1
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
2
|
Schmithals C, Kakoschky B, Denk D, von Harten M, Klug JH, Hintermann E, Dropmann A, Hamza E, Jacomin AC, Marquardt JU, Zeuzem S, Schirmacher P, Herrmann E, Christen U, Vogl TJ, Waidmann O, Dooley S, Finkelmeier F, Piiper A. Tumour-specific activation of a tumour-blood transport improves the diagnostic accuracy of blood tumour markers in mice. EBioMedicine 2024; 105:105178. [PMID: 38889481 PMCID: PMC11237870 DOI: 10.1016/j.ebiom.2024.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The accuracy of blood-based early tumour recognition is compromised by signal production at non-tumoral sites, low amount of signal produced by small tumours, and variable tumour production. Here we examined whether tumour-specific enhancement of vascular permeability by the particular tumour homing peptide, iRGD, which carries dual function of binding to integrin receptors overexpressed in the tumour vasculature and is known to promote extravasation via neuropilin-1 receptor upon site-specific cleavage, might be useful to improve blood-based tumour detection by inducing a yet unrecognised vice versa tumour-to-blood transport. METHODS To detect an iRGD-induced tumour-to-blood transport, we examined the effect of intravenously injected iRGD on blood levels of α-fetoprotein (AFP) and autotaxin in several mouse models of hepatocellular carcinoma (HCC) or in mice with chronic liver injury without HCC, and on prostate-specific antigen (PSA) levels in mice with prostate cancer. FINDINGS Intravenously injected iRGD rapidly and robustly elevated the blood levels of AFP in several mouse models of HCC, but not in mice with chronic liver injury. The effect was primarily seen in mice with small tumours and normal basal blood AFP levels, was attenuated by an anti-neuropilin-1 antibody, and depended on the concentration gradient between tumour and blood. iRGD treatment was also able to increase blood levels of autotaxin in HCC mice, and of PSA in mice with prostate cancer. INTERPRETATION We conclude that iRGD induces a tumour-to-blood transport in a tumour-specific fashion that has potential of improving diagnosis of early stage cancer. FUNDING Deutsche Krebshilfe, DKTK, LOEWE-Frankfurt Cancer Institute.
Collapse
Affiliation(s)
- Christian Schmithals
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Bianca Kakoschky
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Dominic Denk
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Maike von Harten
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Jan Henrik Klug
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Edith Hintermann
- Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Anne Dropmann
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Eman Hamza
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Suez University, Faculty of Science, Zoology Department, Suez, Egypt
| | - Anne Claire Jacomin
- Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany; Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Jens U Marquardt
- Department of Medicine I, University Medical Centre Schleswig-Holstein - Campus Lübeck, Lübeck, Germany
| | - Stefan Zeuzem
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/M., a Partnership Between DKFZ and University Hospital Frankfurt/M., Germany
| | | | - Eva Herrmann
- Goethe University Frankfurt, University Hospital, Institute of Biostatistics and Mathematical Modelling, Germany
| | - Urs Christen
- Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Goethe University Frankfurt, University Hospital, Institute for Diagnostic and Interventional Radiology, Germany
| | - Oliver Waidmann
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Centrum für Hämatologie und Onkologie Bethanien, Frankfurt/Main, Germany
| | - Steven Dooley
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Fabian Finkelmeier
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Albrecht Piiper
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/M., a Partnership Between DKFZ and University Hospital Frankfurt/M., Germany.
| |
Collapse
|
3
|
Yu J, Liu Y, Zhang Y, Ran R, Kong Z, Zhao D, Liu M, Zhao W, Cui Y, Hua Y, Gao L, Zhang Z, Yang Y. Smart nanogels for cancer treatment from the perspective of functional groups. Front Bioeng Biotechnol 2024; 11:1329311. [PMID: 38268937 PMCID: PMC10806105 DOI: 10.3389/fbioe.2023.1329311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: Cancer remains a significant health challenge, with chemotherapy being a critical treatment modality. However, traditional chemotherapy faces limitations due to non-specificity and toxicity. Nanogels, as advanced drug carriers, offer potential for targeted and controlled drug release, improving therapeutic efficacy and reducing side effects. Methods: This review summarizes the latest developments in nanogel-based chemotherapy drug delivery systems, focusing on the role of functional groups in drug loading and the design of smart hydrogels with controlled release mechanisms. We discuss the preparation methods of various nanogels based on different functional groups and their application in cancer treatment. Results: Nanogels composed of natural and synthetic polymers, such as chitosan, alginate, and polyacrylic acid, have been developed for chemotherapy drug delivery. Functional groups like carboxyl, disulfide, and hydroxyl groups play crucial roles in drug encapsulation and release. Smart hydrogels have been engineered to respond to tumor microenvironmental cues, such as pH, redox potential, temperature, and external stimuli like light and ultrasound, enabling targeted drug release. Discussion: The use of functional groups in nanogel preparation allows for the creation of multifunctional nanogels with high drug loading capacity, controllable release, and good targeting. These nanogels have shown promising results in preclinical studies, with enhanced antitumor effects and reduced systemic toxicity compared to traditional chemotherapy. Conclusion: The development of smart nanogels with functional group-mediated drug delivery and controlled release strategies represents a promising direction in cancer therapy. These systems offer the potential for improved patient outcomes by enhancing drug targeting and minimizing adverse effects. Further research is needed to optimize nanogel design, evaluate their safety and efficacy in clinical trials, and explore their potential for personalized medicine.
Collapse
Affiliation(s)
- Jiachen Yu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yuting Liu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Shenyang Traditional Chinese Medicine Hospital, China Medical University, Shenyang, China
| | - Yingchun Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Rong Ran
- Department of Anesthesia, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zixiao Kong
- China Medical University, Shenyang, Liaoning, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Minda Liu
- Department of Oral-maxillofacial Head and Neck, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingxin Yang
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Thirumalai A, Girigoswami K, Pallavi P, Harini K, Gowtham P, Girigoswami A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull Cancer 2023; 110:1288-1300. [PMID: 37813754 DOI: 10.1016/j.bulcan.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
One of the primary threats in tumor treatment revolves around the limited ability to penetrate tumor sites, leading to reduced therapeutic effectiveness, which remains a critical concern. Recently gaining importance are novel peptides, namely CRGDK/RGPD/EC (iRGD), that possess enhanced tumor-penetrating and inhibitory properties. These peptides specifically target and penetrate tumors by binding to αvβ integrins, namely αvβ3 and αvβ5, as well as NRP-1 receptors. Remarkably abundant on both the vasculature and tumor cell surfaces, these peptides show promising potential for improving tumor treatment outcomes. As a result, iRGD penetrated deep into the tumor tissues with biological products, contrast agents (imaging agents), antitumor drugs, and immune modulators after co-injecting them with peptides or chemically linked to peptides. The synthesis of iRGD peptides is a relatively straightforward process compared to the synthesis of other traditional peptides, and they significantly improved tumor tissue penetration inhibiting tumor metastasis effectively. Recent studies demonstrate the effectiveness of iRGD-driven dual-targeting chemotherapeutics on cancer cells, and the nanocarriers were modified with iRGD, serving as a favorable delivery strategy of payloads for deeper tumor regions. This review aims to provide an overview to emphasize the recent advancements and advantages of iRGD in treating and imaging various cancers.
Collapse
Affiliation(s)
- Anbazhagan Thirumalai
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Koyeli Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pragya Pallavi
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Karthick Harini
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pemula Gowtham
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Agnishwar Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India.
| |
Collapse
|
5
|
Huang Y, Zeng A, Song L. Facts and prospects of peptide in targeted therapy and immune regulation against triple-negative breast cancer. Front Immunol 2023; 14:1255820. [PMID: 37691919 PMCID: PMC10485606 DOI: 10.3389/fimmu.2023.1255820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Due to the lack of specific therapeutic targets, treatment options are limited, and the recurrence and metastasis rate is high, the overall survival of patients is poor. However, with the discovery of some new targets and the corresponding immune regulation after targeting these targets, TNBC has a new hope in treatment. The peptide has a simple structure, strong binding affinity, and high stability, and has great potential in targeted therapy and immune regulation against TNBC. This review will discuss how single peptides and peptide combinations target triple-negative breast cancer to exert immunomodulatory effects. Among them, single peptides target specific receptors on TNBC cells, act as decoys to target key ligands in the regulatory pathway, and target TME-related cells. The combinations of peptides work in the form of cancer vaccines, engineered exosomes, microRNAs and other immune-related molecular pathways, immune checkpoint inhibitors, chimeric antigen receptor T cells, and drug-peptide conjugates. This article is mainly dedicated to exploring new treatment methods for TNBC to improve the curative effect and prolong the survival time of patients.
Collapse
Affiliation(s)
- Yongxiu Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Zhu L, Yuhan J, Yu H, Zhang B, Zhu L, He X, Huang K, Xu W. Aptamer functionalized nucleic acid nano drug for targeted synergistic therapy for colon cancer. J Nanobiotechnology 2023; 21:182. [PMID: 37280622 DOI: 10.1186/s12951-023-01941-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
Due to its complicated pathophysiology, propensity for metastasis, and poor prognosis, colon cancer is challenging to treat and must be managed with a combination of therapy. Using rolling circle transcription (RCT), this work created a nanosponge therapeutic medication system (AS1411@antimiR-21@Dox). Using the AS1411 aptamer, this approach accomplished targeted delivery to cancer cells. Furthermore, analysis of cell viability, cell apoptosis, cell cycle arrest, reactive oxygen species (ROS) content, and mitochondrial membrane potential (MMP) levels revealed that functional nucleic acid nanosponge drug (FND) can kill cancer cells. Moreover, transcriptomics uncovered a putative mechanism for the FND anti-tumor effect. These pathways, which included mitotic metaphase and anaphase as well as the SMAC-mediated dissociation of the IAP: caspase complexes, were principally linked to the cell cycle and cell death. In conclusion, by triggering cell cycle arrest and apoptosis, the nano-synergistic therapeutic system allowed for the intelligent and effective targeted administration of RNA and chemotherapeutic medicines for colon cancer treatment. The system allowed for payload efficiency while being customizable, targeted, reliable, stable, and affordable.
