1
|
Wang Y, Wang M, He X, Dong R, Liu H, Yu G. Detection and Analysis of Genes Affecting the Number of Thoracic Vertebrae in Licha Black Pigs. Genes (Basel) 2024; 15:477. [PMID: 38674411 PMCID: PMC11050242 DOI: 10.3390/genes15040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The number of thoracic vertebrae (NTV) in pigs is an important economic trait that significantly influences pork production. While the Licha black pig is a well-known Chinese pig breed with multiple thoracic vertebrae, the genetic mechanism is still unknown. Here, we performed a selective signal analysis on the genome of Licha black pigs, comparing individuals with 15 NTV versus those with 16 NTV to better understand functional genes associated with NTV. A total of 2265 selection signal regions were detected across the genome, including 527 genes and 1073 QTL that overlapped with the selection signal regions. Functional enrichment analysis revealed that LRP5 and SP5 genes were involved in biological processes such as bone morphogenesis and Wnt protein binding. Furthermore, three genes, LRP8, DEF6, and SCUBE3, associated with osteoblast differentiation and bone formation, were located within or close to the QTL related to bone development and vertebrae number. These five genes were hypothesized to be potential candidates for regulating the NTV trait in Licha black pigs. Our findings revealed several candidate genes that play crucial roles in NTV regulation and provide a theoretical foundation to understand the genetic mechanism of the NTV trait in pig breeding.
Collapse
Affiliation(s)
- Yuan Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (M.W.); (X.H.); (R.D.)
| | - Min Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (M.W.); (X.H.); (R.D.)
| | - Xiaojin He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (M.W.); (X.H.); (R.D.)
| | - Ruilan Dong
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (M.W.); (X.H.); (R.D.)
| | - Hongjiang Liu
- Bureau of Agriculture and Rural Affairs of Jiaozhou, Jiaozhou 266300, China;
| | - Guanghui Yu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (M.W.); (X.H.); (R.D.)
| |
Collapse
|
2
|
Wirsig K, Bacova J, Richter RF, Hintze V, Bernhardt A. Cellular response of advanced triple cultures of human osteocytes, osteoblasts and osteoclasts to high sulfated hyaluronan (sHA3). Mater Today Bio 2024; 25:101006. [PMID: 38445011 PMCID: PMC10912908 DOI: 10.1016/j.mtbio.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Bone remodelling, important for homeostasis and regeneration involves the controlled action of osteoblasts, osteocytes and osteoclasts. The present study established a three-dimensional human in vitro bone model as triple culture with simultaneously differentiating osteocytes and osteoclasts, in the presence of osteoblasts. Since high sulfated hyaluronan (sHA3) was reported as a biomaterial to enhance osteogenesis as well as to dampen osteoclastogenesis, the triple culture was exposed to sHA3 to investigate cellular responses compared to the respective bone cell monocultures. Osteoclast formation and marker expression was stimulated by sHA3 only in triple culture. Osteoprotegerin (OPG) gene expression and protein secretion, but not receptor activator of NF-κB ligand (RANKL) or sclerostin (SOST), were strongly enhanced, suggesting an important role of sHA3 itself in osteoclastogenesis with other targets than indirect modulation of the RANKL/OPG ratio. Furthermore, sHA3 upregulated osteocalcin (BGLAP) in osteocytes and osteoblasts in triple culture, while alkaline phosphatase (ALP) was downregulated.
Collapse
Affiliation(s)
- Katharina Wirsig
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jana Bacova
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | - Richard F. Richter
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Vera Hintze
- Max Bergmann Center of Biomaterials, Institute of Material Science, TUD University of Technology, Budapester Str. 27, 01069, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
3
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Gong C, Yang J, Zhang X, Wei Z, Wang X, Huang X, Yu L, Guo W. Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate. Biomedicines 2023; 12:74. [PMID: 38255182 PMCID: PMC10812989 DOI: 10.3390/biomedicines12010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/15/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Bone defect repair poses significant challenges in orthopedics, thereby increasing the demand for bone substitutes. Magnesium phosphate cements (MPCs) are widely used for bone defect repair because of their excellent mechanical properties and biodegradability. However, high crystallinity and uncontrolled magnesium ion (Mg2+) release limit the surface bioactivity of MPCs in bone regeneration. Here, we fabricate chondroitin sulfate (CS) as a surface coating via the lyophilization method, namely CMPC. We find that the CS coating is uniformly distributed and improves the mechanical properties of MPC through anionic electrostatic adsorption, while mediating degradation-related controlled ion release of Mg2+. Using a combination of in vitro and in vivo analyses, we show that the CS coating maintained cytocompatibility while increasing the cell adhesion area of MC3T3-E1s. Furthermore, we display accelerated osteogenesis and angiogenesis of CMPC, which are related to appropriate ion concentration of Mg2+. Our findings reveal that the preparation of a lyophilized CS coating is an effective method to promote surface bioactivity and mediate Mg2+ concentration dependent osteogenesis and angiogenesis, which have great potential in bone regeneration.
Collapse
Affiliation(s)
- Changtian Gong
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.G.); (J.Y.); (X.Z.); (Z.W.); (X.W.); (X.H.); (L.Y.)
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jian Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.G.); (J.Y.); (X.Z.); (Z.W.); (X.W.); (X.H.); (L.Y.)
| | - Xiping Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.G.); (J.Y.); (X.Z.); (Z.W.); (X.W.); (X.H.); (L.Y.)
| | - Zhun Wei
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.G.); (J.Y.); (X.Z.); (Z.W.); (X.W.); (X.H.); (L.Y.)
| | - Xingyu Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.G.); (J.Y.); (X.Z.); (Z.W.); (X.W.); (X.H.); (L.Y.)
| | - Xinghan Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.G.); (J.Y.); (X.Z.); (Z.W.); (X.W.); (X.H.); (L.Y.)
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.G.); (J.Y.); (X.Z.); (Z.W.); (X.W.); (X.H.); (L.Y.)
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.G.); (J.Y.); (X.Z.); (Z.W.); (X.W.); (X.H.); (L.Y.)
| |
Collapse
|
5
|
Ruiz-Gómez G, Salbach-Hirsch J, Dürig JN, Köhler L, Balamurugan K, Rother S, Heidig SL, Moeller S, Schnabelrauch M, Furesi G, Pählig S, Guillem-Gloria PM, Hofbauer C, Hintze V, Pisabarro MT, Rademann J, Hofbauer LC. Rational engineering of glycosaminoglycan-based Dickkopf-1 scavengers to improve bone regeneration. Biomaterials 2023; 297:122105. [PMID: 37031548 DOI: 10.1016/j.biomaterials.2023.122105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The WNT signaling pathway is a central regulator of bone development and regeneration. Functional alterations of WNT ligands and inhibitors are associated with a variety of bone diseases that affect bone fragility and result in a high medical and socioeconomic burden. Hence, this cellular pathway has emerged as a novel target for bone-protective therapies, e.g. in osteoporosis. Here, we investigated glycosaminoglycan (GAG) recognition by Dickkopf-1 (DKK1), a potent endogenous WNT inhibitor, and the underlying functional implications in order to develop WNT signaling regulators. In a multidisciplinary approach we applied in silico structure-based de novo design strategies and molecular dynamics simulations combined with synthetic chemistry and surface plasmon resonance spectroscopy to Rationally Engineer oligomeric Glycosaminoglycan derivatives (REGAG) with improved neutralizing properties for DKK1. In vitro and in vivo assays show that the GAG modification to obtain REGAG translated into increased WNT pathway activity and improved bone regeneration in a mouse calvaria defect model with critical size bone lesions. Importantly, the developed REGAG outperformed polymeric high-sulfated hyaluronan (sHA3) in enhancing bone healing up to 50% due to their improved DKK1 binding properties. Thus, rationally engineered GAG variants may represent an innovative strategy to develop novel therapeutic approaches for regenerative medicine.
