1
|
Mustafa YL, Balestri A, Huang X, Palivan C. Redefining drug therapy: innovative approaches using catalytic compartments. Expert Opin Drug Deliv 2024; 21:1395-1413. [PMID: 39259136 DOI: 10.1080/17425247.2024.2403476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Rapid excretion of drug derivatives often results in short drug half-lives, necessitating frequent administrations. Catalytic compartments, also known as nano- and microreactors, offer a solution by providing confined environments for in situ production of therapeutic agents. Inspired by natural compartments, polymer-based catalytic compartments have been developed to improve reaction efficiency and enable site-specific therapeutic applications. AREAS COVERED Polymer-based compartments provide stability, permeability control, and responsiveness to stimuli, making them ideal for generating localized compounds/signals. These sophisticated systems, engineered to carry active compounds and enable selective molecular release, represent a significant advancement in pharmaceutical research. They mimic cellular functions, creating controlled catalytic environments for bio-relevant processes. This review explores the latest advancements in synthetic catalytic compartments, focusing on design approaches, building blocks, active molecules, and key bio-applications. EXPERT OPINION Catalytic compartments hold transformative potential in precision medicine by improving therapeutic outcomes through precise, on-site production of therapeutic agents. While promising, challenges like scalable manufacturing, biodegradability, and regulatory hurdles must be addressed to realize their full potential. Addressing these will be crucial for their successful application in healthcare.
Collapse
Affiliation(s)
| | - Arianna Balestri
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Centre of Competence in Research-Molecular Systems Engineering, Basel, Switzerland
| |
Collapse
|
2
|
Muthwill MS, Bina M, Paracini N, Coats JP, Merget S, Yorulmaz Avsar S, Messmer D, Tiefenbacher K, Palivan CG. Planar Polymer Membranes Accommodate Functional Self-Assembly of Inserted Resorcinarene Nanocapsules. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422470 DOI: 10.1021/acsami.3c18687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Solid-supported polymer membranes (SSPMs) offer great potential in material and life sciences due to their increased mechanical stability and robustness compared to solid-supported lipid membranes. However, there is still a need for expanding the functionality of SSPMs by combining them with synthetic molecular assemblies. In this study, SSPMs served as a flexible matrix for the insertion of resorcinarene monomers and their self-assembly into functional hexameric resorcinarene capsules. Resorcinarene capsules provide a large cavity with affinity specifically for cationic and polyhydroxylated molecules. While the capsules are stable in apolar organic solvents, they disassemble when placed in polar solvents, which limits their application. Here, a solvent-assisted approach was used for copolymer membrane deposition on solid support and simultaneous insertion of the resorcinarene monomers. By investigation of the molecular factors and conditions supporting the codeposition of the copolymer and resorcinarene monomers, a stable hybrid membrane was formed. The hydrophobic domain of the membrane played a crucial role by providing a sufficiently thick and apolar layer, allowing for the self-assembly of the capsules. The capsules were functional inside the membranes by encapsulating cationic guests from the aqueous environment. The amount of resorcinarene capsules in the hybrid membranes was quantified by a combination of quartz-crystal microbalance with dissipation and liquid chromatography-mass spectrometry, while the membrane topography and layer composition were analyzed by atomic force microscopy and neutron reflectometry. Functional resorcinarene capsules inside SSPMs can serve as dynamic sensors and potentially as cross-membrane transporters, thus holding great promise for the development of smart surfaces.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| | - Maryame Bina
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Nicolò Paracini
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - John Peter Coats
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Severin Merget
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Daniel Messmer
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Konrad Tiefenbacher
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|
3
|
Zhang S, Nakata E, Lin P, Morii T. An Artificial Liposome Compartment with Size Exclusion Molecular Transport. Chemistry 2023; 29:e202302093. [PMID: 37668304 DOI: 10.1002/chem.202302093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
The cellular compartment plays an essential role in organizing the complex and diverse biochemical reactions within the cell. By mimicking the function of such cellular compartments, the challenge of constructing artificial compartments has been taken up to develop new biochemical tools for efficient material production and diagnostics. The important features required for the artificial compartment are that it isolates the interior from the external environment and is further functionalized to control the transport of target chemicals to regulate the interior concentration of both substrate and reaction products. In this study, an artificial compartment with size-selective molecular transport function was constructed by using a DNA origami-guided liposome prepared by modifying the method reported by Perrault et al. This completely isolates the liposome interior, including the DNA origami skeleton, from the external environment and allows the assembly of a defined number of molecules of interest inside and/or outside the compartment. By incorporating a bacterial membrane protein, OmpF, into the liposome, the resulting artificial compartment was shown to transport only the molecule of interest with a molecular weight below 600 Da from the external environment into the interior of the compartment.
