1
|
Dubey N, Gupta S, Shelar SB, Barick KC, Chandra S. Maximizing Upconversion Luminescence of Co-Doped CaF₂:Yb, Er Nanoparticles at Low Laser Power for Efficient Cellular Imaging. Molecules 2024; 29:4177. [PMID: 39275024 PMCID: PMC11397371 DOI: 10.3390/molecules29174177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
Upconversion nanoparticles (UCNPs) are well-reported for bioimaging. However, their applications are limited by low luminescence intensity. To enhance the intensity, often the UCNPs are coated with macromolecules or excited with high laser power, which is detrimental to their long-term biological applications. Herein, we report a novel approach to prepare co-doped CaF2:Yb3+ (20%), Er3+ with varying concentrations of Er (2%, 2.5%, 3%, and 5%) at ambient temperature with minimal surfactant and high-pressure homogenization. Strong luminescence and effective red emission of the UCNPs were seen even at low power and without functionalization. X-ray diffraction (XRD) of UCNPs revealed the formation of highly crystalline, single-phase cubic fluorite-type nanostructures, and transmission electron microscopy (TEM) showed co-doped UCNPs are of ~12 nm. The successful doping of Yb and Er was evident from TEM-energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy (XPS) studies. Photoluminescence studies of UCNPs revealed the effect of phonon coupling between host lattice (CaF2), sensitizer (Yb3+), and activator (Er3+). They exhibited tunable upconversion luminescence (UCL) under irradiation of near-infrared (NIR) light (980 nm) at low laser powers (0.28-0.7 W). The UCL properties increased until 3% doping of Er3+ ions, after which quenching of UCL was observed with higher Er3+ ion concentration, probably due to non-radiative energy transfer and cross-relaxation between Yb3+-Er3+ and Er3+-Er3+ ions. The decay studies aligned with the above observation and showed the dependence of UCL on Er3+ concentration. Further, the UCNPs exhibited strong red emission under irradiation of 980 nm light and retained their red luminescence upon internalization into cancer cell lines, as evident from confocal microscopic imaging. The present study demonstrated an effective approach to designing UCNPs with tunable luminescence properties and their capability for cellular imaging under low laser power.
Collapse
Affiliation(s)
- Neha Dubey
- Department of Chemistry, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed To-Be) University, Mumbai 400056, India
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sonali Gupta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sandeep B Shelar
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sudeshna Chandra
- Hanse-Wissenschaftskolleg-Institute for Advanced Study (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany
| |
Collapse
|
2
|
Xu L, Fan L, Zhu J. A Rare-Earth Near-Infrared Nanoprobe for the Identification of Small Cell Lung Cancer. Int J Nanomedicine 2023; 18:5579-5590. [PMID: 37808456 PMCID: PMC10557511 DOI: 10.2147/ijn.s431631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Background Small cell lung cancer (SCLC) is a common subtype of lung cancer, and there is currently no established method for the early identification of SCLC. We prepared a novel rare-earth near-infrared (NIR) downconversion nanoprobe to identify SCLC cells. Methods The shell precursors Gd-OA and Na-TFA-OA were prepared, and the NaYF4:Nd@NaGdF4-ProGRP antibody probe was obtained after synthesizing downconversion fluorescent nanocrystals. The probe was used for NIR identification of cancer cells and subcutaneous tumors in nude mice. The biotoxicity of the probe to SCLC cells and nude mice was studied. Results The NaYF4:Nd@NaGdF4-ProGRP antibody probe was successfully prepared, with a size of 44 nm, an NIR emission peak at approximately 1060 nm, and a concentration of 40 μmol/mL. The probe could achieve accurate NIR identification of SCLC cells and subcutaneous tumors in nude mice. Optimal images of the subcutaneous tumor model were obtained approximately 10 minutes after probe injection. There was no significant change in the hematology indices, respiratory rate, or heart rate of nude mice after the probe was injected (all P > 0.05). Conclusion We have successfully prepared a low-toxicity probe that can identify SCLC cells, which may be useful for the early detection of SCLC. And conduct theoretical exploration for non-invasive identification and identification of some early metastatic lesions without pathological sampling in the future.
Collapse
Affiliation(s)
- Liyun Xu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| | - Lingling Fan
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People’s Republic of China
| | - Jun Zhu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
3
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Cui F, Liu J, Pang S, Li B. Recent Advance in Tumor Microenvironment-Based Stimuli-Responsive Nanoscale Drug Delivery and Imaging Platform. Front Pharmacol 2022; 13:929854. [PMID: 35935835 PMCID: PMC9354407 DOI: 10.3389/fphar.2022.929854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development, progression, and metastasis of cancer, and the extremely crucial feature is hypoxic and acidic. Cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), mesenchymal cells, blood vessels, and interstitial fluid are widely recognized as fundamentally crucial hallmarks for TME. As nanotechnology briskly boomed, the nanoscale drug delivery and imaging platform (NDDIP) emerged and has attracted intensive attention. Based on main characteristics of TME, NDDIP can be classified into pH-sensitive delivery and imaging platforms, enzyme-sensitive delivery and imaging platforms, thermo-sensitive delivery and imaging platforms, redox-sensitive delivery and imaging platforms, and light-sensitive delivery and imaging platforms. Furthermore, imageology is one of the significant procedures for disease detection, image-guided drug delivery, and efficacy assessment, including magnetic resonance imaging (MRI), computed tomography (CT), ultrasound (US), and fluorescence imaging. Therefore, the stimuli-responsive NDDIP will be a versatile and practicable tumor disease diagnostic procedure and efficacy evaluation tool. In this review article, we mainly introduce the characteristics of TME and summarize the progress of multitudinous NDDIP as well as their applications.
