1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Bright SA, Erby M, Poynton FE, Monteyne D, Pérez-Morga D, Gunnlaugsson T, Williams DC, Elmes RBP. Tracking the cellular uptake and phototoxicity of Ru(ii)-polypyridyl-1,8-naphthalimide Tröger's base conjugates. RSC Chem Biol 2024; 5:344-359. [PMID: 38576718 PMCID: PMC10989513 DOI: 10.1039/d3cb00206c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024] Open
Abstract
Ruthenium(ii) complexes are attracting significant research attention as a promising class of photosensitizers (PSs) in photodynamic therapy (PDT). Having previously reported the synthesis of two novel Ru(ii)-polypyridyl-1,8-naphthalimide Tröger's base compounds 1 and 2 with interesting photophysical properties, where the emission from either the Ru(ii) polypyridyl centres or the naphthalimide moieties could be used to monitor binding to nucleic acids, we sought to use these compounds to investigate further and in more detail their biological profiling, which included unravelling their mechanism of cellular uptake, cellular trafficking and cellular responses to photoexcitation. Here we demonstrate that these compounds undergo rapid time dependent uptake in HeLa cells that involved energy dependent, caveolae and lipid raft-dependent mediated endocytosis, as demonstrated by confocal imaging, and transmission and scanning electron microscopy. Following endocytosis, both compounds were shown to localise to mostly lysosomal and Golgi apparatus compartments with some accumulation in mitochondria but no localisation was found to the nucleus. Upon photoactivation, the compounds increased ROS production and induced ROS-dependent apoptotic cell death. The photo-activated compounds subsequently induced DNA damage and altered tubulin, but not actin structures, which was likely to be an indirect effect of ROS production and induced apoptosis. Furthermore, by changing the concentration of the compounds or the laser used to illuminate the cells, the mechanism of cell death could be changed from apoptosis to necrosis. This is the first detailed biological study of Ru(ii)-polypyridyl Tröger's bases and clearly suggests caveolae-dependent endocytosis is responsible for cell uptake - this may also explain the lack of nuclear uptake for these compounds and similar results observed for other Ru(ii)-polypyridyl complexes. These conjugates are potential candidates for further development as PDT agents and may also be useful in mechanistic studies on cell uptake and trafficking.
Collapse
Affiliation(s)
- Sandra A Bright
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
| | - MariaLuisa Erby
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
| | - Fergus E Poynton
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM Université Libre de Bruxelles Gosselies Belgium
| | - David Pérez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM Université Libre de Bruxelles Gosselies Belgium
- Center for Microscopy and Molecular Imaging CMMI Université Libre de Bruxelles Gosselies Belgium
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick Ireland
| | - D Clive Williams
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
| | - Robert B P Elmes
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick Ireland
- Department of Chemistry, Maynooth University, National University of Ireland Maynooth Co. Kildare Ireland +353 1708 4615
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University Maynooth Co. Kildare Ireland
| |
Collapse
|
3
|
Suna G, Erdemir E, Liv L, Karakus AC, Gunturkun D, Ozturk T, Karakuş E. A novel thienothiophene-based "dual-responsive" probe for rapid, selective and sensitive detection of hypochlorite. Talanta 2024; 270:125545. [PMID: 38128280 DOI: 10.1016/j.talanta.2023.125545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Hypochlorite/hypochlorous acid (ClO-/HOCl) is a biologically crucial reactive oxygen species (ROS), produced in living organisms and has a critical role as an antimicrobial agent in the natural defense system. However, when ClO- is produced excessively, it can lead to the oxidative damage of biomolecules, resulting in organ damage and various diseases. Therefore, it is imperative to have a straightforward, quick and reliable method for over watching the minimum amount of ClO- in different environments. RESULTS Herein, a new probe TTM, containing thienothiophene and malononitrile units, was developed for exceptionally selective and sensitive hypochlorite (ClO-) detection. TTM demonstrated a rapid "turn-on" fluorescence response (<30 s), naked-eye detection (colorimetric), voltammetric read-out with anodic scan, low detection limit (LOD = 0.58 μM and 1.43 μM for optical and electrochemical methods, respectively) and applicability in detecting ClO- in real water samples and living cells. SIGNIFICANCE AND NOVELTY This study represents one of the rare examples of a small thienothiophene-based molecule for both optical and electrochemical detections of ClO- in an aqueous medium.
Collapse
Affiliation(s)
- Garen Suna
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey; Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Eda Erdemir
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey; Department of Chemistry, Faculty of Science, Istanbul University, 34134, Beyazit, Istanbul, Turkey
| | - Lokman Liv
- Electrochemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey
| | - Aysenur Cataler Karakus
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey
| | - Dilara Gunturkun
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Turan Ozturk
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey; Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - Erman Karakuş
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey.