Collapse
Affiliation(s)
- Liye Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, China
| | - Jieyu Yuhan
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hao Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Boyang Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China.
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
7
|
Senarat S, Rojviriya C, Puyathorn N, Lertsuphotvanit N, Phaechamud T. Levofloxacin HCl-Incorporated Zein-Based Solvent Removal Phase Inversion In Situ Forming Gel for Periodontitis Treatment. Pharmaceutics 2023; 15:pharmaceutics15041199. [PMID: 37111684 PMCID: PMC10143341 DOI: 10.3390/pharmaceutics15041199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Zein is composed of nonpolar amino acids and is a water-insoluble protein used as the matrix-forming agent of localized in situ forming gel (ISG). Therefore, this study prepared solvent removal phase inversion zein-based ISG formulations to load levofloxacin HCl (Lv) for periodontitis treatment using dimethyl sulfoxide (DMSO) and glycerol formal (GF) as the solvents. Their physicochemical properties were determined, including viscosity, injectability, gel formation, and drug release. The topography of dried remnants after drug release was revealed using a scanning electron microscope and X-ray computed microtomography (μCT) to investigate their 3D structure and % porosity. The antimicrobial activities were tested against Staphylococcus aureus (ATCC 6538), Escherichia coli ATCC 8739, Candida albicans ATCC 10231, and Porphyromonas gingivalis ATCC 33277 with agar cup diffusion. Increasing zein concentration or using GF as the solvent notably enhanced the apparent viscosity and injection force of the zein ISG. However, its gel formation slowed due to the dense zein matrix barrier's solvent exchange: the higher loaded zein or utilization of GF as an ISG solvent prolonged Lv release. The SEM and μCT images revealed the scaffold of dried ISG in that their % porosity corresponded with their phase transformation and drug release behavior. In addition, the sustainability of drug diffusion promoted a smaller antimicrobial inhibition clear zone. Drug release from all formulations was attained with minimum inhibitory concentrations against pathogen microbes and exhibited a controlled release over 7 days. Lv-loaded 20% zein ISG using GF as a solvent exhibited appropriate viscosity, Newtonian flow, acceptable gel formation and injectability, and prolonged Lv release over 7 days with efficient antimicrobial activities against various test microbes; thus, it is the potential ISG formulation for periodontitis treatment. Consequently, the Lv-loaded solvent removal zein-based ISGs proposed in this investigation offer promising potential as an efficacious drug delivery system for periodontitis treatment by local injection.
Collapse
Affiliation(s)
- Setthapong Senarat
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Mueang District, Nakhon Ratchasima 30000, Thailand
| | - Napaphol Puyathorn
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nutdanai Lertsuphotvanit
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thawatchai Phaechamud
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
8
|
An L, Jia Y, Li J, Xiao C. Reduction-responsive dextran-based Pt(IV) nano-prodrug showed a synergistic effect with doxorubicin for effective melanoma treatment. Int J Biol Macromol 2023; 233:123277. [PMID: 36706874 DOI: 10.1016/j.ijbiomac.2023.123277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
Melanoma, the deadliest skin cancer with high metastasis potential, has posed a great threat to human health. Accordingly, early efficient blocking of melanoma progression is vital in antitumor treatment. Herein, a reduction-responsive dextran-based Pt(IV) nano-prodrug (PDPN) was synthesized and used for doxorubicin (DOX) delivery to combat melanoma synergistically. First, PDPN was prepared by one-pot chemical coupling of carboxylated methoxy poly(ethylene glycol) (mPEG), dextran (Dex), and the crosslinking agent cisPt (IV)-COOH. PDPN had a spherical structure (Rh = 34 ± 11.3 nm). Then, DOX was encapsulated into the PDPN core to form DOX-loaded PDPN (PDPN-DOX). The obtained PDPN-DOX displayed reduction-responsive release of DOX and Pt, thus showing a synergistic anticancer effect in B16F10 cells (combination index, 0.46). Furthermore, in vivo experiments demonstrated that PDPN-DOX was effective for the synergistic treatment of subcutaneous melanoma. Collectively, the as-prepared PDPN could serve as a promising and versatile nano-prodrug carrier for the co-delivery of chemotherapeutics in tumor combination therapy.
Collapse
Affiliation(s)
- Lin An
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuxi Jia
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinran Li
- Department of Dermatology, Second Hospital of Jilin University, Changchun, China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| |
Collapse
|
9
|
Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. Int J Biol Macromol 2023; 226:535-553. [PMID: 36521697 DOI: 10.1016/j.ijbiomac.2022.12.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The development of nanotechnology has influenced the advancements in biomedical and pharmaceutical fields. The design and formulation of stimuli-responsive nano-drug delivery systems, also called smart drug delivery systems, have attracted significant research worldwide and have been seen as a breakthrough in nanomedicines. The ability of these nanocarriers to respond to external and internal stimuli, such as pH, temperature, redox, electric and magnetic fields, enzymes, etc., has allowed them to deliver the cargo at targeted sites in a controlled fashion. The targeted drug delivery systems limit the harmful side effects on healthy tissue by toxic drugs and furnish spatial and temporal control drug delivery, improved patient compliance, and treatment efficiency. The polymeric nanogels (hydrogel nanoparticles) with stimuli-responsive characteristics have shown great potential in various biomedical, tissue engineering, and pharmaceutical fields. It is primarily because of their small size, biocompatibility, biodegradability, stimuli-triggered drug deliverability, high payload capacity, and tailored functionality. This comprehensive review deals distinctively with polymeric nanogels, their chemical, physical, and biological stimuli, the concepts of nanogels response to different stimuli, and recent advancements. This document will further improve the current understanding of stimuli-responsive materials and drug delivery systems and assist in exploring advanced potential applications of these intelligent materials.
Collapse
Affiliation(s)
- Sachin Bhaladhare
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India.
| | - Sulagna Bhattacharjee
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India
| |
Collapse
|
10
|
Ibrahim IM. Advances in Polysaccharide-Based Oral Colon-Targeted Delivery Systems: The Journey So Far and the Road Ahead. Cureus 2023; 15:e33636. [PMID: 36788847 PMCID: PMC9912363 DOI: 10.7759/cureus.33636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/12/2023] Open
Abstract
Various colon-targeted oral delivery systems have been explored so far to treat colorectal diseases, including timed-release systems, prodrugs, pH-based polymer coatings, and microflora-triggered systems. Among them, the microbially triggered system has gained attention. Among various oral colon-targeted delivery systems discussed, the polysaccharide-based colon-targeted delivery system has been found to be quite promising as polysaccharides remain unaffected by gastric as well as upper intestine milieu and are only digested by colonic bacteria upon reaching the colon. The major bottleneck associated with this delivery is that non-suitability of this system during the diseased state due to decrease in bacterial count at that time. This causes the failure of delivery system to release the drug even at colonic site as the polysaccharide matrix/coat cannot be digested properly due to lack of bacteria. The co-administration of probiotics is reported to compensate for the bacterial loss besides facilitating site-specific release. However, this research is also limited at the preclinical level. Hence, efforts are required to make this technology scalable and clinically applicable. This article entails in detail various oral colon-targeted delivery systems prepared so far, as well as the limitations and benefits of polysaccharide-based oral colon-targeted delivery systems.
Collapse
Affiliation(s)
- Ibrahim M Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
11
|
Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem Biol Interact 2022; 368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022]
|
12
|
Fang Y, Liu Z, Wang H, Luo X, Xu Y, Chan HF, Lv S, Tao Y, Li M. Implantable Sandwich-like Scaffold/Fiber Composite Spatiotemporally Releasing Combretastatin A4 and Doxorubicin for Efficient Inhibition of Postoperative Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27525-27537. [PMID: 35687834 DOI: 10.1021/acsami.2c02103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor recurrence is a critical conundrum in the postoperative therapy, on account of severe bleeding with disseminated tumor cells, residual tumor cells, and the rich nutrient and oxygen supply transported to tumors by the abundant blood vessels. Biodegradable drug-loaded implants, inserted in the resection cavity right away upon the surgery, possess bleeding prevention and efficient chemotherapeutic capabilities, considered to be a promising strategy to efficiently inhibit the recurrence of the solid tumor. Here, we developed a sandwich-like composite consisting of the combretastatin A4 (CA4)-loaded 3D-printed scaffold and doxorubicin (DOX)-loaded electrospun fiber (Scaffold-CA4@Fiber-DOX), presenting hemostatic, chemotherapeutic, and antibacterial potencies. The lyophilized 3D-printed scaffold with a porous structure rapidly absorbed and clotted the blood cells and disseminated tumor cells to prevent bleeding and tumor metastasis. Subsequently, the preferentially released CA4 from the scaffold disrupted the microtubules of the vascular endothelial cell, resulting in vascular deformation and consequent insufficient nutrient supply to the solid tumor. The sustained release of DOX from the sandwiched electrospun fiber dramatically inhibited the peripheral tumor cell proliferation. This all-in-one multifunctional implant system, combining efficient vascular disruption and chemotherapy, provides a promising strategy for postoperative tumor therapy.
