1
|
Chen T, Cai Z, Zhao X, Wei G, Wang H, Bo T, Zhou Y, Cui W, Lu Y. Dynamic monitoring soft tissue healing via visualized Gd-crosslinked double network MRI microspheres. J Nanobiotechnology 2024; 22:289. [PMID: 38802863 PMCID: PMC11129422 DOI: 10.1186/s12951-024-02549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
By integrating magnetic resonance-visible components with scaffold materials, hydrogel microspheres (HMs) become visible under magnetic resonance imaging(MRI), allowing for non-invasive, continuous, and dynamic monitoring of the distribution, degradation, and relationship of the HMs with local tissues. However, when these visualization components are physically blended into the HMs, it reduces their relaxation rate and specificity under MRI, weakening the efficacy of real-time dynamic monitoring. To achieve MRI-guided in vivo monitoring of HMs with tissue repair functionality, we utilized airflow control and photo-crosslinking methods to prepare alginate-gelatin-based dual-network hydrogel microspheres (G-AlgMA HMs) using gadolinium ions (Gd (III)), a paramagnetic MRI contrast agent, as the crosslinker. When the network of G-AlgMA HMs degrades, the cleavage of covalent bonds causes the release of Gd (III), continuously altering the arrangement and movement characteristics of surrounding water molecules. This change in local transverse and longitudinal relaxation times results in variations in MRI signal values, thus enabling MRI-guided in vivo monitoring of the HMs. Additionally, in vivo data show that the degradation and release of polypeptide (K2 (SL)6 K2 (KK)) from G-AlgMA HMs promote local vascular regeneration and soft tissue repair. Overall, G-AlgMA HMs enable non-invasive, dynamic in vivo monitoring of biomaterial degradation and tissue regeneration through MRI, which is significant for understanding material degradation mechanisms, evaluating biocompatibility, and optimizing material design.
Collapse
Affiliation(s)
- Tongtong Chen
- Department of Radiology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Orthopaedics, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xinxin Zhao
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, P. R. China
| | - Gang Wei
- Department of Radiology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
- Department of Orthopaedics, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
| | - Hanqi Wang
- Department of Radiology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Tingting Bo
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, P. R. China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
| | - Yong Lu
- Department of Radiology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
| |
Collapse
|
2
|
Zhao J, Yan Z, Ding Y, Dai Y, Feng Z, Li Z, Ma L, Diao N, Guo A, Yin H. A Hybrid Scaffold Induces Chondrogenic Differentiation and Enhances In Vivo Cartilage Regeneration. Tissue Eng Part A 2024. [PMID: 38562117 DOI: 10.1089/ten.tea.2023.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Extensively researched tissue engineering strategies involve incorporating cells into suitable biomaterials, offering promising alternatives to boost tissue repair. In this study, a hybrid scaffold, Gel-DCM, which integrates a photoreactive gelatin-hyaluronic acid hydrogel (Gel) with an oriented porous decellularized cartilage matrix (DCM), was designed to facilitate chondrogenic differentiation and cartilage repair. The Gel-DCM exhibited excellent biocompatibility in vitro, promoting favorable survival and growth of human adipose-derived stem cells (hADSCs) and articular chondrocytes (hACs). Gene expression analysis indicated that the hACs expanded within the Gel-DCM exhibited enhanced chondrogenic phenotype. In addition, Gel-DCM promoted chondrogenesis of hADSCs without the supplementation of exogenous growth factors. Following this, in vivo experiments were conducted where empty Gel-DCM or Gel-DCM loaded with hACs/hADSCs were used and implanted to repair osteochondral defects in a rat model. In the control group, no implants were delivered to the injury site. Interestingly, macroscopic, histological, and microcomputed tomography scanning results revealed superior cartilage restoration and subchondral bone reconstruction in the empty Gel-DCM group compared with the control group. Moreover, both hACs-loaded and hADSCs-loaded Gel-DCM implants exhibited superior repair of hyaline cartilage and successful reconstruction of subchondral bone, whereas defects in the control groups were predominantly filled with fibrous tissue. These observations suggest that the Gel-DCM can provide an appropriate three-dimensional chondrogenic microenvironment, and its combination with reparative cell sources, ACs or ADSCs, holds great potential for facilitating cartilage regeneration.
Collapse
Affiliation(s)
- Jiaming Zhao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zexing Yan
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yufei Ding
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yike Dai
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ziyang Feng
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhiyao Li
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lifeng Ma
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Naicheng Diao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyong Yin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Wang M, Wu Y, Li G, Lin Q, Zhang W, Liu H, Su J. Articular cartilage repair biomaterials: strategies and applications. Mater Today Bio 2024; 24:100948. [PMID: 38269053 PMCID: PMC10806349 DOI: 10.1016/j.mtbio.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Articular cartilage injury is a frequent worldwide disease, while effective treatment is urgently needed. Due to lack of blood vessels and nerves, the ability of cartilage to self-repair is limited. Despite the availability of various clinical treatments, unfavorable prognoses and complications remain prevalent. However, the advent of tissue engineering and regenerative medicine has generated considerable interests in using biomaterials for articular cartilage repair. Nevertheless, there remains a notable scarcity of comprehensive reviews that provide an in-depth exploration of the various strategies and applications. Herein, we present an overview of the primary biomaterials and bioactive substances from the tissue engineering perspective to repair articular cartilage. The strategies include regeneration, substitution, and immunization. We comprehensively delineate the influence of mechanically supportive scaffolds on cellular behavior, shedding light on emerging scaffold technologies, including stimuli-responsive smart scaffolds, 3D-printed scaffolds, and cartilage bionic scaffolds. Biologically active substances, including bioactive factors, stem cells, extracellular vesicles (EVs), and cartilage organoids, are elucidated for their roles in regulating the activity of chondrocytes. Furthermore, the composite bioactive scaffolds produced industrially to put into clinical use, are also explicitly presented. This review offers innovative solutions for treating articular cartilage ailments and emphasizes the potential of biomaterials for articular cartilage repair in clinical translation.
Collapse
Affiliation(s)
- Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Qiushui Lin
- Department of Spine Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
4
|
Sun J, Han L, Liu C, Ma J, Li X, Sun S, Wang Z. Effect of autologous lyophilized platelet‑rich fibrin on the reconstruction of osteochondral defects in rabbits. Exp Ther Med 2023; 26:569. [PMID: 37954116 PMCID: PMC10632968 DOI: 10.3892/etm.2023.12268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/26/2023] [Indexed: 11/14/2023] Open
Abstract
Osteochondral defects caused by degenerative diseases of joints, traumas and inflammation are important issues in clinical practice. Different types of autologous platelet concentrate (PCs) are used in bone and cartilage regeneration. The present study aimed to investigate the effect of lyophilized platelet-rich fibrin (L-PRF) on the repair of osteochondral defects in rabbits. L-PRF was first prepared from fresh PRF (F-PRF) through freeze-drying, and histological and microstructural observations were performed to compare the characteristics of L-PRF and F-PRF. Thereafter, these bioactive scaffolds were implanted into osteochondral defects surgically created in rabbits to assess their effects on tissue repair using micro-CT scanning, histological observations and the evaluation scoring method for cartilage repair established by the International Cartilage Repair Society (ICRS). L-PRF had a histological structure similar to F-PRF. At 16 weeks after implantation surgery, full-thickness osteochondral defects with a diameter of 5 mm and a depth of 4 mm were well-filled with newly regenerated tissues, exhibiting the simultaneous regeneration of avascular articular cartilage and well-vascularized subchondral bone, as proven through macroscopic and microscopic observations in PRF-treated groups compared with that in the untreated group. The application of L-PRF and F-PRF for osteochondral defects in rabbits contributed to massive host remodeling and reconstruction of osteochondral tissues, thus offering a prospective bioactive scaffold for the simultaneous reconstruction of articular cartilage and subchondral bone tissue.