| |
Collapse
|
4
|
Zhao G, Du Y, Zhang N, Li C, Ma H, Wu D, Cao W, Wang Y, Wei Q. Dual-quenching mechanisms in electrochemiluminescence immunoassay based on zinc-based MOFs of ruthenium hybrid for D-dimer detection. Anal Chim Acta 2023; 1253:341076. [PMID: 36965992 DOI: 10.1016/j.aca.2023.341076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
The successful application of electrochemiluminescence (ECL) in immunoassay for clinical diagnosis requires improving sensitivity and accuracy. Herein was reported an ECL analytical model based zinc-based metal-organic frameworks of ruthenium hybrid (RuZn MOFs) as the signal emitter. To enlarge the output difference, the quenching effect of three different noble metal nanoparticles included palladium seeds (Pdseeds), palladium octahedrons (Pdoct), and Pt-based palladium (Pd@Ptoct) core-shell were researched. Among them, Pd@Ptoct core-shell possessed higher activity and improved durability than Pd-only (NPs), they could load more protein macromolecules amicably and stabilized in the analysis system. Furthermore, since the charge redistribution owing to the hybridization of the Pt and Pd atoms in Pd@Ptoct, it could generate the electron flow maximumly from the emitter RuZn MOFs to Pd@Ptoct and result in the enhancement of quenching ECL. And the UV absorption of noble metal nanoparticles overlapped with the ECL emission of RuZn MOFs to varying degrees, which caused the behavior of resonance energy transfer (RET) reaction at the same time. This would greatly promote the sensitivity of this ECL system compared with the traditional single quenching mechanism. Based on this, a signal-off immunsensor was constructed to sensitive detection of D-dimer with linearity range from 0.001 to 200 ng mL-1, limit of detection (LOD) was 0.20 pg mL-1 and provide a further theoretical basis for the clinical application of ECL technology.
Collapse
Affiliation(s)
- Guanhui Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chenchen Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Wei Cao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yaoguang Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Ma Y, Wu Y, Wang X, Gao G, Zhou X. Research Progress of Near-Infrared Fluorescent Probes Based on 1,3-Dichloro-7-hydroxy-9,9-dimethyl-2(9 H)-acridone (DDAO). CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Electrochemistry and Electrochemiluminescence of Resorufin Dye: Synergetic Reductive-Oxidation Boosted by Hydrogen Peroxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
A new pyrene-based “turn-on” fluorescent probe for highly selective detection of hypochlorite in aqueous solution and in living cells. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Das S, Patra L, Pratim Das P, Ghoshal K, Gharami S, Walton JW, Bhattacharyya M, Mondal TK. A new ratiometric switch "two-way" detects hydrazine and hypochlorite via a "dye-release" mechanism with a PBMC bioimaging study. Phys Chem Chem Phys 2022; 24:20941-20952. [PMID: 36053209 DOI: 10.1039/d2cp02482a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ratiometric fluorescent probe (E)-2-(benzo[d]thiazol-2-yl)-3-(8-methoxyquinolin-2-yl)acrylonitrile (HQCN) was synthesised by the perfect blending of quinoline and a 2-benzothiazoleacetonitrile unit. In a mixed aqueous solution, HQCN reacts with hydrazine (N2H4) to give a new product 2-(hydrazonomethyl)-8-methoxyquinoline along with the liberation of the 2-benzothiazoleacetonitrile moiety. In contrast, the reaction of hypochlorite ions (OCl-) with the probe gives 8-methoxyquinoline-2-carbaldehyde. In both cases, the chemodosimetric approaches of hydrazine and hypochlorite selectively occur at the olefinic carbon but give two different products with two different outputs, as observed from the fluorescence study exhibiting signals at 455 nm and 500 nm for hydrazine and hypochlorite, respectively. A UV-vis spectroscopy study also depicts a distinct change in the spectrum of HQCN in the presence of hydrazine and hypochlorite. The hydrazinolysis of HQCN exhibits a prominent chromogenic as well as ratiometric fluorescence change with a 165 nm left-shift in the fluorescence spectrum. Similarly, the probe in hand (HQCN) can selectively detect hypochlorite in a ratiometric manner with a shift of 120 nm, as observed from the fluorescence emission spectra. HQCN can detect hydrazine and OCl- as low as 2.25 × 10-8 M and 3.46 × 10-8 M, respectively, as evaluated from the fluorescence experiments again. The excited state behaviour of the probe HQCN and the chemodosimetric products with hydrazine and hypochlorite are studied by the nanosecond time-resolved fluorescence technique. Computational studies (DFT and TDDFT) with the probe and the hydrazine and hypochlorite products were also performed. The observations made in the fluorescence imaging studies with human blood cells manifest that HQCN can be employed to monitor hydrazine and OCl- in human peripheral blood mononuclear cells (PBMCs). It is indeed a rare case that the single probe HQCN is found to be successfully able to detect hydrazine and hypochlorite in PBMCs, with two different outputs.
Collapse
Affiliation(s)
- Sangita Das
- Department of Chemistry, Jadavpur University, Kolkata-700032, India. .,Department of Chemistry, Durham University, Durham, DH1 3LE, UK. .,KIST Europe Forschungsgesellschaft mbH, Campus E71, 66123 Saarbrücken, Germany
| | - Lakshman Patra
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Partha Pratim Das
- Center for Novel States of Complex Materials Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Kakali Ghoshal
- Department of Biochemistry, University of Calcutta, Kolkata-700019, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - James W Walton
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
9
|
Guin PS, Roy S. Recently Reported Ru-Metal Organic Coordination Complexes and Their Application (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wei P, Guo Y, Liu L, Zhou X, Yi T. Hypochlorous acid triggered fluorescent probes for in situ imaging of a psoriasis model. J Mater Chem B 2022; 10:5211-5217. [PMID: 35735098 DOI: 10.1039/d2tb00765g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psoriasis is a common skin disease with complex pathogenesis that lacks diagnostic methods. Typically, psoriasis is an inflammation-related disease accompanied by high expression of reactive oxygen species (ROS) in the infected part. However, due to the lack of suitable tools, it is difficult to identify the ROS, especially certain types of ROS (e.g., HOCl) in the psoriasis model. Here, two HOCl-specific fluorescent probes, G1 and G2, were designed and synthesized based on oxazine 1. Both probes could react with HOCl with high selectivity among other ROS under physiological conditions. The selected probe G2 could detect HOCl in HL-60 cells without special stimulation and detect endogenously produced HOCl in the mouse model of arthritis. Thus, G2 was used to identify and image HOCl in situ in the imiquimod induced psoriasis model. The result showed that HOCl was a potential pathological marker of psoriasis.
