Wu X, Deng A, Ren X, Wang X, Gao J, Shi Z, Bai L, Su J. Heterogeneous DNA hydrogel loaded with Apt02 modified tetrahedral framework nucleic acid accelerated critical-size bone defect repair. Bioact Mater 2024; 35:1-16. [PMID: 38298451 PMCID: PMC10828543 DOI: 10.1016/j.bioactmat.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Segmental bone defects, stemming from trauma, infection, and tumors, pose formidable clinical challenges. Traditional bone repair materials, such as autologous and allogeneic bone grafts, grapple with limitations including source scarcity and immune rejection risks. The advent of nucleic acid nanotechnology, particularly the use of DNA hydrogels in tissue engineering, presents a promising solution, attributed to their biocompatibility, biodegradability, and programmability. However, these hydrogels, typically hindered by high gelation temperatures (∼46 °C) and high construction costs, limit cell encapsulation and broader application. Our research introduces a novel polymer-modified DNA hydrogel, developed using nucleic acid nanotechnology, which gels at a more biocompatible temperature of 37 °C and is cost-effective. This hydrogel then incorporates tetrahedral Framework Nucleic Acid (tFNA) to enhance osteogenic mineralization. Furthermore, considering the modifiability of tFNA, we modified its chains with Aptamer02 (Apt02), an aptamer known to foster angiogenesis. This dual approach significantly accelerates osteogenic differentiation in bone marrow stromal cells (BMSCs) and angiogenesis in human umbilical vein endothelial cells (HUVECs), with cell sequencing confirming their targeting efficacy, respectively. In vivo experiments in rats with critical-size cranial bone defects demonstrate their effectiveness in enhancing new bone formation. This innovation not only offers a viable solution for repairing segmental bone defects but also opens avenues for future advancements in bone organoids construction, marking a significant advancement in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yafei Han
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yan Wu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fuxiao Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Jian Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiang Wu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Anfu Deng
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaoxiang Ren
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiuhui Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jie Gao
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhongmin Shi
- National Center for Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Hou X, Sitthisang S, Song B, Xu X, Jonhson W, Tan Y, Yodmuang S, He C. Entropically Toughened Robust Biodegradable Polymer Blends and Composites for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2912-2920. [PMID: 38174974 DOI: 10.1021/acsami.3c14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Biodegradable polymers and composites are promising candidates for biomedical implants in tissue engineering. However, state-of-the-art composite scaffolds suffer from a strength-toughness dilemma due to poor interfacial adhesion and filler dispersion. In this work, we propose a facile and scalable strategy to fabricate strong and tough biocomposite scaffolds through interfacial toughening. The immiscible biopolymer matrix is compatible by the direct incorporation of a third polymer. Densely entangled polymer chains lead to massive crazes and global shear yields under tension. Weak chemical interaction and high-shear melt processing create nanoscale dispersion of nanofillers within the matrix. The resultant ternary blends and composites exhibit an 11-fold increase in toughness without compromising stiffness and strength. At 70% porosity, three-dimensional (3D)-printed composite scaffolds demonstrate high compressive properties comparable to those of cancellous bones. In vitro cell culture on the scaffolds demonstrates not only good cell viability but also effective osteogenic differentiation of human mesenchymal stem cells. Our findings present a widely applicable strategy to develop high-performance biocomposite materials for tissue regeneration.
Collapse
Affiliation(s)
- Xunan Hou
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Sonthikan Sitthisang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathum Wan, Bangkok 10330, Thailand
| | - Bangjie Song
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Xin Xu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Win Jonhson
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Yonghao Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathum Wan, Bangkok 10330, Thailand
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok 10330 Thailand
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis 138635, Singapore
| |
Collapse
|
6
|
Xue Z, Liao Y, Li Y. Effects of microenvironment and biological behavior on the paracrine function of stem cells. Genes Dis 2024; 11:135-147. [PMID: 37588208 PMCID: PMC10425798 DOI: 10.1016/j.gendis.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 08/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), the most well-studied cell type in the field of stem cell therapy, have multi-lineage differentiation and self-renewal potential. MSC-based therapies have been used to treat diverse diseases because of their ability to potently repair tissue and locally restore function. An increasing body of evidence demonstrates that paracrine function is central to the effects of MSC-based therapy. Growth factors, cytokines, chemokines, extracellular matrix components, and extracellular vehicles all contribute to the beneficial effects of MSCs on tissue regeneration and repair. The paracrine substances secreted by MSCs change depending on the tissue microenvironment and biological behavior. In this review, we discuss the bioactive substances secreted by MSCs depending on the microenvironment and biological behavior and their regulatory mechanisms, which explain their potential to treat human diseases, to provide new ideas for further research and clinical cell-free therapy.
Collapse
Affiliation(s)
- Zhixin Xue
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Liao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
7
|
Dai Z, Chen Y, He E, Wang H, Guo W, Wu Z, Huang K, Zhao Q. Interleukin-19 promotes bone resorption by suppressing osteoprotegerin expression in BMSCs in a lipopolysaccharide-induced bone loss mouse model. Bone Joint Res 2023; 12:691-701. [PMID: 37918438 PMCID: PMC10622185 DOI: 10.1302/2046-3758.1211.bjr-2023-0101.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Aims Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis. Methods Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action. Results In the LPS-induced bone loss mouse model, the levels of IL-19 in peripheral blood serum and femoral bone marrow suspension were significantly increased. The in vivo results indicated that global IL-19 deletion had no significant effect on RANKL content in the serum and bone marrow, but could increase the content of OPG in serum and femoral bone marrow, suggesting that IL-19 inhibits OPG expression in bone marrow mesenchymal stem cells (BMSCs) and thus increases bone resorption. Conclusion IL-19 promotes bone resorption by suppressing OPG expression in BMSCs in a LPS-induced bone loss mouse model, which highlights the potential benefits and side effects of IL-19 for future clinical applications.
Collapse
Affiliation(s)
- Zhicheng Dai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enjun He
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjie Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenkai Wu
- Department of Pediatric Orthopaedics, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Huang
- Department of Orthopedics, Zhabei Central Hospital of Jing’an District, Shanghai, China
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
9
|
Wei S, Wang Y, Sun Y, Gong L, Dai X, Meng H, Xu W, Ma J, Hu Q, Ma X, Peng J, Gu X. Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects. Int J Biol Macromol 2023; 235:123861. [PMID: 36870644 DOI: 10.1016/j.ijbiomac.2023.123861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Compared with most nondegradable or slowly degradable bone repair materials, bioactive biodegradable porous scaffolds with certain mechanical strengths can promote the regeneration of both new bone and vasculature while the cavity created by their degradation can be replaced by the infiltration of new bone tissue. Mineralized collagen (MC) is the basic structural unit of bone tissue, and silk fibroin (SF) is a natural polymer with adjustable degradation rates and superior mechanical properties. In this study, a three-dimensional porous biomimetic composite scaffold with a two-component SF-MC system was constructed based on the advantages of both materials. The spherical mineral agglomerates of the MC were uniformly distributed on the surface and inside the SF skeleton, which ensured good mechanical properties while regulating the degradation rate of the scaffold. Second, the SF-MC scaffold had good osteogenic induction of bone marrow mesenchymal stem cells (BMSCs) and preosteoblasts (MC3T3-E1) and also promoted the proliferation of MC3T3-E1 cells. Finally, in vivo 5 mm cranial defect repair experiments confirmed that the SF-MC scaffold stimulated vascular regeneration and promoted new bone regeneration in vivo by means of in situ regeneration. Overall, we believe that this low-cost biomimetic biodegradable SF-MC scaffold with many advantages has some clinical translation prospects.
Collapse
Affiliation(s)
- Shuai Wei
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Hexi District, Tianjin 300211, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China; Senior Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 1th Medical Center of PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China; Senior Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 1th Medical Center of PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China
| | - Haoye Meng
- Senior Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 1th Medical Center of PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Wenjing Xu
- Senior Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 1th Medical Center of PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Hexi District, Tianjin 300211, China; Institute of Orthopedics, Tianjin Hospital Tianjin University, Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, No. 155 Munan Road, Heping District, Tianjin 300050, China
| | - Qian Hu
- Department of Geriatrics, The Second People's Hospital of Nantong, Affiliated Rehabilitation Hospital of Nantong University, No. 298 Xinhua Road, Chongchuan District, Nantong 226006, China
| | - Xinlong Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Hexi District, Tianjin 300211, China; Institute of Orthopedics, Tianjin Hospital Tianjin University, Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, No. 155 Munan Road, Heping District, Tianjin 300050, China.
| | - Jiang Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China; Senior Department of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 1th Medical Center of PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong 226001, China.