Collapse
Affiliation(s)
- Jianwei Sun
- The Fourth Recuperate Area, Guangzhou Special Service Recuperation Center of People's Liberation Army (PLA) of China Rocket Force, Guangzhou, Guangdong 510515, P.R. China
| | - Leng Han
- Department of Pathology, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Chundong Liu
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Junli Ma
- Department of Stomatology, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Xiao Li
- Department of Stomatology, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Shuohui Sun
- Department of Stomatology, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Zhifa Wang
- Department of Stomatology, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
5
|
Zhou J, Wu N, Zeng J, Liang Z, Qi Z, Jiang H, Chen H, Liu X. Chondrogenic Differentiation of Adipose-Derived Stromal Cells Induced by Decellularized Cartilage Matrix/Silk Fibroin Secondary Crosslinking Hydrogel Scaffolds with a Three-Dimensional Microstructure. Polymers (Basel) 2023; 15:polym15081868. [PMID: 37112015 PMCID: PMC10144539 DOI: 10.3390/polym15081868] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Finding an ideal scaffold is always an important issue in the field of cartilage tissue engineering. Both decellularized extracellular matrix and silk fibroin have been used as natural biomaterials for tissue regeneration. In this study, a secondary crosslinking method of γ irradiation and ethanol induction was used to prepare decellularized cartilage extracellular matrix and silk fibroin (dECM-SF) hydrogels with biological activity. Furthermore, the dECM-SF hydrogels were cast in custom-designed molds to produce a three-dimensional multi-channeled structure to improve internal connectivity. The adipose-derived stromal cells (ADSC) were seeded on the scaffolds, cultured in vitro for 2 weeks, and implanted in vivo for another 4 and 12 weeks. The double crosslinked dECM-SF hydrogels exhibited an excellent pore structure after lyophilization. The multi-channeled hydrogel scaffold presents higher water absorption ability, surface wettability, and no cytotoxicity. The addition of dECM and a channeled structure could promote chondrogenic differentiation of ADSC and engineered cartilage formation, confirmed by H&E, safranin O staining, type II collagen immunostaining, and qPCR assay. In conclusion, the hydrogel scaffold fabricated by the secondary crosslinking method has good plasticity and can be used as a scaffold for cartilage tissue engineering. The multi-channeled dECM-SF hydrogel scaffolds possess a chondrogenic induction activity that promotes engineered cartilage regeneration of ADSC in vivo.
Collapse
Affiliation(s)
- Jing Zhou
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Nier Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jinshi Zeng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Ziyu Liang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zuoliang Qi
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Xia Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
- Key Laboratory of Reconstruction for Superfacial Tissues and Organs, Beijing 100144, China
| |
Collapse
|
6
|
Wang P, Zhou X, Lv C, Wang Y, Wang Z, Wang L, Zhu Y, Guo M, Zhang P. Modulating the surface potential of microspheres by phase transition in strontium doped barium titanate to restore the electric microenvironment for bone regeneration. Front Bioeng Biotechnol 2022; 10:988300. [PMID: 36110316 PMCID: PMC9468715 DOI: 10.3389/fbioe.2022.988300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The endogenous electrical potential generated by native bone and periosteum plays a key role in maintaining bone mass and quality. Inspired by the electrical properties of bone, different negative surface potentials are built on microspheres to restore electric microenvironment for powerful bone regeneration, which was prepared by the combination of strontium-doped barium titanate (Sr-BTO) nanoparticles and poly (lactic-co-glycolic acid) (PLGA) with high electrostatic voltage field (HEV). The surface potential was modulated through regulating the phase composition of nanoparticles in microspheres by the doping amount of strontium ion (Sr2+). As a result, the 0.1Sr-BTO/PLGA group shows the lowest surface potential and its relative permittivity is closer to natural bone. As expected, the 0.1Sr-BTO/PLGA microspheres performed cytocompatibility, osteogenic activity in vitro and enhance bone regeneration in vivo. Furthermore, the potential mechanism of Sr-BTO/PLGA microspheres to promote osteogenic differentiation was further explored. The lower surface potential generated on Sr-BTO/PLGA microspheres regulates cell membrane potential and leads to an increase in the intracellular calcium ion (Ca2+) concentration, which could activate the Calcineurin (CaN)/Nuclear factor of activated T-cells (NFAT) signaling pathway to promote osteogenic differentiation. This study established an effective method to modulate the surface potential, which provides a prospective exploration for electrical stimulation therapy. The 0.1Sr-BTO/PLGA microsphere with lower surface potential and bone-matched dielectric constant is expected to have great potential in the field of bone regeneration.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Xiaosong Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Caili Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Liqiang Wang
- Department of Ophthalmology, Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yongzhan Zhu
- 8th Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Peibiao Zhang, ; Min Guo,
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
- *Correspondence: Peibiao Zhang, ; Min Guo,
| |
Collapse
|
7
|
Nishioka C, Liang HF, Ong S, Sun SW. Axonal transport impairment and its relationship with diffusion tensor imaging metrics of a murine model of p301L tau induced tauopathy. Neuroscience 2022; 498:144-154. [PMID: 35753531 DOI: 10.1016/j.neuroscience.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
Diffusion Tensor Imaging (DTI) and Manganese Enhanced MRI (MEMRI) are noninvasive tools to characterize neural fiber microstructure and axonal transport. A combination of both may provide novel insights into the progress of neurodegeneration. To investigate the relationship of DTI and MEMRI in white matter of tauopathy, twelve optic nerves of 11-month-old p301L tau mice were imaged and finished with postmortem immunohistochemistry. MEMRI was used to quantify Mn2+ accumulation rates in the optic nerve (ON, termed ONAR) and the Superior Colliculus (SC, termed SCAR), the primary terminal site of ON in mice. We found that both ONAR and SCAR revealed a significant linear correlation with mean diffusion (mD) and radial diffusion (rD) but not with other DTI quantities. Immunohistochemistry findings showed that ONAR, mD, and rD are significantly correlated with the myelin content (Myelin Basic Protein, p < 0.05) but not with the axonal density (SMI-31), tubulin density, or tau aggregates (AT8 staining). In summary, slower axonal transport appeared to have less myelinated axons and thinner remaining axons, associated with reduced rD and mD of in vivo DTI. A combination of in vivo MEMRI and DTI can provide critical information to delineate the progress of white matter deficits in neurodegenerative diseases.
Collapse
Affiliation(s)
- Christopher Nishioka
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States; Neuroscience Graduate Program, University of California, Riverside, CA, United States
| | - Hsiao-Fang Liang
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Stephen Ong
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States; Robert Wood Johnson Barnabas Health (RWJBH) and Rutgers University, United States
| | - Shu-Wei Sun
- Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States; Neuroscience Graduate Program, University of California, Riverside, CA, United States.
| |
Collapse
|
8
|
Allenby MC, Woodruff MA. Image analyses for engineering advanced tissue biomanufacturing processes. Biomaterials 2022; 284:121514. [DOI: 10.1016/j.biomaterials.2022.121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
9
|
Wang CC, Chen IH, Yang YT, Chen YR, Yang KC. Infrapatellar Fat Pads-Derived Stem Cell Is a Favorable Cell Source for Articular Cartilage Tissue Engineering: An In Vitro and Ex Vivo Study Based on 3D Organized Self-Assembled Biomimetic Scaffold. Cartilage 2021; 13:508S-520S. [PMID: 33435725 PMCID: PMC8804804 DOI: 10.1177/1947603520988153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Adipose tissue-derived stem cells (ASCs) are a promising source of cells for articular cartilage regeneration. However, ASCs isolated from different adipose tissue depots have heterogeneous cell characterizations and differentiation potential when cultured in 3-dimensional (3D) niches. DESIGN We compared the chondrogenicity of ASCs isolated from infrapatellar fat pads (IPFPs) and subcutaneous fat pads (SCFPs) in 3D gelatin-based biomimetic matrix. RESULTS The IPFP-ASC-differentiated chondrocytes had higher ACAN, COL2A1, COL10, SOX6, SOX9, ChM-1, and MIA-3 mRNA levels and lower COL1A1 and VEGF levels than the SCFP-ASCs in 3D matrix. The difference in mRNA profile may have contributed to activation of the Akt, p38, RhoA, and JNK signaling pathways in the IPFP-ASCs. The chondrocytes differentiated from IPFP-ASCs had pronounced glycosaminoglycan and collagen type II production and a high chondroitin-6-sulfate/chondroitin-4-sulfate ratio with less polymerization of β-actin filaments. In an ex vivo mice model, magnetic resonance imaging revealed a shorter T2 relaxation time, indicating that more abundant extracellular matrix was secreted in the IPFP-ASC-matrix group. Histological examinations revealed that the IPFP-ASC matrix had higher chondrogenic efficacy of new cartilaginous tissue generation as evident in collagen type II and S-100 staining. Conclusion. ASCs isolated from IPFPs may be better candidates for cartilage regeneration, highlighting the translational potential of cartilage tissue engineering using the IPFP-ASC matrix technique.