Collapse
Affiliation(s)
- Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China. .,National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong, 271000, P. R. China
| | - Yu Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Lingyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China. .,National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong, 271000, P. R. China
| |
Collapse
|
11
|
Wu M, Zhang Z, Yong J, Schenk PM, Tian D, Xu ZP, Zhang R. Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors. Top Curr Chem (Cham) 2022; 380:29. [PMID: 35695976 PMCID: PMC9192387 DOI: 10.1007/s41061-022-00392-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
Luminescence chemosensors are one of the most useful tools for the determination and imaging of small biomolecules and ions in situ in real time. Based on the unique photo-physical/-chemical properties of ruthenium(II) (Ru(II)) complexes, the development of Ru(II) complex-based chemosensors has attracted increasing attention in recent years, and thus many Ru(II) complexes have been designed and synthesized for the detection of ions and small biomolecules in biological and environmental samples. In this work, we summarize the research advances in the development of Ru(II) complex-based chemosensors for the determination of ions and small biomolecules, including anions, metal ions, reactive biomolecules and amino acids, with a particular focus on binding/reaction-based chemosensors for the investigation of intracellular analytes' evolution through luminescence analysis and imaging. The advances, challenges and future research directions in the development of Ru(II) complex-based chemosensors are also discussed.
Collapse
Affiliation(s)
- Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
12
|
Ren J, Du Z, Zhang W, Zhang R, Song B, Yuan J. Development of a fluorescein modified ruthenium(II) complex probe for lysosome-targeted ratiometric luminescence detection and imaging of peroxynitrite in living cells. Anal Chim Acta 2022; 1205:339784. [DOI: 10.1016/j.aca.2022.339784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 12/19/2022]
|
13
|
Ge ZR, Tong X, Huang YC, Li WH, Li HY, Lu AD, Li TY. Highly Luminescent Dinuclear Iridium(III) Complexes Containing Phenanthroline-Based Neutral Ligands as Chemosensors for Cu 2+ Ion. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ze-Rong Ge
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xin Tong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yi-Chuan Huang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wen-Hao Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hong-Yan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ai-Dang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tian-Yi Li
- School of Chemistry and Biological Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
14
|
Yang X, Wei Y, Wang Z, Wang J, Qi H, Gao Q, Zhang C. Highly Efficient Electrogenerated Chemiluminescence Quenching on Lipid-Coated Multifunctional Magnetic Nanoparticles for the Determination of Proteases. Anal Chem 2022; 94:2305-2312. [DOI: 10.1021/acs.analchem.1c05033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolin Yang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Yuxi Wei
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Zimei Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Junxia Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Honglan Qi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Qiang Gao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Chengxiao Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| |
Collapse
|
15
|
Sahoo SK. Fluorescent chemosensors containing redox-active ferrocene: a review. Dalton Trans 2021; 50:11681-11700. [PMID: 34378597 DOI: 10.1039/d1dt02077c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The redox-active ferrocene containing two cyclopentadienyl rings and iron was extensively employed in the field of sensing, catalysis, medicine, biotechnology etc., due to the structural stability, solubility in common solvents and easy structural modification to make a wide variety of ferrocene derivatives. The ferrocene moiety can be linked suitably with fluoro-chromogenic units and applied for the multichannel (fluorescent, chromogenic and redox) sensing of various bioactive and toxic analytes. This review was narrated to compile some important ferrocene based fluorescent chemosensors developed for the detection of metal ions, anions and neutral analytes. The analytical novelty and sensing mechanisms of the summarized chemosensors are discussed to open new scopes for future research.
Collapse
Affiliation(s)
- Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat-395007, Gujarat, India.
| |
Collapse
|
16
|
He N, Wang Y, Huang Y, Chen L, Wang X, Lv C, Yue S. Detection of hypochlorous acid fluctuation via a selective fluorescent probe in acute lung injury cells and mouse models. J Mater Chem B 2021; 8:9899-9905. [PMID: 33043939 DOI: 10.1039/d0tb01969k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI) is a diffuse inflammatory pulmonary damage caused by excessive ROS that break the coordination of normal physiological structures and functions. Hypochlorous acid (HOCl), one kind of ROS, is a hopeful biological marker for inflammation-related diseases. Therefore, the excessive generation of HOCl might be a significant reason for oxidative injury in ALI. Herein, we developed a fluorescent probe, namely BCy-HOCl, for quantitatively monitoring and visualizing HOCl in living cells and in vivo. The probe BCy-HOCl displayed a significant fluorescence signal enhancement towards HOCl with excellent selectivity and sensitivity. The variation of HOCl in the ALI cell model and ALI mouse model was evaluated with BCy-HOCl to clarify the relationship between ALI and HOCl. Our results verified that the HOCl levels conspicuously increased with the severity of the ALI. Thus, HOCl is likely to play a crucial part in the process of ALI, which will probably provide a new strategy for its treatment.