Collapse
Affiliation(s)
- Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47/51, D-01307, Dresden, Germany
| | - Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes and Bone Diseases & Center for Healthy Aging, Department of Medicine III, Technische Universität Dresden Medical Center, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Jan-Niklas Dürig
- Institute of Pharmacy - Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195, Berlin, Germany
| | - Linda Köhler
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069, Dresden, Germany
| | - Kanagasabai Balamurugan
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47/51, D-01307, Dresden, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069, Dresden, Germany
| | - Sophie-Luise Heidig
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47/51, D-01307, Dresden, Germany
| | | | | | - Giulia Furesi
- Division of Endocrinology, Diabetes and Bone Diseases & Center for Healthy Aging, Department of Medicine III, Technische Universität Dresden Medical Center, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Sophie Pählig
- Division of Endocrinology, Diabetes and Bone Diseases & Center for Healthy Aging, Department of Medicine III, Technische Universität Dresden Medical Center, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Pedro M Guillem-Gloria
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47/51, D-01307, Dresden, Germany
| | - Christine Hofbauer
- National Center for Tumor Diseases/University Cancer Center Dresden, Technische Universität Dresden Medical Center, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069, Dresden, Germany.
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47/51, D-01307, Dresden, Germany.
| | - Jörg Rademann
- Institute of Pharmacy - Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195, Berlin, Germany.
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases & Center for Healthy Aging, Department of Medicine III, Technische Universität Dresden Medical Center, Fetscherstraße 74, D-01307, Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, D-01307, Dresden, Germany.
| |
Collapse
|
6
|
Dincel AS, Jørgensen NR. New Emerging Biomarkers for Bone Disease: Sclerostin and Dickkopf-1 (DKK1). Calcif Tissue Int 2023; 112:243-257. [PMID: 36165920 DOI: 10.1007/s00223-022-01020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
A healthy skeleton depends on a continuous renewal and maintenance of the bone tissue. The process of bone remodeling is highly controlled and consists of a fine-tuned balance between bone formation and bone resorption. Biochemical markers of bone turnover are already in use for monitoring diseases and treatment involving the skeletal system, but novel biomarkers reflecting specific biological processes in bone and interacting tissues may prove useful for diagnostic, prognostic, and monitoring purposes. The Wnt-signaling pathway is one of the most important pathways controlling bone metabolism and consequently the action of inhibitors of the pathway such as sclerostin and Dickkopf-related protein 1 (DKK1) have crucial roles in controlling bone formation and resorption. Thus, they might be potential markers for clinical use as they reflect a number of physiological and pathophysiological events in bone and in the cross-talk with other tissues in the human body. This review focuses on the clinical utility of measurements of circulating sclerostin and DKK1 levels based on preanalytical and analytical considerations and on evidence obtained from published clinical studies. While accumulating evidence points to clear associations with a number of disease states for the two markers, and thus, the potential for especially sclerostin as a biochemical marker that may be used clinically, the lack of standardization or harmonization of the assays still hampers the clinical utility of the markers.
Collapse
Affiliation(s)
- Aylin Sepinci Dincel
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
- Department of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 13 Glostrup, 2600, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey.
- Department of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 13 Glostrup, 2600, Copenhagen, Denmark.
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
7
|
Muronetz VI, Pozdyshev DV, Semenyuk PI. Polyelectrolytes for Enzyme Immobilization and the Regulation of Their Properties. Polymers (Basel) 2022; 14:polym14194204. [PMID: 36236151 PMCID: PMC9571273 DOI: 10.3390/polym14194204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, we considered aspects related to the application of polyelectrolytes, primarily synthetic polyanions and polycations, to immobilize enzymes and regulate their properties. We mainly focused on the description of works in which polyelectrolytes were used to create complex and unusual systems (self-regulated enzyme-polyelectrolyte complexes, artificial chaperones, polyelectrolyte brushes, layer-by-layer immobilization and others). These works represent the field of "smart polymers", whilst the trivial use of charged polymers as carriers for adsorption or covalent immobilization of proteins is beyond the scope of this short review. In addition, we have included a section on the molecular modeling of interactions between proteins and polyelectrolytes, as modeling the binding of proteins with a strictly defined, and already known, spatial structure, to disordered polymeric molecules has its own unique characteristics.
Collapse
Affiliation(s)
- Vladimir I. Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
- Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-(495)939-14-56
| | - Denis V. Pozdyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
| | - Pavel I. Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
| |
Collapse
|
8
|
Hintze V, Schnabelrauch M, Rother S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front Chem 2022; 10:830671. [PMID: 35223772 PMCID: PMC8873528 DOI: 10.3389/fchem.2022.830671] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Hyaluronan, the extracellular matrix glycosaminoglycan, is an important structural component of many tissues playing a critical role in a variety of biological contexts. This makes hyaluronan, which can be biotechnologically produced in large scale, an attractive starting polymer for chemical modifications. This review provides a broad overview of different synthesis strategies used for modulating the biological as well as material properties of this polysaccharide. We discuss current advances and challenges of derivatization reactions targeting the primary and secondary hydroxyl groups or carboxylic acid groups and the N-acetyl groups after deamidation. In addition, we give examples for approaches using hyaluronan as biomedical polymer matrix and consequences of chemical modifications on the interaction of hyaluronan with cells via receptor-mediated signaling. Collectively, hyaluronan derivatives play a significant role in biomedical research and applications indicating the great promise for future innovative therapies.
Collapse
Affiliation(s)
- Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | | | - Sandra Rother
- School of Medicine, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
9
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 714] [Impact Index Per Article: 357.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|
10
|
Krieghoff J, Gronbach M, Schulz-Siegmund M, Hacker MC. Biodegradable macromers for implant bulk and surface engineering. Biol Chem 2021; 402:1357-1374. [PMID: 34433237 DOI: 10.1515/hsz-2021-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
Macromers, polymeric molecules with at least two functional groups for cross-polymerization, are interesting materials to tailor mechanical, biochemical and degradative bulk and surface properties of implants for tissue regeneration. In this review we focus on macromers with at least one biodegradable building block. Manifold design options, such as choice of polymeric block(s), optional core molecule and reactive groups, as well as cross-co-polymerization with suitable anchor or linker molecules, allow the adaptation of macromer-based biomaterials towards specific application requirements in both hard and soft tissue regeneration. Implants can be manufactured from macromers using additive manufacturing as well as molding and templating approaches. This review summarizes and discusses the overall concept of biodegradable macromers and recent approaches for macromer processing into implants as well as techniques for surface modification directed towards bone regeneration. These aspects are reviewed including a focus on the authors' contributions to the field through research within the collaborative research project Transregio 67.
Collapse
Affiliation(s)
- Jan Krieghoff
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Mathis Gronbach
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Michaela Schulz-Siegmund
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Michael C Hacker
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany.,Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Großkopf H, Vogel S, Müller CD, Köhling S, Dürig JN, Möller S, Schnabelrauch M, Rademann J, Hempel U, von Bergen M, Schubert K. Identification of intracellular glycosaminoglycan-interacting proteins by affinity purification mass spectrometry. Biol Chem 2021; 402:1427-1440. [PMID: 34472763 DOI: 10.1515/hsz-2021-0167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are essential functional components of the extracellular matrix (ECM). Artificial GAGs like sulfated hyaluronan (sHA) exhibit pro-osteogenic properties and boost healing processes. Hence, they are of high interest for supporting bone regeneration and wound healing. Although sulfated GAGs (sGAGs) appear intracellularly, the knowledge about intracellular effects and putative interaction partners is scarce. Here we used an affinity-purification mass spectrometry-based (AP-MS) approach to identify novel and particularly intracellular sGAG-interacting proteins in human bone marrow stromal cells (hBMSC). Overall, 477 proteins were found interacting with at least one of four distinct sGAGs. Enrichment analysis for protein localization showed that mainly intracellular and cell-associated interacting proteins were identified. The interaction of sGAG with α2-macroglobulin receptor-associated protein (LRPAP1), exportin-1 (XPO1), and serine protease HTRA1 (HTRA1) was confirmed in reverse assays. Consecutive pathway and cluster analysis led to the identification of biological processes, namely processes involving binding and processing of nucleic acids, LRP1-dependent endocytosis, and exosome formation. Respecting the preferentially intracellular localization of sGAG in vesicle-like structures, also the interaction data indicate sGAG-specific modulation of vesicle-based transport processes. By identifying many sGAG-specific interacting proteins, our data provide a resource for upcoming studies aimed at molecular mechanisms and understanding of sGAG cellular effects.