| |
Collapse
|
10
|
Jiang B, Shi A, Xu Y, Zhang Y, Chen Y, Jiang X, Liu H, Zhang L. SDF-1α and CTGF functionalized Gelatin methacryloyl (GelMA) hydrogels enhance fibroblast activation to promote wound healing. MATERIALS TODAY COMMUNICATIONS 2023; 34:105152. [DOI: 10.1016/j.mtcomm.2022.105152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Yang G, Chen H, Chen Q, Qiu J, Qahar M, Fan Z, Chu W, Tredget EE, Wu Y. Injury-induced interleukin-1 alpha promotes Lgr5 hair follicle stem cells de novo regeneration and proliferation via regulating regenerative microenvironment in mice. Inflamm Regen 2023; 43:14. [PMID: 36803580 PMCID: PMC9940372 DOI: 10.1186/s41232-023-00265-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/29/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The hair follicles (HFs) are barely regenerated after loss in injuries in mammals as well as in human beings. Recent studies have shown that the regenerative ability of HFs is age-related; however, the relationship between this phenomenon and the stem cell niche remains unclear. This study aimed to find a key secretory protein that promotes the HFs regeneration in the regenerative microenvironment. METHODS To explore why age affects HFs de novo regeneration, we established an age-dependent HFs regeneration model in leucine-rich repeat G protein-coupled receptor 5 (Lgr5) + /mTmG mice. Proteins in tissue fluids were analyzed by high-throughput sequencing. The role and mechanism of candidate proteins in HFs de novo regeneration and hair follicle stem cells (HFSCs) activation were investigated through in vivo experiments. The effects of candidate proteins on skin cell populations were investigated by cellular experiments. RESULTS Mice under 3-week-old (3W) could regenerate HFs and Lgr5 HFSCs, which were highly correlated with the immune cells, cytokines, IL-17 signaling pathway, and IL-1α level in the regeneration microenvironment. Additionally, IL-1α injection induced de novo regeneration of HFs and Lgr5 HFSCs in 3W mouse model with a 5 mm wound, as well as promoted activation and proliferation of Lgr5 HFSCs in 7-week-old (7W) mice without wound. Dexamethasone and TEMPOL inhibited the effects of IL-1α. Moreover, IL-1α increased skin thickness and promoted the proliferation of human epidermal keratinocyte line (HaCaT) and skin-derived precursors (SKPs) in vivo and in vitro, respectively. CONCLUSIONS In conclusion, injury-induced IL-1α promotes HFs regeneration by modulating inflammatory cells and oxidative stress-induced Lgr5 HFSCs regeneration as well as promoting skin cell populations proliferation. This study uncovers the underlying molecular mechanisms enabling HFs de novo regeneration in an age-dependent model.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. .,Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China. .,Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Haiyan Chen
- grid.499361.0Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
| | - Qun Chen
- grid.499361.0Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
| | - Jiayi Qiu
- grid.462844.80000 0001 2308 1657Faculté Des Lettres, Sorbonne Université (Paris Sorbonne, 75006 Paris IV), Paris, France
| | - Mulan Qahar
- grid.452847.80000 0004 6068 028XDepartment of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035 China ,grid.499361.0Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
| | - Zhimeng Fan
- grid.12527.330000 0001 0662 3178State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
| | - Weiwei Chu
- grid.12527.330000 0001 0662 3178State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China ,grid.499361.0Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055 China
| | - Edward E. Tredget
- grid.241114.30000 0004 0459 7625Department of Surgery, Division of Critical Care, University of Alberta Hospital, Edmonton, AB ABT6G2B7 Canada
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. .,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Abere DV, Ojo SA, Oyatogun GM, Paredes-Epinosa MB, Niluxsshun MCD, Hakami A. Mechanical and morphological characterization of nano-hydroxyapatite (nHA) for bone regeneration: A mini review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
López Barreiro D, Martín-Moldes Z, Blanco Fernández A, Fitzpatrick V, Kaplan DL, Buehler MJ. Molecular simulations of the interfacial properties in silk-hydroxyapatite composites. NANOSCALE 2022; 14:10929-10939. [PMID: 35852800 PMCID: PMC9351605 DOI: 10.1039/d2nr01989b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/10/2022] [Indexed: 06/02/2023]
Abstract
Biomineralization is a common strategy used in Nature to improve the mechanical strength and toughness of biological materials. This strategy, applied in materials like bone or nacre, serves as inspiration for materials scientists and engineers to design new materials for applications in healthcare, soft robotics or the environment. In this regard, composites consisting of silk and hydroxyapatite have been extensively researched for bone regeneration applications, due to their reported cytocompatibility and osteoinduction capacity that supports bone formation in vivo. Thus, it becomes relevant to understand how silk and hydroxyapatite interact at their interface, and how this affects the overall mechanical properties of these composites. This theoretical-experimental work investigates the interfacial dynamic and structural properties of silk in contact with hydroxyapatite, combining molecular dynamics simulations with analytical characterization. Our data indicate that hydroxyapatite decreases the β-sheets in silk, which are a key load-bearing element of silk. The β-sheets content can usually be increased in silk biomaterials via post-processing methods, such as water vapor annealing. However, the presence of hydroxyapatite appears to reduce also for the formation of β-sheets via water vapor annealing. This work sheds light into the interfacial properties of silk-hydroxyapatite composite and their relevance for the design of composite biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Diego López Barreiro
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
| | - Zaira Martín-Moldes
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Adrián Blanco Fernández
- Instituto de Cerámica de Galicia (ICG), Universidade de Santiago de Compostela, Avda. do Mestre Mateo, 25, 15706, Santiago de Compostela, A Coruña, Spain
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Wang L, Lian J, Xia Y, Guo Y, Xu C, Zhang Y, Xu J, Zhang X, Li B, Zhao B. A study on in vitro and in vivo bioactivity of silk fibroin / nano-hydroxyapatite / graphene oxide composite scaffolds with directional channels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Xu Y, Qi J, Sun W, Zhong W, Wu H. Therapeutic Effects of Zoledronic Acid-Loaded Hyaluronic Acid/Polyethylene Glycol/Nano-Hydroxyapatite Nanoparticles on Osteosarcoma. Front Bioeng Biotechnol 2022; 10:897641. [PMID: 35694235 PMCID: PMC9181619 DOI: 10.3389/fbioe.2022.897641] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
Zoledronic acid (ZOL) has been approved as the only bisphosphonate for the prevention and treatment of metastatic bone diseases with acceptable safety and tolerability. However, systemic or direct injection of ZOL often causes severe side effects, which limits its clinical application. Here, an innovative nano-drug delivery system, ZOL-loaded hyaluronic acid/polyethylene glycol/nano-hydroxyapatite nanoparticles (HA-PEG-nHA-ZOL NPs), has been found to effectively inhibit the proliferation of three types of human osteosarcoma cell lines (143b, HOS, and MG63) at 1–10 μmol/L, while with low cell cytotoxicity on normal cells. The NPs significantly enhanced the apoptosis-related protein expression and tumor cell apoptosis rate. The NPs could also inhibit the proliferation of osteosarcoma cells by blocking the S phase of the cell cycle. In the orthotopic osteosarcoma nude mice model, local injection of the HA-PEG-nHA-ZOL NPs stimulated tumor necrosis, apoptosis, and granulocyte infiltration in the blood vessels. Altogether, the ZOL nano-delivery system possesses great potential for local treatment to prevent local tumor recurrence and can be applied in clinical osteosarcoma therapy.
Collapse
Affiliation(s)
- Yan Xu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingqi Qi
- Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Wei Sun
- Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Wu Zhong
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongwei Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Hongwei Wu,
| |
Collapse
|
16
|
Heseltine PL, Bayram C, Gultekinoglu M, Homer-Vanniasinkam S, Ulubayram K, Edirisinghe M. Facile One-Pot Method for All Aqueous Green Formation of Biocompatible Silk Fibroin-Poly(Ethylene Oxide) Fibers for Use in Tissue Engineering. ACS Biomater Sci Eng 2022; 8:1290-1300. [PMID: 35232011 PMCID: PMC9096800 DOI: 10.1021/acsbiomaterials.1c01555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk fibroin (SF) fibers are highly regarded in tissue engineering because of their outstanding biocompatibility and tunable properties. A challenge remains in overcoming the trade-off between functioning and biocompatible fibers and the use of cytotoxic, environmentally harmful organic solvents in their processing and formation. The aim of this research was to produce biocompatible SF fibers without the use of cytotoxic solvents, via pressurized gyration (PG). Aqueous SF was blended with poly(ethylene oxide) (PEO) in ratios of 80:20 (labeled SF-PEO 80:20) and 90:10 (labeled SF-PEO 90:10) and spun into fibers using PG, assisted by a range of applied pressures and heat. Pure PEO (labeled PEO-Aq) and SF solubilized in hexafluoro-isopropanol (HFIP) (labeled SF-HFIP) and aqueous SF (labeled SF-Aq) were also prepared for comparison. The resulting fibers were characterized using SEM, TGA, and FTIR. Their in vitro cell behavior was analyzed using a Live/Dead assay and cell proliferation studies with the SaOS-2 human bone osteosarcoma cell line (ATCC, HTB-85) and human fetal osteoblast cells (hFob) (ATCC, CRL-11372) in 2D culture conditions. Fibers in the micrometer range were successfully produced using SF-PEO blends, SF-HFIP, and PEO-Aq. The fiber thickness ranged from 0.71 ± 0.17 μm for fibers produced using SF-PEO 90:10 with no applied pressure to 2.10 ± 0.78 μm for fibers produced using SF-PEO 80:10 with 0.3 MPa applied pressure. FTIR confirmed the presence of SF via amide I and amide II bands in the blend fibers because of a change in structural conformation. No difference was observed in thermogravimetric properties among varying pressures and no significant difference in fiber diameters for pressures. SaOS-2 cells and hFOb cell studies demonstrated higher cell densities and greater live cells on SF-PEO blends when compared to SF-HFIP. This research demonstrates a scalable and green method of producing SF-based constructs for use in bone-tissue engineering applications.
Collapse
Affiliation(s)
- Phoebe Louiseanne Heseltine
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Cem Bayram
- Institute of Science and Technology, Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara 06800, Turkey
| | - Merve Gultekinoglu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara 06800, Turkey
| | | | - Kezban Ulubayram
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara 06800, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
17
|
Aglan HA, Fouad-Elhady EA, Hassan RE, Sabry GM, Ahmed HH. Nanoplatforms for Promoting Osteogenesis in Ovariectomy-Induced
Osteoporosis in the Experimental Model. CURRENT NANOMEDICINE 2022; 12:44-62. [DOI: 10.2174/2468187312666220217104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 01/05/2025]
Abstract
Background:
Osteoporosis is a debilitating bone ailment characterized by the obvious loss of bone mass and bone microarchitecture impairment.
Objective:
This study aimed to illuminate the in vivo usefulness of nanotechnology as a treatment for osteoporosis via analyzing the effectiveness of nano-hydroxyapatite (nHa), nano-hydroxy- apatite/chitosan (nHa/C), and nano-hydroxyapatite/silver (nHa/S) in mitigation of osteoporosis in ovariectomized rats.
Method:
The characterization of the nHa, nHa/C, and nHa/S was carried out using TEM, SEM, FTIR, and Zeta potential measurements. This in vivo study included 48 adult female rats that were randomized into six groups (8 rats/group): (1) Sham-operated control, (2) osteoporotic, (3) nHa, (4) nHa/C, (5) nHa/S, and (6) Fosamax®. Serum osterix level was quantified using ELISA. Femur bone morphogenetic protein 2 and SMAD1 mRNA levels were evaluated by qPCR. The femur bones were scanned by DEXA for measurement of bone mineral density and bone mineral content. In ad-dition, a histopathological examination of femur bones was performed.
Results:
The present approach denoted that the treatment with nHa, nHa/C, or nHa/S yields a signif-icant rise in serum level of osterix and mRNA levels of bone morphogenetic protein 2 and SMAD1 as well as significant enhancements of bone tissue minerals.