Collapse
Affiliation(s)
- Na He
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan 250100, China.
| | - Yude Wang
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China.
| | - Yan Huang
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China. and CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xiaoyan Wang
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China. and CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Changjun Lv
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China.
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan 250100, China.
| |
Collapse
|
17
|
Zhang Q, Song H, Yu M, Zhang H, Li Z. Preparation of Yellow Fluorescent N,O-CDs and its Application in Detection of ClO . J Fluoresc 2021; 31:659-666. [PMID: 33534115 DOI: 10.1007/s10895-021-02686-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Accurate and efficient detection of ClO- was extremely important due to the harm of ROS in the environment and organism. In this paper, yellow fluorescent N,O-CDs were successfully prepared by the solvothermal method. The microscopic size of the N,O-CDs was approximately spherical with an average particle size of 4.8 ± 0.8 nm. The fluorescence quantum yield in ethanol solution was calculated as 10.5 % using fluorescein as the standard reference. The as-fabricated N,O-CDs had high sensitivity and low detection limit (7.5 µM) for quantitatively detecting ClO- with a linear range from 0.07 mM to 0.16 mM. The probe not only shows good selectivity and anti-interference to metal ions, anions and amino acids but also has excellent light stability and thermal stability. Also, a wide selection range for pH was demonstrated.
Collapse
Affiliation(s)
- Qiang Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Huanhuan Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongyan Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile, Nanofiber, Beijing Institute of Fashion Technology, Beijing, 100029, China
| | - Zhanxian Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Liu C, Gao X, Yuan J, Zhang R. Advances in the development of fluorescence probes for cell plasma membrane imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116092] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Tang J, Huang D, Meng F, Li P, Peng F, Huang J. Novel Platinum(II) Complex-based Luminescent Probe for Detection of Hypochlorite in Cancer Cells. Photochem Photobiol 2020; 97:317-326. [PMID: 33078394 DOI: 10.1111/php.13344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Hypochlorite (ClO⁻) is of great importance either for the metabolism of living organisms or as disinfectant in daily life. However, improper concentration levels of ClO⁻ lead to serious health problems including erythrocyte damage, cardiovascular problems, neuron degeneration, lung/kidney injury and cancer. Therefore, a sensitive and selective detection method is required for the visualization and measurement of ClO⁻. In this work, a novel platinum(II) complex-based luminescent probe Pt-CHO was synthesized and utilized to detect ClO⁻. This "turn-off" probe exhibits high sensitivity, excellent selectivity, good pH stability, low limit of detection and instantaneous response ability. Moreover, the luminescent response is caused by the oxidation of aldehyde into carboxyl groups combined with the coordination of hydroxyl groups at the Pt center, which is rarely reported. The cell imaging of HeLa cells proved the considerable potential of the probe for ClO⁻ imaging in living cells.
Collapse
Affiliation(s)
- Jingjie Tang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou, China
| | - Dongting Huang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou, China
| | - Fei Meng
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou, China
| | - Peng Li
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou, China
| | - Fang Peng
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junsheng Huang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou, China
| |
Collapse
|
20
|
Liu W, Wang Y, Wu N, Feng W, Li Z, Wei L, Yu M. A mitochondrion-targeting fluorescent probe for hypochlorite anion in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118564. [PMID: 32526396 DOI: 10.1016/j.saa.2020.118564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
As momentous reactive oxygen species (ROS), it is necessary to develop high-sensitivity and high-specificity fluorescent probes for tracking hypochlorite anion (ClO-) in environmental and biological systems. Herein, a kind of red luminescent carbon dots (NS-dots) was synthesized by one-step solvothermal method to detect ClO- in PBS buffer solution (VPBS:VEtOH = 100:1, pH = 7.4). The NS-dots has high sensitivity and low detection limit (13.3 μmol/L) for detecting ClO- with linear range from 6.7 × 10-5 mol/L to 26.7 × 10-5 mol/L. Using Rhodamine B (31% at 520 nm in water) as a reference, the NS-dots have a fluorescence quantum yield of 7.2%. Intracellular photostability, mitochondrial targeting properties and the fluorescence imaging towards intracellular ClO- were demonstrated.
Collapse
Affiliation(s)
- Wenjing Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yuying Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Wei Feng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Zhanxian Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Liuhe Wei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mingming Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
21
|
Saha S, Das S, Das S, Samanta A, Maitra S, Sahoo P. Prompt detection of endogenous hypochlorite (ClO -) in murine macrophages and zebrafish embryos facilitated by a distinctive chemodosimetric mode. Org Biomol Chem 2020; 18:6716-6723. [PMID: 32820796 DOI: 10.1039/d0ob01389g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
An innovative fluorescein appended naphthalene diimide based probe (FANDI) has been prepared and characterized to selectively recognize hypochlorite or ClO- ions in the presence of other reactive oxygen species (ROS) and biorelevant ions, using a unique chemodosimetric method. Hypochlorite induced oxidation can efficiently alter the initial photophysical properties of FANDI and shows an easily detectable "turn on" green fluorescence. The chemodosimeter FANDI can efficiently detect exogenous as well as endogenous ClO- ions in RAW 264.7 cells (macrophages) and zebrafish embryos (Danio rerio) which further ensures the high potential, easy cell permeability and photostability of FANDI and makes it worth exploring in the future.