Collapse
Affiliation(s)
- Henning Großkopf
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
| | - Sarah Vogel
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Claudia Damaris Müller
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Sebastian Köhling
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Jan-Niklas Dürig
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V. Technologieentwicklung Jena, Jena D-07745, Germany
| | - Matthias Schnabelrauch
- Biomaterials Department, INNOVENT e.V. Technologieentwicklung Jena, Jena D-07745, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Leipzig D-04103, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
| |
Collapse
|
12
|
Salbach-Hirsch J, Rauner M, Hofbauer C, Hofbauer LC. New insights into the role of glycosaminoglycans in the endosteal bone microenvironment. Biol Chem 2021; 402:1415-1425. [PMID: 34323057 DOI: 10.1515/hsz-2021-0174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
The bone microenvironment is a complex tissue in which heterogeneous cell populations of hematopoietic and mesenchymal origin interact with environmental cues to maintain tissue integrity. Both cellular and matrix components are subject to physiologic challenges and can dynamically respond by modifying cell/matrix interactions. When either component is impaired, the physiologic balance is lost. Here, we review the current state of knowledge of how glycosaminoglycans - organic components of the bone extracellular matrix - influence the bone micromilieu. We point out how they interact with mediators of distinct signaling pathways such as the RANKL/OPG axis, BMP and WNT signaling, and affect the activity of bone remodeling cells within the endosteal niche summarizing their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christine Hofbauer
- NCT Dresden and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), D-01307 Dresden, Germany
| |
Collapse
|
13
|
Vogel S, Ullm F, Müller CD, Pompe T, Hempel U. Impact of binding mode of low-sulfated hyaluronan to 3D collagen matrices on its osteoinductive effect for human bone marrow stromal cells. Biol Chem 2021; 402:1465-1478. [PMID: 34085493 DOI: 10.1515/hsz-2021-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Synthetically sulfated hyaluronan derivatives were shown to facilitate osteogenic differentiation of human bone marrow stromal cells (hBMSC) by application in solution or incorporated in thin collagen-based coatings. In the presented study, using a biomimetic three-dimensional (3D) cell culture model based on fibrillary collagen I (3D Col matrix), we asked on the impact of binding mode of low sulfated hyaluronan (sHA) in terms of adsorptive and covalent binding on osteogenic differentiation of hBMSC. Both binding modes of sHA induced osteogenic differentiation. Although for adsorptive binding of sHA a strong intracellular uptake of sHA was observed, implicating an intracellular mode of action, covalent binding of sHA to the 3D matrix induced also intense osteoinductive effects pointing towards an extracellular mode of action of sHA in osteogenic differentiation. In summary, the results emphasize the relevance of fibrillary 3D Col matrices as a model to study hBMSC differentiation in vitro in a physiological-like environment and that sHA can display dose-dependent osteoinductive effects in dependence on presentation mode in cell culture scaffolds.
Collapse
Affiliation(s)
- Sarah Vogel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| | - Franziska Ullm
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Johannisallee 21-23, D-04103Leipzig, Germany
| | - Claudia Damaris Müller
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Johannisallee 21-23, D-04103Leipzig, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| |
Collapse
|
14
|
Künze G, Huster D, Samsonov SA. Investigation of the structure of regulatory proteins interacting with glycosaminoglycans by combining NMR spectroscopy and molecular modeling - the beginning of a wonderful friendship. Biol Chem 2021; 402:1337-1355. [PMID: 33882203 DOI: 10.1515/hsz-2021-0119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022]
Abstract
The interaction of regulatory proteins with extracellular matrix or cell surface-anchored glycosaminoglycans (GAGs) plays important roles in molecular recognition, wound healing, growth, inflammation and many other processes. In spite of their high biological relevance, protein-GAG complexes are significantly underrepresented in structural databases because standard tools for structure determination experience difficulties in studying these complexes. Co-crystallization with subsequent X-ray analysis is hampered by the high flexibility of GAGs. NMR spectroscopy experiences difficulties related to the periodic nature of the GAGs and the sparse proton network between protein and GAG with distances that typically exceed the detection limit of nuclear Overhauser enhancement spectroscopy. In contrast, computer modeling tools have advanced over the last years delivering specific protein-GAG docking approaches successfully complemented with molecular dynamics (MD)-based analysis. Especially the combination of NMR spectroscopy in solution providing sparse structural constraints with molecular docking and MD simulations represents a useful synergy of forces to describe the structure of protein-GAG complexes. Here we review recent methodological progress in this field and bring up examples where the combination of new NMR methods along with cutting-edge modeling has yielded detailed structural information on complexes of highly relevant cytokines with GAGs.
Collapse
Affiliation(s)
- Georg Künze
- Center for Structural Biology, Vanderbilt University, 465 21st Ave S, 5140 MRB3, Nashville, TN37240, USA.,Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN37235, USA.,Institute for Drug Discovery, University of Leipzig, Brüderstr. 34, D-04103Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107Leipzig, Germany
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308Gdańsk, Poland
| |
Collapse
|
15
|
Marcisz M, Huard B, Lipska AG, Samsonov SA. Further analyses of APRIL/APRIL-Receptor/Glycosaminoglycan interactions by biochemical assays linked to computational studies. Glycobiology 2021; 31:772-786. [PMID: 33682874 DOI: 10.1093/glycob/cwab016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor superfamily. APRIL is quite unique in this superfamily for at least for two reasons: i) it binds to glycosaminoglycans (GAGs) via its positively charged N-terminus; ii) one of its signaling receptor, the transmembrane activator CAML interactor (TACI) was also reported to bind GAGs. Here, as provided by biochemical evidences with the use of an APRIL deletion mutant linked to computational studies, APRIL-GAG interaction involved other regions than the APRIL N-terminus. Preferential interaction of APRIL with heparin followed by chondroitin sulfate E were confirmed by in silico analysis. Both computational and experimental approaches did not reveal heparan sulfate binding to TACI. Together, computational results corroborated experiments contributing with atomistic details to the knowledge on this biologically relevant trimolecular system. Additionally, a high-throughput rigorous analysis of the free energy calculations data was performed to critically evaluate the applied computational methodologies.
Collapse
Affiliation(s)
- Mateusz Marcisz
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology of UG and MUG, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Bertrand Huard
- TIMC-IMAG, university Grenoble-Alpes, CNRS UMR 5525, La Tronche, France
| | - Agnieszka G Lipska
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
16
|
Gronbach M, Mitrach F, Möller S, Rother S, Friebe S, Mayr SG, Schnabelrauch M, Hintze V, Hacker MC, Schulz-Siegmund M. A Versatile Macromer-Based Glycosaminoglycan (sHA3) Decorated Biomaterial for Pro-Osteogenic Scavenging of Wnt Antagonists. Pharmaceutics 2020; 12:pharmaceutics12111037. [PMID: 33138172 PMCID: PMC7693161 DOI: 10.3390/pharmaceutics12111037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
High serum levels of Wnt antagonists are known to be involved in delayed bone defect healing. Pharmaceutically active implant materials that can modulate the micromilieu of bone defects with regard to Wnt antagonists are therefore considered promising to support defect regeneration. In this study, we show the versatility of a macromer based biomaterial platform to systematically optimize covalent surface decoration with high-sulfated glycosaminoglycans (sHA3) for efficient scavenging of Wnt antagonist sclerostin. Film surfaces representing scaffold implants were cross-copolymerized from three-armed biodegradable macromers and glycidylmethacrylate and covalently decorated with various polyetheramine linkers. The impact of linker properties (size, branching) and density on sHA3 functionalization efficiency and scavenging capacities for sclerostin was tested. The copolymerized 2D system allowed for finding an optimal, cytocompatible formulation for sHA3 functionalization. On these optimized sHA3 decorated films, we showed efficient scavenging of Wnt antagonists DKK1 and sclerostin, whereas Wnt agonist Wnt3a remained in the medium of differentiating SaOS-2 and hMSC. Consequently, qualitative and quantitative analysis of hydroxyapatite staining as a measure for osteogenic differentiation revealed superior mineralization on sHA3 materials. In conclusion, we showed how our versatile material platform enables us to efficiently scavenge and inactivate Wnt antagonists from the osteogenic micromilieu. We consider this a promising approach to reduce the negative effects of Wnt antagonists in regeneration of bone defects via sHA3 decorated macromer based macroporous implants.