Conclusion:
The findings affirmed the potency of nHa, nHa/C, and nHa/S as auspicious nanoplat-forms for repairing bone defects in the osteoporotic rat model. The positive effect of the inspected nanoformulations arose from bone formation indicators in serum and tissue, and additionally, the reinforcement of bone density and content, which were verified by the histopathological description of bone tissue sections.
Collapse
Affiliation(s)
- Hadeer A. Aglan
- Hormones Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | | | - Rasha E. Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gilane M. Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H. Ahmed
- Hormones Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
18
|
Ghanbari E, Mehdipour A, Khazaei M, Khoshfeterat AB, Niknafs B. A review of recent advances on osteogenic applications of Silk fibroin as a potential bio-scaffold in bone tissue engineering. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2032707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elham Ghanbari
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Liu H, Liu S, Song X, Jiang A, Zou Y, Deng Y, Yue C, Li Z, Yang D, Yang C, Sun D, Yang F, Li M, Jiang K, Lu H, Hu W, Zheng Y. Nanoparticle encapsulated CQ/TAM combination harmonizes with MSCs in arresting progression of severity in AP mice through iNOS (IDO) signaling. Mater Today Bio 2022; 14:100226. [PMID: 35308042 PMCID: PMC8924312 DOI: 10.1016/j.mtbio.2022.100226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Background Sever acute pancreatitis (SAP) is a critical disease with high mortality, and lack of clinically available treatments with specificity and effectiveness. Bone marrow derived mesenchymal stem cells (BMSCs) exhibited moderate effect on AP which needs further improvement. Methods Pancreatic infiltrating lymphocytes were analyzed to demonstrate the intervention of BMSCs on inflammatory cell infiltration of AP. Gene silencing with siRNA and small molecule inhibitor were utilized to determine the key effector molecule of BMSCs on AP. Pharmacological regulation and nanotechnology were introduced to further ameliorate BMSCs action. Results It was revealed that BMSCs prevent the progression of acute pancreatitis (AP) by reducing recruitment of macrophages, neutrophils and CD4+T cells in the lesion site. The pivotal role of chemokine–iNOS–IDO axis for BMSCs to intervene AP was confirmed. Compared with any single drug, Chloroquine/Tamoxifen combination together with IFN-γ pronouncedly up-regulated the transcription of several MSC immune regulators such as COX-2, PD-L1, HO-1 especially iNOS/IDO. As expected, BMSCs and human umbilical cord mesenchymal stem cells (UMSCs) pretreated with CQ/TAM/IFN-γ exerted enhanced intervention in AP and SAP mice. Moreover, pretreatment with CQ-LPs/TAM-NPs combination not only counteracted MSCs proliferation inhibition induced by free drugs but also enhanced their efficacy. Conclusion Under the background of rapid progress in MSCs clinical translation, this study focuses on the urgent clinical issue and initiates an original mechanism-based strategy to promote intervention on severity progression of SAP, which promises its clinical translation in future.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Simeng Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Xiaoshuang Song
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Ailing Jiang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Yu Zou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Yuchuan Deng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Chao Yue
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Zhenlu Li
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Dujiang Yang
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chengli Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Dan Sun
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Fan Yang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Mao Li
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Kun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huimin Lu
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Weiming Hu
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yu Zheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
- Corresponding author.
| |
Collapse
|
20
|
Platelet-Derived Growth Factor-Functionalized Scaffolds for the Recruitment of Synovial Mesenchymal Stem Cells for Osteochondral Repair. Stem Cells Int 2022; 2022:2190447. [PMID: 35126525 PMCID: PMC8813289 DOI: 10.1155/2022/2190447] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 01/05/2023] Open
Abstract
Cartilage regeneration is still a challenge for clinicians because of avascularity, denervation, load-bearing, synovial movement, and the paucity of endogenous repair cells. We constructed a multilayered osteochondral bionic scaffold and examined its repair capacity using a rabbit osteochondral defect model. The cartilage phase and interface layer of the scaffold were prepared by freeze-drying, whereas the bone phase of the scaffold was prepared by high-temperature sintering. The three-phase osteochondral bionic scaffold was formed by joining the hydroxyapatite (HAp) and silk fibroin (SF) scaffolds using the repeated freeze-thaw method. Different groups of scaffolds were implanted into the rabbit osteochondral defect model, and their repair capacities were assessed using imaging and histological analyses. The cartilage phase and the interface layer of the scaffold had a pore size of 110.13 ± 29.38 and 96.53 ± 33.72 μm, respectively. All generated scaffolds exhibited a honeycomb porous structure. The polydopamine- (PDA-) modified scaffold released platelet-derived growth factor (PDGF) for 4 weeks continuously, reaching a cumulative release of 71.74 ± 5.38%. Synovial mesenchymal stem cells (SMSCs) adhered well to all scaffolds, but demonstrated the strongest proliferation ability in the HSPP (HAp-Silk-PDA-PDGF) group. Following scaffold-induced chondrogenic differentiation, SMSCs produced much chondrocyte extracellular matrix (ECM). In in vivo experiments, the HSPP group exhibited a significantly higher gross tissue morphology score and achieved cartilage regeneration at an earlier stage and a significantly better repair process compared with the other groups (P < 0.05). Histological analysis revealed that the new cartilage tissue in the experimental group had a better shape and almost filled the defect area, whereas the scaffold was nearly completely degraded. The new cartilage was effectively fused with the surrounding normal cartilage, and a substantial amount of chondrocyte ECM was formed. The SF/HAp three-layer osteochondral bionic scaffold exhibited favorable pore size, porosity, and drug sustained-release properties. It demonstrated good biocompatibility in vitro and encouraging repair effect at osteochondral defect site in vivo, thereby expected to enabling the repair and regeneration of osteochondral damage.
Collapse
|
21
|
Deininger C, Wagner A, Heimel P, Salzer E, Vila XM, Weißenbacher N, Grillari J, Redl H, Wichlas F, Freude T, Tempfer H, Teuschl-Woller AH, Traweger A. Enhanced BMP-2-Mediated Bone Repair Using an Anisotropic Silk Fibroin Scaffold Coated with Bone-like Apatite. Int J Mol Sci 2021; 23:283. [PMID: 35008718 PMCID: PMC8745248 DOI: 10.3390/ijms23010283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
The repair of large bone defects remains challenging and often requires graft material due to limited availability of autologous bone. In clinical settings, collagen sponges loaded with excessive amounts of bone morphogenetic protein 2 (rhBMP-2) are occasionally used for the treatment of bone non-unions, increasing the risk of adverse events. Therefore, strategies to reduce rhBMP-2 dosage are desirable. Silk scaffolds show great promise due to their favorable biocompatibility and their utility for various biofabrication methods. For this study, we generated silk scaffolds with axially aligned pores, which were subsequently treated with 10× simulated body fluid (SBF) to generate an apatitic calcium phosphate coating. Using a rat femoral critical sized defect model (CSD) we evaluated if the resulting scaffold allows the reduction of BMP-2 dosage to promote efficient bone repair by providing appropriate guidance cues. Highly porous, anisotropic silk scaffolds were produced, demonstrating good cytocompatibility in vitro and treatment with 10× SBF resulted in efficient surface coating. In vivo, the coated silk scaffolds loaded with a low dose of rhBMP-2 demonstrated significantly improved bone regeneration when compared to the unmineralized scaffold. Overall, our findings show that this simple and cost-efficient technique yields scaffolds that enhance rhBMP-2 mediated bone healing.
Collapse
Affiliation(s)
- Christian Deininger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria; (C.D.); (A.W.); (N.W.); (H.T.)
- Department of Orthopedics and Traumatology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (F.W.); (T.F.)
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria; (C.D.); (A.W.); (N.W.); (H.T.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
| | - Patrick Heimel
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Elias Salzer
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Xavier Monforte Vila
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Nadja Weißenbacher
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria; (C.D.); (A.W.); (N.W.); (H.T.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
- Department of Biotechnology, Institute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| | - Florian Wichlas
- Department of Orthopedics and Traumatology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (F.W.); (T.F.)
| | - Thomas Freude
- Department of Orthopedics and Traumatology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (F.W.); (T.F.)
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria; (C.D.); (A.W.); (N.W.); (H.T.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
| | - Andreas Herbert Teuschl-Woller
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria; (C.D.); (A.W.); (N.W.); (H.T.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
| |
Collapse
|
22
|
Yu X, Shen G, Shang Q, Zhang Z, Zhao W, Zhang P, Liang D, Ren H, Jiang X. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Int J Biol Macromol 2021; 193:510-518. [PMID: 34710477 DOI: 10.1016/j.ijbiomac.2021.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023]
Abstract
In this study, we investigated the effect of three-dimensional of naringin/gelatin microspheres/nano-hydroxyapatite/silk fibroin (NG/GMs/nHA/SF) scaffolds on repair of a critical-size bone defect of lumbar 6 in osteoporotic rats. In this work, a cell-free scaffold for bone-tissue engineering based on a silk fibroin (SF)/nano-hydroxyapatite (nHA) scaffold was developed. The scaffold was fabricated by lyophilization. Naringin (NG) was loaded into gelatin microspheres (GMs), which were encapsulated in the nHA/SF scaffolds. The materials were characterized using x ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. Moreover, the biomechanics, degradation, and drug-release profile of the scaffold were also evaluated. In vitro, the effect of the scaffold on the adhesion, proliferation, and osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) was evaluated. In vivo, at 3 months after ovariectomy, a critical-size lumbar defect was indued in the rats to evaluate scaffold therapeutic potential. A 3-mm defect in L6 developed in 60 SD rats, which were randomly divided into SF scaffold, nHA/SF scaffold, NG/nHA/SF scaffold, NG/GMs/nHA/SF scaffold, and blank groups (n = 12 each). At 4, 8, 12, and 16 weeks postoperatively, osteogenesis was evaluated by X-ray, micro-computed tomography, hematoxylin-eosin staining, and fast green staining, and by analysis of BMP-2, Runx2, and Ocn protein levels at 16 weeks. In our results, NG/GM/nHA/SF scaffolds exhibited good biocompatibility, biomechanical strength, and promoted BMSC adhesion, proliferation, and calcium nodule formation in vitro. Moreover, NG/GMs/nHA/SF scaffolds showed greater osteogenic differentiation potential than the other scaffolds in vitro. In vivo, gradual new bone formation was observed, and bone defects recovered by 16 weeks in the experimental group. In the blank group, limited bone formation was observed, and the bone defect was obvious. In conclusion, NG/GMs/nHA/SF scaffolds promoted repair of a lumbar 6 defect in osteoporotic rats. Therefore, the NG/GMs/nHA/SF biocomposite scaffold has potential as a bone-defect-filling biomaterial for bone regeneration.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China..