Collapse
Affiliation(s)
- Shrabani Saha
- Molecular Recognition Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | | | | | | | | | | |
Collapse
|
22
|
Zhang R, Yuan J. Responsive Metal Complex Probes for Time-Gated Luminescence Biosensing and Imaging. Acc Chem Res 2020; 53:1316-1329. [PMID: 32574043 DOI: 10.1021/acs.accounts.0c00172] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of reliable bioanalytical probes for selective and sensitive detection of particular analytes in biological systems is essential for better understanding the roles of the analytes in their native contexts. In the last two decades, luminescent metal complexes have greatly contributed to the development of such probes for biosensing and imaging due to their unique spectral and temporal properties, controllable cell membrane permeability, and cytotoxicity. Conjugating an analyte-activatable moiety to the metal complex luminophores allows the production of responsive metal complex probes for this analyte detection. Owing to their long-lifetime emissions, the responsive metal complex probes are accessible to the technique of time-gated luminescence (TGL) detection and imaging. With a delay time after pulsed excitation, the TGL technique allows for collection of only long-lived luminescence from responsive metal complex probes, while filtering out short-lived background autofluorescence, providing a background-free approach for the detection and imaging of the analyte at subcellular and/or molecular levels. Responsive metal complex probes, therefore, have emerged as complementary sensing and imaging tools of organic dye-based fluorescent probes for the in situ detection of analytes in complicated biological environments.In this Account, we describe the advances in the development of metal complex probes and their applications for TGL bioassays with particular focus on our efforts made in this field. We first introduce the photophysical/-chemical properties of luminescent metal complexes, including lanthanide (europium and terbium) and transition metal (ruthenium and iridium) complexes. The luminescence lifetimes (τ) of lanthanide and transition metal complexes are at micro/millisecond (μs/ms) and hundreds/thousands nanosecond (ns) levels, respectively. The emission lifetimes are significantly longer than the autofluorescence lifetime (τ < 10 ns) of biological samples. Such long-lived luminescence of these metal complexes enables our research on demonstrating responsive probes for background-free TGL detection of some reactive biomolecules, such as reactive oxygen/nitrogen species (ROS/RNS) and biothiols.We conclude this Account by outlining the future directions to further develop new generation responsive TGL probes for promoting their practical applications. The responsive TGL probes are expected to be translated for biomedical and/or (pre)clinical investigations of biomolecules in situ. Reversibility, lower toxicity, ability of excitation at longer wavelength, and potential to be translated are key criteria for the development of next-generation probes. We also anticipate that further development of responsive TGL probes will contribute to the bioassay in more challenging biological systems, such as plants that have significant higher background autofluorescence than animals.
Collapse
Affiliation(s)
- Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
23
|
Dong S, Zhang L, Lin Y, Ding C, Lu C. Luminescent probes for hypochlorous acid in vitro and in vivo. Analyst 2020; 145:5068-5089. [PMID: 32608421 DOI: 10.1039/d0an00645a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HClO/ClO- is the most effective antibacterial active oxygen in neutrophils. However, its excessive existence often leads to the destruction of human physiological mechanisms. In recent years, the developed luminescent probes for the detection of HClO/ClO- are not only conducive to improve the sensitivity and selectivity of HClO/ClO- detection, but also play a crucial role in understanding the biological functions of HClO/ClO-. In addition, luminescent probe-based biological imaging for HClO/ClO- at sub-cellular resolution has become a powerful tool for biopathology and medical diagnostic research. This article reviews a variety of luminescent probes for the detection of HClO/ClO-in vitro and in vivo with different design principles and mechanisms, including fluorescence, phosphorescence, and chemiluminescence. The photophysical/chemical properties and biological applications of these luminescent probes were outlined. Finally, we summarized the merits and demerits of the developed luminescent probes and discussed their challenges and future development trends. It is hoped that this review can provide some inspiration for the development of luminescent probe-based strategies and to promote the further research of biomedical luminescent probes for HClO/ClO-.
Collapse
Affiliation(s)
- Shaoqing Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | | | |
Collapse
|
24
|
Dhineshkumar E, Iyappan M, Anbuselvan C. A novel dual chemosensor for selective heavy metal ions Al3+, Cr3+ and its applicable cytotoxic activity, HepG2 living cell images and theoretical studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Recent advances in the development of responsive probes for selective detection of cysteine. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213182] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Liu J, Duan C, Zhang W, Ta HT, Yuan J, Zhang R, Xu ZP. Responsive nanosensor for ratiometric luminescence detection of hydrogen sulfide in inflammatory cancer cells. Anal Chim Acta 2020; 1103:156-163. [DOI: 10.1016/j.aca.2019.12.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 02/02/2023]
|
27
|
Liu J, Shangguan M, Zeng X, Guo Y, Wang T, Hou L. Phosphorescent iridium(III) complex for efficient sensing of hypochlorite and imaging in living cells. Anal Biochem 2020; 592:113573. [PMID: 31899191 DOI: 10.1016/j.ab.2019.113573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/14/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
In consideration of the strong oxidizing power of hypochlorite (ClO-), which could cleave CN moiety, a cyclometalated iridium (III) complex (Ir-Ts) modified hydrazide group as the response unit was synthesized to sensitively and selectively detect ClO- under neutral condition. Upon addition of ClO-, a 21-fold emission enhancement at 574 nm was observed and phosphorescent product was formed due to the cleavage of CN moiety. The probe Ir-Ts displayed rapid response (<15 s) and high selectivity toward ClO- with a low detection limit of 86 nM. More importantly, bioimaging of ClO- was further studied in living cells.