Collapse
Affiliation(s)
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | | | - Bo Li
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Improvement in Luminescence Intensity of β-NaYF4: 18%Yb3+, 2%Er3+@β-NaYF4 Nanoparticles as a Result of Synthesis in the Presence of Stearic Acid. NANOMATERIALS 2022; 12:nano12030319. [PMID: 35159663 PMCID: PMC8837928 DOI: 10.3390/nano12030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
The synthesis of upconverting nanoparticles (NPs) is crucial for their spectroscopic properties and further applications. Reducing the size of materials to nano-dimensions usually decreases emission intensity. Therefore, scientists around the world are trying to improve the methods of obtaining NPs to approach levels of emission intensity similar to their bulk counterparts. In this article, the effects of stearic acid on the synthesis of core@shell β-NaYF4: 18%Yb3+, 2%Er3+@β-NaYF4 upconverting NPs were thoroughly investigated and presented. Using a mixture of stearic acid (SA) with oleic acid and 1-octadecene as components of the reaction medium leads to the obtaining of monodispersed NPs with enhanced emission intensity when irradiated with 975 nm laser wavelength, as compared with NPs prepared analogously but without SA. This article also reports how the addition of SA influences the structural properties of core@shell NPs and reaction time. The presence of SA in the reaction medium accelerates the growth of NPs in comparison with the analogic reaction but without SA. In addition, transmission electron microscopy studies reveal an additional effect of the presence of SA on the surface of NPs, which is to cause their self-organization due to steric effects.
Collapse
|
6
|
Zhang Y, Zhu X, Zhang Y. Exploring Heterostructured Upconversion Nanoparticles: From Rational Engineering to Diverse Applications. ACS NANO 2021; 15:3709-3735. [PMID: 33689307 DOI: 10.1021/acsnano.0c09231] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Upconversion nanoparticles (UCNPs) represent a class of optical nanomaterials that can convert low-energy excitation photons to high-energy fluorescence emissions. On the basis of UCNPs, heterostructured UCNPs, consisting of UCNPs and other functional counterparts (metals, semiconductors, polymers, etc.), present an intriguing system in which the physicochemical properties are largely influenced by the entire assembled particle and also by the morphology, dimension, and composition of each individual component. As multicomponent nanomaterials, heterostructured UCNPs can overcome challenges associated with a single component and exhibit bifunctional or multifunctional properties, which can further expand their applications in bioimaging, biodetection, and phototherapy. In this review, we provide a summary of recent achievements in the field of heterostructured UCNPs in the aspects of construction strategies, synthetic approaches, and types of heterostructured UCNPs. This review also summarizes the trends in biomedical applications of heterostructured UCNPs and discusses the challenges and potential solutions in this field.
Collapse
Affiliation(s)
- Yi Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
| |
Collapse
|
7
|
Xing J, Gong Q, Akakuru OU, Liu C, Zou R, Wu A. Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. NANOSCALE 2020; 12:24311-24330. [PMID: 33300527 DOI: 10.1039/d0nr06867e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, cancer is obviously a major threat to human health worldwide. Accurate diagnosis and treatment are in great demand and have become an effective method to alleviate the development of cancer and improve the survival rate of patients. A large number of theranostic probes that combine diagnosis and treatment methods have been developed as promising tools for tumor precision medicine. Among them, fluorescent theranostic probes have developed rapidly in the frontier research field of precision medicine with their real time, low toxicity, and high-resolution merit. Therefore, this review focuses on recent advances in the development of fluorescent theranostic probes, as well as their applications for cancer diagnosis and treatment. Initially, small-molecule fluorescent theranostic probes mainly including tumor microenvironment-responsive fluorescent prodrugs and phototherapeutic probes were introduced. Subsequently, nanocomposite probes are expounded based on four types of nano-fluorescent particles combining different therapies (chemotherapy, photothermal therapy, photodynamic therapy, gene therapy, etc.). Then, the capsule-type "all in one" probes, which occupy an important position in theranostic probes, are summarized according to the surface carrier type. This review aims to present a comprehensive guide for researchers in the field of tumor-related theranostic probe design and development.