| |
Collapse
|
23
|
Sun J, Li L, Xing F, Yang Y, Gong M, Liu G, Wu S, Luo R, Duan X, Liu M, Zou M, Xiang Z. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration. Stem Cell Res Ther 2021; 12:591. [PMID: 34863288 PMCID: PMC8642892 DOI: 10.1186/s13287-021-02634-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background The invasive and complicated procedures involving the use of traditional stem cells limit their application in bone tissue engineering. Cell-free, tissue-engineered bones often have complex scaffold structures and are usually engineered using several growth factors (GFs), thus leading to costly and difficult preparations. Urine-derived stem cells (USCs), a type of autologous stem cell isolated noninvasively and with minimum cost, are expected to solve the typical problems of using traditional stem cells to engineer bones. In this study, a graphene oxide (GO)-modified silk fibroin (SF)/nanohydroxyapatite (nHA) scaffold loaded with USCs was developed for immunomodulation and bone regeneration. Methods The SF/nHA scaffolds were prepared via lyophilization and cross-linked with GO using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxy succinimide (NHS). Scaffolds containing various concentrations of GO were characterized using scanning electron microscopy (SEM), the elastic modulus test, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS). Examinations of cell adhesion, proliferation, viability, morphology, alkaline phosphatase activity, and osteogenesis-related gene expression were performed to compare the osteogenesis-related biological behaviors of USCs cultured on the scaffolds. The effect of USC-laden scaffolds on the differentiation of macrophages was tested using ELISA, qRT-PCR, and immunofluorescence staining. Subcutaneous implantations in rats were performed to evaluate the inflammatory response of the USC-laden scaffolds after implantation. The scaffolds loaded with USCs were implanted into a cranial defect model in rats to repair bone defects. Micro-computed tomography (μCT) analyses and histological evaluation were performed to evaluate the bone repair effects. Results GO modification enhanced the mechanical properties of the scaffolds. Scaffolds containing less than 0.5% GO had good biocompatibility and promoted USC proliferation and osteogenesis. The scaffolds loaded with USCs induced the M2-type differentiation and inhibited the M1-type differentiation of macrophages. The USC-laden scaffolds containing 0.1% GO exhibited the best capacity for promoting the M2-type differentiation of macrophages and accelerating bone regeneration and almost bridged the site of the rat cranial defects at 12 weeks after surgery. Conclusions This composite system has the capacity for immunomodulation and the promotion of bone regeneration and shows promising potential for clinical applications of USC-based, tissue-engineered bones. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02634-w.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Lang Li
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yun Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Min Gong
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Guoming Liu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, 266003, Shangdong, People's Republic of China
| | - Shuang Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Rong Luo
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Min Zou
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, People's Republic of China.
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
24
|
Li C, Yan T, Lou Z, Jiang Z, Shi Z, Chen Q, Gong Z, Wang B. Characterization and in vitro assessment of three-dimensional extrusion Mg-Sr codoped SiO 2-complexed porous microhydroxyapatite whisker scaffolds for biomedical engineering. Biomed Eng Online 2021; 20:116. [PMID: 34819108 PMCID: PMC8611959 DOI: 10.1186/s12938-021-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large bone defects have always been a great challenge for orthopedic surgeons. The use of a good bone substitute obtained by bone tissue engineering (BTE) may be an effective treatment method. Artificial hydroxyapatite, a commonly used bone defect filler, is the main inorganic component of bones. Because of its high brittleness, fragility, and lack of osteogenic active elements, its application is limited. Therefore, its fragility should be reduced, its osteogenic activity should be improved, and a more suitable scaffold should be constructed. METHODS In this study, a microhydroxyapatite whisker (mHAw) was developed, which was doped with the essential trace active elements Mg2+ and Sr2+ through a low-temperature sintering technique. After being formulated into a slurry, a bionic porous scaffold was manufactured by extrusion molding and freeze drying, and then SiO2 was used to improve the mechanical properties of the scaffold. The hydrophilicity, pore size, surface morphology, surface roughness, mechanical properties, and release rate of the osteogenic elements of the prepared scaffold were detected and analyzed. In in vitro experiments, Sprague-Dawley (SD) rat bone marrow mesenchymal stem cells (rBMSCs) were cultured on the scaffold to evaluate cytotoxicity, cell proliferation, spreading, and osteogenic differentiation. RESULTS Four types of scaffolds were obtained: mHAw-SiO2 (SHA), Mg-doped mHAw-SiO2 (SMHA), Sr-doped mHAw-SiO2 (SSHA), and Mg-Sr codoped mHAw-SiO2 (SMSHA). SHA was the most hydrophilic (WCA 5°), while SMHA was the least (WCA 8°); SMHA had the smallest pore size (247.40 ± 23.66 μm), while SSHA had the largest (286.20 ± 19.04 μm); SHA had the smallest Young's modulus (122.43 ± 28.79 MPa), while SSHA had the largest (188.44 ± 47.89 MPa); and SHA had the smallest compressive strength (1.72 ± 0.29 MPa), while SMHA had the largest (2.47 ± 0.25 MPa). The osteogenic active elements Si, Mg, and Sr were evenly distributed and could be sustainably released from the scaffolds. None of the scaffolds had cytotoxicity. SMSHA had the highest supporting cell proliferation and spreading rate, and its ability to promote osteogenic differentiation of rBMSCs was also the strongest. CONCLUSIONS These composite porous scaffolds not only have acceptable physical and chemical properties suitable for BTE but also have higher osteogenic bioactivity and can possibly serve as potential bone repair materials.
Collapse
Affiliation(s)
- Chengyong Li
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Tingting Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhenkai Lou
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Zhimin Jiang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhi Shi
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Qinghua Chen
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhiqiang Gong
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Bing Wang
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
25
|
Zhang Y, Chen X, Li Y, Bai T, Li C, Jiang L, Liu Y, Sun C, Zhou W. Biomimetic Inorganic Nanoparticle-Loaded Silk Fibroin-Based Coating with Enhanced Antibacterial and Osteogenic Abilities. ACS OMEGA 2021; 6:30027-30039. [PMID: 34778674 PMCID: PMC8582041 DOI: 10.1021/acsomega.1c04734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Poor osseointegration and infection are the main reasons leading to the failure of hard tissue implants; especially, in recent years, the failure rate has been increasing every year owing to the continuously increasing conditions such as injury, trauma, diseases, or infections. Therefore, the development of a biomimetic surface coating of bone tissues with antibacterial function is an effective means to improve bone healing and inhibit bacterial infection. Mimicking the natural bone, in this study, we have designed a silk fibroin (collagen-like structure)-based coating inlaid with nanohydroxyapatite (nHA) and silver nanoparticles (AgNPs) for promoting antibacterial ability and osteogenesis, especially focusing on the bone mimetic structure for enhancing bone health. Observing the morphology and size of the composite nanoparticles by transmission electron microscope (TEM), nHA provided nucleation sites for the formation of AgNPs, forming an nHA/AgNP complex with a size of about 100-200 nm. Characterization of the nHA/Ag-loaded silk fibroin biomimetic coating showed an increased surface roughness with good density and compact performances. The silk fibroin-based coating loaded with uniformly distributed AgNPs and nHA could effectively inhibit the adhesion of Staphylococcus aureus on the surface and, at the same time, quickly kill planktonic bacteria, indicating their good antibacterial ability. In vitro cell experiments revealed that the biomimetic silk fibroin-based coating was beneficial to the adhesion, spreading, and proliferation of osteoblasts (MC3T3-E1). In addition, by characterizing LDH and ROS, it was found that the nHA/Ag complex could significantly reduce the cytotoxicity of AgNPs, and the osteoblasts on the coating surface maintained the structure intact.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Xiaorong Chen
- Changzhi
Medical College, Changzhi 046000, Shanxi, China
| | - Yuan Li
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Tian Bai
- Shaanxi
Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| | - Chen Li
- Changzhi
Medical College, Changzhi 046000, Shanxi, China
| | - Lingyan Jiang
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Yu Liu
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Changying Sun
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Wenhao Zhou
- Shaanxi
Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| |
Collapse
|
26
|
Interleukin-20 Acts as a Promotor of Osteoclastogenesis and Orthodontic Tooth Movement. Stem Cells Int 2021; 2021:5539962. [PMID: 34122555 PMCID: PMC8172288 DOI: 10.1155/2021/5539962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives Bones constitute organs that are engaged in constant self-remodelling. Osteoblast and osteoclast homeostasis during remodelling contribute to overall skeletal status. Orthodontics is a clinical discipline that involves the investigation and implementation of moving teeth through the bone. The application of mechanical force to the teeth causes an imbalance between osteogenesis and osteogenesis in alveolar bone, leading to tooth movement. Osteoimmunology comprises the crosstalk between the immune and skeletal systems that regulate osteoclast–osteoblast homeostasis. Interleukin- (IL-) 20, an IL-10 family member, is regarded as a proinflammatory factor for autoimmune diseases and has been implicated in bone loss disease. However, the mechanism by which IL-20 regulates osteoclast differentiation and osteoclastogenesis activation remains unclear. This study investigated the effects of IL-20 on osteoclast differentiation in a rat model; it explored the underlying molecular mechanism in vitro and the specific effects on orthodontic tooth movement in vivo. Methods For in vitro analyses, primary rat bone marrow-derived macrophages (BMMs) were prepared from Sprague–Dawley rats for osteoclast induction. After BMMs had been treated with combinations of recombinant IL-20 protein, siRNA, and plasmids, the expression levels of osteoclast-specific factors and signalling pathway proteins were detected through real-time polymerase chain reaction, western blotting, and immunofluorescence staining. For in vivo analyses, IL-20 was injected into the rat intraperitoneal cavity after the establishment of a rat orthodontic tooth movement (OTM) model. OTM distance was detected by Micro-CT and HE staining; the expression levels of protein were detected through immunofluorescence staining. Results In vitro analyses showed that a low concentration of IL-20 promoted preosteoclast proliferation and osteoclastogenesis. However, a high concentration of IL-20 inhibited BMM proliferation and osteoclastogenesis. IL-20 knockdown decreased the expression of osteoclast specific-markers, while IL-20 overexpression increased the expression of osteoclast specific-markers. Furthermore, IL-20 regulated osteoclast differentiation through the OPG/RANKL/RANK pathway. Overexpression of IL-20 could significantly upregulate RANKL-mediated osteoclast differentiation and osteoclast specific-marker expression; moreover, RANKL/NF-κB/NFATc1 acted as downstream signalling molecule for IL-20. In vivo analysis showed that OTM speed was significantly increased after intraperitoneal injection of IL-20; additionally, mechanical stress sensing proteins were markedly activated. Conclusions IL-20 augments osteoclastogenesis and osteoclast-mediated bone erosion through the RANKL/NF-κB/NFATc1 signalling pathway. IL-20 inhibition can effectively reduce osteoclast differentiation and diminish bone resorption. Furthermore, IL-20 can accelerate orthodontic tooth movement and activate mechanical stress sensing proteins.