Collapse
Affiliation(s)
- Mathis Gronbach
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Str. 15A, 04317 Leipzig, Germany; (M.G.); (F.M.); (M.C.H.)
| | - Franziska Mitrach
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Str. 15A, 04317 Leipzig, Germany; (M.G.); (F.M.); (M.C.H.)
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V., Pruessingstraße 27B, 07745 Jena, Germany; (S.M.); (M.S.)
| | - Sandra Rother
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01062 Dresden, Germany; (S.R.); (V.H.)
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Sabrina Friebe
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (S.F.); (S.G.M.)
- Division of Surface Physics, University of Leipzig, Linnéstraße. 5, 04103 Leipzig, Germany
| | - Stefan G. Mayr
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (S.F.); (S.G.M.)
- Division of Surface Physics, University of Leipzig, Linnéstraße. 5, 04103 Leipzig, Germany
| | - Matthias Schnabelrauch
- Biomaterials Department, INNOVENT e.V., Pruessingstraße 27B, 07745 Jena, Germany; (S.M.); (M.S.)
| | - Vera Hintze
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01062 Dresden, Germany; (S.R.); (V.H.)
| | - Michael C. Hacker
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Str. 15A, 04317 Leipzig, Germany; (M.G.); (F.M.); (M.C.H.)
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Str. 15A, 04317 Leipzig, Germany; (M.G.); (F.M.); (M.C.H.)
- Correspondence: ; Tel.: +49-341-9711900
| |
Collapse
|
17
|
Gronbach M, Mitrach F, Lidzba V, Müller B, Möller S, Rother S, Salbach-Hirsch J, Hofbauer LC, Schnabelrauch M, Hintze V, Hacker MC, Schulz-Siegmund M. Scavenging of Dickkopf-1 by macromer-based biomaterials covalently decorated with sulfated hyaluronan displays pro-osteogenic effects. Acta Biomater 2020; 114:76-89. [PMID: 32673749 DOI: 10.1016/j.actbio.2020.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/27/2022]
Abstract
Dickkopf-1 (DKK1), a Wnt inhibitor secreted by bone marrow stromal cells (MSC), is known to play an important role in long-term non-union bone fracture defects and glucocorticoid induced osteoporosis. Mitigating its effects in early bone defects could improve osteogenesis and bone defect healing. Here, we applied a biomaterial strategy to deplete a defect environment from DKK1 by scavenging the protein via a macromer-based biomaterial covalently decorated with sulfated hyaluronan (sHA3). The material consisted of cross-copolymerized three-armed macromers with a small anchor molecule. Using the glycidyl anchor, polyetheramine (ED900) could be grafted to the material to which sHA3 was efficiently coupled in a separate step. For thorough investigation of material modification, flat material surfaces were generated by fabricating them on glass discs. The binding capability of sHA3 for DKK1 was demonstrated in this study by surface plasmon resonance measurements. Furthermore, the surfaces demonstrated the ability to scavenge and inactivate pathologic amounts of DKK1 from complex media. In a combinatory approach with Wnt3a, we were able to demonstrate that DKK1 is the preferred binding partner of our sHA3-functionalized surfaces. We validated our findings in a complex in vitro setting of differentiating SaOS-2 cells and primary hMSC. Here, endogenous DKK-1 was scavenged resulting in increased osteogenic differentiation indicating that this is a consistent biological effect irrespective of the model system used. Our study provides insights in the mechanisms and efficiency of sHA3 surface functionalization for DKK1 scavenging, which may be used in a clinical context in the future.
Collapse
Affiliation(s)
- M Gronbach
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany
| | - F Mitrach
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany
| | - V Lidzba
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany
| | - B Müller
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany
| | - S Möller
- INNOVENT e.V., Biomaterials Department, Pruessingstraße 27B, Jena, Germany
| | - S Rother
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01062 Dresden, Germany
| | - J Salbach-Hirsch
- Department of Medicine III, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - L C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - M Schnabelrauch
- INNOVENT e.V., Biomaterials Department, Pruessingstraße 27B, Jena, Germany
| | - V Hintze
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01062 Dresden, Germany
| | - M C Hacker
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany
| | - M Schulz-Siegmund
- University of Leipzig, Medical Faculty, Pharmaceutical Technology, Eilenburger Str. 15A, 04317 Leipzig, Germany.
| |
Collapse
|
18
|
Effects of alginate/chondroitin sulfate-based hydrogels on bone defects healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111217. [PMID: 32806290 DOI: 10.1016/j.msec.2020.111217] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Repairing bone defects remains challenging in orthopedics. Here, strontium (Sr) alginate hydrogels containing chondroitin sulfate (CS) were fabricated for enhancing bone defects repair. The effects of CS incorporation ratio on the morphology, structure, thermal stability, water uptake and mechanical performance of Sr-CS/alginate hydrogels were also evaluated. Increasing CS incorporation ratio, Sr-CS/alginate hydrogels exhibit decreasing mechanical properties and lower water retention capacity. In vitro results suggest that Sr-CS/alginate hydrogels with higher CS ratio facilitate the proliferation of osteoblasts. Additionally, the osteogenic genes expressions were investigated by real-time quantitative polymerase chain reaction (RT-qPCR). The results reveal that Sr-CS/alginate hydrogels should have positive effects on modulating the osteogenic factors. Moreover, by employing repair femoral cylindrical defects rabbit model, the efficiency of as-fabricated Sr-CS/alginate hydrogels in bone regeneration was evaluated. The animal study suggests that Sr-CS/alginate hydrogel could significantly facilitate bone defects repair and therefore should potentially be useful for osteochondral tissue engineering.
Collapse
|
19
|
Krieghoff J, Picke AK, Salbach-Hirsch J, Rother S, Heinemann C, Bernhardt R, Kascholke C, Möller S, Rauner M, Schnabelrauch M, Hintze V, Scharnweber D, Schulz-Siegmund M, Hacker MC, Hofbauer LC, Hofbauer C. Increased pore size of scaffolds improves coating efficiency with sulfated hyaluronan and mineralization capacity of osteoblasts. Biomater Res 2019; 23:26. [PMID: 31890268 PMCID: PMC6921484 DOI: 10.1186/s40824-019-0172-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background Delayed bone regeneration of fractures in osteoporosis patients or of critical-size bone defects after tumor resection are a major medical and socio-economic challenge. Therefore, the development of more effective and osteoinductive biomaterials is crucial. Methods We examined the osteogenic potential of macroporous scaffolds with varying pore sizes after biofunctionalization with a collagen/high-sulfated hyaluronan (sHA3) coating in vitro. The three-dimensional scaffolds were made up from a biodegradable three-armed lactic acid-based macromer (TriLA) by cross-polymerization. Templating with solid lipid particles that melt during fabrication generates a continuous pore network. Human mesenchymal stem cells (hMSC) cultivated on the functionalized scaffolds in vitro were investigated for cell viability, production of alkaline phosphatase (ALP) and bone matrix formation. Statistical analysis was performed using student’s t-test or two-way ANOVA. Results We succeeded in generating scaffolds that feature a significantly higher average pore size and a broader distribution of individual pore sizes (HiPo) by modifying composition and relative amount of lipid particles, macromer concentration and temperature for cross-polymerization during scaffold fabrication. Overall porosity was retained, while the scaffolds showed a 25% decrease in compressive modulus compared to the initial TriLA scaffolds with a lower pore size (LoPo). These HiPo scaffolds were more readily coated as shown by higher amounts of immobilized collagen (+ 44%) and sHA3 (+ 25%) compared to LoPo scaffolds. In vitro, culture of hMSCs on collagen and/or sHA3-coated HiPo scaffolds demonstrated unaltered cell viability. Furthermore, the production of ALP, an early marker of osteogenesis (+ 3-fold), and formation of new bone matrix (+ 2.5-fold) was enhanced by the functionalization with sHA3 of both scaffold types. Nevertheless, effects were more pronounced on HiPo scaffolds about 112%. Conclusion In summary, we showed that the improvement of scaffold pore sizes enhanced the coating efficiency with collagen and sHA3, which had a significant positive effect on bone formation markers, underlining the promise of using this material approach for in vivo studies.