Collapse
Affiliation(s)
- Youqiang Fang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zheng Liu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xing Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
13
|
Xiong Y, Zhuang Y, Zhong M, Qin W, Huang B, Zhao J, Gao Z, Ma J, Wu Z, Hong X, Yue Z, Lu H. Period 2 Suppresses the Malignant Cellular Behaviors of Colorectal Cancer Through the Epithelial-Mesenchymal Transformation Process. Cancer Control 2022; 29:10732748221081369. [PMID: 35220799 PMCID: PMC8891940 DOI: 10.1177/10732748221081369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction The PER2 (Period circadian regulator 2) gene is related to the circadian clock, and it has been deemed as a suppressor gene in osteosarcoma and lung carcinoma. However, the part of PER2 in CRC (colorectal cancer) needs to be further determined. Methods First, we collected clinical samples to detect PER2 expression in CRC. Then, we used cell transfection to knock down PER2 expression in CRC cell lines and performed a series of functional experiments to elucidate the effects of PER2 on CRC cells. We next verified whether PER2 affects the epithelial-mesenchymal transformation (EMT) process in CRC by conducting quantitative real-time PCR and western blotting. Results In the research, we revealed that the expression of PER2 decreased in CRC clinical samples. In addition, knocking down PER2 expression caused CRC cells to acquire malignant biological features. Finally, we found that PER2 knockdown may activate the Snail/Slug axis through inhibiting p53, therefore promote the activation of the EMT pathway. Conclusion In conclusion, low PER2 expression reinforces migration and activates EMT in CRC, suggesting that PER2 is closely related to CRC development and could be used as a potential treatment site in the clinic.
Collapse
Affiliation(s)
- Yubo Xiong
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- School of Medicine, Xiamen UniversityUniversity, Xiamen, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Yifan Zhuang
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Mengya Zhong
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Wenjuan Qin
- Department of Radiation Oncology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Boyi Huang
- Imaging Department, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Jiabao Zhao
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Zhi Gao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, China
| | - Jingsong Ma
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- School of Medicine, Xiamen UniversityUniversity, Xiamen, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Zhengxin Wu
- School of Medicine, Guangxi University, Nanning, China
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- School of Medicine, Xiamen UniversityUniversity, Xiamen, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Zhicao Yue
- Shenzhen University Carson Cancer, Shenzhen University Health Science Center, Shenzhen, China
| | - Haijie Lu
- Department of Radiation Oncology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Fabrication of a dual-response intelligent antibacterial nanofiber and its application in beef preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Huang J, Lai W, Wang Q, Tang Q, Hu C, Zhou M, Wang F, Xie D, Zhang Q, Liu W, Zhang Z, Zhang R. Effective Triple-Negative Breast Cancer Targeted Treatment Using iRGD-Modified RBC Membrane-Camouflaged Nanoparticles. Int J Nanomedicine 2021; 16:7497-7515. [PMID: 34803378 PMCID: PMC8596023 DOI: 10.2147/ijn.s321071] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) has the high degree of malignancy and aggressiveness. There is no targeted therapy drug. Many studies have shown that RBC membrane-coated nanoparticles achieve biological camouflage. In addition, the RGD module in the iRGD mediates the penetration of the vector across the tumor blood vessels to the tumor tissue space. Therefore, we developed iRGD-RM-(DOX/MSNs) by preparing MSNs loaded with doxorubicin as the core, and coating the surface of the MSNs with iRGD-modified RBC membranes. Methods iRGD-RM-(DOX/MSNs) were fabricated using physical extrusion. In addition, their physical and chemical characterization, hemolytic properties, in vivo acute toxicity and inflammatory response, in vitro and in vivo safety, and qualitative and quantitative cellular uptake by RAW 264.7 cells and MDA-MB-231 cells were evaluated and compared. Furthermore, we examined the antitumor efficacy of iRGD-RM-(DOX/MSN) nanoparticles in vitro and in vivo. Results iRGD-RM-(DOX/MSNs) have reasonable physical and chemical properties. iRGD-RM-(DOX/MSNs) escaped the phagocytosis of immune cells and achieved efficient targeting of nanoparticles at the tumor site. The nanoparticles showed excellent antitumor effects in vivo and in vitro. Conclusion In this study, we successfully developed biomimetic iRGD-RM-(DOX/MSNs) that could effectively target tumors and provide a promising strategy for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Qing Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Fengling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Dandan Xie
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Zhe Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| |
Collapse
|
16
|
Yue J, Zhang S, Zheng B, Raza F, Luo Z, Li X, Zhang Y, Nie Q, Qiu M. Efficacy and Mechanism of Active Fractions in Fruit of Amomum villosum Lour. for Gastric Cancer. J Cancer 2021; 12:5991-5998. [PMID: 34539873 PMCID: PMC8425199 DOI: 10.7150/jca.61310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 01/11/2023] Open
Abstract
Amomi Fructus is the dried ripe fruit of Amomum villosum Lour. (A. villosum). It is a well-known traditional Chinese medicine widely used to treat gastrointestinal diseases, while the efficacy or mechanism of main components in Amomi Fructus on cancer treatment remains unknown. In this study, volatile oil of A. villosum (VOAV), total flavonoids of A. villosum (FNAV) and the other residue of A. villosum (RFAV) were distilled, extracted and separated as different active fractions of A. villosum. The cell toxicity test results indicated that VOAV and FNAV can effectively inhibit the cell growth of MFC cells. Flow cytometry test results confirmed that MFC cells were caused apoptosis after being treated with VOAV, FNAV or RFAV. VOAV, FNAV or RFAV induced MFC cells apoptosis through reactive oxygen species (ROS)-mediated mitochondrial pathway, evident by the increase of endogenous ROS and mitochondrial membrane potential collapse. In addition, FNAV exhibited robust inhibitory effects on MFC tumor growth, and could improve the health status of mice compared to that of mice in 5-FU treated group. To sum up, all the above results suggest that FNAV may be a good candidate for the development of new drugs for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jianjun Yue
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences; Jinghong, Yunnan 666100, China
| | - Shulei Zhang
- School of Pharmacy, Shanghai Jiao Tong University; Shanghai 200240, China
| | - Bo Zheng
- School of Pharmacy, Shanghai Jiao Tong University; Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University; Shanghai 200240, China
| | - Zuhan Luo
- School of Pharmacy, Shanghai Jiao Tong University; Shanghai 200240, China
| | - Xiaohua Li
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences; Jinghong, Yunnan 666100, China
| | - Yongyu Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences; Jinghong, Yunnan 666100, China
| | - Qu Nie
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences; Jinghong, Yunnan 666100, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University; Shanghai 200240, China
| |
Collapse
|
17
|
Marine Polysaccharides as a Versatile Biomass for the Construction of Nano Drug Delivery Systems. Mar Drugs 2021; 19:md19060345. [PMID: 34208540 PMCID: PMC8234399 DOI: 10.3390/md19060345] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Marine biomass is a treasure trove of materials. Marine polysaccharides have the characteristics of biocompatibility, biodegradability, non-toxicity, low cost, and abundance. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. The most studied marine polysaccharides include chitin, chitosan, alginates, hyaluronic acid, fucoidan, carrageenan, agarose, and Ulva. Marine polysaccharides have a wide range of applications in the field of biomedical materials, such as drug delivery, tissue engineering, wound dressings, and sensors. The drug delivery system (DDS) can comprehensively control the distribution of drugs in the organism in space, time, and dosage, thereby increasing the utilization efficiency of drugs, reducing costs, and reducing toxic side effects. The nano-drug delivery system (NDDS), due to its small size, can function at the subcellular level in vivo. The marine polysaccharide-based DDS combines the advantages of polysaccharide materials and nanotechnology, and is suitable as a carrier for different pharmaceutical preparations. This review summarizes the advantages and drawbacks of using marine polysaccharides to construct the NDDS and describes the preparation methods and modification strategies of marine polysaccharide-based nanocarriers.
Collapse
|
18
|
Wang H, Jin Y, Chen Y, Luo Y, Lv S, Li M, Tao Y. Multifunctional hybrid sponge for in situ postoperative management to inhibit tumor recurrence. Biomater Sci 2021; 9:4066-4075. [PMID: 33908452 DOI: 10.1039/d1bm00085c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Disseminated tumor cells in bleeding and residual tumor cells in the resection tumor site are the primary factors that result in tumor recurrence after surgery. Safe and efficient local implantation of the drug depot system into the resection cavity to inhibit tumor recurrence would be of great benefit to reduce the mortality of postoperative patients. Here, a sandwich-like doxorubicin-triptolide-loaded fiber/(chitosan/gelatin) sponge, DTF/CGS, is fabricated, combining hemostatic, antibacterial, and chemotherapeutic capability. The CGS obtained via freeze-drying can efficiently prevent bleeding; meanwhile, the metastatic residual tumor cells are stuck with the clotted absorbed blood. Subsequently, dual drugs released from the electrospun fiber can further kill the stuck tumor cells in CGS and the disseminated tumor cells to significantly inhibit the tumor recurrence. This antitumor recurrence strategy by immediately implanting a multifunctional hybrid sponge for in situ postoperative management may possess great potential for preventing tumor recurrence.