Collapse
|
27
|
Wei J, Zhang X, Li Y, Ding X, Zhang Y, Jiang X, Lai H, Shi J. Novel application of bergapten and quercetin with anti-bacterial, osteogenesis-potentiating, and anti-inflammation tri-effects. Acta Biochim Biophys Sin (Shanghai) 2021; 53:683-696. [PMID: 33772282 DOI: 10.1093/abbs/gmab037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 01/02/2023] Open
Abstract
The bacteria-mediated inflammatory conditions adversely affect the osseointegration process of endosseous implants, which can even lead to implant malfunction or failure. Local drug delivery has been designed to exert anti-inflammatory and antibacterial activities, but whether this strategy has an effect on the compromised osseointegration under inflammation has rarely been studied. The present study focused on the osteoinductive efficacy of two known phytoestrogens [bergapten (BP) and quercetin (QE)] on implant sites under multiple bacteria-infected conditions in situ. Furthermore, the gene expression profiles of rat bone mesenchymal stem cells (rBMSCs) treated with BP and QE in the presence of Porphyromonas gingivalis-derived lipopolysaccharide were identified. The results showed that both drugs, especially QE, had significant potentiating effects on promoting osteogenic differentiation of rBMSCs, resisting multiple pathogens, and reducing inflammatory activity. Meanwhile, RNA sequencing analysis highlighted the enriched gene ontology terms and the differentially expressed genes (Vps25, Il1r2, Csf3, Efemp1, and Ccl20) that might play essential roles in regulating the above tri-effects, which provided the basis for the drug delivery system to be used as a novel therapeutic strategy for integrating peri-implant health. Overall, our study confirmed that QE appeared to outperform BP in osteogenesis and bacterial killing but not in anti-inflammation. Moreover, both drugs possess favorable tri-effects and can serve as the pivotal agents for the drug delivery system to boost osseointegration at inflammatory implant sites.
Collapse
Affiliation(s)
- Jianxu Wei
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiaomeng Zhang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yuan Li
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xinxin Ding
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi Zhang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xue Jiang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Hongchang Lai
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Junyu Shi
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
28
|
Zhao ZH, Ma XL, Zhao B, Tian P, Ma JX, Kang JY, Zhang Y, Guo Y, Sun L. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Cell Prolif 2021; 54:e13043. [PMID: 34008897 PMCID: PMC8249788 DOI: 10.1111/cpr.13043] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/17/2021] [Accepted: 04/03/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Large bone defects are a common, debilitating clinical condition that have substantial global health and economic burden. Bone tissue engineering technology has become one of the most promising approaches for regenerating defective bones. In this study, we fabricated a naringin-inlaid composite silk fibroin/hydroxyapatite (NG/SF/HAp) scaffold to repair bone defects. MATERIALS AND METHODS The salt-leaching technology was used to fabricate the NG/SF/HAp scaffold. The cytocompatibility of the NG/SF/HAp scaffold was assessed using scanning electron microscopy, live/dead cell staining and phalloidin staining. The osteogenic and angiogenic properties were assessed in vitro and in vivo. RESULTS The porous NG/SF/HAp scaffold had a well-designed biomimetic porous structure with osteoinductive and angiogenic activities. A gene microarray identified 854 differentially expressed genes between human umbilical cord-derived mesenchymal stem cells (hUCMSCs) cultured on SF-nHAp scaffolds and cells cultured on NG/SF/HAp scaffolds. The underlying osteoblastic mechanism was investigated using hUCMSCs in vitro. Naringin facilitated hUCMSC ingrowth into the SF/HAp scaffold and promoted osteogenic differentiation. The osteogenic and angiogenic capabilities of cells cultured in the NG/SF/HAp scaffold were superior to those of cells cultured in the SF/HAp scaffold. CONCLUSIONS The data indicate the potential of the SF/HAp composite scaffold incorporating naringin for bone regeneration.
Collapse
Affiliation(s)
- Zhi-Hu Zhao
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Xin-Long Ma
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Bin Zhao
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Peng Tian
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Jian-Xiong Ma
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, Tianjin, China
| | - Jia-Yu Kang
- Department of Orthopedics, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, China
| | - Yang Zhang
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, Tianjin, China
| | - Yue Guo
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, Tianjin, China
| | - Lei Sun
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, Tianjin, China
| |
Collapse
|
29
|
Three-Dimensional Printing of Hydroxyapatite Composites for Biomedical Application. CRYSTALS 2021. [DOI: 10.3390/cryst11040353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.
Collapse
|
30
|
Fu Y, Cui S, Luo D, Liu Y. Novel Inorganic Nanomaterial-Based Therapy for Bone Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:789. [PMID: 33808788 PMCID: PMC8003392 DOI: 10.3390/nano11030789] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/25/2022]
Abstract
Extensive bone defect repair remains a clinical challenge, since ideal implantable scaffolds require the integration of excellent biocompatibility, sufficient mechanical strength and high biological activity to support bone regeneration. The inorganic nanomaterial-based therapy is of great significance due to their excellent mechanical properties, adjustable biological interface and diversified functions. Calcium-phosphorus compounds, silica and metal-based materials are the most common categories of inorganic nanomaterials for bone defect repairing. Nano hydroxyapatites, similar to natural bone apatite minerals in terms of physiochemical and biological activities, are the most widely studied in the field of biomineralization. Nano silica could realize the bone-like hierarchical structure through biosilica mineralization process, and biomimetic silicifications could stimulate osteoblast activity for bone formation and also inhibit osteoclast differentiation. Novel metallic nanomaterials, including Ti, Mg, Zn and alloys, possess remarkable strength and stress absorption capacity, which could overcome the drawbacks of low mechanical properties of polymer-based materials and the brittleness of bioceramics. Moreover, the biodegradability, antibacterial activity and stem cell inducibility of metal nanomaterials can promote bone regeneration. In this review, the advantages of the novel inorganic nanomaterial-based therapy are summarized, laying the foundation for the development of novel bone regeneration strategies in future.
Collapse
Affiliation(s)
- Yu Fu
- Fourth Clinical Division, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
| | - Shengjie Cui
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
| | - Dan Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
| |
Collapse
|
31
|
Injectable cuttlefish HAP and macromolecular fibroin protein hydrogel for natural bone mimicking matrix for enhancement of osteoinduction progression. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104841] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Jang KJ, Seonwoo H, Yang M, Park S, Lim KT, Kim J, Choung PH, Chung JH. Development and characterization of waste equine bone-derived calcium phosphate cements with human alveolar bone-derived mesenchymal stem cells. Connect Tissue Res 2021; 62:164-175. [PMID: 31581855 DOI: 10.1080/03008207.2019.1655003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium phosphate cements (CPCs) are regarded as promising graft substitutes for bone tissue engineering. However, their wide use is limited by the high cost associated with the complex synthetic processes involved in their fabrication. Cheaper xenogeneic calcium phosphate (CaP) materials derived from waste animal bone may solve this problem. Moreover, the surface topography, mechanical strength, and cellular function of CPCs are influenced by the ratio of micro- to nano-sized CaP (M/NCaP) particles. In this study, we developed waste equine bone (EB)-derived CPCs with various M/NCaP particle ratios to examine the potential capacity of EB-CPCs for bone grafting materials. Our study showed that increasing the number of NCaP particles resulted in reductions in roughness and porosity while promoting smoother surfaces of EB-CPCs. Changes in the chemical properties of EB-CPCs by NCaP particles were observed using X-ray diffractometry. The mechanical properties and cohesiveness of the EB-CPCs improved as the NCaP particle content increased. In an in vitro study, EB-CPCs with a greater proportion of MCaP particles showed higher cell adhesion. Alkaline phosphatase activity indicated that osteogenic differentiation by EB-CPCs was promoted with increased NCaP particle content. These results could provide a design criterion for bone substitutes for orthopedic disease, including periodontal bone defects.
Collapse
Affiliation(s)
- Kyoung-Je Jang
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering, College of Life Science and Natural Resources, Sunchon National University , Sunchon, Republic of Korea
| | - Minho Yang
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Sangbae Park
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Ki Taek Lim
- Department of Biosystems Engineering, College of Agricultural and Life Sciences, Kangwon National University , Chuncheon, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University , Gwangju, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
33
|
Chen H, Zhang Y, Ni T, Ding P, Zan Y, Cai X, Zhang Y, Liu M, Pei R. Construction of a Silk Fibroin/Polyethylene Glycol Double Network Hydrogel with Co-Culture of HUVECs and UCMSCs for a Functional Vascular Network. ACS APPLIED BIO MATERIALS 2021; 4:406-419. [PMID: 35014292 DOI: 10.1021/acsabm.0c00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The success of complex tissue and internal organ reconstruction relies principally on the fabrication of a 3D vascular network, which guarantees the delivery of oxygen and nutrients in addition to the disposal of waste. In this study, a rapidly forming cell-encapsulated double network (DN) hydrogel is constructed by an ultrasonically activated silk fibroin network and bioorthogonal-mediated polyethylene glycol network. This DN hydrogel can be solidified within 10 s, and its mechanical property gradually increases to ∼20 kPa after 30 min. This work also demonstrates that coencapsulation of human umbilical vein endothelial cells (HUVECs) and umbilical cord-derived mesenchymal stem cells (UCMSCs) into the DN hydrogel can facilitate the formation of more mature vessels and complete the capillary network in comparison with the hydrogels encapsulated with a single cell type both in vitro and in vivo. Taking together, the DN hydrogel, combined with coencapsulation of HUVECs and UCMSCs, represents a strategy for the construction of a functional vascular network.