Collapse
Affiliation(s)
- Jinsheng Liu
- Fujian Provincial Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Mingqin Shangguan
- College of Chemical Engineering, Fuzhou University, Xueyuan Road No. 2, Fuzhou, 350116, China
| | - Xiaoyang Zeng
- College of Chemical Engineering, Fuzhou University, Xueyuan Road No. 2, Fuzhou, 350116, China
| | - Yingxiong Guo
- College of Chemical Engineering, Fuzhou University, Xueyuan Road No. 2, Fuzhou, 350116, China
| | - Tao Wang
- Pediatric Department of Fujian Provincial Hospital, Fuzhou City, Fujian Province, 350001, China.
| | - Linxi Hou
- College of Chemical Engineering, Fuzhou University, Xueyuan Road No. 2, Fuzhou, 350116, China.
| |
Collapse
|
28
|
Fractal evolution of dual pH- and temperature-responsive P(NIPAM-co-AA)@BMMs with bimodal mesoporous silica core and coated-copolymer shell during drug delivery procedure via SAXS characterization. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
29
|
Feng H, Meng Q, Ta HT, Zhang R. Development of “dual-key-and-lock” responsive probes for biosensing and imaging. NEW J CHEM 2020. [DOI: 10.1039/d0nj02762f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent advances in the development of “dual-key-and-lock” responsive probes for accurate detection of various biomolecules are reviewed.
Collapse
Affiliation(s)
- Huan Feng
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
- School of Chemical Engineering, University of Science and Technology Liaoning
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
- School of Environment and Science, Griffith University
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| |
Collapse
|
30
|
Alam P, Climent C, Alemany P, Laskar IR. “Aggregation-induced emission” of transition metal compounds: Design, mechanistic insights, and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100317] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Qiu K, Zhu H, Rees TW, Ji L, Zhang Q, Chao H. Recent advances in lysosome-targeting luminescent transition metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Han D, Qian M, Gao H, Wang B, Qi H, Zhang C. A “switch-on” photoluminescent and electrochemiluminescent multisignal probe for hypochlorite via a cyclometalated iridium complex. Anal Chim Acta 2019; 1074:98-107. [DOI: 10.1016/j.aca.2019.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 01/17/2023]
|
33
|
Electrochemiluminescent Chemosensors for Clinical Applications: A Review. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3301-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Chen J, Si Y, Liu Y, Wang S, Wang S, Zhang Y, Yang B, Zhang Z, Zhang S. Starch-regulated copper-terephthalic acid as a pH/hydrogen peroxide simultaneous-responsive fluorescent probe for lysosome imaging. Dalton Trans 2019; 48:13017-13025. [PMID: 31403139 DOI: 10.1039/c9dt02193k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysosome visualization is very important for accurate diagnosis of human diseases. However, currently developed lysosome imaging probes usually have poor specificity and are easily quenched, leading to a low signal to noise ratio in lysosome labeling. To resolve this problem, herein, metal-organic framework-based probes of copper-terephthalic acid (CuBDC) are investigated, which show sensitivity to pH and hydrogen peroxide (H2O2), simultaneously. By self-assembling under the template effect of soluble starch, the particle size of CuBDC can be well controlled for entering into cells and locating lysosomes. Based on the Fenton-like reaction, CuBDC can catalyze the decomposition of H2O2 into ˙OH, which in turn reacts with CuBDC to generate a stable fluorescent substance. Meanwhile, Cu2+ can be released from CuBDC under acidic conditions for reacting with H2O2 more thoroughly. And the synthesized CuBDC has a similar attraction to the electrophilic ˙OH at different pH values owing to the residual soluble starch in the particles. The above properties cause CuBDC to have a stable fluorescence signal with low pH values and high H2O2 concentration, simultaneously. The fluorescence imaging experiments in HeLa cells demonstrate that CuBDC acting as a pH/H2O2 responsive fluorescent probe holds great promise for lysosome-specific imaging.
Collapse
Affiliation(s)
- Jian Chen
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | - Yubing Si
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | - Yibiao Liu
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | - Saisai Wang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | - Shijie Wang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | - Ying Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | - Baocheng Yang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | - Zuling Zhang
- Henan Provincial Chemi-Industries Research Station Co., Ltd, Zhengzhou, Henan 450000, China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| |
Collapse
|
35
|
Yudhistira T, Mulay SV, Kim Y, Halle MB, Churchill DG. Imaging of Hypochlorous Acid by Fluorescence and Applications in Biological Systems. Chem Asian J 2019; 14:3048-3084. [PMID: 31347256 DOI: 10.1002/asia.201900672] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Indexed: 01/06/2023]
Abstract
In recent decades, HOCl research has attracted a lot of scientists from around the world. This chemical species is well known as an important player in the biological systems of eukaryotic organisms including humans. In the human body, HOCl is produced by the myeloperoxidase enzyme from superoxide in very low concentrations (20 to 400 μm); this species is secreted by neutrophils and monocytes to help fight pathogens. However, in the condition called "oxidative stress", HOCl has the capability to attack many important biomolecules such as amino acids, proteins, nucleotides, nucleic acids, carbohydrates, and lipids; these reactions could ultimately contribute to a number of diseases such as neurodegenerative diseases (AD, PD, and ALS), cardiovascular diseases, and diabetes. In this review, we discuss recent efforts by scientists to synthesize various fluorophores which are attached to receptors to detect HOCl such as: chalcogen-based oxidation, oxidation of 4-methoxyphenol, oxime/imine, lactone ring opening, and hydrazine. These synthetic molecules, involving rational synthetic pathways, allow us to chemoselectively target HOCl and to study the level of HOCl selectivity through emission responses. Virtually all the reports here deal with well-defined and small synthetic molecular systems. A large number of published compounds have been reported over the past years; this growing field has given scientists new insights regarding the design of the chemosensors. Reversibility, for example is considered important from the stand point of chemosensor reuse within the biological system; facile regenerability using secondary analytes to obtain the initial probe is a very promising avenue. Another aspect which is also important is the energy of the emission wavelength of the sensor; near-infrared (NIR) emission is favorable to prevent autofluorescence and harmful irradiation of tissue; thus, extended applicability of such sensors can be made to the mouse model or animal model to help image internal organs. In this review, we describe several well-known types of receptors that are covalently attached to the fluorophore to detect HOCl. We also discuss the common fluorophores which are used by chemist to detect HOCl, Apart from the chemical aspects, we also discuss the capabilities of the compounds to detect HOCl in living cells as measured through confocal imaging. The growing insight from HOCl probing suggests that there is still much room for improvement regarding the available molecular designs, knowledge of interplay between analytes, biological applicability, biological targeting, and chemical switching, which can also serve to further sensor and theurapeutic agent development alike.