Collapse
Affiliation(s)
- Jan Krieghoff
- 1Institute for Pharmacy, Pharmaceutical Technology, University Leipzig, Leipzig, Germany
| | - Ann-Kristin Picke
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany
| | - Juliane Salbach-Hirsch
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany
| | - Sandra Rother
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Present address: Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA USA
| | - Christiane Heinemann
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Ricardo Bernhardt
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,6Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Christian Kascholke
- 1Institute for Pharmacy, Pharmaceutical Technology, University Leipzig, Leipzig, Germany
| | | | - Martina Rauner
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany
| | | | - Vera Hintze
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Dieter Scharnweber
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | | | - Michael C Hacker
- 1Institute for Pharmacy, Pharmaceutical Technology, University Leipzig, Leipzig, Germany
| | - Lorenz C Hofbauer
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany.,8Center for Regenerative Therapies, Dresden, Germany
| | - Christine Hofbauer
- 9Orthopedics and Trauma Surgery Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Grab AL, Seckinger A, Horn P, Hose D, Cavalcanti-Adam EA. Hyaluronan hydrogels delivering BMP-6 for local targeting of malignant plasma cells and osteogenic differentiation of mesenchymal stromal cells. Acta Biomater 2019; 96:258-270. [PMID: 31302300 DOI: 10.1016/j.actbio.2019.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is a malignant disease characterized by accumulation of clonal plasma cells in the bone marrow. Uncoupling of bone formation and resorption by myeloma cells leads to osteolytic lesions. These are prone to fracture and represent a possible survival space for myeloma cells under treatment causing disease relapse. Here we report on a novel approach suitable for local treatment of multiple myeloma based on hyaluronic acid (HA) hydrogels mimicking the physical properties of the bone marrow. The HA hydrogels are complexed with heparin to achieve sustained presentation and controlled release of bone morphogenetic protein 6 (BMP-6). Others and we have shown that BMP-6 induces myeloma cell apoptosis and bone formation. Using quartz crystal microbalance and enzyme-linked immunosorbent assay, we measured an initial surface density of 400 ng BMP6/cm2, corresponding to two BMP-6 per heparin molecule, with 50% release within two weeks. HA-hydrogels presenting BMP-6 enhanced the phosphorylation of Smad 1/5 while reducing the activity of BMP-6 antagonist sclerostin. These materials induced osteogenic differentiation of mesenchymal stromal cells and decreased the viability of myeloma cell lines and primary myeloma cells. BMP-6 functionalized HA-hydrogels represent a promising material for local treatment of myeloma-induced bone disease and residual myeloma cells within lesions to minimize disease relapse or fractures. STATEMENT OF SIGNIFICANCE: Multiple myeloma is a hematological cancer characterized by the accumulation of clonal plasma cells in the bone marrow and local suppression of bone formation, resulting in osteolytic lesions and fractures. Despite recent advances in systemic treatment of multiple myeloma, it is rare to achieve a targeted suppression of myeloma cells and healing of bone lesions. Here we present hydrogels which mimic the physico-chemical properties of the bone marrow, consisting of hyaluronic acid with crosslinked heparin for the controlled presentation of bioactive BMP-6. The hydrogels decrease the viability of myeloma cell lines and primary myeloma cells and induces osteogenic differentiation of mesenchymal stromal cells. The presentation of BMP-6 in the hyaluronan hydrogels enhances the phosphorylation of Smad1/5 while reducing the activity of the BMP-6 antagonist sclerostin. As such, BMP-6 functionalized hyaluronan hydrogels represent a promising material for the localized eradication of myeloma cells.
Collapse
Affiliation(s)
- Anna Luise Grab
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Institute of Physical Chemistry, Department of Biophysical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; Max Planck Institute for Medical Research, Department of Cellular Biophysics and Central Scientific Facility "Cellular Biotechnology", Jahnstr. 29, 69120 Heidelberg, Germany
| | - Anja Seckinger
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Horn
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Dirk Hose
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Elisabetta Ada Cavalcanti-Adam
- Institute of Physical Chemistry, Department of Biophysical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; Max Planck Institute for Medical Research, Department of Cellular Biophysics and Central Scientific Facility "Cellular Biotechnology", Jahnstr. 29, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Semenyuk P, Muronetz V. Protein Interaction with Charged Macromolecules: From Model Polymers to Unfolded Proteins and Post-Translational Modifications. Int J Mol Sci 2019; 20:E1252. [PMID: 30871103 PMCID: PMC6429204 DOI: 10.3390/ijms20051252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Interaction of proteins with charged macromolecules is involved in many processes in cells. Firstly, there are many naturally occurred charged polymers such as DNA and RNA, polyphosphates, sulfated glycosaminoglycans, etc., as well as pronouncedly charged proteins such as histones or actin. Electrostatic interactions are also important for "generic" proteins, which are not generally considered as polyanions or polycations. Finally, protein behavior can be altered due to post-translational modifications such as phosphorylation, sulfation, and glycation, which change a local charge of the protein region. Herein we review molecular modeling for the investigation of such interactions, from model polyanions and polycations to unfolded proteins. We will show that electrostatic interactions are ubiquitous, and molecular dynamics simulations provide an outstanding opportunity to look inside binding and reveal the contribution of electrostatic interactions. Since a molecular dynamics simulation is only a model, we will comprehensively consider its relationship with the experimental data.
Collapse
Affiliation(s)
- Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
22
|
Abstract
It is well known that bone loss accompanies aging in both men and women and contributes to skeletal fragility in the older population, but changes that occur to the bone tissue matrix itself are less well known. These changes in bone quality aggravate the skeletal fragility associated with loss of bone mass. Bone tissue quality is affected by age-related changes in bone mineral, collagen and its cross-linking profiles, water compartments and even non-collagenous proteins. It is commonly assumed that greater tissue mineralization accompanies aging as bone turnover slows down in elderly individuals, but the data for this are weak. However, there may be changes in the quality of the mineral crystals, and the substitutions found within the crystal. Both enzymatically-mediated and non-enzymatically-mediated collagen cross-links multiply with age. The former tend to make the bone stiffer and stronger, but the latter, while making the bone stiffer can also make it more brittle and more likely to fracture. Bone pore water that is not bound to collagen or mineral increases with age as bone mass is lost, but water that is bound to collagen and mineral declines with age. These changes contribute to skeletal fragility by reducing the amount that bone can deform before fracturing. Finally, non-collagenous proteins have physical properties that can alter matrix mechanical properties and can also have molecular signaling functions that regulate bone remodeling. Whether these change with age, how they change, and how this affects skeletal fragility with aging is still largely a black box, and requires much more investigation. The roles of any of these factors in skeletal fragility are difficult to assess clinically as there is no easy or economical way to evaluate them, but a picture of fragility in the aging skeleton is incomplete without them.
Collapse
Affiliation(s)
- David B Burr
- Dept. of Anatomy and Cell Biology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, United States of America; Dept. of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), United States of America.
| |
Collapse
|
23
|
Unravel a neuroactive sHA sulfation pattern with neurogenesis activity by a library of defined oligosaccharides. Eur J Med Chem 2019; 163:583-596. [DOI: 10.1016/j.ejmech.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023]
|
24
|
Holdsworth G, Roberts SJ, Ke HZ. Novel actions of sclerostin on bone. J Mol Endocrinol 2019; 62:R167-R185. [PMID: 30532996 DOI: 10.1530/jme-18-0176] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
The discovery that two rare autosomal recessive high bone mass conditions were caused by the loss of sclerostin expression prompted studies into its role in bone homeostasis. In this article, we aim to bring together the wealth of information relating to sclerostin in bone though discussion of rare human disorders in which sclerostin is reduced or absent, sclerostin manipulation via genetic approaches and treatment with antibodies that neutralise sclerostin in animal models and in human. Together, these findings demonstrate the importance of sclerostin as a regulator of bone homeostasis and provide valuable insights into its biological mechanism of action. We summarise the current state of knowledge in the field, including the current understanding of the direct effects of sclerostin on the canonical WNT signalling pathway and the actions of sclerostin as an inhibitor of bone formation. We review the effects of sclerostin, and its inhibition, on bone at the cellular and tissue level and discuss new findings that suggest that sclerostin may also regulate adipose tissue. Finally, we highlight areas in which future research is expected to yield additional insights into the biology of sclerostin.