Collapse
Affiliation(s)
- Hong Chen
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.,Institut de Science des Matériaux de Mulhouse, IS2M-UMR CNRS 7361, UHA, 15, Rue Jean Starcky, Cedex 68057 Mulhouse, France
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tianyu Ni
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Pi Ding
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yue Zan
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xue Cai
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| | - Yiwei Zhang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
34
|
Lee D, Wufuer M, Kim I, Choi TH, Kim BJ, Jung HG, Jeon B, Lee G, Jeon OH, Chang H, Yoon DS. Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci Rep 2021; 11:746. [PMID: 33436904 PMCID: PMC7804460 DOI: 10.1038/s41598-020-80608-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical use of bioactive molecules in bone regeneration has been known to have side effects, which result from uncontrolled and supraphysiological doses. In this study, we demonstrated the synergistic effect of two bioactive molecules, bone morphogenic protein-2 (BMP-2) and alendronate (ALN), by releasing them in a sequential manner. Collagen-hydroxyapatite composite scaffolds functionalized using BMP-2 are loaded with biodegradable microspheres where ALN is encapsulated. The results indicate an initial release of BMP-2 for a few days, followed by the sequential release of ALN after two weeks. The composite scaffolds significantly increase osteogenic activity owing to the synergistic effect of BMP-2 and ALN. Enhanced bone regeneration was identified at eight weeks post-implantation in the rat 8-mm critical-sized defect. Our findings suggest that the sequential delivery of BMP-2 and ALN from the scaffolds results in a synergistic effect on bone regeneration, which is unprecedented. Therefore, such a system exhibits potential for the application of cell-free tissue engineering.
Collapse
Affiliation(s)
- Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Maierdanjiang Wufuer
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Insu Kim
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Hyun Choi
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Byung Jun Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Byoungjun Jeon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 03080, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea. .,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
35
|
Yan Z, Chen W, Jin W, Sun Y, Cai J, Gu K, Mi R, Chen N, Chen S, Shao Z. An interference screw made using a silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model. J Mater Chem B 2021; 9:5352-5364. [PMID: 34152356 DOI: 10.1039/d1tb01006a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Upgradation is still in need for the clinically applied interference screws in anterior cruciate ligament reconstruction for more reliable fixation. Silk fibroin bulk materials offer a promising opportunity for this application except lacking osteoinductivity to some extent. Here we report a novel silk-based bulk material with high content of hydroxyapatite-silk fibroin (HA-SF) hybrid particles, which is prepared via a dual-network hydrogel. This composite bulk material possesses a compression modulus of 3.2 GPa, comparable to that of the natural compact bone, and presents satisfactory cytocompatibility and osteoinductivity in vitro when combined with the HA-SF nanoparticles particularly. This composite bulk material shaped into interference screws exhibits remarkable biomechanical properties and significant new-bone ingrowth in the host bone tunnel in a rabbit anterior cruciate ligament reconstruction (ACLR) model at 4 weeks and 12 weeks post-operatively. Moreover, considering that this "hydrogel method" allows the material to be formed in a mold, avoiding complicated post fabrication, it is a potential candidate for clinical translation.
Collapse
Affiliation(s)
- Zhuo Yan
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Wenbo Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wenhe Jin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jiangyu Cai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Kai Gu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Ruixin Mi
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Ni Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
36
|
Liu H, Du Y, Yang G, Hu X, Wang L, Liu B, Wang J, Zhang S. Delivering Proangiogenic Factors from 3D-Printed Polycaprolactone Scaffolds for Vascularized Bone Regeneration. Adv Healthc Mater 2020; 9:e2000727. [PMID: 32743958 DOI: 10.1002/adhm.202000727] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Indexed: 01/04/2023]
Abstract
Natural bone is a highly vascularized tissue that relies on the vasculature for blood and nutrients supply to maintain skeletal integrity. Inadequacy of neovascularization may compromise the tissue ingrowth to the implanted scaffolds, and eventually results in failure for the repair. To tackle this issue and enhance self-vascularized bone regeneration, herein a 3D biomimetic selective lasersintering (SLS) derived scaffold, with an angiogenic growth factor immobilized on its surface, that can be released in a controlled manner is proposed. To this end, a porous polycaprolactone/hydroxyapatite (PCL/HA) scaffold is prepared via the SLS technique, which is further modified with vascular endothelial growth factor (VEGF) by coprecipitation with apatite. The resultant scaffold (PCL/HA/VEGF) has an excellent cytocompatibility, and subcutaneous implantation experiment shows that the VEGF-loaded scaffold significantly enhances the blood vessel formation compared with the VEGF-free control. It is further demonstrated that the PCL/HA/VEGF scaffold is able to enhance the in vivo bone regeneration in a rat cranial defect model. Taken together, the current study provides not only a feasible and promising scaffold candidate to enhance the vascularized bone regeneration, but also a general strategy to overcome the inadequate vascularization issue for the repair of other tissue and organs.
Collapse
Affiliation(s)
- Haoming Liu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gaojie Yang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xixi Hu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100037, China
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
37
|
Cohen DJ, Ferrara L, Stone MB, Schwartz Z, Boyan BD. Cell and Tissue Response to Polyethylene Terephthalate Mesh Containing Bone Allograft in Vitro and in Vivo. Int J Spine Surg 2020; 14:S121-S132. [PMID: 33122180 PMCID: PMC7735465 DOI: 10.14444/7135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Extended polyethylene terephthalate mesh (PET, Dacron) can provide containment of compressed particulate allograft and autograft. This study assessed if PET mesh would interfere with osteoprogenitor cell migration from vertebral plates through particulate graft, and its effect on osteoblast differentiation or the quality of bone forming within fusing vertebra during vertebral interbody fusion. METHODS The impact of PET mesh on the biological response of normal human osteoblasts (NHOst cells) and bone marrow stromal cells (MSCs) to particulate bone graft was examined in vitro. Cells were cultured on rat bone particles +/- mesh; proliferation and osteoblast differentiation were assessed. The interface between the vertebral endplate, PET mesh, and newly formed bone within consolidated allograft contained by mesh was examined in a sheep model via microradiographs, histology, and mechanical testing. RESULTS Growth on bone particles stimulated proliferation and early differentiation of NHOst cells and MSCs, but delayed terminal differentiation. This was not negatively impacted by mesh. New bone formation in vivo was not prevented by use of a PET mesh graft containment device. Fusion was improved in sites containing allograft/demineralized bone matrix (DBM) versus autograft and was further enhanced when stabilized using pedicle screws. Only sites treated with allograft/DBM+screws exhibited greater percent bone ingrowth versus discectomy or autograft. These results were mirrored biomechanically. CONCLUSIONS PET mesh does not negatively impact cell attachment to particulate bone graft, proliferation, or initial osteoblast differentiation. The results demonstrated that bone growth occurs from vertebral endplates into graft material within the PET mesh. This was enhanced by stabilization with pedicle screws leading to greater bone ingrowth and biomechanical stability across the fusion site. CLINICAL RELEVANCE The use of extended PET mesh allows containment of bone graft material during vertebral interbody fusion without inhibiting migration of osteoprogenitor cells from vertebral end plates in order to achieve fusion. LEVEL OF EVIDENCE 5.
Collapse
Affiliation(s)
- D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Lisa Ferrara
- OrthoKinetic Technologies, Southport, North Carolina
| | | | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
38
|
Gong L, Li J, Zhang J, Pan Z, Liu Y, Zhou F, Hong Y, Hu Y, Gu Y, Ouyang H, Zou X, Zhang S. An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration. Acta Biomater 2020; 117:246-260. [PMID: 33007484 DOI: 10.1016/j.actbio.2020.09.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 02/09/2023]
Abstract
Multilayer scaffolds fabricated by 3D printing or other techniques have been used to repair osteochondral defects. However, it remains a challenge to regenerate the articular cartilage and subchondral bone simultaneously with higher performance. In the present study, we enhanced the repair efficiency of osteochondral defects by developing a bi-layer scaffold: an interleukin-4 (IL-4)-loaded radially oriented gelatin methacrylate (GelMA) scaffold printed with digital light processing (DLP) in the upper layer and a porous polycaprolactone and hydroxyapatite (PCL-HA) scaffold printed with fused deposition modeling (FDM) in the lower layer. An in vitro test showed that both layers supported cell adhesion and proliferation, as the lower layer promoted osteogenic differentiation and the upper layer with IL-4 relieved the negative effects of inflammation on murine chondrocytes, which were induced by interleukin-1β (IL-1β) and M1 macrophages. In a rabbit osteochondral defect repair model, the IL-4-loaded bi-layer scaffold group obtained the highest histological score (24 ± 2) compared to the nontreated (11 ± 1) and pure bi-layer scaffold (16 ± 1) groups after 16 weeks of implantation, which showed that the IL-4-loaded bi-layer scaffold promoted regeneration of both cartilage and subchondral bone with increased formation of neocartilage and neobone tissues. Thus, the IL-4-loaded bi-layer scaffold is an attractive candidate for repair and regeneration of osteochondral defects.
Collapse
|
39
|
Cun X, Hosta-Rigau L. Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2070. [PMID: 33092104 PMCID: PMC7590059 DOI: 10.3390/nano10102070] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising strategy to treat tissue and organ loss or damage caused by injury or disease. During the past two decades, mesenchymal stem cells (MSCs) have attracted a tremendous amount of interest in tissue engineering due to their multipotency and self-renewal ability. MSCs are also the most multipotent stem cells in the human adult body. However, the application of MSCs in tissue engineering is relatively limited because it is difficult to guide their differentiation toward a specific cell lineage by using traditional biochemical factors. Besides biochemical factors, the differentiation of MSCs also influenced by biophysical cues. To this end, much effort has been devoted to directing the cell lineage decisions of MSCs through adjusting the biophysical properties of biomaterials. The surface topography of the biomaterial-based scaffold can modulate the proliferation and differentiation of MSCs. Presently, the development of micro- and nano-fabrication techniques has made it possible to control the surface topography of the scaffold precisely. In this review, we highlight and discuss how the main topographical features (i.e., roughness, patterns, and porosity) are an efficient approach to control the fate of MSCs and the application of topography in tissue engineering.