Collapse
Affiliation(s)
- Shiwei Zhang
- Institute of Advanced Energy, Kyoto University Uji, Kyoto, 6110011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University Uji, Kyoto, 6110011, Japan
| | - Peng Lin
- Institute of Advanced Energy, Kyoto University Uji, Kyoto, 6110011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University Uji, Kyoto, 6110011, Japan
| |
Collapse
|
4
|
Sun Q, Shi J, Sun H, Zhu Y, Du J. Membrane and Lumen-Compartmentalized Polymersomes for Biocatalysis and Cell Mimics. Biomacromolecules 2023; 24:4587-4604. [PMID: 37842883 DOI: 10.1021/acs.biomac.3c00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Compartmentalization is a crucial feature of a natural cell, manifested in cell membrane and inner lumen. Inspired by the cellular structure, multicompartment polymersomes (MCPs), including membrane-compartmentalized polymersomes and lumen-compartmentalized polymersomes (polymersomes-in-polymersomes), have aroused great expectations for biological applications such as biocatalysis and cell mimics in the past decades. Compared with traditional polymersomes, MCPs have advantages in encapsulating multiple enzymes separately for multistep enzymatic cascade reactions. In this review, first, the design principles and preparation methods of membrane-compartmentalized and lumen-compartmentalized polymersomes are summarized. Next, recent advances of MCPs as nanoreactors and cell mimics to mimic subcellular organelles or artificial cells are discussed. Finally, the future research directions of MCPs are prospected.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Junqiu Shi
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
5
|
Cao S, Ivanov T, de Souza Melchiors M, Landfester K, Caire da Silva L. Controlled Membrane Transport in Polymeric Biomimetic Nanoreactors. Chembiochem 2023; 24:e202200718. [PMID: 36715701 DOI: 10.1002/cbic.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Polymersome-based biomimetic nanoreactors (PBNs) have generated great interest in nanomedicine and cell mimicry due to their robustness, tuneable chemistry, and broad applicability in biologically relevant fields. In this concept review, we mainly discuss the state of the art in functional polymersomes as biomimetic nanoreactors with membrane-controlled transport. PBNs that use environmental changes or external stimuli to adjust membrane permeability while maintaining structural integrity are highlighted. By encapsulating catalytic species, PBNs are able to convert inactive substrates into functional products in a controlled manner. In addition, special attention is paid to the use of PBNs as tailored artificial organelles with biomedical applications in vitro and in vivo, facilitating the fabrication of next-generation artificial organelles as therapeutic nanocompartments.
Collapse
Affiliation(s)
- Shoupeng Cao
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marina de Souza Melchiors
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lucas Caire da Silva
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
6
|
Liu Y, Zhang S, Wang Y, Wang L, Cao Z, Sun W, Fan P, Zhang P, Chen HY, Huang S. Nanopore Identification of Alditol Epimers and Their Application in Rapid Analysis of Alditol-Containing Drinks and Healthcare Products. J Am Chem Soc 2022; 144:13717-13728. [PMID: 35867993 DOI: 10.1021/jacs.2c04595] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alditols, which have a sweet taste but produce much lower calories than natural sugars, are widely used as artificial sweeteners. Alditols are the reduced forms of monosaccharide aldoses, and different alditols are diastereomers or epimers of each other and direct and rapid identification by conventional methods is difficult. Nanopores, which are emerging single-molecule sensors with exceptional resolution when engineered appropriately, are useful for the recognition of diastereomers and epimers. In this work, direct distinguishing of alditols corresponding to all 15 monosaccharide aldoses was achieved by a boronic acid-appended hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore (MspA-PBA). Thirteen alditols including glycerol, erythritol, threitol, adonitol, arabitol, xylitol, mannitol, sorbitol, allitol, dulcitol, iditol, talitol, and gulitol (l-sorbitol) could be fully distinguished, and their sensing features constitute a complete nanopore alditol database. To automate event classification, a custom machine-learning algorithm was developed and delivered a 99.9% validation accuracy. This strategy was also used to identify alditol components in commercially available "zero-sugar" drinks and healthcare products, suggesting their use in rapid and sensitive quality control for the food and medical industry.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wen Sun