Collapse
Affiliation(s)
- Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yanyan Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. and Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
19
|
Xi L, Liu Q, Zhang W, Luo L, Song J, Liu R, Wei S, Wang Y. Circular RNA circCSPP1 knockdown attenuates doxorubicin resistance and suppresses tumor progression of colorectal cancer via miR-944/FZD7 axis. Cancer Cell Int 2021; 21:153. [PMID: 33663510 PMCID: PMC7934234 DOI: 10.1186/s12935-021-01855-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to play vital roles in colorectal cancer (CRC). However, only a few circRNAs have been experimentally validated and functionally described. In this research, we aimed to reveal the functional mechanism of circCSPP1 in CRC. METHODS 36 DOX sensitive and 36 resistant CRC cases participated in this study. The expression of circCSPP1, miR-944 and FZD7 were detected by quantitative real time polymerase chain reaction (qRT-PCR) and the protein levels of FZD7, MRP1, P-gp and LRP were detected by western blot. Cell proliferation, migration, invasion, and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, or flow cytometry analysis, respectively. The interaction between miR-944 and circCSPP1 or frizzled-7 (FZD7) was predicted by Starbase 3.0 and verified by the dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Xenograft tumor assay was performed to examine the effect of circCSPP1 on tumor growth in vivo. RESULTS The expression of circCSPP1 and FZD7 was upregulated while miR-944 expression was downregulated in doxorubicin (DOX)-resistant CRC tissues and cells. CircCSPP1 knockdown significantly downregulated enhanced doxorubicin sensitivity, suppressed proliferation, migration, invasion, and induced apoptosis in DOX-resistant CRC cells. Interestingly, we found that circCSPP1 directly downregulated miR-944 expression and miR-944 decreased FZD7 level through targeting to 3' untranslated region (UTR) of FZD7. Furthermore, circCSPP1 mediated DOX-resistant CRC cell progression and doxorubicin sensitivity by regulating miR-944/FZD7 axis. Besides, circCSPP1 downregulation dramatically repressed CRC tumor growth in vivo. CONCLUSION Our data indicated that circCSPP1 knockdown inhibited DOX-resistant CRC cell growth and enhanced doxorubicin sensitivity by miR-944/FZD7 axis, providing a potential target for CRC therapy.
Collapse
Affiliation(s)
- Lanlan Xi
- Department of Surgery of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Quanlin Liu
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China.
| | - Wei Zhang
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| | - Linshan Luo
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| | - Jingfeng Song
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| | - Ruitao Liu
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, China
| | - Shue Wei
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, China
| | - Yong Wang
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, No. 51, Longhai East Road, Zhengzhou, 450004, China
| |
Collapse
|
20
|
Ma W, Chen Q, Xu W, Yu M, Yang Y, Zou B, Zhang YS, Ding J, Yu Z. Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer. NANO RESEARCH 2021; 14:846-857. [DOI: 10.1007/s12274-020-3124-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 08/29/2023]
|
21
|
Ma S, Song W, Xu Y, Si X, Zhang D, Lv S, Yang C, Ma L, Tang Z, Chen X. Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. Biomaterials 2020; 232:119676. [DOI: 10.1016/j.biomaterials.2019.119676] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/24/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023]
|
22
|
Shabaninejad Z, Pourhanifeh MH, Movahedpour A, Mottaghi R, Nickdasti A, Mortezapour E, Shafiee A, Hajighadimi S, Moradizarmehri S, Sadeghian M, Mousavi SM, Mirzaei H. Therapeutic potentials of curcumin in the treatment of glioblstoma. Eur J Med Chem 2020; 188:112040. [PMID: 31927312 DOI: 10.1016/j.ejmech.2020.112040] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/04/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM), a greatly aggressive malignancy of the brain, is correlated with a poor prognosis and low rate of survival. Up to now, chemotherapy and radiation therapy after surgical approaches have been the treatments increasing the survival rates. The low efficacy of mentioned therapies as well as their side-effects has forced researchers to explore an appropriate alternative or complementary treatment for glioblastoma. In experimental models, it has been shown that curcumin has therapeutic potentials to fight against GBM. Given that curcumin has pharmacological effects against cancer stem cells, as major causes of resistance to therapy in glioblastoma cells. Moreover, it has been showed that curcumin exerts its therapeutic effects on GBM cells via affecting on apoptosis, oxidant system, and inflammatory pathways. Curcumin would possess a synergistic impact with chemotherapeutic agents. Herein, we summarized the current findings on curcumin as therapeutic agent in the treatment of GBM.
Collapse
Affiliation(s)
- Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Nickdasti
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Erfan Mortezapour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Mohammad Sadeghian
- Orthopedic Surgeon Fellowship of Spine Surgery, Sasan General Hospital, Tehran, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| |
Collapse
|
23
|
Havanur S, Batish I, Cheruku SP, Gourishetti K, P.E. J, Kumar N. Poly(N,N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110094. [DOI: 10.1016/j.msec.2019.110094] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 07/19/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
|
24
|
Nanovectors Design for Theranostic Applications in Colorectal Cancer. JOURNAL OF ONCOLOGY 2019; 2019:2740923. [PMID: 31662751 PMCID: PMC6791220 DOI: 10.1155/2019/2740923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a diffused disease with limited therapeutic options, none of which are often curative. Based on the molecular markers and targets expressed by the affected tissues, numerous novel approaches have been developed to study and treat this disease. In particular, the field of nanotechnology offers an astonishingly wide array of innovative nanovectors with high versatility and adaptability for both diagnosis and therapy (the so called “theranostic platforms”). However, such complexity can make the selection of a specific nanocarrier model to study a perplexing endeavour for the biomedical scientist or clinician not familiar with this field of inquiry. This review offers a comprehensive overview of this wide body of knowledge, in order to outline the essential requirements for the clinical viability evaluation of a nanovector model in CRC. In particular, the differences among the foremost designs, their specific advantages, and technological caveats will be treated, never forgetting the ultimate endpoint for these systems development: the clinical practice.
Collapse
|
25
|
Delavari B, Bigdeli B, Mamashli F, Gholami M, Bazri B, Khoobi M, Ghasemi A, Baharifar H, Dehghani S, Gholibegloo E, Amani A, Riahi-Alam N, Ahmadian S, Goliaei B, Asli NS, Rezayan AH, Saboury AA, Varamini P. Theranostic α-Lactalbumin-Polymer-Based Nanocomposite as a Drug Delivery Carrier for Cancer Therapy. ACS Biomater Sci Eng 2019; 5:5189-5208. [DOI: 10.1021/acsbiomaterials.9b01236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Behdad Delavari
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| | - Bahareh Bigdeli
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Behrouz Bazri
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, 1591634311 Tehran, Iran
| | - Mehdi Khoobi
- Biomaterials group, The Institute of Pharmaceutical Sciences Research Center (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Hadi Baharifar
- Department of medical nanotechnology, Applied biophotonics research center, Science and Research branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Sadegh Dehghani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Keshavarz blvd, 16 Azar St., Tehran 14145, Iran
| | - Elham Gholibegloo
- Department of Chemistry, Faculty of Science, University of Zanjan, 45371-38791 Zanjan, Iran
| | | | - Nader Riahi-Alam
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Keshavarz blvd, 16 Azar St., Tehran 14145, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | | | - Ali Hossein Rezayan
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Pegah Varamini
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| |
Collapse
|
26
|
Dong Q, Yang B, Han JG, Zhang MM, Liu W, Zhang X, Yu HL, Liu ZG, Zhang SH, Li T, Wu DD, Ji XY, Duan SF. A novel hydrogen sulfide-releasing donor, HA-ADT, suppresses the growth of human breast cancer cells through inhibiting the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways. Cancer Lett 2019; 455:60-72. [PMID: 31042588 DOI: 10.1016/j.canlet.2019.04.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer is one of the most frequent cancers among women worldwide. Hyaluronic acid (HA) is one of the best biopolymers in terms of safety issues and has been widely used in drug delivery and tissue engineering. 5-(4-hydroxyphenyl)-3H-1,2-dithiol-3-thione (ADT-OH) is a commonly used H2S donor. In this study, we designed and synthesized a conjugate, HA-ADT, by connecting HA with ADT-OH through chemical reactions. Our results indicated that HA-ADT could produce more H2S than NaHS and GYY4137. HA-ADT exerted more potent inhibitory effects than NaHS and GYY4137 in the proliferation, viability, migration, and invasion of human breast cancer cells. Similar trends were observed in the apoptosis and the protein levels of phospho (p)-PI3K, p-AKT, p-mTOR, H-RAS, p-RAF, p-MEK, and p-ERK in human breast cancer cells. Furthermore, HA-ADT exhibited more powerful inhibitory effects on the growth of human breast cancer xenograft tumors in nude mice. In conclusion, HA-ADT could suppress the growth of human breast cancer cells through the inhibition of the PI3K/AKT/mTOR and RAS/RAF/MEK/ERK signaling pathways. HA-ADT and its derivatives might be of great potential in the treatment of different types of cancer.