Collapse
Affiliation(s)
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
40
|
da Silva Brum I, Frigo L, Lana Devita R, da Silva Pires JL, Hugo Vieira de Oliveira V, Rosa Nascimento AL, de Carvalho JJ. Histomorphometric, Immunohistochemical, Ultrastructural Characterization of a Nano-Hydroxyapatite/Beta-Tricalcium Phosphate Composite and a Bone Xenograft in Sub-Critical Size Bone Defect in Rat Calvaria. MATERIALS 2020; 13:ma13204598. [PMID: 33076561 PMCID: PMC7602735 DOI: 10.3390/ma13204598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
Nowadays, we can observe a worldwide trend towards the development of synthetic biomaterials. Several studies have been conducted to better understand the cellular mechanisms involved in the processes of inflammation and bone healing related to living tissues. The aim of this study was to evaluate tissue behaviors of two different types of biomaterials: synthetic nano-hydroxyapatite/beta-tricalcium phosphate composite and bone xenograft in sub-critical bone defects in rat calvaria. Twenty-four rats underwent experimental surgery in which two 3 mm defects in each cavity were tested. Rats were divided into two groups: Group 1 used xenogen hydroxyapatite (Bio Oss™); Group 2 used synthetic nano-hydroxyapatite/beta-tricalcium phosphate (Blue Bone™). Sixty days after surgery, calvaria bone defects were filled with biomaterial, animals were euthanized, and tissues were stained with Masson’s trichrome and periodic acid–Schiff (PAS) techniques, immune-labeled with anti-TNF-α and anti-MMP-9, and electron microscopy analyses were also performed. Histomorphometric analysis indicated a greater presence of protein matrix in Group 2, in addition to higher levels of TNF-α and MMP-9. Ultrastructural analysis showed that biomaterial fibroblasts were associated with the tissue regeneration stage. Paired statistical data indicated that Blue Bone™ can improve bone formation/remodeling when compared to biomaterials of xenogenous origin.
Collapse
Affiliation(s)
- Igor da Silva Brum
- Implantology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil;
- Correspondence: ; Tel.: +55-21-988-244-976
| | - Lucio Frigo
- Periodontology Department, Universidade Guarulhos, Guarulhos 07023-070, São Paulo, Brazil;
| | - Renan Lana Devita
- Orthodontics Department, State University Barcelona, 08193 Barcelona, Spain;
| | | | - Victor Hugo Vieira de Oliveira
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| | - Ana Lucia Rosa Nascimento
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| | - Jorge José de Carvalho
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| |
Collapse
|
41
|
Ansari Z, Kalantar M, Soriente A, Fasolino I, Kharaziha M, Ambrosio L, Raucci MG. In-Situ Synthesis and Characterization of Chitosan/Hydroxyapatite Nanocomposite Coatings to Improve the Bioactive Properties of Ti6Al4V Substrates. MATERIALS 2020; 13:ma13173772. [PMID: 32859071 PMCID: PMC7503881 DOI: 10.3390/ma13173772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Ti6Al4V alloy is still attracting great interest because of its application as an implant material for hard tissue repair. This research aims to produce and investigate in-situ chitosan/hydroxyapatite (CS/HA) nanocomposite coatings based on different amounts of HA (10, 50 and 60 wt.%) on alkali-treated Ti6Al4V substrate through the sol-gel process to enhance in vitro bioactivity. The influence of different contents of HA on the morphology, contact angle, roughness, adhesion strength, and in vitro bioactivity of the CS/HA coatings was studied. Results confirmed that, with increasing the HA content, the surface morphology of crack-free CS/HA coatings changed for nucleation modification and HA nanocrystals growth, and consequently, the surface roughness of the coatings increased. Furthermore, the bioactivity of the CS/HA nanocomposite coatings enhanced bone-like apatite layer formation on the material surface with increasing HA content. Moreover, CS/HA nanocomposite coatings were biocompatible and, in particular, CS/10 wt.% HA composition significantly promoted human mesenchymal stem cells (hMSCs) proliferation. In particular, these results demonstrate that the treatment strategy used during the bioprocess was able to improve in vitro properties enough to meet the clinical performance. Indeed, it is predicted that the dense and crack-free CS/HA nanocomposite coatings suggest good potential application as dental implants.
Collapse
Affiliation(s)
- Zahra Ansari
- Department of Mining and Metallurgical Engineering, Yazd University, Yazd 89195-741, Iran;
| | - Mahdi Kalantar
- Department of Mining and Metallurgical Engineering, Yazd University, Yazd 89195-741, Iran;
- Correspondence: (M.K.); (M.G.R.)
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), 80078 Naples, Italy; (A.S.); (I.F.); (L.A.)
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), 80078 Naples, Italy; (A.S.); (I.F.); (L.A.)
| | - Mahshid Kharaziha
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), 80078 Naples, Italy; (A.S.); (I.F.); (L.A.)
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), 80078 Naples, Italy; (A.S.); (I.F.); (L.A.)
- Correspondence: (M.K.); (M.G.R.)
| |
Collapse
|
42
|
Ye G, Bao F, Zhang X, Song Z, Liao Y, Fei Y, Bunpetch V, Heng BC, Shen W, Liu H, Zhou J, Ouyang H. Nanomaterial-based scaffolds for bone tissue engineering and regeneration. Nanomedicine (Lond) 2020; 15:1995-2017. [PMID: 32812486 DOI: 10.2217/nnm-2020-0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The global incidence of bone tissue injuries has been increasing rapidly in recent years, making it imperative to develop suitable bone grafts for facilitating bone tissue regeneration. It has been demonstrated that nanomaterials/nanocomposites scaffolds can more effectively promote new bone tissue formation compared with micromaterials. This may be attributed to their nanoscaled structural and topological features that better mimic the physiological characteristics of natural bone tissue. In this review, we examined the current applications of various nanomaterial/nanocomposite scaffolds and different topological structures for bone tissue engineering, as well as the underlying mechanisms of regeneration. The potential risks and toxicity of nanomaterials will also be critically discussed. Finally, some considerations for the clinical applications of nanomaterials/nanocomposites scaffolds for bone tissue engineering are mentioned.
Collapse
Affiliation(s)
- Guo Ye
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Fangyuan Bao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xianzhu Zhang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhe Song
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Youguo Liao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yang Fei
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Varitsara Bunpetch
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, PR China
| | - Weiliang Shen
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hua Liu
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Jing Zhou
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hongwei Ouyang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| |
Collapse
|
43
|
Yuan H, Zheng X, Liu W, Zhang H, Shao J, Yao J, Mao C, Hui J, Fan D. A novel bovine serum albumin and sodium alginate hydrogel scaffold doped with hydroxyapatite nanowires for cartilage defects repair. Colloids Surf B Biointerfaces 2020; 192:111041. [PMID: 32330818 DOI: 10.1016/j.colsurfb.2020.111041] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022]
Abstract
Cartilage tissue engineering has become the trend of cartilage defect repair owing to the engineered biomimetic tissue that can mimic the structural, biological and functional characteristics of natural cartilage. Biomaterials with high biocompatibility and regeneration capacity are expected to be used in cartilage tissue engineering. Herein, in this study, a dual-network bovine serum albumin/sodium alginate with hydroxyapatite nanowires composite (B-S-H) hydrogel scaffold has been prepared for cartilage repair. The obtained B-S-H hydrogel scaffold exhibits ideal physical properties, such as excellent mechanical strength, high porosity and swelling ratio, as well as the excellent biological activity to promote the human bone marrow derived mesenchymal stem cells (hBMSCs) proliferation and differentiation. The in vivo study further shows that the B-S -H hydrogel scaffold can obviously promote the generation of new cartilage that integrates well with surrounding tissues and is similar to adjacent cartilage in terms of thickness. It is considered that the B-S-H hydrogel scaffold has great potential in the application of cartilage defects repair.
Collapse
Affiliation(s)
- Huifang Yuan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
| | - Xiaoyan Zheng
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
| | - Wan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
| | - Hui Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
| | - Jingjing Shao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
| | - Jiaxin Yao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
| | - Chunyi Mao
- School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
44
|
Qiu Y, Xu X, Guo W, Zhao Y, Su J, Chen J. Mesoporous Hydroxyapatite Nanoparticles Mediate the Release and Bioactivity of BMP-2 for Enhanced Bone Regeneration. ACS Biomater Sci Eng 2020; 6:2323-2335. [PMID: 33455303 DOI: 10.1021/acsbiomaterials.9b01954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient delivery of bone morphogenetic protein-2 (BMP-2) with desirable bioactivity is still a great challenge in the field of bone regeneration. In this study, a silk fibroin/chitosan scaffold incorporated with BMP-2-loaded mesoporous hydroxyapatite nanoparticles (mHANPs) was prepared (SCH-L). BMP-2 was preloaded onto mHANPs with a high surface area before mixing with a silk fibroin/chitosan composite. Bare (without BMP-2) silk fibroin/chitosan/mHANP (SCH) scaffolds and SCH scaffolds with directly absorbed BMP-2 (SCH-D) were investigated in parallel for comparison. In vitro release kinetics indicated that BMP-2 released from the SCH-L scaffold showed a significantly lower initial burst release, followed by a more sustained release over time than the SCH-D scaffold. In vitro cell viability, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and the in vivo osteogenic effect of scaffolds in a rat calvarial defect were evaluated. The results showed that compared with bare SCH and SCH-D scaffolds, the SCH-L scaffold significantly promoted the osteogenic differentiation of BMSCs in vitro and induced more pronounced bone formation in vivo. Further studies demonstrated that the mHANP-mediated satisfactory conformational change and sustained release benefited the protection of the released BMP-2 bioactivity, as confirmed by alkaline phosphatase (ALP) activity and a mineralization deposition assay. More importantly, the interaction of BMP-2/mHANPs enhanced the binding ability of BMP-2 to cellular receptors, thereby maintaining its biological activity in osteogenic differentiation and osteoinductivity well, which contributed to the markedly promoted in vitro and in vivo osteogenic efficacy of the SCH-L scaffold. Taken together, these results provide strong evidence that mHANPs represent an attractive carrier for binding BMP-2 to scaffolds. The SCH-L scaffold shows promising potential for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Yubei Qiu
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Xiaodong Xu
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Weizhong Guo
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Yong Zhao
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350004, China
| | - Jiehua Su
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| |
Collapse
|
45
|
Shen X, Yu P, Chen H, Wang J, Lu B, Cai X, Gu C, Liang G, Hao D, Ma Q, Li Y. Icariin controlled release on a silk fibroin/mesoporous bioactive glass nanoparticles scaffold for promoting stem cell osteogenic differentiation. RSC Adv 2020; 10:12105-12112. [PMID: 35496600 PMCID: PMC9050898 DOI: 10.1039/d0ra00637h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/09/2020] [Indexed: 11/21/2022] Open
Abstract
The treatment of bone defects caused by various reasons is still a major problem in orthopedic clinical work. Many studies on osteogenic implant materials have used various biologically active factors such as osteogenic inducers, but these biologically active factors have various side effects. Therefore, in this study, silk fibroin (SF) was used as a scaffold material, mesoporous bioactive glass nanoparticles (MBGNs) as a sustained release carrier, and the traditional Chinese drug icariin (ICA) was loaded to promote bone formation. The experiments in this study have proven that SF/MBGNs-ICA scaffolds can successfully load and release ICA for a long time, and the sustained-release ICA can promote the proliferation and differentiation of BMSCs for a long time. This controlled-release ICA organic/inorganic two-component scaffold material is expected to become a new bone grafting solution.