Collapse
Affiliation(s)
- Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiuyu Gong
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruifen Zou
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
8
|
Ilves V, Sokovnin S, Zuev M, Uimin M, Privalova D, Kozlova J, Sammelselg V. Multimodal upconversion CaF2:Mn/Yb/Er/Si nanoparticles. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zhao S, Shao B, Feng Y, Yuan S, Dong L, Zhang L, You H. A novel synthesis of YVO4:Ln3+ (Ln = Eu, Sm, and Dy) porous/hollow submicro-ellipsoids and their luminescence properties. CrystEngComm 2020. [DOI: 10.1039/d0ce00526f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel synthesis strategy of porous/hollow YVO4 submicro-ellipsoids with multicolor emissions has been developed based on the high structural matching of LYH and YVO4.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Baiqi Shao
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yang Feng
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Senwen Yuan
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Langping Dong
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Liang Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Hongpeng You
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
10
|
Zong L, Wang Z, Yu R. Lanthanide-Doped Photoluminescence Hollow Structures: Recent Advances and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804510. [PMID: 30680913 DOI: 10.1002/smll.201804510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Lanthanide-doped nanomaterials have attracted significant attention for their preeminent properties and widespread applications. Due to the unique characteristic, the lanthanide-doped photoluminescence materials with hollow structures may provide advantages including enhanced light harvesting, intensified electric field density, improved luminescent property, and larger drug loading capacity. Herein, the synthesis, properties, and applications of lanthanide-doped photoluminescence hollow structures (LPHSs) are comprehensively reviewed. First, different strategies for the engineered synthesis of LPHSs are described in detail, which contain hard, soft, self-templating methods and other techniques. Thereafter, the relationship between their structure features and photoluminescence properties is discussed. Then, niche applications including biomedicines, bioimaging, therapy, and energy storage/conversion are focused on and superiorities of LPHSs for these applications are particularly highlighted. Finally, keen insights into the challenges and personal prospects for the future development of the LPHSs are provided.
Collapse
Affiliation(s)
- Lingbo Zong
- Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zumin Wang
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ranbo Yu
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Cai Z, Teng L, Zhou J, Yan Y, Zhang Y, Lv G, Chen J. Design and synthesis of a native heparin disaccharide grafted poly‑2‑aminoethyl methacrylate glycopolymer for inhibition of melanoma cell metastasis. Int J Biol Macromol 2019; 126:612-619. [DOI: 10.1016/j.ijbiomac.2018.11.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
|
12
|
Yang X, Yuan M, Wang R, Zhao X, Yang Z, Han K, Wang H, Xu X. Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions. RSC Adv 2019; 9:13201-13206. [PMID: 35520799 PMCID: PMC9063798 DOI: 10.1039/c9ra02232e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
Harnessing the color tuning capability of upconversion nanoparticles (UCNPs) is of great significance in the field of advanced bioimaging and color display. Here, we report the tunable size and upconversion luminescence (UCL) multicolor in CaF2:Yb3+/Ho3+/Ce3+ UCNPs, which were synthesized by a facile hydrothermal method. It was found that the size of these UCNPs could be controlled (from 600 to 30 nm) by varying the concentration of Ce3+ ions. Under the excitation of a 980 nm continuous-wave (CW) laser, the UCL color of these UCNPs can be tuned from green to red as the doped Ce3+ ions gradually increase from 0 to 10 mol% and the red-to-green (R/G) ratio is enhanced remarkably. It is suggested that the cross-relaxation (CR) processes between Ho3+ and Ce3+ ions contribute to the tunable multicolor and enhancement of the R/G ratio. The mechanism of these processes is well supported by the time-resolved decay and near infrared (NIR) emission measurements. Size manipulation and red upconversion luminescence enhancement are simultaneously realized in CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions.![]()
Collapse
Affiliation(s)
- Xu Yang
- College of Advanced Interdisciplinary Studies
- National University of Defence Technology
- Changsha
- China
- Hunan Provincial Key Laboratory of High Energy Laser Technology
| | - Maohui Yuan
- College of Advanced Interdisciplinary Studies
- National University of Defence Technology
- Changsha
- China
- Hunan Provincial Key Laboratory of High Energy Laser Technology
| | - Rui Wang
- College of Advanced Interdisciplinary Studies
- National University of Defence Technology
- Changsha
- China
- Hunan Provincial Key Laboratory of High Energy Laser Technology
| | - Xiaofan Zhao
- College of Advanced Interdisciplinary Studies
- National University of Defence Technology
- Changsha
- China
- Hunan Provincial Key Laboratory of High Energy Laser Technology
| | - Zining Yang
- College of Advanced Interdisciplinary Studies
- National University of Defence Technology
- Changsha
- China
- Hunan Provincial Key Laboratory of High Energy Laser Technology
| | - Kai Han
- State Key Laboratory of Pulsed Power Laser Technology
- National University of Defence Technology
- Changsha
- China
- Hunan Provincial Key Laboratory of High Energy Laser Technology
| | - Hongyan Wang
- College of Advanced Interdisciplinary Studies
- National University of Defence Technology
- Changsha
- China
- Hunan Provincial Key Laboratory of High Energy Laser Technology
| | - Xiaojun Xu
- College of Advanced Interdisciplinary Studies
- National University of Defence Technology
- Changsha
- China
- State Key Laboratory of Pulsed Power Laser Technology
| |
Collapse
|
13
|
Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJ. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2018; 119:1666-1762. [DOI: 10.1021/acs.chemrev.8b00401] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liemei Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aihua Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Laboratory of Fiber Materials and Modern Textiles, Growing Base for State Key Laboratory, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Di Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
14
|
Ray S, Li Z, Hsu CH, Hwang LP, Lin YC, Chou PT, Lin YY. Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics 2018; 8:6322-6349. [PMID: 30613300 PMCID: PMC6299700 DOI: 10.7150/thno.27828] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/20/2018] [Indexed: 01/06/2023] Open
Abstract
Cancer theranostics is one of the most important approaches for detecting and treating patients at an early stage. To develop such a technique, accurate detection, specific targeting, and controlled delivery are the key components. Various kinds of nanoparticles have been proposed and demonstrated as potential nanovehicles for cancer theranostics. Among them, polymer-like dendrimers and copolymer-based core-shell nanoparticles could potentially be the best possible choices. At present, magnetic resonance imaging (MRI) is widely used for clinical purposes and is generally considered the most convenient and noninvasive imaging modality. Superparamagnetic iron oxide (SPIO) and gadolinium (Gd)-based dendrimers are the major nanostructures that are currently being investigated as nanovehicles for cancer theranostics using MRI. These structures are capable of specific targeting of tumors as well as controlled drug or gene delivery to tumor sites using pH, temperature, or alternating magnetic field (AMF)-controlled mechanisms. Recently, Gd-based pseudo-porous polymer-dendrimer supramolecular nanoparticles have shown 4-fold higher T1 relaxivity along with highly efficient AMF-guided drug release properties. Core-shell copolymer-based nanovehicles are an equally attractive alternative for designing contrast agents and for delivering anti-cancer drugs. Various copolymer materials could be used as core and shell components to provide biostability, modifiable surface properties, and even adjustable imaging contrast enhancement. Recent advances and challenges in MRI cancer theranostics using dendrimer- and copolymer-based nanovehicles have been summarized in this review article, along with new unpublished research results from our laboratories.
Collapse
Affiliation(s)
- Sayoni Ray
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Zhao Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Chao-Hsiung Hsu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Lian-Pin Hwang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Chih Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yung-Ya Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Zhou R, Sun S, Li C, Wu L, Hou X, Wu P. Enriching Mn-Doped ZnSe Quantum Dots onto Mesoporous Silica Nanoparticles for Enhanced Fluorescence/Magnetic Resonance Imaging Dual-Modal Bio-Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34060-34067. [PMID: 30211537 DOI: 10.1021/acsami.8b14554] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multimodal imaging is more suitable for disease diagnosis because of its ability to provide more complementary and accurate information over single-mode imaging. Mn-doped quantum dots (QDs), especially Mn-doped ZnS (ZnSe) QDs, possess unique fluorescent and magnetic properties and are thus attractive for fluorescence/magnetic resonance imaging (MRI) dual-mode imaging. However, the optimal dopant (Mn2+) concentration for maximizing the fluorescence of QDs is relatively low for the MRI imaging. Herein, based on the large Stokes shift of Mn-doped ZnSe QDs, an enrichment strategy with mesoporous silica (MSN) loading was explored for constructing a highly luminescent/paramagnetism Mn-doped ZnSe QDs assembly (MSN@QDs) for improved MRI/optical dual-model imaging. After assembly, the loading density of QDs in MSNs was estimated to be 152 ± 12. Upon loading, the fluorescence of the MSN@QDs assembly was enriched along with QDs (enrichment factor of ∼143). Because of the large Stokes shift (∼200 nm), no appreciable concentration quenching was observed. Meanwhile, the T1 MR contrast was also increased both in vitro and in vivo through improved local Mn2+ concentration, realizing MRI signal enrichment. In fluorescence imaging investigations, MSN@QDs showed better performance over both single QDs and equivalent numbers of MSN-free single QD. Therefore, this enrichment strategy allowed simultaneous signal enhancement of the two imaging modes of Mn-doped ZnSe QDs.
Collapse
Affiliation(s)
| | - Shaokai Sun
- School of Medical Imaging , Tianjin Medical University , Tianjin 300203 , China
| | | | | | | | | |
Collapse
|
16
|
Wu F, Zhang M, Lu H, Liang D, Huang Y, Xia Y, Hu Y, Hu S, Wang J, Yi X, Zhang J. Triple Stimuli-Responsive Magnetic Hollow Porous Carbon-Based Nanodrug Delivery System for Magnetic Resonance Imaging-Guided Synergistic Photothermal/Chemotherapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21939-21949. [PMID: 29893126 DOI: 10.1021/acsami.8b07213] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The premature leakage of anticancer drugs during blood circulation may the damage immune system, normal cells, and tissues. Constructing targeted nanocarriers with pH, glutathione, and NIR triple-responsive property can effectively avoid the leakage of anticancer drugs before they arrive at the targeted site. In this paper, magnetic hollow porous carbon nanoparticles (MHPCNs) were successfully fabricated as nanocarrier. Poly(γ-glutamic acid) was used to cap the pores of MHPCNs. The photothermal conversion property of carbon and iron oxide (Fe3O4) nanomaterials was utilized to perform photothermal therapy to overcome multidrug-resistance produced by chemotherapy. The biodistribution of nanoparticles was investigated by magnetic resonance imaging. Experiments in vivo confirm the efficient accumulations of nanoparticles at tumor sites. Meanwhile, tumor growth was effectively inhibited via synergistic photothermal/chemotherapy with minimal side effects.