Collapse
Affiliation(s)
- Qian Dong
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Bo Yang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Ju-Guo Han
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Meng-Meng Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Hai-Lan Yu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Zheng-Guo Liu
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Shi-Hui Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China.
| | - Shao-Feng Duan
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
27
|
iRGD: A Promising Peptide for Cancer Imaging and a Potential Therapeutic Agent for Various Cancers. JOURNAL OF ONCOLOGY 2019; 2019:9367845. [PMID: 31346334 PMCID: PMC6617877 DOI: 10.1155/2019/9367845] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Poor penetration into the tumor parenchyma and the reduced therapeutic efficacy of anticancer drugs and other medications are the major problems in tumor treatment. A new tumor-homing and penetrating peptide, iRGD (CRGDK/RGPD/EC), can be effectively used to combine and deliver imaging agents or anticancer drugs into tumors. The different “vascular zip codes” expressed in different tissues can serve as targets for docking-based (synaptic) delivery of diagnostic and therapeutic molecules. αv-Integrins are abundantly expressed in the tumor vasculature, where they are recognized by peptides containing the RGD integrin recognition motif. The iRGD peptide follows a multistep tumor-targeting process: First, it is proteolytically cleaved to generate the CRGDK fragment by binding to the surface of cells expressing αv integrins (αvβ3 and αvβ5). Then, the fragment binds to neuropilin-1 and penetrates the tumor parenchyma more deeply. Compared with conventional RGD peptides, the affinity of iRGD for αv integrins is in the mid to low nanomolar range, and the CRGDK fragment has a stronger affinity for neuropilin-1 than that for αv integrins because of the C-terminal exposure of a conditional C-end Rule (CendR) motif (R/KXXR/K), whose receptor proved to be neuropilin-1. Consequently, these advantages facilitate the transfer of CRGDK fragments from integrins to neuropilin-1 and consequently deeper penetration into the tumor. Due to its specific binding and strong affinity, the iRGD peptide can deliver imaging agents and anticancer drugs into tumors effectively and deeply, which is useful in detecting the tumor, blocking tumor growth, and inhibiting tumor metastasis. This review aims to focus on the role of iRGD in the imaging and treatment of various cancers.
Collapse
|
28
|
Qin H, Yu H, Sheng J, Zhang D, Shen N, Liu L, Tang Z, Chen X. PI3Kgamma Inhibitor Attenuates Immunosuppressive Effect of Poly(l-Glutamic Acid)-Combretastatin A4 Conjugate in Metastatic Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900327. [PMID: 31380170 PMCID: PMC6662090 DOI: 10.1002/advs.201900327] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Indexed: 05/16/2023]
Abstract
Vascular disrupting agents (VDAs) have great potential for cancer treatment. Poly(l-glutamic acid)-combretastatin A4 conjugate (PLG-CA4) is a novel class of VDAs. Though it has notable antitumor activity, it can induce host immune responses that promote tumor growth. Here, PLG-CA4 induces the polarization of tumor-associated macrophages (TAMs) toward the M2-like phenotype in 4T1 metastatic breast cancer (Control 30% vs PLG-CA4 53%; p < 0.05). Compared to the monotherapy of PLG-CA4, inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) attenuates the immunosuppressive effect of PLG-CA4 treatment by decreasing the number of M2-like TAMs (2.0 × 104 to 1.5 × 104 per tumor) and potential enhancement of cytotoxic T lymphocyte (3.0 × 104 to 5.7 × 104 per tumor). Importantly, PI3Kγ inhibitor synergizing with PLG-CA4 significantly extends the mean survival time from 52 days in monotherapy-treated mice to 61.8 days. Additionally, the combination of PLG-CA4 and PI3Kγ inhibitor improves the tumor therapeutic effect of NLG919, an inhibitor of immune checkpoint indoleamine 2,3-dioxygenase (IDO). As far as it is known, this is the first demonstrated study that VDAs induce the reshaping of macrophages to the M2-like phenotype. The findings also indicate a potential therapeutic strategy of the combination VDAs with an accurate immune modifier in the tumor to reverse the immune resistance.
Collapse
Affiliation(s)
- Hanjiao Qin
- Department of Radiotherapythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Haiyang Yu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgerythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Dawei Zhang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Na Shen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Linlin Liu
- Department of Radiotherapythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| |
Collapse
|
29
|
Li M, Lao YH, Mintz RL, Chen Z, Shao D, Hu H, Wang HX, Tao Y, Leong KW. A multifunctional mesoporous silica-gold nanocluster hybrid platform for selective breast cancer cell detection using a catalytic amplification-based colorimetric assay. NANOSCALE 2019; 11:2631-2636. [PMID: 30694277 DOI: 10.1039/c8nr08337a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Breast cancer is the most common malignancy and also the second leading cause of cancer mortality in women globally. Strategies for early and precise detection of breast cancer cells are highly desired in breast cancer diagnosis and treatment. Here, we report on the efficient detection of HER2-positive (HER2+) breast cancer cells using an amplified signal scheme enabled by gold nanoclusters entrapped in mesoporous silica nanoparticles (MSNs). The utilization of MSNs as an excellent enzyme immobilization support and gold nanoclusters as an effective peroxidase mimic imparts high sensitivity to this detection platform. In addition, the inclusion of target-specific HER2 antibodies adds excellent selectivity. Determination of HER2+ cancer cells in breast cancer tissue demonstrates the potential application of this biosensor design in clinical diagnosis in particular, and bioanalysis in general.
Collapse
Affiliation(s)
- Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Guangdong Provincial Key Laboratory of Liver Disease, Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee KY, Ng YL, Wang WS, Ng PY, Chan CW, Lai JW, Davamani F, Chitra E, Lim WM, Ganguly R, Maah MJ, Yip FW, Ng CH. Enantiomeric pairs of ternary copper(ii) complexes and their aldol-type condensation products: synthesis, characterization, and anticancer and epigenetic properties. Dalton Trans 2019; 48:4987-4999. [DOI: 10.1039/c9dt00506d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexes induced apoptosis via ROS production, drop in mitochondrial membrane potential and epigenetic changes.
Collapse
|
31
|
Yang H, Shen W, Liu W, Chen L, Zhang P, Xiao C, Chen X. PEGylated Poly(α-lipoic acid) Loaded with Doxorubicin as a pH and Reduction Dual Responsive Nanomedicine for Breast Cancer Therapy. Biomacromolecules 2018; 19:4492-4503. [PMID: 30346147 DOI: 10.1021/acs.biomac.8b01394] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Disulfide-containing nanoparticles are promising vehicles for anticancer drug delivery. However, the preparation of disulfide-containing nanoparticles usually relies on complex synthetic procedures. In the present work, a PEGylated poly(α-lipoic acid) (mPEG-PαLA) copolymer was facilely synthesized and used for pH and reduction dual responsive drug delivery. Poly(α-lipoic acid) was prepared by thermal polymerization of α-lipoic acid without any catalyst or solvent and then conjugated with methoxy poly(ethylene glycol) to form the mPEG-PαLA copolymer. The obtained mPEG-PαLA copolymer was amphiphilic, which could self-assemble into nanoparticles (NPs) in aqueous solution. More interestingly, the mPEG-PαLA NPs showed high drug loading efficiency (87.7%) for the cationic drug doxorubicin (DOX). The DOX-loaded NPs (NPs-DOX) exhibited pH and reduction dual responsive drug release behaviors. Moreover, the flow cytometry analysis and confocal laser scanning microscopy confirmed that the drug-loaded nanoparticles could be efficiently internalized and subsequently release DOX in 4T1 cancer cells. As a result, the NPs-DOX displayed favorable antiproliferation efficacy in 4T1 cancer cells (measured by MTT assays). Furthermore, the NPs-DOX showed enhanced antitumor efficacy in a 4T1 tumor-bearing mice model with reduced side toxicities toward normal organs due to the prolonged circulation time and improved biodistribution in vivo. In other words, this work demonstrates that the PEGylated poly(α-lipoic acid) copolymer can be used as a biocompatible and stimuli-responsive nanocarrier for anticancer drug delivery, which may have potential clinical utility.
Collapse
Affiliation(s)
- Huailin Yang
- Department of Chemistry , Northeast Normal University , Changchun 130024 , P.R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
| | - Wei Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , P.R. China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital , Jilin University , Changchun 130033 , P.R. China
| | - Li Chen
- Department of Chemistry , Northeast Normal University , Changchun 130024 , P.R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
| |
Collapse
|
32
|
Chen Y, Zhang L, Liu Y, Tan S, Qu R, Wu Z, Zhou Y, Huang J. Preparation of PGA-PAE-Micelles for Enhanced Antitumor Efficacy of Cisplatin. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25006-25016. [PMID: 29781607 DOI: 10.1021/acsami.8b04259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poly-γ-l-glutamic acid (PGA) is an outstanding drug carrier candidate owning to its excellent biodegradability and biocompatibility. The PGA carrier may shield toxic drugs from the body and enable the delivery of poorly soluble or unstable drugs and thereby minimize the side effects and improve drug efficacy. However, the limitation of PGA as a drug carrier is low drug loading efficiency (DLE), which is usually below 30%. In this study, we reported a chemical modification method using l-phenylalanine ethyl ester (PAE). PGA-PAE construct was amphiphilic, which could form micelles in aqueous solution. Cisplatin (CDDP), a commonly used chemotherapy drug whose side effect is well-known, was used as a model molecule to test the drug-loading efficiency of PGA-PAE. In this paper, two sizes of CDDP-loaded PGA-PAE micelles (M(Pt)-1 and M(Pt)-2) were prepared, the average diameter of M(Pt)-1 was 106 ± 6 nm and M(Pt)-2 was 210 ± 9 nm. The DLE of M(Pt)-1 and M(Pt)-2 was 52.8 ± 2.2 and 55.8 ± 1.2%, respectively. Both exhibited excellent biocompatibility, stability, and drug-retaining capability in physiological condition. The in vitro accumulative drug-releasing profile, IC50 for different tumor cell lines HeLa, A549, and HCCC9810, and in vivo pharmacokinetics were similar between these two micelles; however, M(Pt)-1 showed higher tumor tissue retention and longer efficient cancer cell internalization time (up to 20 d). Our results suggested PGA-PAE micelle carriers reduced the toxicity of CDDP and its size at around 100 nm was the better for CDDP high-efficacy.