Collapse
Affiliation(s)
- Xiaofeng Shen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 889, West Wuzhong Road Suzhou Jiangsu 215009 P. R. China
| | - Pengfei Yu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 889, West Wuzhong Road Suzhou Jiangsu 215009 P. R. China
| | - Hua Chen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 889, West Wuzhong Road Suzhou Jiangsu 215009 P. R. China
| | - Jiangping Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 889, West Wuzhong Road Suzhou Jiangsu 215009 P. R. China
| | - Binjie Lu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 889, West Wuzhong Road Suzhou Jiangsu 215009 P. R. China
| | - Xuefeng Cai
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 889, West Wuzhong Road Suzhou Jiangsu 215009 P. R. China
| | - Chun Gu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 889, West Wuzhong Road Suzhou Jiangsu 215009 P. R. China
| | - Guoqiang Liang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 889, West Wuzhong Road Suzhou Jiangsu 215009 P. R. China
| | - Donglin Hao
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 889, West Wuzhong Road Suzhou Jiangsu 215009 P. R. China
| | - Qihan Ma
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 889, West Wuzhong Road Suzhou Jiangsu 215009 P. R. China
| | - Yuwei Li
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 889, West Wuzhong Road Suzhou Jiangsu 215009 P. R. China
| |
Collapse
|
46
|
Meng B, Wu D, Cheng Y, Huang P, Liu Y, Gan L, Liu C, Cao Y. Interleukin-20 differentially regulates bone mesenchymal stem cell activities in RANKL-induced osteoclastogenesis through the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT signalling pathways. Scand J Immunol 2020; 91:e12874. [PMID: 32090353 DOI: 10.1111/sji.12874] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022]
Abstract
The immune and skeletal systems share common mechanisms, and the crosstalk between the two has been termed osteoimmunology. Osteoimmunology mainly focuses on diseases between the immune and bone systems including bone loss diseases, and imbalances in osteoimmune regulation affect skeletal homeostasis between osteoclasts and osteoblasts. The immune mediator interleukin-20 (IL-20), a member of the IL-10 family, enhances inflammation, chemotaxis and angiogenesis in diseases related to bone loss. However, it is unclear how IL-20 regulates the balance between osteoclastogenesis and osteoblastogenesis; therefore, we explored the mechanisms by which IL-20 affects bone mesenchymal stem cells (BMSCs) in osteoclastogenesis in primary cells during differentiation, proliferation, apoptosis and signalling. We initially found that IL-20 differentially regulated preosteoclast proliferation and apoptosis; BMSC-conditioned medium (CM) significantly enhanced osteoclast formation and bone resorption, which was dose-dependently regulated by IL-20; IL-20 inhibited OPG expression and promoted M-CSF, RANKL and RANKL/OPG expression; and IL-20 differentially regulated the expression of osteoclast-specific gene and transcription factors through the OPG/RANKL/RANK axis and the NF-kB, MAPK and AKT pathways. Therefore, IL-20 differentially regulates BMSCs in osteoclastogenesis and exerts its function by activating the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT pathways, which make targeting IL-20 a promising direction for targeted regulation in diseases related to bone loss.
Collapse
Affiliation(s)
- Bowen Meng
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Dongle Wu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yangfan Cheng
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Peina Huang
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yuanbo Liu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lei Gan
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chufeng Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yang Cao
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
47
|
Das S, Dholam K, Gurav S, Bendale K, Ingle A, Mohanty B, Chaudhari P, Bellare JR. Accentuated osseointegration in osteogenic nanofibrous coated titanium implants. Sci Rep 2019; 9:17638. [PMID: 31819073 PMCID: PMC6901521 DOI: 10.1038/s41598-019-53884-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
Anchoring of endosseous implant through osseointegration continues to be an important clinical need. Here, we describe the development of superior endosseous implant demonstrating enhance osseointegration, achieved through surface modification via coating of osteogenic nanofibres. The randomized bio-composite osteogenic nanofibres incorporating polycaprolactone, gelatin, hydroxyapatite, dexamethasone, beta-glycerophosphate and ascorbic acid were electrospun on titanium implants mimicking bone extracellular matrix and subsequently induced osteogenesis by targeting undifferentiated mesenchymal stem cells present in the peri-implant niche to regenerate osseous tissue. In proof-of-concept experiment on rabbit study models (n = 6), micro-computed tomography (Micro-CT), histomorphometric analysis and biomechanical testing in relation to our novel osteogenic nanofibrous coated implants showed improved results when compared to uncoated controls. Further, no pathological changes were detected during gross examination and necropsy on peri-implant osseous tissues regenerated in response to such coated implants. The findings of the present study confirm that osteogenic nanofibrous coating significantly increases the magnitude of osteogenesis in the peri-implant zone and favours the dynamics of osseointegration.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Kanchan Dholam
- Department of Dental and Prosthetic Surgery, Tata Memorial Centre, HBNI, Mumbai, 400 012, Maharashtra, India
| | - Sandeep Gurav
- Department of Dental and Prosthetic Surgery, Tata Memorial Centre, HBNI, Mumbai, 400 012, Maharashtra, India
| | - Kiran Bendale
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410 210, Maharashtra, India
| | - Arvind Ingle
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410 210, Maharashtra, India
| | - Bhabani Mohanty
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410 210, Maharashtra, India
| | - Pradip Chaudhari
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410 210, Maharashtra, India
| | - Jayesh R Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India.
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India.
| |
Collapse
|
48
|
Zhang W, Liu H, Yang W, Liu C, Xie M, Guo R, Liang J, Ye Z, Xu H. Hydroxyapatite/silk fibroin composite biomimetic scaffold for dental pulp repair. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dental pulp repair is a difficult clinical problem. In the present study, the authors aimed to mimic the extracellular matrix of dental pulp tissue structurally and compositionally. Nanofibrous silk fibroin (SF) scaffolds containing hydroxyapatite (HAp) nanoparticles were fabricated by using the freeze-drying approach. Rod-shaped HAp was successfully embedded in the composite scaffold, the diameter of which was about 100–200 nm as shown by transmission electron microscopy analysis. The three-dimensional microstructure of the composite scaffold prepared in various ratios of HAp to SF was observed by scanning electron microscopy and the pore size of the optimal scaffold was about 30–120 μm. Meanwhile, the hemocompatibility of the composite scaffolds was evaluated based on their impact on the clotting function by way of activated partial thromboplastin time, prothrombin time and thromboelastographic assays. The scaffolds possessed a low hemolysis rate of red blood cells. Furthermore, cell culture tests using dental pulp stem cells found that the scaffolds had good biocompatibility. There biomimetic HAp/SF composite scaffolds may serve as a promising biomaterial for dental pulp repair.
Collapse
Affiliation(s)
- Wu Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China
| | - Haixia Liu
- Guangzhou Nansha District Maternal and Child Health Care Hospital, Guangzhou, China
| | - Wei Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Chang Liu
- School of Stomatology, Jinan University, Guangzhou, China
| | - Miaomiao Xie
- Department of Stomatology, People’s Hospital of Baoan District, Shenzhen, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Jianqiang Liang
- Guangzhou Haizhu District Stomatological Hospital, Guangzhou, China
| | - Zhongtai Ye
- Department of Stomatology, People’s Hospital of Baoan District, Shenzhen, China
| | - Hao Xu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
49
|
Hao M, He J, Wang C, Wang C, Ma B, Zhang S, Duan J, Liu F, Zhang Y, Han L, Liu H, Sang Y. Effect of Hydroxyapatite Nanorods on the Fate of Human Adipose-Derived Stem Cells Assessed In Situ at the Single Cell Level with a High-Throughput, Real-Time Microfluidic Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905001. [PMID: 31697037 DOI: 10.1002/smll.201905001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/05/2019] [Indexed: 06/10/2023]
Abstract
The fate of stem cells at the single cell level with limited communication with other cells is still unknown due to the lack of an efficient tool for highly accurate molecular detection. Moreover, the conditional sensitivity of biological experiments requires a sufficient number of parallel experiments to support a conclusion. In this work, a microfluidic single cell chip is designed for use with a protein chip to investigate the effect of hydroxyapatite (HAp) on the osteogenic differentiation of human adipose-derived stem cells (hADSCs) in situ at the single cell level. By successfully detecting secretory proteins in situ, it is found that the HAp nanorods enhance osteogenic differentiation at the single cell level. In the chip, the single cell seeding approach confirms the osteogenic differentiation of the hADSCs, which endocytoses HAp, by reducing the influence of the factors secreted by neighboring differentiating cells. Most importantly, more than 7000 microchambers provide a sufficient number of parallel experiments for statistical analysis, which ensure a high level of repeatability of the HAp nanorod-induced osteogenic differentiation. The microfluidic chip comprising single cell culture microchambers with in situ detection capability is a promising tool for research on cell behavior or cell fate at the single cell level.
Collapse
Affiliation(s)
- Min Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jianlong He
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chunhua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Baojin Ma
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
50
|
Shin JY, Jeong SJ, Lee WK. Fabrication of porous scaffold by ternary combination of chitosan, gelatin, and calcium phosphate for tissue engineering. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|