Collapse
Affiliation(s)
- Fan Wu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , PR China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , PR China
- Jiangsu Key Laboratory of Biofunctional Materials , Jiangsu Engineering Research Center for Biomedical Function Materials , Nanjing 210023 , PR China
| | - Hanwen Lu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , PR China
| | - Dong Liang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , PR China
| | - Yaliang Huang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , PR China
| | - Yonghong Xia
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , PR China
| | - Yuqing Hu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , PR China
| | - Shengqiang Hu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , PR China
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , PR China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , PR China
| | - Jun Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , PR China
- Jiangsu Key Laboratory of Biofunctional Materials , Jiangsu Engineering Research Center for Biomedical Function Materials , Nanjing 210023 , PR China
| |
Collapse
|
17
|
Zhao J, Chen J, Ma S, Liu Q, Huang L, Chen X, Lou K, Wang W. Recent developments in multimodality fluorescence imaging probes. Acta Pharm Sin B 2018; 8:320-338. [PMID: 29881672 PMCID: PMC5989919 DOI: 10.1016/j.apsb.2018.03.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI) probe integration with other imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and photoacoustic imaging (PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy.
Collapse
Affiliation(s)
- Jianhong Zhao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Junwei Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Shengnan Ma
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Qianqian Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Lixian Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Xiani Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
18
|
Bagheri A, Li Z, Boyer C, Lim M. NIR/blue light emission optimization of NaY1−(x+y)YbxF4:Tmy upconversion nanoparticles via Yb3+/Tm3+ dopant balancing. Dalton Trans 2018; 47:8629-8637. [DOI: 10.1039/c7dt04768a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A data driven approach provides better understanding of the role of dopant balancing in the upconversion process and presents an effective strategy to enhance the optical properties of upconversion nanoparticles.
Collapse
Affiliation(s)
- Ali Bagheri
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
| | - Zheye Li
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - May Lim
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
19
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcium-based biomaterials with good biosafety and bio-absorbability are promising for biomedical applications such as diagnosis, treatment, and theranostics.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| | - Lian-Hua Fu
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| |
Collapse
|
20
|
Marino V, Borsatto A, Vocke F, Koch KW, Dell'Orco D. CaF 2 nanoparticles as surface carriers of GCAP1, a calcium sensor protein involved in retinal dystrophies. NANOSCALE 2017; 9:11773-11784. [PMID: 28785759 DOI: 10.1039/c7nr03288a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
CaF2-based nanoparticles (NP) are promising biocompatible tools for nanomedicine applications. The structure of the NP crystal lattice allows for specific interactions with Ca2+-binding proteins through their EF-hand cation binding motifs. Here we investigated the interaction of 23 nm citrate-coated CaF2 NP with a calcium sensor protein GCAP1 that is normally expressed in photoreceptor cells and involved in the regulation of the early steps of vision. Protein-NP interactions were thoroughly investigated for the wild type (WT) GCAP1 as well as for a variant carrying the Asp 100 to Glu mutation (D100E), which prevents the binding of Ca2+ to the highest affinity site and is linked to cone dystrophy. Circular dichroism and fluorescence spectroscopy showed that protein structure and Ca2+-sensing capability are conserved for both variants upon interaction with the NP surface, although the interaction mode depends on the specific occupation of Ca2+-binding sites. NP binding stabilizes the structure of the bound GCAP1 and occurs with nanomolar affinity, as probed by isothermal titration calorimetry. Surface plasmon resonance revealed a fully reversible binding compatible with physiologically relevant kinetics of protein release whereas biochemical assays indicated a residual capability for NP-dissociated GCAP1 to regulate the target retinal guanylate cyclase. Our study constitutes a proof of concept that CaF2 NP could be optimized to serve as biologically compatible carriers of high amounts of functional GCAP1 in photoreceptors affected by retinal dystrophies.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| | - Alberto Borsatto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| | - Farina Vocke
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| |
Collapse
|
21
|
Fu Y, Chen T, Wang G, Gu T, Xie C, Huang J, Li X, Best S, Han G. Production of a fluorescence resonance energy transfer (FRET) biosensor membrane for microRNA detection. J Mater Chem B 2017; 5:7133-7139. [PMID: 32263904 DOI: 10.1039/c7tb01399j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) play a key role in regulating gene expression but can be associated with abnormalities linked to carcinogenesis and tumor progression. Hence there is increasing interest in developing methods to detect these non-coding RNA molecules in the human circulation system. Here, a novel FRET miRNA-195 targeting biosensor, based on silica nanofibers incorporated with rare earth-doped calcium fluoride particles (CaF2:Yb,Ho@SiO2) and gold nanoparticles (AuNPs), is reported. The formation of a sandwich structure, as a result of co-hybridization of the target miRNA which is captured by oligonucleotides conjugated at the surface of CaF2:Yb,Ho@SiO2 fibers and AuNPs, brings the nanofibers and AuNPs in close proximity and triggers the FRET effect. The intensity ratio of green to red emission, I541/I650, was found to decrease linearly upon increasing the concentration of the target miRNA and this can be utilized as a standard curve for quantitative determination of miRNA concentration. This assay offers a simple and convenient method for miRNA quantification, with the potential for rapid and early clinical diagnosis of diseases such as breast cancer.