Collapse
Affiliation(s)
- Tesla Yudhistira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Sandip V Mulay
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea.,Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon, 305 600, Republic of Korea
| | - Youngsam Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea.,Semiconductor Material Division, LG Chemistry, 104-1, Munji-dong, Daejeon, Republic of Korea
| | - Mahesh B Halle
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - David G Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea.,KI for Health Science and Technology, KI Institute, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| |
Collapse
|
36
|
Sen B, Sheet SK, Patra SK, Koner D, Saha N, Khatua S. Highly Selective Detection of Hypochlorous Acid by a Bis-heteroleptic Ru(II) Complex of Pyridyl-1,2,3-triazole Ligand via C(sp2)–H Hydroxylation. Inorg Chem 2019; 58:9982-9991. [DOI: 10.1021/acs.inorgchem.9b01125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Gao Y, Yip JHK. Selective Hypochlorous Acid Detection by Electronic Tuning of Platinum–4,5-bis(diphenylphosphino)acridine–Thiolate Complexes. Inorg Chem 2019; 58:9290-9302. [DOI: 10.1021/acs.inorgchem.9b01009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yifei Gao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - John H. K. Yip
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
38
|
Highly stable Ru-complex-grafted 2D metal-organic layer with superior electrochemiluminescent efficiency as a sensing platform for simple and ultrasensitive detection of mucin 1. Biosens Bioelectron 2019; 135:95-101. [DOI: 10.1016/j.bios.2019.03.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
|
39
|
Liu C, Zhang R, Zhang W, Liu J, Wang YL, Du Z, Song B, Xu ZP, Yuan J. “Dual-Key-and-Lock” Ruthenium Complex Probe for Lysosomal Formaldehyde in Cancer Cells and Tumors. J Am Chem Soc 2019; 141:8462-8472. [DOI: 10.1021/jacs.8b13898] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chaolong Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yong-Lei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Zhongbo Du
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
40
|
Ma J, Yan C, Li Y, Duo H, Li Q, Lu X, Guo Y. Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation. Chemistry 2019; 25:7168-7176. [DOI: 10.1002/chem.201806264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jianlong Ma
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| | - Yijing Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Huixiao Duo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiang Li
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of, Chinese Academy of SciencesInstitute of Modern Physics Lanzhou 730000 P. R. China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
41
|
Wei P, Liu L, Wen Y, Zhao G, Xue F, Yuan W, Li R, Zhong Y, Zhang M, Yi T. Release of Amino‐ or Carboxy‐Containing Compounds Triggered by HOCl: Application for Imaging and Drug Design. Angew Chem Int Ed Engl 2019; 58:4547-4551. [DOI: 10.1002/anie.201813648] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/21/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Peng Wei
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Lingyan Liu
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Ying Wen
- Institute of Molecular Science Shanxi University Taiyuan 030006 China
| | - Guilong Zhao
- Division of Drug Discovery at Hangzhou Dingzhi Pharmaceuticals, Inc. 1500 Wenyixi Road Hangzhou 311121 China
| | - Fengfeng Xue
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Wei Yuan
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Ruohan Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Yaping Zhong
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Mengfan Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Tao Yi
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| |
Collapse
|
42
|
Wei P, Liu L, Wen Y, Zhao G, Xue F, Yuan W, Li R, Zhong Y, Zhang M, Yi T. Release of Amino‐ or Carboxy‐Containing Compounds Triggered by HOCl: Application for Imaging and Drug Design. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Wei
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Lingyan Liu
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Ying Wen
- Institute of Molecular Science Shanxi University Taiyuan 030006 China
| | - Guilong Zhao
- Division of Drug Discovery at Hangzhou Dingzhi Pharmaceuticals, Inc. 1500 Wenyixi Road Hangzhou 311121 China
| | - Fengfeng Xue
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Wei Yuan
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Ruohan Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Yaping Zhong
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Mengfan Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Tao Yi
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| |
Collapse
|
43
|
Shum J, Leung PKK, Lo KKW. Luminescent Ruthenium(II) Polypyridine Complexes for a Wide Variety of Biomolecular and Cellular Applications. Inorg Chem 2019; 58:2231-2247. [DOI: 10.1021/acs.inorgchem.8b02979] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Li J, Sun J, Bai S, Wu X, Xue R. Multifunctional Mesoporous ZnO@BMMs with Strong Fluorescence and High Loading Capacity for Controlled Drug Delivery. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Junfang Li
- Beijing Key Laboratory for Green Catalysis and Separation; Department of Chemistry and Chemical Engineering; Beijing University of Technology; 100 PingLeYuan, Chaoyang District 100124 Beijing China
| | - Jihong Sun
- Beijing Key Laboratory for Green Catalysis and Separation; Department of Chemistry and Chemical Engineering; Beijing University of Technology; 100 PingLeYuan, Chaoyang District 100124 Beijing China
| | - Shiyang Bai