Collapse
Affiliation(s)
- Chen-Chie Wang
- Department of Orthopedic Surgery, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City,Department of Orthopedics, School of
Medicine, Tzu Chi University, Hualien
| | - Ing-Ho Chen
- Department of Orthopedic Surgery, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City,Department of Orthopedics, School of
Medicine, Tzu Chi University, Hualien,Department of Orthopedic Surgery,
Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Ya-Ting Yang
- Department of Orthopedic Surgery, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
| | - Yi-Ru Chen
- Department of Orthopedic Surgery, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City,School of Dental Technology, College of
Oral Medicine, Taipei Medical University, Taipei
| | - Kai-Chiang Yang
- Department of Orthopedic Surgery, Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City,School of Dental Technology, College of
Oral Medicine, Taipei Medical University, Taipei,Kai-Chiang Yang, School of Dental
Technology, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing
Street, Xinyi District, Taipei, 11031.
| |
Collapse
|
10
|
Chen D, Zhang Y, Lin Q, Chen D, Li X, Dai J, Sun Y. The effect of cartilage decellularized extracellular matrix-chitosan compound on treating knee osteoarthritis in rats. PeerJ 2021; 9:e12188. [PMID: 34721961 PMCID: PMC8519179 DOI: 10.7717/peerj.12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022] Open
Abstract
Knee osteoarthritis (KOA) refers to a common disease in orthopaedics, whereas effective treatments have been rarely developed. As indicated from existing studies, chondrocyte death, extracellular matrix degradation and subchondral bone injury are recognized as the pathological basis of KOA. The present study aimed to determine the therapeutic effect of decellularized extracellular matrix-chitosan (dECM-CS) compound on KOA. In this study, rat knee cartilage was decellularized, and a satisfactory decellularized extracellular matrix was developed. As suggested from the in vitro experiments, the rat chondrocytes co-cultured with allogeneic dECM grew effectively. According to the results of the alamar blue detection, dECM did not adversely affect the viability of rat chondrocytes, and dECM could up-regulate the genes related to the cartilage synthesis and metabolism. As reported from the animal experiments, dECM-CS compound could protect cartilage, alleviate knee joint pain in rats, significantly delay the progress of KOA in rats, and achieve high drug safety. In brief, dECM-CS compound shows a good therapeutic effect on KOA.
Collapse
Affiliation(s)
- Deng Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yaxin Zhang
- Dalian Medical University, Dalian, Liaoning, China
| | - Qun Lin
- Dalian Medical University, Dalian, Liaoning, China
| | - Duoyun Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaolei Li
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Jihang Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Das P, Mishra R, Devi B, Rajesh K, Basak P, Roy M, Roy P, Lahiri D, Nandi SK. Decellularized xenogenic cartilage extracellular matrix (ECM) scaffolds for the reconstruction of osteochondral defects in rabbits. J Mater Chem B 2021; 9:4873-4894. [PMID: 34095925 DOI: 10.1039/d1tb00314c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of decellularized native allogenic or xenogenic cartilaginous extracellular matrix (ECM) biomaterials is widely expanding in the fields of tissue engineering and regenerative medicine. In this study, we aimed to develop an acellular, affordable, biodegradable, easily available goat conchal cartilaginous ECM derived scaffolding biomaterial for repair and regeneration of osteochondral defects in rabbits. Cartilages harvested from freshly collected goat ears were decellularized using chemical agents, namely, hypotonic-hypertonic (HH) buffer and Triton X-100 solution, separately. The morphologies and ultrastructure orientations of the decellularized cartilages remained unaltered in spite of complete cellular loss. Furthermore, when the acellular cartilaginous ECMs were cultured with murine mesenchymal stem cells (MSCs) (C3H10T1/2 cells), cellular infiltration and proliferation were thoroughly monitored using SEM, DAPI and FDA stained images, whereas the MTT assay proved the biocompatibility of the matrices. The increasing amounts of secreted ECM proteins (collagen and sGAG) indicated successful chondrogenic differentiation of the MSCs in the presence of the treated cartilage samples. In vivo biocompatibility studies showed no significant immune response or tissue rejection in the treated samples but tissue necrosis in control samples after 3 months. Upon implantation of the constructs in rabbits' osteochondral defects for 3 months, the histological and micro-CT evaluation revealed significant enhancement and regeneration of neocartilage and subchondral bony tissues. The IGF-1 loaded cartilaginous constructs showed comparatively better healing response after 3 months. Our results showed that decellularized xenogenic cartilaginous biomaterials preserved the bioactivity and integrity of the matrices that also favored in vitro stem cell proliferation and chondrogenic differentiation and enabled osteochondral regeneration, thus paving a new way for articular cartilage reconstruction.
Collapse
Affiliation(s)
- Piyali Das
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang Z, Han L, Sun T, Ma J, Sun S, Ma L, Wu B. Extracellular matrix derived from allogenic decellularized bone marrow mesenchymal stem cell sheets for the reconstruction of osteochondral defects in rabbits. Acta Biomater 2020; 118:54-68. [PMID: 33068746 DOI: 10.1016/j.actbio.2020.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022]
Abstract
Bioactive scaffolds from synthetical polymers or decellularized cartilage matrices have been widely used in osteochondral regeneration. However, the risks of potential immunological reactions and the inevitable donor morbidity of these scaffolds have limited their practical applications. To address these issues, a biological extracellular matrix (ECM) scaffold derived from allogenic decellularized bone marrow mesenchymal stem cell (BMSC) sheets was established for osteochondral reconstruction. BMSCs were induced to form cell sheets. Three different concentrations of sodium dodecyl sulfate (SDS), namely, 0.5%, 1%, and 3%, were used to decellularize these BMSC sheets to prepare the ECM. Histological and microstructural observations were performed in vitro and then the ECM scaffolds were implanted into osteochondral defects in rabbits to evaluate the repair effect in vivo. Treatment with 0.5% SDS not only efficiently removed BMSCs but also successfully preserved the original structure and bioactive components of the ECM When compared with the 1% and 3% SDS groups, histological observations substantiated the superior repair effect of osteochondral defects, including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular cartilage integrated with native tissues in the 0.5% SDS group. Moreover, RT-PCR indicated that ECM scaffolds could promote the osteogenic differentiation potential of BMSCs under osteogenic conditions while increasing the chondrogenic differentiation potential of BMSCs under chondrogenic conditions. Allogenic BMSC sheets decellularized with 0.5% SDS treatment increased the recruitment of BMSCs and significantly improved the regeneration of osteochondral defects in rabbits, thus providing a prospective approach for both articular cartilage and subchondral bone reconstruction with cell-free transplantation.
Collapse
|
13
|
Ning L, Mehta R, Cao C, Theus A, Tomov M, Zhu N, Weeks ER, Bauser-Heaton H, Serpooshan V. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44563-44577. [PMID: 32966746 DOI: 10.1021/acsami.0c15078] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3D) bioprinting of hydrogel-based constructs at adequate consistency and reproducibility can be obtained through a compromise between the hydrogel's inherent instability and printing fidelity. There is an increasing demand to develop bioprinting modalities that enable high-fidelity fabrication of 3D hydrogel structures that closely correspond to the envisioned design. In this work, we performed a systematic, in-depth characterization and optimization of embedded 3D bioprinting to create 3D gelatin-methacryloyl (gelMA) structures with highly controlled fidelity using Carbopol as suspension bath. The role of various embedded printing process parameters in bioprinting fidelity was investigated using a combination of experimental and theoretical approaches. We examined the effect of rheological properties of gelMA and Carbopol at varying concentrations, as well as printing conditions on the volumetric flow rate of gelMA bioink. Printing speed was examined and optimized to successfully print gelMA into the support bath at varying Carbopol concentrations. Printing fidelity was characterized in terms of printed strand diameter, uniformity, angle, and area. The optimal Carbopol solution that retained filament shape at highest fidelity was determined. The efficacy of developed bioprinting approach was then demonstrated by fabricating 3D hydrogel constructs with varying geometries and visualized using an advanced synchrotron-based imaging technique. We also investigated the influence of the Carbopol medium on cross-linking and the resulting stiffness of gelMA constructs. Finally, in vitro cytotoxicity of the developed bioprinting approach was assessed by printing human umbilical vein endothelial cells encapsulated in the gelMA bioink. These results demonstrate the significance of the close interplay between bioink-support bath rheology and printing parameters and help to establish an optimized workflow for creating 3D hydrogel structures with high fidelity and cytocompatibility via embedded bioprinting techniques. This robust platform could further expand the application of bioprinted soft tissue constructs in a wide variety of biomedical applications.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Riya Mehta
- Department of Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Cong Cao
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Andrea Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Martin Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Ning Zhu
- Canadian Light Source, Saskatoon, S7N 2 V3 Saskatchewan, Canada
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
- Sibley Heart Center at Children's Healthcare of Atlanta, Atlanta, Georgia 30322 United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Theus AS, Ning L, Hwang B, Gil C, Chen S, Wombwell A, Mehta R, Serpooshan V. Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers (Basel) 2020; 12:E2262. [PMID: 33019639 PMCID: PMC7599870 DOI: 10.3390/polym12102262] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) bioprinting is an additive manufacturing process that utilizes various biomaterials that either contain or interact with living cells and biological systems with the goal of fabricating functional tissue or organ mimics, which will be referred to as bioinks. These bioinks are typically hydrogel-based hybrid systems with many specific features and requirements. The characterizing and fine tuning of bioink properties before, during, and after printing are therefore essential in developing reproducible and stable bioprinted constructs. To date, myriad computational methods, mechanical testing, and rheological evaluations have been used to predict, measure, and optimize bioinks properties and their printability, but none are properly standardized. There is a lack of robust universal guidelines in the field for the evaluation and quantification of bioprintability. In this review, we introduced the concept of bioprintability and discussed the significant roles of various physiomechanical and biological processes in bioprinting fidelity. Furthermore, different quantitative and qualitative methodologies used to assess bioprintability will be reviewed, with a focus on the processes related to pre, during, and post printing. Establishing fully characterized, functional bioink solutions would be a big step towards the effective clinical applications of bioprinted products.