Collapse
Affiliation(s)
- Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu S, Wang Z, Cao R, Meng L. Microwave–assisted synthesis of water–disperse and biocompatible NaGdF 4 : Yb,Ln@NaGdF 4 nanocrystals for UCL/CT/MR multimodal imaging. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Liu G, Sun Z, Fu Z, Ma L, Wang X. Temperature sensing and bio-imaging applications based on polyethylenimine/CaF2 nanoparticles with upconversion fluorescence. Talanta 2017; 169:181-188. [DOI: 10.1016/j.talanta.2017.03.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 01/26/2023]
|
24
|
Mimun LC, Ajithkumar G, Rightsell C, Langloss BW, Therien MJ, Sardar DK. Synthesis and characterization of Na(Gd 0.5Lu 0.5)F 4: Nd 3+,a core-shell free multifunctional contrast agent. JOURNAL OF ALLOYS AND COMPOUNDS 2017; 695:280-285. [PMID: 28781431 PMCID: PMC5542011 DOI: 10.1016/j.jallcom.2016.10.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Compared to conventional core-shell structures, core-shell free nanoparticles with multiple functionalities offer several advantages such as minimal synthetic complexity and low production cost. In this paper, we present the synthesis and characterization of Nd3+ doped Na(Gd0.5Lu0.5)F4 as a core-shell free nanoparticle system with three functionalities. Nanocrystals with 20 nm diameter, high crystallinity and a narrow particle size distributions were synthesized by the solvothermal method and characterized by various analytical techniques to understand their phase and morphology. Fluorescence characteristics under near infrared (NIR) excitation at 808 nm as well as X-ray excitation were studied to explore their potential in NIR optical and X-ray imaging. At 1.0 mol% Nd concentration, we observed a quantum yield of 25% at 1064 nm emission with 13 W/cm2 excitation power density which is sufficiently enough for imaging applications. Under 130 kVp (5 mA) power of X-ray excitation, Nd3+ doped Na(Gd0.5Lu0.5)F4 shows the characteristic emission bands of Gd3+ and Nd3+ with the strongest emission peak at 1064 nm due to Nd3+. Furthermore, magnetization measurements show that the nanocrystals are paramagnetic in nature with a calculated magnetic moment per particle of ~570 μB at 2T. These preliminary results support the suitability of the present nanophosphor as a multimodal contrast agent with three imaging features viz. optical, magnetic and X-ray.
Collapse
Affiliation(s)
- L. Christopher Mimun
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| | - G. Ajithkumar
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| | - Chris Rightsell
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| | | | | | - Dhiraj K. Sardar
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| |
Collapse
|
25
|
Liu K, Yan X, Xu YJ, Dong L, Hao LN, Song YH, Li F, Su Y, Wu YD, Qian HS, Tao W, Yang XZ, Zhou W, Lu Y. Sequential growth of CaF2:Yb,Er@CaF2:Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis. Biomater Sci 2017; 5:2403-2415. [DOI: 10.1039/c7bm00797c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is a significant challenge to develop nanoscale magnetic resonance imaging (MRI) contrast agents with high performance of relaxation.
Collapse
|
26
|
Shang W, Zeng C, Du Y, Hui H, Liang X, Chi C, Wang K, Wang Z, Tian J. Core-Shell Gold Nanorod@Metal-Organic Framework Nanoprobes for Multimodality Diagnosis of Glioma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604381. [PMID: 27859713 DOI: 10.1002/adma.201604381] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/25/2016] [Indexed: 06/06/2023]
Abstract
One of the most significant challenges in the diagnosis of brain cancer is efficient in vivo imaging using nontoxic nanoprobes. Core-shell gold nanorod@MIL-88(Fe) nanostars are successfully constructed as triple-modality imaging (computed tomography/magnetic-resonance imaging/photoacoustic imaging) nanoprobes that show low cytotoxicity, high contrast, high penetration depth, and high spatial resolution for accurate and noninvasive imaging and diagnosis of gliomas.