Collapse
Affiliation(s)
- Yazhou Chen
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Li Zhang
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Yingjie Liu
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Shiming Tan
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Ruidan Qu
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Zirong Wu
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Yue Zhou
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , PR China
| | - Jing Huang
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| |
Collapse
|
33
|
Ahmed F, Kumari S, Kondapi AK. Evaluation of Antiproliferative Activity, Safety and Biodistribution of Oxaliplatin and 5-Fluorouracil Loaded Lactoferrin Nanoparticles for the Management of Colon Adenocarcinoma: an In Vitro and an In Vivo Study. Pharm Res 2018; 35:178. [DOI: 10.1007/s11095-018-2457-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
|
34
|
Redox-responsive microbeads containing thiolated pectin-doxorubicin conjugate inhibit tumor growth and metastasis: An in vitro and in vivo study. Int J Pharm 2018; 545:1-9. [DOI: 10.1016/j.ijpharm.2018.04.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022]
|
35
|
Wei X, Liu L, Guo X, Wang Y, Zhao J, Zhou S. Light-Activated ROS-Responsive Nanoplatform Codelivering Apatinib and Doxorubicin for Enhanced Chemo-Photodynamic Therapy of Multidrug-Resistant Tumors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17672-17684. [PMID: 29737828 DOI: 10.1021/acsami.8b04163] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Clinical chemotherapy confronts a challenge resulting from cancer-related multidrug resistance (MDR), which can directly lead to treatment failure. To address it, an innovative approach is proposed to construct a light-activated reactive oxygen species (ROS)-responsive nanoplatform based on a protoporphyrin (PpIX)-conjugated and dual chemotherapeutics-loaded polymer micelle. This system combines chemotherapy and photodynamic therapy (PDT) to defeat the MDR of tumors. Such an intelligent nanocarrier can prolong the circulation time in blood because of the negative polysaccharide component of chondroitin sulfate, and subsequently being selectively internalized by MCF-7/ADR cells [doxorubicin (DOX)-resistant]. When exposed to 635 nm red light, this nanoplatform generates sufficient ROS through the photoconversion of PpIX, further triggering the disassociation of the micelles to release the dual cargoes. Afterward, the released apatinib, serving as a reversal inhibitor of MDR, can recover the chemosensitivity of DOX by competitively inhibiting the P-glycoprotein drug pump in drug-resistant tumor cells, and the excessive ROS has a strong capacity to exert its PDT effect to act on the mitochondria or the nuclei, ultimately causing cell apoptosis. As expected, this intelligent nanosystem successfully reverses tumor MDR via the synergism between apatinib-enhanced DOX sensitivity and ROS-mediated PDT performance.
Collapse
|
36
|
Zhang Y, Wang F, Li M, Yu Z, Qi R, Ding J, Zhang Z, Chen X. Self-Stabilized Hyaluronate Nanogel for Intracellular Codelivery of Doxorubicin and Cisplatin to Osteosarcoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700821. [PMID: 29876208 PMCID: PMC5980114 DOI: 10.1002/advs.201700821] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/16/2017] [Indexed: 05/20/2023]
Abstract
Osteosarcoma is one of the most serious bone malignancies with rapid speed of deterioration and low survival rate in children and teenagers. Chemotherapy is an important treatment for osteosarcoma, while the conventional small-molecule therapeutics exhibit low efficacies and severe side effects in the clinic. Drug-delivery platforms based on nanotechnology, particularly for self-stabilized delivery platforms with prolonged blood circulation, enhanced intratumoral accumulation, improved antitumor efficacy, and diminished side effects, may break the deadlock on osteosarcoma chemotherapy. Here, a cisplatin (CDDP)-crosslinked hyaluronic acid (HA) nanogel (CDDPHANG) is prepared for effective delivery of doxorubicin (DOX) to treat osteosarcoma. Importantly, both DOX and CDDP have led clinically used antitumor drugs, and CDDP acts as a crosslinker and ancillary anticarcinogen to prevent the premature release of DOX and to achieve synergistic therapeutic performance. Because of the enhanced stability of the nanogel, this CDDP-crosslinked DOX-loaded nanomedicine (CDDPHANG/DOX) exhibits an obviously prolonged circulation time compared to free drugs. Moreover, after valid tumor accumulation, DOX and CDDP are synergistically delivered into the tumor cells and synchronously released into the intracellular acidic environment. Based on the synergistic apoptosis-inducing effects of DOX and CDDP, CDDPHANG/DOX reveals an evidently enhanced antitumor efficacy compared to free drugs and their combination, indicating its great prospects for the chemotherapy of osteosarcoma.
Collapse
Affiliation(s)
- Yi Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityShenyang110032P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Feng Wang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityShenyang110032P. R. China
| | - Mingqiang Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Zhiqiang Yu
- School of Pharmaceutical SciencesGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical SchoolGuangzhou510515P. R. China
| | - Ruogu Qi
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityShenyang110032P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
37
|
Jiang S, Hua L, Guo Z, Sun L. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:257-263. [PMID: 29853089 DOI: 10.1016/j.msec.2018.04.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 01/02/2023]
Abstract
The present work reveals a new and simple one-pot green method to load doxorubicin (DOX) drugs in silica nanoparticles for efficient in vivo cancer therapy. The synthesis of DOX loaded silica nanoparticles (SiNPs/DOX) is based on the efficient encapsulation of DOX in surfactant Tween 80 micelles which act as a template for the formation of silica nanoparticles. The release profile, cellular uptake behavior, cytotoxicity and antitumor effect of SiNPs/DOX nanoparticles were investigated and compared to free DOX. The silica nanoparticles improved the cellular drug delivery efficiency and exhibited high cytotoxicity, successfully achieving the inhibition of tumor growth. Notably, the tumor size and weight of SiNPs/DOX group was 2-fold and 1.7-fold smaller than that of free DOX group, and 4-fold and 2-fold smaller than that of PBS group. The one-pot green synthesis system may have the potential to be developed as a promising drug delivery system.
Collapse
Affiliation(s)
- Shan Jiang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Li Hua
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Zilong Guo
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Lin Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
38
|
Ji M, Qiu X, Hou L, Huang S, Li Y, Liu Y, Duan S, Hu Y. Construction and application of a liver cancer-targeting drug delivery system based on core-shell gold nanocages. Int J Nanomedicine 2018; 13:1773-1789. [PMID: 29606870 PMCID: PMC5868592 DOI: 10.2147/ijn.s151043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background In order to achieve drug targeting and controlled release, we have successfully developed a novel drug release system DOX/AuNCs-PM-HA with gold nanocages (AuNCs) as photothermal cores, thermally responsive copolymer P(NIPAM-co-Am) (PM) as the near-infrared (NIR) stimuli gatekeeper and hyaluronic acid as a targeting ligand as well as a capping agent. Methods Cell uptake and cell viability were investigated. In vivo photoacoustic tomography imaging in H22 tumor bearing mice was analyzed for the tumor targeting effect of the nanocomplexes. Antitumor efficacy and the tissue distribution in vivo were investigated. Results In vitro results demonstrated that the DOX/AuNCs-PM-HA had significant anticancer activity against SMMC-7721 cells under NIR irradiation. Furthermore, in vivo photoacoustic tomography imaging of the nanocomplexes in H22 tumor bearing mice could indicate effective tumor targeting. Our studies on antitumor efficacy and the tissue distribution in vivo showed that many DOX/AuNCs-PM-HA nanocomplexes could efficiently accumulate at the tumor site so that they could inhibit the tumor growth effectively with limited side effects. The in vitro and in vivo results confirmed that the tumor-targeting and controlled-release drug system DOX/AuNCs-PM-HA with the combination of chemotherapy and photothermal therapy showed strong anti-tumor effect and would have great potential for future cancer therapy. Conclusion This tumor targeting DOX/AuNCs-PM-HA nanocomplex responded not only to the external stimuli of NIR, but also the internal stimuli of hyaluronidase, providing the potential for pinpointed and multi-stimuli responsive intracellular drug release.
Collapse
Affiliation(s)
- Mengfei Ji
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaojing Qiu
- Henan Eye Institute, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Lin Hou
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shengnan Huang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanmin Li
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yang Liu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shaofeng Duan
- College of Pharmacy, Henan University, Kaifeng, People's Republic of China.,Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yurong Hu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Key Technology of Drug Preparation, Ministry of Education, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
39
|
Liu Y, Qiao L, Zhang S, Wan G, Chen B, Zhou P, Zhang N, Wang Y. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater 2018; 66:310-324. [PMID: 29129789 DOI: 10.1016/j.actbio.2017.11.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
Abstract
UNLABELLED In the present study, a dual pH-responsive multifunctional nanoparticle system was designed for combining immunotherapy and chemotherapy to treat breast cancer through targeting immune cells and cancer cells. A proven anti-tumor immune regulator, R848, was encapsulated with poly(L-histidine) (PHIS) to form PHIS/R848 nanocores. Doxorubicin (DOX) was conjugated to hyaluronic acid (HA) through an acid-cleavable hydrazone bond linkage to synthesize polymeric prodrug HA-DOX, which was subsequently coated outside PHIS/R848 nanocores to form HA-DOX/PHIS/R848 nanoparticles. Ionization of PHIS around pH 6.5 (a pH value close to that of tumor microenvironment) switched the nature of this material from hydrophobic to hydrophilic, and thus triggered the release of R848 to exert immunoregulatory action. The rupture of hydrazone bond in HA-DOX at about pH 5.5 (pH of endo/lysosomes) accelerated the release of DOX to exert cytotoxic effects. In immune cells, PHIS/R848 nanocores exhibited strong immunoregulatory activities similar to those induced by free R848. In breast cancer cells overexpressing CD44, HA-DOX was specially internalized by CD44-mediated endocytosis and significantly inhibited the cell growth. In 4T1 tumor-bearing mice, HA-DOX/PHIS/R848 nanoparticles showed excellent tumor-targeting ability and remarkably inhibited the tumor growth by regulating tumor immunity and killing tumor cells. In summary, this multifunctional nanoparticle system could deliver R848 and DOX respectively to tumor microenvironment and breast cancer cells to achieve synergistic effects of immunotherapy and chemotherapy against breast cancer. STATEMENT OF SIGNIFICANCE Combination of immunotherapy and chemotherapy is becoming a promising new treatment for cancer. The major challenge is to target cancer and immune cells simultaneously and specifically. In this study, a dual pH-responsive multifunctional nanoparticle system based on poly(L-histidine) and hyaluronic acid was designed for co-loading R848 (immune-regulator) and doxorubicin (chemotherapeutic drug) through different encapsulation modes. By responding to the acidic pHs of tumor microenvironment and intracellular organelles, this multifunctional nanoparticle system could release R848 extracellularly and deliver DOX targetedly to breast cancer cells, thus achieving synergistic effects of immunotherapy and chemotherapy against breast cancer.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Tianjin Cancer Institute and Hospital, Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Research Center of Basic Medical Science, School of Basic Medical Sciences, School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Linan Qiao
- Tianjin Cancer Institute and Hospital, Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Research Center of Basic Medical Science, School of Basic Medical Sciences, School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Sipei Zhang
- Tianjin Cancer Institute and Hospital, Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Research Center of Basic Medical Science, School of Basic Medical Sciences, School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Guoyun Wan
- Tianjin Cancer Institute and Hospital, Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Research Center of Basic Medical Science, School of Basic Medical Sciences, School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Bowei Chen
- Tianjin Cancer Institute and Hospital, Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Research Center of Basic Medical Science, School of Basic Medical Sciences, School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Ping Zhou
- Tianjin Cancer Institute and Hospital, Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Research Center of Basic Medical Science, School of Basic Medical Sciences, School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Ning Zhang
- Tianjin Cancer Institute and Hospital, Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Research Center of Basic Medical Science, School of Basic Medical Sciences, School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China.