Collapse
Affiliation(s)
- Andrea S. Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Carmen Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Shuai Chen
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Allison Wombwell
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Riya Mehta
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Stodolak-Zych E, Jeleń P, Dzierzkowska E, Krok-Borkowicz M, Zych Ł, Boguń M, Rapacz-Kmita A, Kolesińska B. Modification of chitosan fibers with short peptides as a model of synthetic extracellular matrix. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Yang KC, Chen IH, Yang YT, Hsiao JK, Wang CC. Effects of scaffold geometry on chondrogenic differentiation of adipose-derived stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110733. [DOI: 10.1016/j.msec.2020.110733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 01/01/2023]
|
17
|
Huang CC, Kang M, Narayanan R, DiPietro LA, Cooper LF, Gajendrareddy P, Ravindran S. Evaluating the Endocytosis and Lineage-Specification Properties of Mesenchymal Stem Cell Derived Extracellular Vesicles for Targeted Therapeutic Applications. Front Pharmacol 2020; 11:163. [PMID: 32194405 PMCID: PMC7063066 DOI: 10.3389/fphar.2020.00163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with regenerative and immunomodulatory properties. Several aspects of MSC function have been attributed to the paracrine effects of MSC derived extracellular vesicles (EVs). Although MSC EVs show great promise for regenerative medicine applications, insights into their uptake mechanisms by different target cells and the ability to control MSC EV properties for defined function in vivo have remained elusive knowledge gaps. The primary goal of this study is to elucidate how the basic properties of MSC derived EVs can be exploited for function-specific activity in regenerative medicine. Our first important observation is that, MSC EVs possess a common mechanism of endocytosis across multiple cell types. Second, altering the MSC state by inducing differentiation into multiple lineages did not affect the exosomal properties or endocytosis but triggered the expression of lineage-specific genes and proteins in vitro and in vivo respectively. Overall, the results presented in this study show a common mechanism of endocytosis for MSC EVs across different cell types and the feasibility to generate functionally enhanced EVs by modifications to parental MSCs.
Collapse
Affiliation(s)
- Chun-Chieh Huang
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Miya Kang
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Raghuvaran Narayanan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Luisa A DiPietro
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Lyndon F Cooper
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Praveen Gajendrareddy
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Zhao Y, Zhao X, Zhang R, Huang Y, Li Y, Shan M, Zhong X, Xing Y, Wang M, Zhang Y, Zhao Y. Cartilage Extracellular Matrix Scaffold With Kartogenin-Encapsulated PLGA Microspheres for Cartilage Regeneration. Front Bioeng Biotechnol 2020; 8:600103. [PMID: 33363129 PMCID: PMC7756004 DOI: 10.3389/fbioe.2020.600103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Repair of articular cartilage defects is a challenging aspect of clinical treatment. Kartogenin (KGN), a small molecular compound, can induce the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes. Here, we constructed a scaffold based on chondrocyte extracellular matrix (CECM) and poly(lactic-co-glycolic acid) (PLGA) microspheres (MP), which can slowly release KGN, thus enhancing its efficiency. Cell adhesion, live/dead staining, and CCK-8 results indicated that the PLGA(KGN)/CECM scaffold exhibited good biocompatibility. Histological staining and quantitative analysis demonstrated the ability of the PLGA(KGN)/CECM composite scaffold to promote the differentiation of BMSCs. Macroscopic observations, histological tests, and specific marker analysis showed that the regenerated tissues possessed characteristics similar to those of normal hyaline cartilage in a rabbit model. Use of the PLGA(KGN)/CECM scaffold may mimic the regenerative microenvironment, thereby promoting chondrogenic differentiation of BMSCs in vitro and in vivo. Therefore, this innovative composite scaffold may represent a promising approach for acellular cartilage tissue engineering.
Collapse
Affiliation(s)
- Yanhong Zhao
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Medical University, Tianjin, China
- *Correspondence: Yanhong Zhao,
| | - Xige Zhao
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Rui Zhang
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Ying Huang
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Yunjie Li
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Minhui Shan
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Xintong Zhong
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Yi Xing
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Min Wang
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | | | - Yanmei Zhao
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Yanmei Zhao,
| |
Collapse
|
19
|
Nakamuta Y, Arahira T, Todo M. Effects of culture conditions on the mechanical and biological properties of engineered cartilage constructed with collagen hybrid scaffold and human mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:119. [PMID: 31630248 DOI: 10.1007/s10856-019-6321-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Mesenchymal stem cells (MSCs) has been used as one of the new cell sources in osteochondral tissue engineering. It has been well known that control of their differentiation into chondrocytes plays a key role in developing engineered cartilages. Therefore, this study aims to develop a fundamental protocol to control the differentiation and proliferation of MSCs to construct an engineered cartilage. We compared the effects of three different culture conditions on cell proliferation, extracellular matrix formation and the mechanical response of engineered cartilage constructed using a collagen-based hybrid scaffold and human MSCs. The experimental results clearly showed that the combined culture condition of the chondrogenic differentiation culture and the chondrocyte growth culture exhibited statistically significant cell proliferation, ECM formation and stiffness responses as compared to the other two combinations. It is thus concluded that the combination of the differentiation culture with the subsequent growth culture is recommended as the culture condition for chondrogenic tissue engineering using hMSCs.
Collapse
Affiliation(s)
- Yusuke Nakamuta
- Department of mechanical Engineering, Sojo University, Fukuoka, Japan
| | | | - Mitsugu Todo
- Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
20
|
Li Y, Liu Y, Xun X, Zhang W, Xu Y, Gu D. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36359-36370. [PMID: 31509372 DOI: 10.1021/acsami.9b12206] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ideal tissue-engineering cartilage scaffolds should possess the same nanofibrous structure as the microstructure of native cartilage as well as the same biological function provided by the microenvironment for neocartilage regeneration. In the present study, three-dimensional composite biomimetic scaffolds with different concentration ratios of electrospun gelatin-polycaprolactone (gelatin-PCL) nanofibers and decellularized cartilage extracellular matrix (DCECM) were fabricated. The nanofibers with the biomimetic microarchitecture of native cartilage served as a skeleton with excellent mechanical properties, and the DCECM served as a biological functionalization platform for the induction of cell response and the promotion of cartilage regeneration. Experimental results showed that the composite nanofiber/DCECM (NF/DCECM) scaffolds had stronger mechanical properties and structural stability in wet state compared with those of DCECM scaffolds. In vitro experiments demonstrated that all scaffolds had good biocompatibility, but the chondrocyte proliferation rate of the composite NF/DCECM scaffolds was higher than that of the NF scaffolds. In vitro and in vivo cartilage regeneration results indicated that the DCECM component of the composite scaffolds facilitated early maturation of the cartilage lacuna and the secretion of collagen and glycosaminoglycan. The macroscopic and histological results at 12 weeks postsurgery exhibited that the composite NF/DCECM scaffolds yielded better cartilage repair outcomes than those of the nontreated group and NF scaffolds group. Overall, the present study demonstrated that the structurally and functionally biomimetic NF/DCECM scaffold is a promising tissue engineering scaffold for cartilage regeneration and cartilage defect repair.
Collapse
Affiliation(s)
| | | | - Xiaowei Xun
- Institute of Advanced Materials , East China Jiaotong University , Nanchang 330013 , China
| | - Wei Zhang
- Institute of Plastic Surgery, Shandong Provincial Key Laboratory of Plastic and Microscopic Repair Technology , Weifang Medical University , Weifang , Shandong 261041 , China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital , Tongji University School of Medicine , Shanghai 200433 , China
| | | |
Collapse
|
21
|
Xing H, Yin H, Sun C, Ren X, Tian Y, Yu M, Jiang T. Preparation of an acellular spinal cord scaffold to improve its biological properties. Mol Med Rep 2019; 20:1075-1084. [PMID: 31173271 PMCID: PMC6625434 DOI: 10.3892/mmr.2019.10364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/30/2019] [Indexed: 11/14/2022] Open
Abstract
In recent years, acellular spinal cord scaffolds have been extensively studied in tissue engineering. Notably, acellular spinal cord scaffolds may be used to treat spinal cord injury; however, the method of preparation can result in low efficiency and may affect the biological properties of cells. This study aimed to use EDC crosslinking, combined with chemical extraction for tissue decellularization, in order to improve the efficiency of acellular scaffolds. To make the improved stent available for the clinical treatment of spinal cord injury, it is necessary to study its immunogenicity. Therefore, this study also focused on the adherence of rat bone marrow mesenchymal stem cells to scaffolds, and their differentiation into neuron-like cells in the presence of suitable trophic factors. The results revealed that EDC crosslinking combined with chemical extraction methods may significantly improve the efficiency of acellular scaffolds, and may also confer better biological characteristics, including improved immunogenicity. Notably, it was able to promote adhesion of rat bone marrow mesenchymal stem cells and their differentiation into neuron-like cells. These results suggested that the improved preparation method may be promising for the construction of multifunctional acellular scaffolds for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Hong Yin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Xianjun Ren
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yongyang Tian
- Emergency Department of University‑Town Hospital of Chongqing Medical University, Chongqing 401331, P.R. China
| | - Miao Yu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Tao Jiang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
22
|
Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:502-510. [PMID: 31147021 DOI: 10.1016/j.msec.2019.04.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
As a first step towards the production of functional cell sheets applicable for the regeneration of gut muscle layer, microstructured bacterial cellulose (mBC) was assessed for its ability to support the growth of enteric nervous system (ENS) and gut smooth muscle cells (SMCs). To improve the cellular response, mBC was modified with silk sericin (SS) which has renowned abilities in supporting tissue regeneration. While SS did not impair the line structures imparted to BC by PDMS templates, similarly to the patterns, it affected its physical properties, ultimately leading to variations in the behavior of cells cultured onto these substrates. Enabled by the stripes on mBC, both SMCs and ENS cells were aligned in vitro, presenting the in vivo-like morphology essential for peristalsis and gut function. Interestingly, cell growth and differentiation remarkably enhanced upon SS addition to the samples, indicating the promise of the mBC-SS constructs as biomaterial not only for gut engineering, but also for tissues where cellular alignment is required for function, namely the heart, blood vessels, and similars.