Collapse
Affiliation(s)
- Wenting Shang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Chaoting Zeng
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Yang Du
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Hui Hui
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Xiao Liang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Chongwei Chi
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University, Shaanxi, Xi'an, 710071, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| |
Collapse
|
27
|
Li Y, Zhou Y, Gu T, Wang G, Ren Z, Weng W, Li X, Han G, Mao C. A Multifunctional Nanocrystalline CaF 2:Tm,Yb@mSiO 2 System for Dual-Triggered and Optically Monitored Doxorubicin Delivery. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2016; 33:896-905. [PMID: 28670098 PMCID: PMC5489249 DOI: 10.1002/ppsc.201600166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 05/13/2023]
Abstract
Daunting challenges in investigating the controlled release of drugs in complicated intracellular microenvironments demand the development of stimuli-responsive drug delivery systems. Here, a nanoparticle system, CaF2:Tm,Yb@mSiO2, made of a mesoporous silica (mSiO2) nanosphere with CaF2:Tm,Yb upconversion nanoparticles (UCNPs) is developed, filling its mesopores and with its surface-modified with polyacrylic acid for binding the anticancer drug molecules (doxorubicin, DOX). The unique design of CaF2:Tm,Yb@mSiO2 enables us to trigger the drug release by two mechanisms. One is the pH-triggered mechanism, where drug molecules are preferentially released from the nanoparticles at acidic conditions unique for the intracellular environment of cancer cells compared to normal cells. Another is the 808 nm near infrared (NIR)-triggered mechanism, where 808 nm NIR induces the heating of the nanoparticles to weaken the electrostatic interaction between drug molecules and nanoparticles. In addition, luminescence resonance energy transfer occurs from the UCNPs (the energy donor) to the DOX drug (the energy acceptor) in the presence of 980 nm NIR irradiation, allowing us to monitor the drug release by detecting the vanishing blue emission from the UCNPs. This study demonstrates a new multifunctional nanosystem for dual-triggered and optically monitored drug delivery, which will facilitate the rational design of personalized cancer therapy.
Collapse
Affiliation(s)
- Yangyang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yurong Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Tongxu Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Gang Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Wenjian Weng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Chuanbin Mao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
28
|
Li Z, Zhang Y, Huang L, Yang Y, Zhao Y, El-Banna G, Han G. Nanoscale "fluorescent stone": Luminescent Calcium Fluoride Nanoparticles as Theranostic Platforms. Theranostics 2016; 6:2380-2393. [PMID: 27877242 PMCID: PMC5118602 DOI: 10.7150/thno.15914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
Calcium Fluoride (CaF2) based luminescent nanoparticles exhibit unique, outstanding luminescent properties, and represent promising candidates as nanoplatforms for theranostic applications. There is an urgent need to facilitate their further development and applications in diagnostics and therapeutics as a novel class of nanotools. Here, in this critical review, we outlined the recent significant progresses made in CaF2-related nanoparticles: Firstly, their physical chemical properties, synthesis chemistry, and nanostructure fabrication are summarized. Secondly, their applications in deep tissue bio-detection, drug delivery, imaging, cell labeling, and therapy are reviewed. The exploration of CaF2-based luminescent nanoparticles as multifunctional nanoscale carriers for imaging-guided therapy is also presented. Finally, we discuss the challenges and opportunities in the development of such CaF2-based platform for future development in regard to its theranostic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Han
- ✉ Corresponding author: Prof. Dr. Gang Han, E-mail:
| |
Collapse
|
29
|
Chen C, Li C, Shi Z. Current Advances in Lanthanide-Doped Upconversion Nanostructures for Detection and Bioapplication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600029. [PMID: 27840794 PMCID: PMC5096256 DOI: 10.1002/advs.201600029] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/05/2016] [Indexed: 04/14/2023]
Abstract
Along with the development of science and technology, lanthanide-doped upconversion nanostructures as a new type of materials have taken their place in the field of nanomaterials. Upconversion luminescence is a nonlinear optical phenomenon, which absorbs two or more photons and emits one photon. Compared with traditional luminescence materials, upconversion nanostructures have many advantages, such as weak background interference, long lifetime, low excitation energy, and strong tissue penetration. These interesting nanostructures can be applied in anticounterfeit, solar cell, detection, bioimaging, therapy, and so on. This review is focused on the current advances in lanthanide-doped upconversion nanostructures, covering not only basic luminescence mechanism, synthesis, and modification methods but also the design and fabrication of upconversion nanostructures, like core-shell nanoparticles or nanocomposites. At last, this review emphasizes the application of upconversion nanostructure in detection and bioimaging and therapy. Learning more about the advances of upconversion nanostructures can help us better exploit their excellent performance and use them in practice.
Collapse
Affiliation(s)
- Cailing Chen
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
30
|
Ma Y, Huang J, Song S, Chen H, Zhang Z. Cancer-Targeted Nanotheranostics: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4936-4954. [PMID: 27150247 DOI: 10.1002/smll.201600635] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/22/2016] [Indexed: 05/10/2023]
Abstract
Cancer-targeted nanotechnology is experiencing the trend of finding new materials with multiple functions for imaging and therapeutic applications. With the rapid development of the related fields, there exists a large number of reports regarding theranostic nanomedicine, decreasing the gap between cancer diagnosis and treatment with minimized separate comprehensions. In order to present an overview on the cancer-targeted nanotheranostics, we first describe their essential building blocks, including platforms, therapeutic agents and imaging agents, and then the recently rapidly developed multimodal theranostic systems. Finally we discuss the major challenges and the perspectives of future development of nanotheranostics toward clinical translations and personalized nanomedicine.