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Baghbanbashi M, Kakkar A. Polymersomes: Soft Nanoparticles from Miktoarm Stars for Applications in Drug Delivery. Mol Pharm 2022; 19:1687-1703. [PMID: 35157463 DOI: 10.1021/acs.molpharmaceut.1c00928] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Self-assembly of amphiphilic macromolecules has provided an advantageous platform to address significant issues in a variety of areas, including biology. Such soft nanoparticles with a hydrophobic core and hydrophilic corona, referred to as micelles, have been extensively investigated for delivering lipophilic therapeutics by physical encapsulation. Polymeric vesicles or polymersomes with similarities in morphology to liposomes continue to play an essential role in understanding the behavior of cell membranes and, in addition, have offered opportunities in designing smart nanoformulations. With the evolution in synthetic methodologies to macromolecular precursors, the construction of such assemblies can now be modulated to tailor their properties to match desired needs. This review brings into focus the current state-of-the-art in the design of polymersomes using amphiphilic miktoarm star polymers through a detailed analysis of the synthesis of miktoarm star polymers with tuned lengths of varied polymeric arms, their self-assembly, and applications in drug delivery.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.,Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
8
|
Bialas F, Reichinger D, Becker CF. Biomimetic and biopolymer-based enzyme encapsulation. Enzyme Microb Technol 2021; 150:109864. [DOI: 10.1016/j.enzmictec.2021.109864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
|
9
|
Zhang X, Contini C, Constantinou AP, Doutch JJ, Georgiou TK. How does the hydrophobic content of methacrylate
ABA
triblock copolymers affect polymersome formation? JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xinmo Zhang
- Department of Materials Royal School of Mines Exhibition Road London SW7 2AZ UK
| | - Claudia Contini
- Department of Chemistry, Molecular Sciences Research Hub Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Anna P. Constantinou
- Department of Chemistry, Molecular Sciences Research Hub Imperial College London 82 Wood Lane London W12 0BZ UK
| | - James J. Doutch
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory Didcot UK
| | - Theoni K. Georgiou
- Department of Materials Royal School of Mines Exhibition Road London SW7 2AZ UK
| |
Collapse
|
10
|
Liu D, Sun H, Xiao Y, Chen S, Cornel EJ, Zhu Y, Du J. Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes. J Control Release 2020; 326:365-386. [DOI: 10.1016/j.jconrel.2020.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
|
11
|
Zartner L, Muthwill MS, Dinu IA, Schoenenberger CA, Palivan CG. The rise of bio-inspired polymer compartments responding to pathology-related signals. J Mater Chem B 2020; 8:6252-6270. [PMID: 32452509 DOI: 10.1039/d0tb00475h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-organized nano- and microscale polymer compartments such as polymersomes, giant unilamellar vesicles (GUVs), polyion complex vesicles (PICsomes) and layer-by-layer (LbL) capsules have increasing potential in many sensing applications. Besides modifying the physicochemical properties of the corresponding polymer building blocks, the versatility of these compartments can be markedly expanded by biomolecules that endow the nanomaterials with specific molecular and cellular functions. In this review, we focus on polymer-based compartments that preserve their structure, and highlight the key role they play in the field of medical diagnostics: first, the self-assembling abilities that result in preferred architectures are presented for a broad range of polymers. In the following, we describe different strategies for sensing disease-related signals (pH-change, reductive conditions, and presence of ions or biomolecules) by polymer compartments that exhibit stimuli-responsiveness. In particular, we distinguish between the stimulus-sensitivity contributed by the polymer itself or by additional compounds embedded in the compartments in different sensing systems. We then address necessary properties of sensing polymeric compartments, such as the enhancement of their stability and biocompatibility, or the targeting ability, that open up new perspectives for diagnostic applications.