Collapse
|
23
|
Shazeeb MS, Howes S, Kandasamy S, Peiris TB, Sotak CH, Pins GD. Developing quantitative MRI parameters to characterize host response and tissue ingrowth into collagen scaffolds. NMR IN BIOMEDICINE 2019; 32:e4059. [PMID: 30657204 DOI: 10.1002/nbm.4059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The in vivo evaluation of soft biomaterial implant remodeling routinely requires the surgical removal of the implant for subsequent histological assessment of tissue ingrowth and scaffold remodeling. This approach is very resource intensive, often destructive, and imposes practical limitations on how effectively these materials can be evaluated. MRI has the potential to non-invasively monitor the remodeling of implanted collagen scaffolds in real time. This study investigated the development of a model system to characterize the cellular infiltration, void area fraction, and angiogenesis in collagen scaffold implants using T2 relaxation time and apparent diffusion coefficient (ADC) maps along with conventional histological techniques. Initial correlations found statistically significant relationships between the MRI and histological parameters for various regions of the implanted sponges: T2 versus cell density (r ≈ -0.83); T2 versus void area fraction (r ≈ +0.78); T2 versus blood vessel density (r ≈ +0.95); ADC versus cell density (r ≈ -0.77); and ADC versus void area fraction (r ≈ +0.84). This suggests that MRI is sensitive to specific remodeling parameters and has the potential to serve as a non-invasive tool to monitor the remodeling of implanted collagen scaffolds, and to ultimately assess the ability of these scaffolds to regenerate the functional properties of damaged tissues such as tendons, ligaments, skin or skeletal muscle.
Collapse
Affiliation(s)
- Mohammed Salman Shazeeb
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Stuart Howes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Sivakumar Kandasamy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Thelge Buddika Peiris
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Christopher H Sotak
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | - George D Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
24
|
Liu J, Wang X, Lu G, Tang JZ, Wang Y, Zhang B, Sun Y, Lin H, Wang Q, Liang J, Fan Y, Zhang X. Bionic cartilage acellular matrix microspheres as a scaffold for engineering cartilage. J Mater Chem B 2019; 7:640-650. [DOI: 10.1039/c8tb02999g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bionic cartilage acellular matrix microspheres (BCAMMs) made from decelluarized bionic cartilage microspheres (BCMs).
Collapse
|
25
|
Wang Z, Li Z, Li Z, Wu B, Liu Y, Wu W. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits. Acta Biomater 2018; 81:129-145. [PMID: 30300711 DOI: 10.1016/j.actbio.2018.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
Cartilaginous extracellular matrix (ECM) materials derived from decellularized native articular cartilage are widely used in cartilage regeneration. However, it is difficult for endogenous cells to migrate into ECM derived from native cartilage owing to its nonporous structure and dense nature. Moreover, current decellularization approaches frequently lead to architectural breakdown and potential loss of surface composition of ECM. To solve this problem, we aimed to establish a novel biological ECM scaffold from chondrocyte sheets for cartilage regeneration. We cultured chondrocytes harvested from the auricular cartilage of 4-week-old New Zealand rabbits and enabled them to form cell sheets. These sheets were decellularized using sodium dodecyl sulfate (SDS) with three different concentrations, namely, 1%, 5%, and 10%, followed by 1% Triton X-100 and deoxyribonuclease enzyme solution. In vitro microstructural examination and mechanical tests demonstrated that 1% SDS not only removed chondrocytes completely but also maintained the native architecture and composition of ECM, thus avoiding the use of high-concentration SDS. Application of decellularized chondrocyte sheets for osteochondral defects in rabbits resulted in substantial host remodeling and variant regeneration of osteochondral tissues. One percent SDS-treated decellularized chondrocyte sheets contributed to the superior reconstruction of osteochondral defects as compared with 5% and 10% SDS groups, which includes vascularized subchondral bone, articular cartilage with adequate thickness, and integration with host tissues. Furthermore, ECM from 1% SDS significantly increased the migrating potential of bone marrow mesenchymal stem cells (BMSCs) in vitro. RT-PCR and western blot also revealed that ECM increased the expression of SOX-9 in BMSCs, whereas it decreased COL-X expression. In conclusion, our results suggested that the chondrocyte sheets decellularized with 1% SDS preserved the integrity and bioactivity, which favored cell recruitment and enabled osteochondral regeneration in the knee joints of rabbits, thus offering a promising approach for articular cartilage reconstruction without cell transplantation. STATEMENT OF SIGNIFICANCE: Although biological extracellular matrix (ECM) derived from decellularized native cartilage has been widely used in cartilage regeneration, it is difficult for endogenous cells to migrate into ECM owing to its dense nature. Moreover, current decellularization approaches lead to architectural breakdown of ECM. This study established a novel biological ECM from decellularized chondrocyte sheets for cartilage regeneration. Our results suggested that cartilaginous ECM favored cell recruitment and enabled osteochondral regeneration in rabbits, thus offering a promising approach for articular cartilage reconstruction without cell transplantation. SDS 1% adequately decellularized the chondrocytes in cell sheets, whereas it maintained the native architecture and composition of ECM, thereby avoiding the use of high-concentration SDS and providing a new way to acquire cartilaginous ECM.
Collapse
|
26
|
Yang J, Liu Y, He L, Wang Q, Wang L, Yuan T, Xiao Y, Fan Y, Zhang X. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration. Acta Biomater 2018; 74:156-167. [PMID: 29734010 DOI: 10.1016/j.actbio.2018.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 02/04/2023]
Abstract
Over the past decades, numerous tissue-engineered constructs have been investigated for the osteochondral repair. However, it still remains a challenge to regenerate the functionalized calcified layer. In this study, the potential of icariin (Ica) conjugated hyaluronic acid/collagen (Ica-HA/Col) hydrogel to promote the osteochondral interface restoration was investigated. Compared with HA/Col hydrogel, Ica-HA/Col hydrogel simultaneously facilitated chondrogenesis and osteogenesis in vitro. The cells encapsulated in Ica-HA/Col hydrogel tended to aggregate into bigger clusters. The chondrogenic genes' expression level was remarkably up-regulated, and the matrix synthesis of sGAG and type II collagen was significantly enhanced. Similarly, the osteogenic genes, including RUNX2, ALP, and OCN were also up-regulated at early stage. Consequently, more calcium deposition was observed in the Ica-HA/Col hydrogel construct. Moreover, the gene expression and matrix synthesis of type X collagen, an important marker for the formation of calcified layer; were significantly higher in the Ica-HA/Col hydrogel. Furthermore, the in vivo study showed that Ica-HA/Col constructs facilitated the reconstruction of osteochondral interface in rabbit subchondral defects. In the Ica-HA/Col group, the neo-cartilage layer contained more type II collagen and the newly formed subchondral bone deposited more abundant type I collagen. Overall, the results indicated that Ica-HA/Col hydrogel might be a promising scaffold to reconstruct an osteochondral interface, therefore promoting restoring of osteochondral defect. STATEMENT OF SIGNIFICANCE The osteochondral defect restoration not only involves the repair of damaged cartilage and the subchondral bone, but also the reconstruction of osteochondral interface (the functional calcified layer). The calcified layer regeneration is essential for integrative and functional osteochondral repair. Over the past decade, numerous tissue engineered constructs have been investigated for the osteochondral repair. However, it still remains a challenge to regenerate a functionalized calcified layer. The present study demonstrates that Ica-HA/Col hydrogel facilitates deposition of matrix related to calcified layer in mixed chondrogenic/osteogenic inductive media and restoration of osteochondral defect in vivo. Since, Ica-HA/Col hydrogel as is cheaper, easier and more efficient, it might be a desired scaffold for the osteochondral defects restoration.