Collapse
Affiliation(s)
- Yufei Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Saijie Song
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
31
|
Yang G, Liu J, Wu Y, Feng L, Liu Z. Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Li Y, Zhou Y, Li X, Sun J, Ren Z, Wen W, Yang X, Han G. A Facile Approach to Upconversion Crystalline CaF 2:Yb 3+,Tm 3+@mSiO 2 Nanospheres for Tumor Therapy. RSC Adv 2016; 6:38365-38370. [PMID: 27774143 PMCID: PMC5072527 DOI: 10.1039/c6ra04167a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new facile approach, namely chemical-assisted sol-gel growth (CASGG), was successfully developed to induce the formation of fine CaF2:Yb3+, Tm3+ nanocrytals within the pore channels of mesoporous silica (mSiO2) nanoparticles. A series of upconversion photoluminescent crystalline CaF2:Yb3+,Tm3+@mSiO2 nanospheres with controlled diameters from ~65 nm to ~290 nm were fabricated. All nanospheres presented sound cyto-compatibility and unique ratiometric spectral monitoring functionalities for drug release kinetics. The nanospheres with smallest dimension (UCNP-2.5, ~65nm) induced the most sustained DOX release kinetics. More importantly, the in-vitro study demonstrated that the DOX loaded UCNP-2.5 nanopheres presented the strongest anti-cancer efficacy to MCF-7 human breast cancer cells due to its stronger penetration ability to cell nuclei due to the size effect.
Collapse
Affiliation(s)
- Yangyang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yurong Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Wengjian Wen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China
- Image-Guided Bio-Molecular Interventions Research, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, 98109 USA
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
33
|
Abstract
An overview of the recent progresses in realizing single-band UC emission through different methods and the related mechanisms are given for the first time. The challenges and future perspectives of these novel NMs are stated.
Collapse
Affiliation(s)
- Lei Lei
- College of Materials Science and Engineering
- China Jiliang University
- Hangzhou 310018
- China
- State Key Laboratory of Structural Chemistry
| | - JunJie Zhang
- College of Materials Science and Engineering
- China Jiliang University
- Hangzhou 310018
- China
| | - Shiqing Xu
- College of Materials Science and Engineering
- China Jiliang University
- Hangzhou 310018
- China
| |
Collapse
|
34
|
Ding S, Yang XF, Deng TT, Song EH, Ma ZJ, Ye S, Wu MM, Zhang QY. K(Mn,Zn)F3mesoporous microspheres: one-pot synthesis via the nanoscale Kirkendall effect. CrystEngComm 2016. [DOI: 10.1039/c5ce02202a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Si Y, Chen M, Wu L. Syntheses and biomedical applications of hollow micro-/nano-spheres with large-through-holes. Chem Soc Rev 2016; 45:690-714. [DOI: 10.1039/c5cs00695c] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review mainly discussed the syntheses and biomedical applications of hollow micro-/nano-spheres with large-through-holes in shells.
Collapse
Affiliation(s)
- Yinsong Si
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- P. R. China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- P. R. China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
36
|
Ding BB, Liu K, Zhang F, Wang Y, Cheng S, Lu Y, Qian HS. Facile synthesis of β-NaGdF4:Yb/Er@CaF2 nanoparticles with enhanced upconversion fluorescence and stability via a sequential growth process. CrystEngComm 2015. [DOI: 10.1039/c5ce01061f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-NaGdF4:Yb,Er@CaF2 core–shell nanoparticles: β-NaGdF4:Yb/Er nanoparticles coated with an ultrathin layer of CaF2 have been achieved via a sequential growth process.
Collapse
Affiliation(s)
- Bin-Bin Ding
- Department of Medical Materials and Rehabilitation Engineering
- School of Medical Engineering
- Hefei University of Technology
- Hefei 230009, PR China
| | - Kun Liu
- Department of Medical Materials and Rehabilitation Engineering
- School of Medical Engineering
- Hefei University of Technology
- Hefei 230009, PR China
| | - Fu Zhang
- Department of Medical Materials and Rehabilitation Engineering
- School of Medical Engineering
- Hefei University of Technology
- Hefei 230009, PR China
| | - Yang Wang
- Analytical and Testing Center
- Hefei University of Technology
- Hefei 230009, PR China
| | - Sheng Cheng
- Analytical and Testing Center
- Hefei University of Technology
- Hefei 230009, PR China
| | - Yang Lu
- Department of Chemistry
- Hefei University of Technology
- Hefei 230009, PR China
| | - Hai-Sheng Qian
- Department of Medical Materials and Rehabilitation Engineering
- School of Medical Engineering
- Hefei University of Technology
- Hefei 230009, PR China
| |
Collapse
|