- Beijing Key Laboratory for Green Catalysis and Separation; Department of Chemistry and Chemical Engineering; Beijing University of Technology; 100 PingLeYuan, Chaoyang District 100124 Beijing China
| | - Xia Wu
- Beijing Key Laboratory for Green Catalysis and Separation; Department of Chemistry and Chemical Engineering; Beijing University of Technology; 100 PingLeYuan, Chaoyang District 100124 Beijing China
| | - Rensheng Xue
- Beijing Key Laboratory for Green Catalysis and Separation; Department of Chemistry and Chemical Engineering; Beijing University of Technology; 100 PingLeYuan, Chaoyang District 100124 Beijing China
| |
Collapse
|
45
|
Ren M, Li Z, Deng B, Wang L, Lin W. Single Fluorescent Probe Separately and Continuously Visualize H2S and HClO in Lysosomes with Different Fluorescence Signals. Anal Chem 2019; 91:2932-2938. [DOI: 10.1021/acs.analchem.8b05116] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Zihong Li
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Beibei Deng
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Li Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
46
|
Du Z, Zhang R, Song B, Zhang W, Wang Y, Liu J, Liu C, Xu ZP, Yuan J. Iridium(III) Complex‐Based Activatable Probe for Phosphorescent/Time‐Gated Luminescent Sensing and Imaging of Cysteine in Mitochondria of Live Cells and Animals. Chemistry 2019; 25:1498-1506. [DOI: 10.1002/chem.201805079] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/21/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Zhongbo Du
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Yong‐Lei Wang
- Department of Chemistry Stanford University Stanford California 94305 USA
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Chaolong Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| |
Collapse
|
47
|
Huang Y, He N, Wang Y, Zhang L, Kang Q, Wang Y, Shen D, Choo J, Chen L. Detection of hypochlorous acid fluctuation via a selective near-infrared fluorescent probe in living cells and in vivo under hypoxic stress. J Mater Chem B 2019; 7:2557-2564. [DOI: 10.1039/c9tb00079h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The near-infrared fluorescent probe Cy-HOCl for monitoring HOCl in living cells, zebrafish and mice under hypoxic stress.
Collapse
Affiliation(s)
- Yan Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Na He
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- The Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Yude Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- The Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- The Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Qi Kang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- The Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Dazhong Shen
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Jaebum Choo
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- The Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| |
Collapse
|
48
|
Li Y, Shi N, Li M. An efficient ruthenium(ii) tris(bipyridyl)-based chemosensor for the specific detection of cysteine and its luminescence imaging in living zebrafish. NEW J CHEM 2019. [DOI: 10.1039/c9nj04426d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A water-soluble, red emissive and cysteine-specific probe has been achieved through 1,4-addition of cysteine to α,β-unsaturated ketones.
Collapse
Affiliation(s)
- Yibin Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
| | - Ningning Shi
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
| | - Minna Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
| |
Collapse
|
49
|
Qiu K, Chen Y, Rees TW, Ji L, Chao H. Organelle-targeting metal complexes: From molecular design to bio-applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.10.022] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Zhang R, Liang L, Meng Q, Zhao J, Ta HT, Li L, Zhang Z, Sultanbawa Y, Xu ZP. Responsive Upconversion Nanoprobe for Background-Free Hypochlorous Acid Detection and Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803712. [PMID: 30548763 DOI: 10.1002/smll.201803712] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Responsive nanoprobes play an important role in bioassay and bioimaging, early diagnosis of diseases and treatment monitoring. Herein, a upconversional nanoparticle (UCNP)-based nanoprobe, Ru@UCNPs, for specific sensing and imaging of hypochlorous acid (HOCl) is reported. This Ru@UCNP nanoprobe consists of two functional components,, i.e., NaYF4 :Yb, Tm UCNPs that can convert near infrared light-to-visible light as the energy donor, and a HOCl-responsive ruthenium(II) complex [Ru(bpy)2 (DNCH-bpy)](PF6 )2 (Ru-DNPH) as the energy acceptor and also the upconversion luminescence (UCL) quencher. Within this luminescence resonance energy transfer nanoprobe system, the UCL OFF-ON emission is triggered specifically by HOCl. This triggering reaction enables the detection of HOCl in aqueous solution and biological systems. As an example of applications, the Ru@UCNPs nanoprobe is loaded onto test papers for semiquantitative HOCl detection without any interference from the background fluorescence. The application of Ru@UCNPs for background-free detection and visualization of HOCl in cells and mice is successfully demonstrated. This research has thus shown that Ru@UCNPs is a selective HOCl-responsive nanoprobe, providing a new way to detect HOCl and a new strategy to develop novel nanoprobes for in situ detection of various biomarkers in cells and early disgnosis of animal diseases.
Collapse
Affiliation(s)
- Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Liuen Liang
- Department of Physics and Astronomy, Macquarie University, NSW, 2109, Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Jiangbo Zhao
- Department of Physics and Astronomy, Macquarie University, NSW, 2109, Australia
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|