Collapse
|
27
|
Huang CC, Narayanan R, Warshawsky N, Ravindran S. Dual ECM Biomimetic Scaffolds for Dental Pulp Regenerative Applications. Front Physiol 2018; 9:495. [PMID: 29887803 PMCID: PMC5981804 DOI: 10.3389/fphys.2018.00495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
Dental pulp is a highly vascularized and innervated tissue that provides sensitivity and vitality to the tooth. Chronic caries results in an infected pulp tissue prone to necrosis. Existing clinical treatments replace the living pulp tissue with a non-responsive resin filling resulting in loss of tooth vitality. Tissue engineering approaches to dental pulp tissue regeneration have been investigated to preserve tooth vitality and function. However, a critical criterion is the choice of growth factors that may promote mesenchymal stem cell differentiation and more importantly, vascularization. But, the problems associated with growth factor dosage, delivery, safety, immunological and ectopic complications affect their translatory potential severely. The purpose of this study is to develop, characterize and evaluate a biomimetic native extracellular matrix (ECM) derived dual ECM scaffold that consists of a pulp-specific ECM to promote MSC attachment, proliferation and differentiation and an endothelial ECM to promote migration of host endothelial cells and eventual vascularization in vivo. Our results show that the dual ECM scaffolds possess similar properties as a pulp-ECM scaffold to promote MSC attachment and odontogenic differentiation in vitro. Additionally, when implanted subcutaneously in a tooth root slice model in vivo, the dual ECM scaffolds promoted robust odontogenic differentiation of both dental pulp and bone marrow derived MSCs and also extensive vascularization when compared to respective controls. These scaffolds are mass producible for clinical use and hence have the potential to replace root canal therapy as a treatment for chronic dental caries.
Collapse
Affiliation(s)
- Chun-Chieh Huang
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Endodontics, University of Illinois at Chicago, Chicago, IL, United States
| | - Raghuvaran Narayanan
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Endodontics, University of Illinois at Chicago, Chicago, IL, United States
| | - Noah Warshawsky
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Endodontics, University of Illinois at Chicago, Chicago, IL, United States
| | - Sriram Ravindran
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Endodontics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
28
|
Zhang YS, Yao J. Imaging Biomaterial-Tissue Interactions. Trends Biotechnol 2018; 36:403-414. [PMID: 29054313 PMCID: PMC5837919 DOI: 10.1016/j.tibtech.2017.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023]
Abstract
Modern biomedical imaging has revolutionized life science by providing anatomical, functional, and molecular information of biological species with high spatial resolution, deep penetration, enhanced temporal responsiveness, and improved chemical specificity. In recent years, these imaging techniques have been increasingly tailored for characterizing biomaterials and probing their interactions with biological tissues. This in turn has spurred substantial advances in engineering material properties to accommodate different imaging modalities that was previously unattainable. Here, we review advances in engineering both imaging modalities and material properties with improved contrast, providing a timely practical guide to better assess biomaterial-tissue interactions both in vitro and in vivo.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Junjie Yao
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
29
|
Yang Y, Lin H, Shen H, Wang B, Lei G, Tuan RS. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo. Acta Biomater 2018; 69:71-82. [PMID: 29317369 DOI: 10.1016/j.actbio.2017.12.043] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/24/2023]
Abstract
Mesenchymal stem cell derived extracellular matrix (MSC-ECM) is a natural biomaterial with robust bioactivity and good biocompatibility, and has been studied as a scaffold for tissue engineering. In this investigation, we tested the applicability of using decellularized human bone marrow derived MSC-ECM (hBMSC-ECM) as a culture substrate for chondrocyte expansion in vitro, as well as a scaffold for chondrocyte-based cartilage repair. hBMSC-ECM deposited by hBMSCs cultured on tissue culture plastic (TCP) was harvested, and then subjected to a decellularization process to remove hBMSCs. Compared with chondrocytes grown on TCP, chondrocytes seeded onto hBMSC-ECM exhibited significantly increased proliferation rate, and maintained better chondrocytic phenotype than TCP group. After being expanded to the same cell number and placed in high-density micromass cultures, chondrocytes from the ECM group showed better chondrogenic differentiation profile than those from the TCP group. To test cartilage formation ability, composites of hBMSC-ECM impregnated with chondrocytes were subjected to brief trypsin treatment to allow cell-mediated contraction, and folded to form 3-dimensional chondrocyte-impregnated hBMSC-ECM (Cell/ECM constructs). Upon culture in vitro in chondrogenic medium for 21 days, robust cartilage formation was observed in the Cell/ECM constructs. Similarly prepared Cell/ECM constructs were tested in vivo by subcutaneous implantation into SCID mice. Prominent cartilage formation was observed in the implanted Cell/ECM constructs 14 days post-implantation, with higher sGAG deposition compared to controls consisting of chondrocyte cell sheets. Taken together, these findings demonstrate that hBMSC-ECM is a superior culture substrate for chondrocyte expansion and a bioactive matrix potentially applicable for cartilage regeneration in vivo. STATEMENT OF SIGNIFICANCE Current cell-based treatments for focal cartilage defects face challenges, including chondrocyte dedifferentiation, need for xenogenic scaffolds, and suboptimal cartilage formation. We present here a novel technique that utilizes adult stem cell-derived extracellular matrix, as a culture substrate and/or encapsulation scaffold for human adult chondrocytes, for the repair of cartilage defects. Chondrocytes cultured in stem cell-derived matrix showed higher proliferation, better chondrocytic phenotype, and improved redifferentiation ability upon in vitro culture expansion. Most importantly, 3-dimensional constructs formed from chondrocytes folded within stem cell matrix manifested excellent cartilage formation both in vitro and in vivo. These findings demonstrate the suitability of stem cell-derived extracellular matrix as a culture substrate for chondrocyte expansion as well as a candidate bioactive matrix for cartilage regeneration.
Collapse
Affiliation(s)
- Yuanheng Yang
- Department of Orthopaedic Surgery, Xiangya hospital, Central South University, Changsha, Hunan, China; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; The Third Xiangya hospital, Central South University, Changsha, Hunan, China
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Bing Wang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guanghua Lei
- Department of Orthopaedic Surgery, Xiangya hospital, Central South University, Changsha, Hunan, China.
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Hadidi P, Cissell DD, Hu JC, Athanasiou KA. Temporal development of near-native functional properties and correlations with qMRI in self-assembling fibrocartilage treated with exogenous lysyl oxidase homolog 2. Acta Biomater 2017; 64:29-40. [PMID: 28963018 PMCID: PMC5682207 DOI: 10.1016/j.actbio.2017.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/28/2023]
Abstract
Advances in cartilage tissue engineering have led to constructs with mechanical integrity and biochemical composition increasingly resembling that of native tissues. In particular, collagen cross-linking with lysyl oxidase has been used to significantly enhance the mechanical properties of engineered neotissues. In this study, development of collagen cross-links over time, and correlations with tensile properties, were examined in self-assembling neotissues. Additionally, quantitative MRI metrics were examined in relation to construct mechanical properties as well as pyridinoline cross-link content and other engineered tissue components. Scaffold-free meniscus fibrocartilage was cultured in the presence of exogenous lysyl oxidase, and assessed at multiple time points over 8weeks starting from the first week of culture. Engineered constructs demonstrated a 9.9-fold increase in pyridinoline content, reaching 77% of native tissue values, after 8weeks of culture. Additionally, engineered tissues reached 66% of the Young's modulus in the radial direction of native tissues. Further, collagen cross-links were found to correlate with tensile properties, contributing 67% of the tensile strength of engineered neocartilages. Finally, examination of quantitative MRI metrics revealed several correlations with mechanical and biochemical properties of engineered constructs. This study displays the importance of culture duration for collagen cross-link formation, and demonstrates the potential of quantitative MRI in investigating properties of engineered cartilages. STATEMENT OF SIGNIFICANCE This is the first study to demonstrate near-native cross-link content in an engineered tissue, and the first study to quantify pyridinoline cross-link development over time in a self-assembling tissue. Additionally, this work shows the relative contributions of collagen and pyridinoline to the tensile properties of collagenous tissue for the first time. Furthermore, this is the first investigation to identify a relationship between qMRI metrics and the pyridinoline cross-link content of an engineered collagenous tissue.