Collapse
Affiliation(s)
| | | | - Hua Zhu Ke
- Bone Therapeutic Area, UCB Pharma, Slough, United Kingdom
| |
Collapse
|
25
|
Köhling S, Blaszkiewicz J, Ruiz-Gómez G, Fernández-Bachiller MI, Lemmnitzer K, Panitz N, Beck-Sickinger AG, Schiller J, Pisabarro MT, Rademann J. Syntheses of defined sulfated oligohyaluronans reveal structural effects, diversity and thermodynamics of GAG-protein binding. Chem Sci 2018; 10:866-878. [PMID: 30774881 PMCID: PMC6346292 DOI: 10.1039/c8sc03649g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023] Open
Abstract
High binding affinities of GAG toward extracellular regulatory proteins are governed by recognition diversity, sulfation pattern, length, and anomeric functionalization.
Binding of sulfated glycosaminoglycans (GAG) to a wide spectrum of extracellular regulatory proteins is crucial for physiological processes such as cell growth, migration, tissue homeostasis and repair. Thus, GAG derivatives exhibit great relevance in the development of innovative biomaterials for tissue regeneration therapies. We present a synthetic strategy for the preparation of libraries of defined sulfated oligohyaluronans as model GAG systematically varied in length, sulfation pattern and anomeric substitution in order to elucidate the effects of these parameters on GAG recognition by regulatory proteins. Through an experimental and computational approach using fluorescence polarization, ITC, docking and molecular dynamics simulations we investigate the binding of these functionalized GAG derivatives to ten representative regulatory proteins including IL-8, IL-10, BMP-2, sclerostin, TIMP-3, CXCL-12, TGF-β, FGF-1, FGF-2, and AT-III, and we establish structure–activity relationships for GAG recognition. Binding is mainly driven by enthalpy with only minor entropic contributions. In several cases binding is determined by GAG length, and in all cases by the position and number of sulfates. Affinities strongly depend on the anomeric modification of the GAG. Highest binding affinities are effected by anomeric functionalization with large fluorophores and by GAG dimerization. Our experimental and theoretical results suggest that the diversity of GAG binding sites and modes is responsible for the observed high affinities and other binding features. The presented new insights into GAG–protein recognition will be of relevance to guide the design of GAG derivatives with customized functions for the engineering of new biomaterials.
Collapse
Affiliation(s)
- Sebastian Köhling
- Institute of Pharmacy - Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany .
| | - Joanna Blaszkiewicz
- Institute of Pharmacy - Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany .
| | - Gloria Ruiz-Gómez
- Structural Bioinformatics , BIOTEC TU Dresden , Tatzberg 47-51 , Dresden 01307 , Germany .
| | | | - Katharina Lemmnitzer
- Institute of Medical Physics and Biophysics , University of Leipzig , Härtelstr. 16/18 , 04107 Leipzig , Germany
| | - Nydia Panitz
- Institute of Biochemistry , University of Leipzig , Brüderstr. 34 , 04103 Leipzig , Germany
| | | | - Jürgen Schiller
- Institute of Medical Physics and Biophysics , University of Leipzig , Härtelstr. 16/18 , 04107 Leipzig , Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics , BIOTEC TU Dresden , Tatzberg 47-51 , Dresden 01307 , Germany .
| | - Jörg Rademann
- Institute of Pharmacy - Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany .
| |
Collapse
|
26
|
Uciechowska-Kaczmarzyk U, Babik S, Zsila F, Bojarski KK, Beke-Somfai T, Samsonov SA. Molecular dynamics-based model of VEGF-A and its heparin interactions. J Mol Graph Model 2018; 82:157-166. [DOI: 10.1016/j.jmgm.2018.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 11/28/2022]
|
27
|
Borawski J, Zoltko J, Labij-Reduta B, Koc-Zorawska E, Naumnik B. Effects of Enoxaparin on Intravascular Sclerostin Release in Healthy Men. J Cardiovasc Pharmacol Ther 2018; 23:344-349. [PMID: 29658328 DOI: 10.1177/1074248418770623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sclerostin (Scl) is implicated in vascular calcification and angiogenesis and localizes within vasculature. Its molecule incorporates a heparin-binding site that implies also binding to endothelial glycocalyx. We preliminary tested whether intravenous (IV) low-molecular-weight heparin enoxaparin can stimulate intravascular release of this calcification inhibitor in humans. Sixteen male volunteers were injected with a bolus of 1 mg/kg body weight of enoxaparin. After 10 minutes, plasma immunoreactive Scl levels increased uniformly by a mean of 184% versus baseline level of 0.56 ± 0.17 ng/mL ( P = .0004). Plasma Scl levels were found still elevated after 2 and 6 hours (with a median of 20.9% and 8.69%, respectively) and became normal after 24 hours. The percentage of increase (Δ) in plasma Scl after 10 minutes was directly correlated with enoxaparin dose per kg/m2 of body mass index (ρ = 0.587, P = .017) and strongly inversely correlated with the preinjection Scl levels (ρ = -0.747, P = .0008). A robust negative association between the ΔScl increase after 10 minutes and the ΔScl decrease after 2 hours versus 10 minutes was observed (ρ = -0.835, P < .0001). Complementary in vitro spiking experiment showed no effects of enoxaparin addition and whole blood incubation on plasma Scl levels when measured with the immunoassay. This study shows that enoxaparin has a stimulating effect on the intravascular release of calcification inhibitor Scl in healthy men. This novel pharmacological action of the popular anticoagulant drug seems important in cardiovascular medicine.
Collapse
Affiliation(s)
- Jacek Borawski
- 1 First Department of Nephrology and Transplantation With Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Justyna Zoltko
- 1 First Department of Nephrology and Transplantation With Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Labij-Reduta
- 1 First Department of Nephrology and Transplantation With Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Koc-Zorawska
- 1 First Department of Nephrology and Transplantation With Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Beata Naumnik
- 1 First Department of Nephrology and Transplantation With Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
28
|
Diez-Escudero A, Espanol M, Bonany M, Lu X, Persson C, Ginebra MP. Heparinization of Beta Tricalcium Phosphate: Osteo-immunomodulatory Effects. Adv Healthc Mater 2018; 7. [PMID: 29266807 DOI: 10.1002/adhm.201700867] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Indexed: 01/18/2023]
Abstract
Immune cells play a vital role in regulating bone dynamics. This has boosted the interest in developing biomaterials that can modulate both the immune and skeletal systems. In this study, calcium phosphates discs (i.e., beta-tricalcium phosphate, β-TCP) are functionalized with heparin to investigate the effects on immune and stem cell responses. The results show that the functionalized surfaces downregulate the release of hydrogen peroxide and proinflammatory cytokines (tumor necrosis factor alpha and interleukin 1 beta) from human monocytes and neutrophils, compared to nonfunctionalized discs. The macrophages show both elongated and round shapes on the two ceramic substrates, but the morphology of cells on heparinized β-TCP tends toward a higher elongation after 72 h. The heparinized substrates support rat mesenchymal stem cell (MSC) adhesion and proliferation, and anticipate the differentiation toward the osteoblastic lineage as compared to β-TCP and control. The coupling between the inflammatory response and osteogenesis is assessed by culturing MSCs with the macrophage supernatants. The downregulation of inflammation in contact with the heparinized substrates induces higher expression of bone-related markers by MSCs.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Mar Bonany
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Xi Lu
- Materials in Medicine Group; Division of Applied Materials Science; Department of Engineering Science; Uppsala University; Lägerhyddsy. 1 751 21 Uppsala Sweden
| | - Cecilia Persson
- Materials in Medicine Group; Division of Applied Materials Science; Department of Engineering Science; Uppsala University; Lägerhyddsy. 1 751 21 Uppsala Sweden
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC); Barcelona Institute of Science and Technology; C/ Baldiri Reixac 10-12 08028 Barcelona Spain
| |
Collapse
|
29
|
Bhattacharya D, Svechkarev D, Souchek JJ, Hill TK, Taylor MA, Natarajan A, Mohs AM. Impact of structurally modifying hyaluronic acid on CD44 interaction. J Mater Chem B 2017; 5:8183-8192. [PMID: 29354263 PMCID: PMC5773055 DOI: 10.1039/c7tb01895a] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD44 is a widely-distributed type I transmembrane glycoprotein that binds hyaluronic acid (HA) in most cell types, including primary tumor cells and cancer-initiating cells and has roles in cell migration, cell-cell, and cell-matrix adhesion. HA-derived conjugates and nanoparticles that target the CD44 receptor on cells have been reported for targeted delivery of therapeutics and imaging agents. Altering crucial interactions of HA with CD44 active sites holds significant importance in modulating targeting ability of hyaluronic acid to other cancer types that do not express the CD44 receptor or minimizing the interaction with CD44+ cells that are not target cells. The approach adopted here was deacetylation of the N-acetyl group and selective sulfation on the C6-OH on the HA polymer, which form critical interactions with the CD44 active site. Major interactions identified by molecular modeling were confirmed to be hydrogen bonding of the C6-OH with Tyr109 and hydrophobic interaction of the N-acetyl group with Tyr46, 83 and Ile 92. Modified HA was synthesized and characterized and its interactions were assessed by in vitro and molecular modeling approaches. In vitro techniques included flow cytometry and fluorescence polarization, while in silico approaches included docking and binding calculations by a MM-PBSA approach. These studies indicated that while both deacetylation and sulfation of HA individually decrease CD44 interaction, both chemical modifications are required to minimize interaction with CD44+ cells. The results of this study represent the first step to effective retargeting of HA-derived NPs for imaging and drug delivery.