| | - Yinsong Wang
- Tianjin Cancer Institute and Hospital, Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Research Center of Basic Medical Science, School of Basic Medical Sciences, School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
40
|
Ghosh D, Peng X, Leal J, Mohanty R. Peptides as drug delivery vehicles across biological barriers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018; 48:89-111. [PMID: 29963321 PMCID: PMC6023411 DOI: 10.1007/s40005-017-0374-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/25/2017] [Indexed: 12/15/2022]
Abstract
Peptides are small biological molecules that are attractive in drug delivery and materials engineering for applications including therapeutics, molecular building blocks and cell-targeting ligands. Peptides are small but can possess complexity and functionality as larger proteins. Due to their intrinsic properties, peptides are able to overcome the physiological and transport barriers presented by diseases. In this review, we discuss the progress of identifying and using peptides to shuttle across biological barriers and facilitate transport of drugs and drug delivery systems for improved therapy. Here, the focus of this review is on rationally designed, phage display peptides, and even endogenous peptides as carriers to penetrate biological barriers, specifically the blood-brain barrier(BBB), the gastrointestinal tract (GI), and the solid tumor microenvironment (T). We will discuss recent advances of peptides as drug carriers in these biological environments. From these findings, challenges and potential opportunities to iterate and improve peptide-based approaches will be discussed to translate their promise towards the clinic to deliver drugs for therapeutic efficacy.
Collapse
Affiliation(s)
- Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Xiujuan Peng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Rashmi Mohanty
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| |
Collapse
|
41
|
Dong XY, Lang TQ, Yin Q, Zhang PC, Li YP. Co-delivery of docetaxel and silibinin using pH-sensitive micelles improves therapy of metastatic breast cancer. Acta Pharmacol Sin 2017; 38:1655-1662. [PMID: 28713159 DOI: 10.1038/aps.2017.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most vicious killer for women, and tumor metastasis is one of the leading causes of breast cancer therapy failure. In this study, a new pH-sensitive polymer (polyethylene glycol-block-poly[(1,4-butanediol)-diacrylate-β-N,N-diisopropylethylenediamine], BDP) was synthesized. Based on BDP, docetaxel/silibinin co-delivery micelles (DSMs) was constructed. DSM had a well-defined spherical shape under the transmission electron microscope with average hydrodynamic diameter of 85.3±0.4 nm, and were stable in the bloodstream but could dissociate to release the chemotherapeutic agents in the low pH environment of the endo/lysosomes in the tumor cells. Compared with free drugs, DSM displayed greatly enhanced cellular uptake, higher cytotoxicity and a stronger anti-metastasis effect against mouse breast cancer cell line 4T1. In 4T1 tumor-bearing mice treated with DSM (twice a week for 3 weeks), the inhibition rate on tumor growth and metastasis reached 71.9% and 80.1%, respectively. These results reveal that DSM might be a promising drug delivery system for metastatic breast cancer therapy.
Collapse
|
42
|
Yan H, Zhong L, Jiang Y, Yang J, Deng J, Wei S, Opara E, Atala A, Mao X, Damaser MS, Zhang Y. Controlled release of insulin-like growth factor 1 enhances urethral sphincter function and histological structure in the treatment of female stress urinary incontinence in a rat model. BJU Int 2017; 121:301-312. [PMID: 28805303 DOI: 10.1111/bju.13985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To determine the effects of controlled release of insulin-like growth factor 1 (IGF-1) from alginate-poly-L-ornithine-gelatine (A-PLO-G) microbeads on external urethral sphincter (EUS) tissue regeneration in a rat model of stress urinary incontinence (SUI), as SUI diminishes the quality of life of millions, particularly women who have delivered vaginally, which can injure the urethral sphincter. Despite several well-established treatments for SUI, growth factor therapy might provide an alternative to promote urethral sphincter repair. MATERIALS AND METHODS In all, 44 female Sprague-Dawley rats were randomised into four groups: vaginal distension (VD) followed by periurethral injection of IGF-1-A-PLO-G microbeads (VD + IGF-1 microbeads; 1 × 104 microbeads/1 mL normal saline); VD + empty microbeads; VD + saline; or sham-VD + saline (sham). RESULTS Urethral function (leak-point pressure, LPP) was significantly lesser 1 week after VD + saline [mean (sem) 23.9 (1.3) cmH2 O] or VD + empty microbeads [mean (sem) 21.7 (0.8) cmH2 O) compared to the sham group [mean (sem) 44.4 (3.4) cmH2 O; P < 0.05), indicating that the microbeads themselves do not create a bulking or obstructive effect in the urethra. The LPP was significantly higher 1 week after VD + IGF-1 microbeads [mean (sem) 28.4 (1.2) cmH2 O] compared to VD + empty microbeads (P < 0.05), and was not significantly different from the LPP in sham rats, demonstrating an initiation of a reparative effect even at 1 week after VD. Histological analysis showed well-organised skeletal muscle fibres and vascular development in the EUS at 1 week after VD + IGF-1 microbeads, compared to substantial muscle fibre attenuation and disorganisation, and less vascular formation at 1 week after VD + saline or VD + empty microbeads. CONCLUSION Periurethral administration of IGF-1-A-PLO-G microbeads facilitates recovery from SUI by promoting skeletal myogenesis and revascularisation. This therapy is promising, but detailed and longer term studies in animal models and humans are needed.
Collapse
Affiliation(s)
- Hao Yan
- Biomedical Engineering Department of the Lerner Research Institute, Cleveland, OH, USA.,Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liren Zhong
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA.,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaodong Jiang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA.,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Yang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Junhong Deng
- Department of Andrology, The First People's Hospital of Guangzhou, Guangzhou, Guangdong, China
| | - Shicheng Wei
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Emmanuel Opara
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Margot S Damaser
- Biomedical Engineering Department of the Lerner Research Institute, Cleveland, OH, USA.,The Advanced Platform Technology Center of the Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
43
|
Sleightholm R, Yang B, Yu F, Xie Y, Oupický D. Chloroquine-Modified Hydroxyethyl Starch as a Polymeric Drug for Cancer Therapy. Biomacromolecules 2017; 18:2247-2257. [PMID: 28708385 PMCID: PMC5996760 DOI: 10.1021/acs.biomac.7b00023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydroxyethyl starch (HES) is a clinically used polysaccharide colloidal plasma volume expander. The goal of this study was to synthesize HES modified with hydroxychloroquine (HCQ) as a novel polymeric drug with the ability to inhibit the invasive character of pancreatic cancer (PC) cells. HES was conjugated with HCQ using a simple carbonyldiimidazole coupling to prepare Chloroquine-modified HES (CQ-HES). CQ-HES with various degrees of HCQ substitution were synthesized and characterized. Atomic force microscopy was used to demonstrate a pH-dependent assembly of CQ-HES into well-defined nanoparticles. In vitro studies in multiple PC cell lines showed CQ-HES to have a similar toxicity profile as HCQ. Confocal microscopy revealed the propensity of CQ-HES to localize to lysosomes and mechanistic studies confirmed the ability of CQ-HES to inhibit autophagy in PC cells. Further studies demonstrated a greatly enhanced ability of CQ-HES to inhibit the migration and invasion of PC cells when compared with HCQ. The enhanced inhibitory actions of CQ-HES compared to HCQ appeared to arise in part from the increased inhibition of ERK and Akt phosphorylation. We found no significant HCQ release from CQ-HES, which confirmed that the observed activity was due to the action of CQ-HES as a polymeric drug. Due to its promising ability to block cancer cell invasion and the ability to form nanoparticles, CQ-HES has the potential as a drug delivery platform suitable for future development with chemotherapeutics to establish novel antimetastatic treatments.