Collapse
Affiliation(s)
- Pasha Hadidi
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Derek D Cissell
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA 92697-2715, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
31
|
Kotecha M, Epel B, Ravindran S, Dorcemus D, Nukavarapu S, Halpern H. Noninvasive Absolute Electron Paramagnetic Resonance Oxygen Imaging for the Assessment of Tissue Graft Oxygenation. Tissue Eng Part C Methods 2017; 24:14-19. [PMID: 28844179 DOI: 10.1089/ten.tec.2017.0236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oxygen is the single most important molecule for sustaining life and, therefore, an important variable in tissue engineering and regenerative medicine. It has been shown that the change in oxygen concentration in an artificial or tissue-engineered graft affects cell survival, differentiation, and tissue growth in profound ways. However, at present, there are no reliable methods to map partial oxygen pressure (pO2) in growing artificial tissues. Here, we adapt and test the suitability of electron paramagnetic resonance oxygen imaging (EPROI) in assessing tissue graft oxygenation in vitro. EPROI is an established method to assess absolute pO2 and has been widely applied to study tumor hypoxia in small animals. In this study, we demonstrate the feasibility of EPROI in evaluating oxygen dynamics in tissue grafts. We measured oxygen concentration in mesenchymal stem cell (MSC)-seeded polylactic-co-glycolic acid (PLGA) scaffolds with variable porosity. The pO2 maps of these scaffolds showed that the mean pO2 inside the scaffolds was smaller than the ambient air pO2 (21% oxygen, 160 torr) and was gradually increased with increasing pore size. We assessed the local oxygen dynamics of the MSC-seeded osteogenic scaffold made from collagen-chitosan hydrogels in a partially sealed Eppendorf tube. The change in pO2 values as a function of time inside the graft showed that the cells had used available oxygen within first 2 h of the experiment and then went to a dormant low oxygen consumption state until the oxygen supply was reestablished. Collectively, these data suggest that EPROI could be successfully used for mapping pO2 in tissue-engineered grafts. The knowledge of tissue graft oxygenation may be used to improve scaffold design and to assess the tissue viability and growth.
Collapse
Affiliation(s)
| | - Boris Epel
- 2 Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, The University of Chicago , Chicago, Illinois
| | - Sriram Ravindran
- 3 Department of Oral Biology, College of Dentistry, University of Illinois at Chicago , Chicago, Illinois
| | - Deborah Dorcemus
- 4 Orthopaedic Surgery and Department of Biomedical Engineering, University of Connecticut , Farmington, Connecticut
| | - Syam Nukavarapu
- 4 Orthopaedic Surgery and Department of Biomedical Engineering, University of Connecticut , Farmington, Connecticut
| | - Howard Halpern
- 2 Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, The University of Chicago , Chicago, Illinois
| |
Collapse
|
32
|
Yang Q, Teng BH, Wang LN, Li K, Xu C, Ma XL, Zhang Y, Kong DL, Wang LY, Zhao YH. Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells. Int J Nanomedicine 2017; 12:6721-6733. [PMID: 28932116 PMCID: PMC5600265 DOI: 10.2147/ijn.s141888] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A 3-D scaffold that simulates the microenvironment in vivo for regenerating cartilage is ideal. In this study, we combined silk fibroin and decellularized cartilage extracellular matrix by temperature gradient-guided thermal-induced phase separation to produce composite scaffolds (S/D). Resulting scaffolds had remarkable mechanical properties and biomimeticstructure, for a suitable substrate for attachment and proliferation of adipose-derived stem cells (ADSCs). Moreover, transforming growth factor β3 (TGF-β3) loaded on scaffolds showed a controlled release profile and enhanced the chondrogenic differentiation of ADSCs during the 28-day culture. The S/D scaffold itself can provide a sustained release system without the introduction of other controlled release media, which has potential for commercial and clinical applications. The results of toluidine blue, Safranin O, and immunohistochemical staining and analysis of collagen II expression showed maintenance of a chondrogenic phenotype in all scaffolds after 28-day culture. The most obvious phenomenon was with the addition of TGF-β3. S/D composite scaffolds with sequential delivery of TGF-β3 may mimic the regenerative microenvironment to enhance the chondrogenic differentiation of ADSCs in vitro.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People's Republic of China
| | - Bin-Hong Teng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Li-Na Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Kun Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Chen Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xin-Long Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People's Republic of China
| | - Yang Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People's Republic of China
| | - De-Ling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Lian-Yong Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yan-Hong Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
33
|
Zhang C, Li M, Zhu J, Luo F, Zhao J. Enhanced bone repair induced by human adipose-derived stem cells on osteogenic extracellular matrix ornamented small intestinal submucosa. Regen Med 2017; 12:541-552. [PMID: 28718708 DOI: 10.2217/rme-2017-0024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Our aim was to design an osteogenic extracellular matrix (ECM) coated bioscaffold and to apply it to critical bone defect repair with adipose-derived stem cells (ADSCs). MATERIALS & METHODS Morphology of scaffolds was scanned by scanning electron microscope. Cell adhesion, proliferation and osteogenic differentiation of ADSCs on ECM-small intestinal submucosa (SIS) were evaluated by immunofluorescences staining, cell counting kit-8 and real-time qPCR, respectively. A mouse calvarial defect model was used to assess effects on bone regeneration in vivo. RESULTS Abundant ECM was coated on SIS, which facilitated cell adhesion and proliferation of ADSCs. ECM-SIS induced osteogenic differentiation of ADSCs even without osteogenic inductive factors. Bone regeneration in vivo was enhanced by ECM-SIS + ADSCs via BMP/SMAD pathway. CONCLUSION This work suggested a biofabricated SIS scaffold coated with osteogenic ECM-facilitated bone regeneration with ADSCs synergistically.
Collapse
Affiliation(s)
- Chi Zhang
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Mei Li
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China.,Ningbo Institute of Medical Sciences, Ningbo, Zhejiang 315020, People's Republic of China
| | - Jinjin Zhu
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Fangmiao Luo
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Jiyuan Zhao
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| |
Collapse
|
34
|
Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. ScientificWorldJournal 2017; 2017:8639898. [PMID: 28567441 PMCID: PMC5439263 DOI: 10.1155/2017/8639898] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 04/03/2017] [Indexed: 01/05/2023] Open
Abstract
Chitosan is a naturally occurring polysaccharide obtained from chitin, present in abundance in the exoskeletons of crustaceans and insects. It has aroused great interest as a biomaterial for tissue engineering on account of its biocompatibility and biodegradation and its affinity for biomolecules. A significant number of research groups have investigated the application of chitosan as scaffolds for tissue regeneration. However, there is a wide variability in terms of physicochemical characteristics of chitosan used in some studies and its combinations with other biomaterials, making it difficult to compare results and standardize its properties. The current systematic review of literature on the use of chitosan for tissue regeneration consisted of a study of 478 articles in the PubMed database, which resulted, after applying inclusion criteria, in the selection of 61 catalogued, critically analysed works. The results demonstrated the effectiveness of chitosan-based biomaterials in 93.4% of the studies reviewed, whether or not combined with cells and growth factors, in the regeneration of various types of tissues in animals. However, the absence of clinical studies in humans, the inadequate experimental designs, and the lack of information concerning chitosan's characteristics limit the reproducibility and relevance of studies and the clinical applicability of chitosan.
Collapse
|
35
|
Zhu W, Zhao Y, Ma Q, Wang Y, Wu Z, Weng X. 3D-printed porous titanium changed femoral head repair growth patterns: osteogenesis and vascularisation in porous titanium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:62. [PMID: 28251470 DOI: 10.1007/s10856-017-5862-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a major cause of morbidity, and total hip arthroplasty is both traumatic and expensive. Here, we created a gelatine scaffold embedded in uniquely shaped, 3D-printed porous titanium parts, which could attract and promote the proliferation of osteoblasts as well as bone regeneration, as the extracellular matrix (ECM) does in vivo. Interestingly, after hybridisation with platelets, the scaffold exhibited a low yet considerable rate of stable, safe and long-term growth factor release. Additionally, a novel ONFH model was constructed and verified. Scaffolds implanted in this model were found to accelerate bone repair. In conclusion, our scaffold successfully simulates the ECM and considerably accelerates bone regeneration, in which platelets play an indispensable role. We believe that platelets should be emphasised as carriers that may be employed to transport drugs, cytokines and other small molecules to target locations in vivo. In addition, this novel scaffold is a useful material for treating ONFH. An overview of the novel scaffold mimicking the extracellular environment in bone repair. a and b: A gelatine scaffold was cross-linked and freeze-dried within 3D-printed porous titanium. c: Platelets were coated onto the gelatine microscaffold after freeze-drying platelet-rich plasma. d: The microscaffold supported the migration of cells into the titanium pores and their subsequent growth, while the platelets slowly released cell factors, exerting bioactivity.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yan Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qi Ma
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yingjie Wang
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, P.R. China.