Collapse
Affiliation(s)
- D. Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - D. Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - J. J. Souchek
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - T. K. Hill
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - M. A. Taylor
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - A. Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| | - A. M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
| |
Collapse
|
30
|
Babik S, Samsonov SA, Pisabarro MT. Computational drill down on FGF1-heparin interactions through methodological evaluation. Glycoconj J 2017; 34:427-440. [PMID: 27858202 PMCID: PMC5487771 DOI: 10.1007/s10719-016-9745-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023]
Abstract
Glycosaminoglycans (GAGs) exhibit a key role in cellular communication processes through interactions with target proteins of the extracellular matrix (ECM). The sandwich-like interaction established between Fibroblast growth factor (FGF) and heparin (HE) represents quite a peculiar protein-GAG-protein system, which has been both structurally and functionally intensively studied. The molecular recognition characteristics of this system have been exploited in various computational studies in order to deepen understanding of GAG-protein interactions. Here, we drill down on the interactions established in this peculiar macromolecular complex by analyzing the applicability of docking techniques and molecular dynamics (MD)-based approaches, and we dissect the molecular recognition properties exhibited by FGF towards a series of HE derivatives. We examine the sensitivity of MM-GBSA free energy calculations in terms of receptor conformational space sampling and changes in the ligand structures. Furthermore, we investigate its predictive power in combination with other computational methods, namely the well-established Autodock3 (AD3) and dynamic molecular docking (DMD), a targeted MD-based docking method specifically developed to account for flexibility and solvent in computer simulations of protein-GAG systems. Our results show that a site-mapping approach can be effectively combined with AD3 and DMD calculations to accurately reproduce available experimental data and, furthermore, to determine specific GAG recognition patterns. This study deepens our understanding of the applicability of available theoretical approaches to the investigation of molecular recognition in protein-GAG systems.
Collapse
Affiliation(s)
- Sándor Babik
- Structural Bioinformatics, BIOTEC TU Dresden, Dresden, 01307, Germany
| | - Sergey A Samsonov
- Structural Bioinformatics, BIOTEC TU Dresden, Dresden, 01307, Germany
| | | |
Collapse
|
31
|
Koehler L, Samsonov S, Rother S, Vogel S, Köhling S, Moeller S, Schnabelrauch M, Rademann J, Hempel U, Pisabarro MT, Scharnweber D, Hintze V. Sulfated Hyaluronan Derivatives Modulate TGF-β1:Receptor Complex Formation: Possible Consequences for TGF-β1 Signaling. Sci Rep 2017; 7:1210. [PMID: 28446792 PMCID: PMC5430790 DOI: 10.1038/s41598-017-01264-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
Glycosaminoglycans are known to bind biological mediators thereby modulating their biological activity. Sulfated hyaluronans (sHA) were reported to strongly interact with transforming growth factor (TGF)-β1 leading to impaired bioactivity in fibroblasts. The underlying mechanism is not fully elucidated yet. Examining the interaction of all components of the TGF-β1:receptor complex with sHA by surface plasmon resonance, we could show that highly sulfated HA (sHA3) blocks binding of TGF-β1 to its TGF-β receptor-I (TβR-I) and -II (TβR-II). However, sequential addition of sHA3 to the TβR-II/TGF-β1 complex led to a significantly stronger recruitment of TβR-I compared to a complex lacking sHA3, indicating that the order of binding events is very important. Molecular modeling suggested a possible molecular mechanism in which sHA3 could potentially favor the association of TβR-I when added sequentially. For the first time bioactivity of TGF-β1 in conjunction with sHA was investigated at the receptor level. TβR-I and, furthermore, Smad2 phosphorylation were decreased in the presence of sHA3 indicating the formation of an inactive signaling complex. The results contribute to an improved understanding of the interference of sHA3 with TGF-β1:receptor complex formation and will help to further improve the design of functional biomaterials that interfere with TGF-β1-driven skin fibrosis.
Collapse
Affiliation(s)
- Linda Koehler
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, 01069, Dresden, Germany
| | - Sergey Samsonov
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, 01069, Dresden, Germany
| | - Sarah Vogel
- Medical Department, Institute of Physiological Chemistry, TU Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Sebastian Köhling
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195, Berlin, Germany
| | - Stephanie Moeller
- Biomaterials Department, INNOVENT e.V., Prüssingstraße 27 B, 07745, Jena, Germany
| | | | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195, Berlin, Germany
| | - Ute Hempel
- Medical Department, Institute of Physiological Chemistry, TU Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, 01069, Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, 01069, Dresden, Germany.
| |
Collapse
|
32
|
Evaluation of cell-surface interaction using a 3D spheroid cell culture model on artificial extracellular matrices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:310-318. [DOI: 10.1016/j.msec.2016.12.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/25/2016] [Accepted: 12/17/2016] [Indexed: 11/21/2022]
|
33
|
Rother S, Samsonov SA, Moeller S, Schnabelrauch M, Rademann J, Blaszkiewicz J, Köhling S, Waltenberger J, Pisabarro MT, Scharnweber D, Hintze V. Sulfated Hyaluronan Alters Endothelial Cell Activation in Vitro by Controlling the Biological Activity of the Angiogenic Factors Vascular Endothelial Growth Factor-A and Tissue Inhibitor of Metalloproteinase-3. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9539-9550. [PMID: 28248081 DOI: 10.1021/acsami.7b01300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Several pathologic conditions such as rheumatoid arthritis, ocular neovascularization, cancer, or atherosclerosis are often associated with abnormal angiogenesis, which requires innovative biomaterial-based treatment options to control the activity of angiogenic factors. Here, we studied how sulfated hyaluronan (sHA) and oversulfated chondroitin sulfate derivatives as potential components of functional biomaterials modulate vascular endothelial growth factor-A (VEGF-A) signaling and endothelial cell activity in vitro. Tissue inhibitor of metalloproteinase-3 (TIMP-3), an effective angiogenesis inhibitor, exerts its activity by competing with VEGF-A for binding to VEGF receptor-2 (VEGFR-2). However, even though TIMP-3 and VEGF-A are known to interact with glycosaminoglycans (GAGs), the potential role and mechanism by which GAGs alter the VEGF-A/TIMP-3 regulated VEGFR-2 signaling remains unclear. Combining surface plasmon resonance, immunobiochemical analysis, and molecular modeling, we demonstrate the simultaneous binding of VEGF-A and TIMP-3 to sHA-coated surfaces and identified a novel mechanism by which sulfated GAG derivatives control angiogenesis: GAG derivatives block the binding of VEGF-A and TIMP-3 to VEGFR-2 thereby reducing their biological activity in a defined, sulfation-dependent manner. This effect was stronger for sulfated GAG derivatives than for native GAGs. The simultaneous formation of TIMP-3/sHA complexes partially rescues the sHA inhibited VEGF-A/VEGFR-2 signaling and endothelial cell activation. These results provide novel insights into the regulation of angiogenic factors by GAG derivatives and highlight the potential of sHA derivatives for the treatment of diseases associated with increased VEGF-A and VEGFR-2 levels.