Collapse
Affiliation(s)
- Richard Sleightholm
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Bin Yang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
44
|
Chen C, Nong Z, Xie Q, He J, Cai W, Tang X, Chen X, Huang R, Gao Y. 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione inhibits the growth and metastasis of breast carcinoma in mice. Sci Rep 2017; 7:6704. [PMID: 28751740 PMCID: PMC5532290 DOI: 10.1038/s41598-017-07162-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/26/2017] [Indexed: 01/08/2023] Open
Abstract
Metastasis causes approximately 90% of breast cancer-related deaths in women. Previously, we have demonstrated that 2-dodecyl-6-methoxycyclohexa-2,5-diene- 1,4-dione (DMDD) remarkably inhibited the growth of human breast cancer cells with little toxicity. In this study, we investigated the toxicity and efficacy of DMDD to treat metastatic breast tumors using an in vivo mouse model of the 4T1 mammary carcinoma. DMDD caused no observable toxicity and significantly extended the survival of 4T1 tumor-bearing mice. DMDD effectively inhibited the growth of 4T1 cells in vitro, and suppressed the growth and metastasis of mammary tumor in vivo. The levels of inflammatory cytokines in the serum (TNF-α, IL-6, IL-12, TGF-β, and VEGF) were down regulated by DMDD. Immunohistochemical analysis demonstrated that the inhibition of tumor growth and metastasis was associated with activation of Bax, cleaved caspases-3 and -9, and down-regulation of Bcl-2, MMP-2 and -9, NF-κB and IκBα. We speculate that DMDD inhibits cytokine production in the tumor cells in mice, which leads to deactivation of NF-κB pathway, and consequently inhibits the expression of many anti-apoptosis and metastasis-promoting genes, such as Bcl-2 and MMPs. Collectively, our results demonstrate the potential of DMDD as a safe and effective antitumor agent in the treatment of late-stage breast cancer.
Collapse
Affiliation(s)
- Chunxia Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhihuan Nong
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiuqiao Xie
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Junhui He
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Wene Cai
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiuneng Tang
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoyu Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Renbin Huang
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Ying Gao
- Department of Biology and Tennessee Center for Botanical Medicine Research, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
45
|
Ma L, Chen Q, Ma P, Han MK, Xu Z, Kang Y, Xiao B, Merlin D. iRGD-functionalized PEGylated nanoparticles for enhanced colon tumor accumulation and targeted drug delivery. Nanomedicine (Lond) 2017; 12:1991-2006. [PMID: 28745123 DOI: 10.2217/nnm-2017-0107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To enhance the tumor accumulation and targeted drug delivery for colon cancer therapy, iRGD peptide was introduced to the surface of PEGylated camptothecin-loaded nanoparticles (NPs). METHODS Cellular uptake, targeting specificity, biodistribution and antitumor capacity were evaluated. RESULTS The functionalization of iRGD facilitated tumor accumulation and cellular uptake of NPs by Colon-26 cells. Furthermore, the resultant iRGD-PEG-NPs remarkably improved the therapeutic efficacy of camptothecin in vitro and in vivo by inducing a higher degree of tumor cell apoptosis compared with PEG-NPs. CONCLUSION iRGD-PEG-NP is a desired drug delivery system to facilitate the drug accumulation in orthotopic colon tumor tissues and further drug internalization by colon cancer cells.
Collapse
Affiliation(s)
- Lijun Ma
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Qiubing Chen
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Panpan Ma
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Zhigang Xu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Yuejun Kang
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Bo Xiao
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China.,Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
46
|
Lian H, Du Y, Chen X, Duan L, Gao G, Xiao C, Zhuang X. Core cross-linked poly(ethylene glycol)-graft-Dextran nanoparticles for reduction and pH dual responsive intracellular drug delivery. J Colloid Interface Sci 2017; 496:201-210. [DOI: 10.1016/j.jcis.2017.02.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 11/26/2022]
|
47
|
Zhang F, Gong S, Wu J, Li H, Oupicky D, Sun M. CXCR4-Targeted and Redox Responsive Dextrin Nanogel for Metastatic Breast Cancer Therapy. Biomacromolecules 2017; 18:1793-1802. [DOI: 10.1021/acs.biomac.7b00208] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Feiran Zhang
- State
Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Siman Gong
- State
Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Wu
- Department
of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Huipeng Li
- State
Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - David Oupicky
- State
Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
- Center
for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Minjie Sun
- State
Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
48
|
Zhou H, Sun H, Lv S, Zhang D, Zhang X, Tang Z, Chen X. Legumain-cleavable 4-arm poly(ethylene glycol)-doxorubicin conjugate for tumor specific delivery and release. Acta Biomater 2017; 54:227-238. [PMID: 28315495 DOI: 10.1016/j.actbio.2017.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 10/20/2022]
Abstract
Traditional chemotherapy strategy exists undesirable toxic side-effects to normal tissues due to the low selectively to cancer cells of micromolecule cytotoxic drugs. One considered method to realizing the targeted delivery and increasing the specificity to tumor tissues of the cytotoxic drug is to transporting and discharging it through an environment-sensitive mechanism. In this study, a novel enzyme-sensitive polymer-doxorubicin conjugate was designed to delivery chemotherapeutic drug in a tumor-specific behavior and selectively activated in tumor tissue. Briefly, doxorubicin (DOX) was conjugated to carboxyl-terminated 4-arm poly(ethylene glycol) through a tetrapeptide linker, alanine-alanine-asparagine-leucine (AANL), which was one of the substrates of legumain, an asparaginyl endopeptidase that was found presented in plants, mammals and also highly expressed in human tumor tissues. Hereinafter, the polymer-DOX conjugate was termed as 4-arm PEG-AANL-DOX. Dynamic laser scattering (DLS) and transmission electron microscopy (TEM) measurements indicated that the 4-arm PEG-AANL-DOX could self-assemble into micelles in aqueous solution. Drug release and in vitro cytotoxicity studies revealed that the 4-arm PEG-AANL-DOX could be cleaved by legumain. Ex vivo DOX fluorescence imaging measurements demonstrated that the 4-arm PEG-AANL-DOX had an improved tumor-targeting delivery as compared with the free DOX·HCl. In vivo studies on nude mice bearing MDA-MB-435 tumors revealed that the 4-arm PEG-AANL-DOX had a comparable anticancer efficacy with the free DOX·HCl but without DOX-related toxicities to normal tissues as measured by body weight change and histological assessments, indicating that the 4-arm PEG-AANL-DOX had an improved therapeutic index for cancer therapy. STATEMENT OF SIGNIFICANCE Herein we describe the construction of a novel tumor environment-sensitive delivery system through the instruction of a legumain-cleavable linkage to a polymer-DOX conjugate (4-arm PEG-AANL-DOX). This particular design strategy allows for polymer-DOX conjugates to be delivered in a tumor-specific manner and selectively activable in tumor microenvironment so that it can combine the advantages of tumor-specific delivery and tumor intracellular microenvironment-triggered release systems.
Collapse
|
49
|
Yin H, Yang J, Zhang Q, Yang J, Wang H, Xu J, Zheng J. iRGD as a tumor‑penetrating peptide for cancer therapy (Review). Mol Med Rep 2017; 15:2925-2930. [PMID: 28358432 DOI: 10.3892/mmr.2017.6419] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
As a tumor-targeting and ‑penetrating peptide, iRGD binds to αv integrins and neuropilin‑1 receptors, which are expressed at high levels on tumor cells and the surfaces of vasculature. Subsequently, iRGD penetrates deep into the tumor parenchyma with antitumor drugs, imaging agents, immune modulators and biological products. These substances are either chemically linked to the peptide or co‑injected with the peptide. The iRGD peptide can be readily synthesized, exhibits significantly improved penetration, compared with traditional peptides, and can effectively inhibit tumor metastasis. Therefore, the peptide is now used widely for the diagnosis and treatment of cancer. However, whether the peptide is able to promote the entry of drugs into non‑targeted cells remains to be fully elucidated. In this review, an overview of iRGD is presented, focusing on its identification, mechanism of action and previous studies on its roles in various types of cancer. Studies in previous years have demonstrated the potential of the iRGD protein for tumors diagnosis and targeted treatment, which warrants further investigation.
Collapse
Affiliation(s)
- Hong Yin
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Haiyu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jinjing Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
50
|
Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 2017; 110-111:3-12. [PMID: 27040947 PMCID: PMC5045823 DOI: 10.1016/j.addr.2016.03.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/03/2023]
Abstract
In vivo screening of phage libraries in tumor-bearing mice has been used to identify peptides that direct phage homing to a tumor. The power of in vivo phage screening is illustrated by the recent discovery of peptides with unique tumor-penetrating properties. These peptides activate an endocytic transport pathway related to but distinct from macropinocytosis. They do so through a complex process that involves binding to a primary, tumor-specific receptor, followed by a proteolytic cleavage, and binding to a second receptor. The second receptor, neuropilin-1 (or neuropilin-2) activates the transport pathway. This trans-tissue pathway, dubbed the C-end Rule (CendR) pathway, mediates the extravasation transport through extravascular tumor tissue of payloads ranging from small molecule drugs to nanoparticles. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. Targeted delivery with tumor-penetrating peptides has been shown to specifically increase the accumulation of drugs, antibodies and nanotherapeutics in experimental tumors in vivo, and in human tumors ex vivo. Remarkably the payload does not have to be coupled to the peptide; the peptide activates a bulk transport system that sweeps along a drug present in the blood. Treatment studies in mice have shown improved anti-tumor efficacy and less damage to normal tissues with drugs ranging from traditional chemotherapeutics to antibodies, and to nanoparticle drugs.
Collapse
Affiliation(s)
- Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|