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
36
|
Dikina AD, Almeida HV, Cao M, Kelly DJ, Alsberg E. Scaffolds Derived from ECM Produced by Chondrogenically Induced Human MSC Condensates Support Human MSC Chondrogenesis. ACS Biomater Sci Eng 2017; 3:1426-1436. [DOI: 10.1021/acsbiomaterials.6b00654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anna D. Dikina
- Department
of Biomedical Engineering, Case Western Reserve University, 10900
Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Henrique V. Almeida
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin
2, Ireland
- Department
of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Meng Cao
- Department
of Biomedical Engineering, Case Western Reserve University, 10900
Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Daniel J. Kelly
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin
2, Ireland
- Department
of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, College Green, Dublin 2, Ireland
- Tissue
Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Eben Alsberg
- Department
of Biomedical Engineering, Case Western Reserve University, 10900
Euclid Avenue, Cleveland, Ohio 44106, United States
- Orthopaedic
Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- The
National Center for Regenerative Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
37
|
Souza MT, Tansaz S, Zanotto ED, Boccaccini AR. Bioactive Glass Fiber-Reinforced PGS Matrix Composites for Cartilage Regeneration. MATERIALS 2017; 10:ma10010083. [PMID: 28772442 PMCID: PMC5344602 DOI: 10.3390/ma10010083] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 01/25/2023]
Abstract
Poly(glycerol sebacate) (PGS) is an elastomeric polymer which is attracting increasing interest for biomedical applications, including cartilage regeneration. However, its limited mechanical properties and possible negative effects of its degradation byproducts restrict PGS for in vivo application. In this study, a novel PGS–bioactive glass fiber (F18)-reinforced composite was developed and characterized. PGS-based reinforced scaffolds were fabricated via salt leaching and characterized regarding their mechanical properties, degradation, and bioactivity in contact with simulated body fluid. Results indicated that the incorporation of silicate-based bioactive glass fibers could double the composite tensile strength, tailor the polymer degradability, and improve the scaffold bioactivity.
Collapse
Affiliation(s)
- Marina Trevelin Souza
- CeRTEV-Center for Research, Technology and Education in Vitreous Materials, Vitreous Material Laboratory, Department of Materials Engineering, Universidade Federal de São Carlos-UFSCar, 13565905 São Carlos, SP, Brazil.
| | - Samira Tansaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Edgar Dutra Zanotto
- CeRTEV-Center for Research, Technology and Education in Vitreous Materials, Vitreous Material Laboratory, Department of Materials Engineering, Universidade Federal de São Carlos-UFSCar, 13565905 São Carlos, SP, Brazil.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
38
|
Jin T, Nicholls FJ, Crum WR, Ghuman H, Badylak SF, Modo M. Diamagnetic chemical exchange saturation transfer (diaCEST) affords magnetic resonance imaging of extracellular matrix hydrogel implantation in a rat model of stroke. Biomaterials 2016; 113:176-190. [PMID: 27816001 DOI: 10.1016/j.biomaterials.2016.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/15/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022]
Abstract
Extracellular matrix (ECM) is widely used as an inductive biological scaffold to repair soft tissue after injury by promoting functional site-appropriate remodeling of the implanted material. However, there is a lack of non-invasive analysis methods to monitor the remodeling characteristics of the ECM material after implantation and its biodegradation over time. We describe the use of diamagnetic chemical exchange saturation transfer (CEST) magnetic resonance imaging to monitor the distribution of an ECM hydrogel after intracerebral implantation into a stroke cavity. In vitro imaging indicated a robust concentration-dependent detection of the ECM precursor and hydrogel at 1.8 and 3.6 ppm, which broadly corresponded to chondroitin sulfate and fibronectin. This detection was robust to changes in pH and improved at 37 °C. In vivo implantation of ECM hydrogel into the stroke cavity in a rat model corresponded macroscopically to the distribution of biomaterial as indicated by histology, but mismatches were also evident. Indeed, CEST imaging detected an endogenous "increased deposition". To account for this endogenous activity, pre-implantation images were subtracted from post-implantation images to yield a selective visualization of hydrogel distribution in the stroke cavity and its evolution over 7 days. The CEST detection of ECM returned to baseline within 3 days due to a decrease in fibronectin and chondroitin sulfate in the hydrogel. The distribution of ECM hydrogel within the stroke cavity is hence feasible in vivo, but further advances are required to warrant a selective long-term monitoring in the context of biodegradation.
Collapse
Affiliation(s)
- Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francesca J Nicholls
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Crum
- Department of Neuroimaging, King's College London, London, UK
| | - Harmanvir Ghuman
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michel Modo
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Huang CC, Narayanan R, Alapati S, Ravindran S. Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration. Biomaterials 2016; 111:103-115. [PMID: 27728810 DOI: 10.1016/j.biomaterials.2016.09.029] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 01/11/2023]
Abstract
Achieving and maintaining safe and reliable lineage specific differentiation of stem cells is important for clinical translation of tissue engineering strategies. In an effort to circumvent the multitude of problems arising from the usage of growth factors and growth factor delivery systems, we have explored the use of exosomes as biomimetic tools to induce stem cell differentiation. Working on the hypothesis that cell-type specific exosomes can trigger lineage-specific differentiation of stem cells, we have evaluated the potential of exosomes derived from dental pulp cells cultured on under growth and odontogenic differentiation conditions to induce odontogenic differentiation of naïve human dental pulp stem cells (DPSCs) and human bone marrow derived stromal cells (HMSCs) in vitro and in vivo. Results indicate that the exosomes can bind to matrix proteins such as type I collagen and fibronectin enabling them to be tethered to biomaterials. The exosomes are endocytosed by both DPSCs and HMSCs in a dose-dependent and saturable manner via the caveolar endocytic mechanism and trigger the P38 mitogen activated protein kinase (MAPK) pathway. In addition, the exosomes also trigger the increased expression of genes required for odontogenic differentiation. When tested in vivo in a tooth root slice model with DPSCs, the exosomes triggered regeneration of dental pulp-like tissue. However, our results indicate that exosomes isolated under odontogenic conditions are better inducers of stem cell differentiation and tissue regeneration. Overall, our results highlight the potential exosomes as biomimetic tools to induce lineage specific differentiation of stem cells. Our results also show the importance of considering the source and state of exosome donor cells before a choice is made for therapeutic applications.
Collapse
Affiliation(s)
- Chun-Chieh Huang
- Department of Oral Biology, University of Illinois at Chicago, USA
| | | | - Satish Alapati
- Department of Endodontics, University of Illinois at Chicago, USA
| | - Sriram Ravindran
- Department of Oral Biology, University of Illinois at Chicago, USA.
| |
Collapse
|
40
|
Bhardwaj N, Singh YP, Devi D, Kandimalla R, Kotoky J, Mandal BB. Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering. J Mater Chem B 2016; 4:3670-3684. [PMID: 32263306 DOI: 10.1039/c6tb00717a] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Articular cartilage damage represents one of the most perplexing clinical problems of musculoskeletal therapeutics due to its limited self-repair and regenerative capabilities. In this study, 3D porous silk fibroin scaffolds derived from non-mulberry muga silkworm Antheraea assamensis were fabricated and examined for their ability to support cartilage tissue engineering. Additionally, Bombyx mori and Philosamia ricini silk fibroin scaffolds were utilized for comparative studies. Herein, the fabricated scaffolds were thoroughly characterized and compared for cartilaginous tissue formation within the silk fibroin scaffolds seeded with primary porcine chondrocytes and cultured in vitro for 2 weeks. Surface morphology and structural conformation studies revealed the highly interconnected porous structure (pore size 80-150 μm) with enhanced stability within their structure. The fabricated scaffolds demonstrated improved mechanical properties and were followed-up with sequential experiments to reveal improved thermal and degradation properties. Silk fibroin scaffolds of A. assamensis and P. ricini supported better chondrocyte attachment and proliferation as indicated by metabolic activities and fluorescence microscopic studies. Biochemical analysis demonstrated significantly higher production of sulphated glycosaminoglycans (sGAGs) and type II collagen in A. assamensis silk fibroin scaffolds followed by P. ricini and B. mori scaffolds (p < 0.001). Furthermore, histochemistry and immunohistochemical studies indicated enhanced accumulation of sGAGs and expression of collagen II. Moreover, the scaffolds in a subcutaneous model of rat demonstrated in vivo biocompatibility after 8 weeks of implantation. Taken together, these results demonstrate the positive attributes from the non-mulberry silk fibroin scaffold of A. assamensis and suggest its suitability as a promising scaffold for chondrocyte based cartilage repair.
Collapse
Affiliation(s)
- Nandana Bhardwaj
- Seri-Biotechnology Unit, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati-781035, India.
| | | | | | | | | | | |
Collapse
|
41
|
Ravindran S, Huang CC, Gajendrareddy P, Narayanan R. Biomimetically enhanced demineralized bone matrix for bone regenerative applications. Front Physiol 2015; 6:292. [PMID: 26557093 PMCID: PMC4617051 DOI: 10.3389/fphys.2015.00292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/02/2015] [Indexed: 01/12/2023] Open
Abstract
Demineralized bone matrix (DBM) is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM) using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM) within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs) with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice.
Collapse
Affiliation(s)
- Sriram Ravindran
- Departments of Oral Biology, University of Illinois at Chicago Chicago, IL, USA
| | - Chun-Chieh Huang
- Departments of Oral Biology, University of Illinois at Chicago Chicago, IL, USA
| | | | | |
Collapse
|