Collapse
Affiliation(s)
- Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , 01069 Dresden, Germany
| | - Sergey A Samsonov
- Structural Bioinformatics, BIOTEC Technische Universität Dresden , Tatzberg 47-51, 01307 Dresden, Germany
| | | | | | - Jörg Rademann
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin , Königin-Luise-Strasse 2, 14195 Berlin, Germany
- Institute of Medical Physics and Biophysics, Universität Leipzig , Härtelstrasse 16/18, 04107 Leipzig, Germany
| | - Joanna Blaszkiewicz
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin , Königin-Luise-Strasse 2, 14195 Berlin, Germany
- Institute of Medical Physics and Biophysics, Universität Leipzig , Härtelstrasse 16/18, 04107 Leipzig, Germany
| | - Sebastian Köhling
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin , Königin-Luise-Strasse 2, 14195 Berlin, Germany
- Institute of Medical Physics and Biophysics, Universität Leipzig , Härtelstrasse 16/18, 04107 Leipzig, Germany
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, University of Münster , Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC Technische Universität Dresden , Tatzberg 47-51, 01307 Dresden, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , 01069 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , 01069 Dresden, Germany
| |
Collapse
|
34
|
Freudenberg U, Liang Y, Kiick KL, Werner C. Glycosaminoglycan-Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8861-8891. [PMID: 27461855 PMCID: PMC5152626 DOI: 10.1002/adma.201601908] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/30/2016] [Indexed: 05/12/2023]
Abstract
Glycosaminoglycans (GAGs) govern important functional characteristics of the extracellular matrix (ECM) in living tissues. Incorporation of GAGs into biomaterials opens up new routes for the presentation of signaling molecules, providing control over development, homeostasis, inflammation, and tumor formation and progression. Recent approaches to GAG-based materials are reviewed, highlighting the formation of modular, tunable biohybrid hydrogels by covalent and non-covalent conjugation schemes, including both theory-driven design concepts and advanced processing technologies. Examples of the application of the resulting materials in biomedical studies are provided. For perspective, solid-phase and chemoenzymatic oligosaccharide synthesis methods for GAG-derived motifs, rational and high-throughput design strategies for GAG-based materials, and the utilization of the factor-scavenging characteristics of GAGs are highlighted.
Collapse
Affiliation(s)
- Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| | - Yingkai Liang
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States,
| | - Kristi L. Kiick
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States and Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19716, United States
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
35
|
Picke AK, Salbach-Hirsch J, Hintze V, Rother S, Rauner M, Kascholke C, Möller S, Bernhardt R, Rammelt S, Pisabarro MT, Ruiz-Gómez G, Schnabelrauch M, Schulz-Siegmund M, Hacker MC, Scharnweber D, Hofbauer C, Hofbauer LC. Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function. Biomaterials 2016; 96:11-23. [DOI: 10.1016/j.biomaterials.2016.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/03/2023]
|
36
|
Samsonov SA, Pisabarro MT. Computational analysis of interactions in structurally available protein-glycosaminoglycan complexes. Glycobiology 2016; 26:850-861. [PMID: 27496767 DOI: 10.1093/glycob/cww055] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
Glycosaminoglycans represent a class of linear anionic periodic polysaccharides, which play a key role in a variety of biological processes in the extracellular matrix via interactions with their protein targets. Computationally, glycosaminoglycans are very challenging due to their high flexibility, periodicity and electrostatics-driven nature of the interactions with their protein counterparts. In this work, we carry out a detailed computational characterization of the interactions in protein-glycosaminoglycan complexes from the Protein Data Bank (PDB), which are split into two subsets accounting for their intrinsic nature: non-enzymatic-protein-glycosaminoglycan and enzyme-glycosaminoglycan complexes. We apply molecular dynamics to analyze the differences in these two subsets in terms of flexibility, retainment of the native interactions in the simulations, free energy components of binding and contributions of protein residue types to glycosaminoglycan binding. Furthermore, we systematically demonstrate that protein electrostatic potential calculations, previously found to be successful for glycosaminoglycan binding sites prediction for individual systems, are in general very useful for proposing protein surface regions as putative glycosaminoglycan binding sites, which can be further used for local docking calculations with these particular polysaccharides. Finally, the performance of six different docking programs (Autodock 3, Autodock Vina, MOE, eHiTS, FlexX and Glide), some of which proved to perform well for particular protein-glycosaminoglycan complexes in previous work, is evaluated on the complete protein-glycosaminoglycan data set from the PDB. This work contributes to widen our knowledge of protein-glycosaminoglycan molecular recognition and could be useful to steer a choice of the strategies to be applied in theoretical studies of these systems.
Collapse
Affiliation(s)
- Sergey A Samsonov
- Structural Bioinformatics, BIOTEC TU Dresden, Dresden 01307, Germany
| | | |
Collapse
|
37
|
Rother S, Salbach-Hirsch J, Moeller S, Seemann T, Schnabelrauch M, Hofbauer LC, Hintze V, Scharnweber D. Bioinspired Collagen/Glycosaminoglycan-Based Cellular Microenvironments for Tuning Osteoclastogenesis. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23787-23797. [PMID: 26452150 DOI: 10.1021/acsami.5b08419] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Replicating the biocomplexity of native extracellular matrices (ECM) is critical for a deeper understanding of biochemical signals influencing bone homeostasis. This will foster the development of bioinspired biomaterials with adjustable bone-inducing properties. Collagen-based coatings containing single HA derivatives have previously been reported to promote osteogenic differentiation and modulate osteoclastogenesis and resorption depending on their sulfation degree. However, the potential impact of different GAG concentrations as well as the interplay of multiple GAGs in these coatings is not characterized in detail to date. These aspects were addressed in the current study by integrating HA and different sulfate-modified HA derivatives (sHA) during collagen in vitro fibrillogenesis. Besides cellular microenvironments with systematically altered single-GAG concentrations, matrices containing both low and high sHA (sHA1, sHA4) were characterized by biochemical analysis such as agarose gel electrophoresis, performed for the first time with sHA derivatives. The morphology and composition of the collagen coatings were altered in a GAG sulfation- and concentration-dependent manner. In multi-GAG microenvironments, atomic force microscopy revealed intermediate collagen fibril structures with thin fibrils and microfibrils. GAG sulfation altered the surface charge of the coatings as demonstrated by ζ-potential measurements revealed for the first time as well. This highlights the prospect of GAG-containing matrices to adjust defined surface charge properties. The sHA4- and the multi-GAG coatings alike significantly enhanced the viability of murine osteoclast-precursor-like RAW264.7 cells. Although in single-GAG matrices there was no dose-dependent effect on cell viability, osteoclastogenesis was significantly suppressed only on sHA4-coatings in a dose-dependent fashion. The multi-GAG coatings led to an antiosteoclastogenic effect in-between those with single-GAGs which cannot simply be attributed to the overall content of sulfate groups. These data suggest that the interplay of sGAGs influences bone cell behavior. Whether these findings translate into favorable biomaterial properties needs to be validated in vivo.
Collapse
Affiliation(s)
- Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , Budapester Straße 27, 01069 Dresden, Germany
| | - Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Bone Diseases of Medicine III, Technische Universität Dresden Medical Center , Fetscherstraße 74, 01307 Dresden, Germany
| | - Stephanie Moeller
- Biomaterials Department, INNOVENT e.V. , Prüssingstraße 27 B, 07745 Jena, Germany
| | - Thomas Seemann
- Biomaterials Department, INNOVENT e.V. , Prüssingstraße 27 B, 07745 Jena, Germany
| | | | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases of Medicine III, Technische Universität Dresden Medical Center , Fetscherstraße 74, 01307 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , Budapester Straße 27, 01069 Dresden, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , Budapester Straße 27, 01069 Dresden, Germany
| |
Collapse
|