Collapse
Affiliation(s)
- Luisa Zartner
- Chemistry Department, University of Basel, Mattenstr. 24a, BPR1096, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
12
|
Wu D, Rigo S, Di Leone S, Belluati A, Constable EC, Housecroft CE, Palivan CG. Brushing the surface: cascade reactions between immobilized nanoreactors. NANOSCALE 2020; 12:1551-1562. [PMID: 31859312 DOI: 10.1039/c9nr08502e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Functionalization of hard or soft surfaces with, for example, ligands, enzymes or proteins, is an effective and practical methodology for the development of new applications. We report the assembly of two types of nanoreactors based upon poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) diblock copolymers as scaffold, uricase and lactoperoxidase as bio-catalysts located within the nanoreactors, and melittin as the biopores inserted into the hydrophobic shell. The nanoreactors were immobilized on poly(2-hydroxyethyl methacrylate)-co-poly(2-aminoethyl methacrylate hydrochloride) (PHEMA-co-P(2-AEMA·HCl) brushes-grafted wafer surfaces by utilizing the strong supramolecular interactions between biotin and streptavidin. The (PHEMA-co-P(2-AEMA·HCl) brushes on silicon surfaces were prepared by a surface initiating atom transfer radical polymerization (ATRP) "graft-from" technique. Cascade reactions between different surface-anchored nanoreactors were demonstrated by converting Amplex® Red to the fluorescent probe resorufin by using the H2O2 produced from uric acid and H2O. The detailed properties of the nanoreactors on the functionalized surface including the binding behaviours and cascade reactions were investigated using emission spectroscopy, transmission electron microscopy (TEM), light scattering (LS), atomic force microscopy (AFM) and a quartz crystal microbalance (QCM-D). The results are proof-of-principle for the preparation of catalytically functional engineered surface materials and lay the foundation for applying this advanced functional surface material in biosensing, implanting and antimicrobial materials preparation.
Collapse
Affiliation(s)
- Dalin Wu
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
13
|
Belluati A, Mikhalevich V, Yorulmaz Avsar S, Daubian D, Craciun I, Chami M, Meier WP, Palivan CG. How Do the Properties of Amphiphilic Polymer Membranes Influence the Functional Insertion of Peptide Pores? Biomacromolecules 2019; 21:701-715. [DOI: 10.1021/acs.biomac.9b01416] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Viktoria Mikhalevich
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Davy Daubian
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Wolfgang P. Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
14
|
Chimisso V, Maffeis V, Hürlimann D, Palivan CG, Meier W. Self-Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromol Biosci 2019; 20:e1900257. [PMID: 31549783 DOI: 10.1002/mabi.201900257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Indexed: 01/11/2023]
Abstract
Biomembranes play a crucial role in a multitude of biological processes, where high selectivity and efficiency are key points in the reaction course. The outstanding performance of biological membranes is based on the coupling between the membrane and biomolecules, such as membrane proteins. Polymer-based membranes and assemblies represent a great alternative to lipid ones, as their presence not only dramatically increases the mechanical stability of such systems, but also opens the scope to a broad range of chemical functionalities, which can be fine-tuned to selectively combine with a specific biomolecule. Tethering the membranes or nanoassemblies on a solid support opens the way to a class of functional surfaces finding application as sensors, biocomputing systems, molecular recognition, and filtration membranes. Herein, the design, physical assembly, and biomolecule attachment/insertion on/within solid-supported polymeric membranes and nanoassemblies are presented in detail with relevant examples. Furthermore, the models and applications for these materials are highlighted with the recent advances in each field.
Collapse
Affiliation(s)
- Vittoria Chimisso
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| |
Collapse
|
15
|
Puiggalí-Jou A, Del Valle LJ, Alemán C. Biomimetic hybrid membranes: incorporation of transport proteins/peptides into polymer supports. SOFT MATTER 2019; 15:2722-2736. [PMID: 30869096 DOI: 10.1039/c8sm02513d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular sensing, water purification and desalination, drug delivery, and DNA sequencing are some striking applications of biomimetic hybrid membranes. These devices take advantage of biomolecules, which have gained excellence in their specificity and efficiency during billions of years, and of artificial materials that load the purified biological molecules and provide technological properties, such as robustness, scalability, and suitable nanofeatures to confine the biomolecules. Recent methodological advances allow more precise control of polymer membranes that support the biomacromolecules, and are expected to improve the design of the next generation of membranes as well as their applicability. In the first section of this review we explain the biological relevance of membranes, membrane proteins, and the classification used for the latter. After this, we critically analyse the different approaches employed for the production of highly selective hybrid membranes, focusing on novel materials made of self-assembled block copolymers and nanostructured polymers. Finally, a summary of the advantages and disadvantages of the different methodologies is presented and the main characteristics of biomimetic hybrid membranes are highlighted.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| | - Luis J Del Valle
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| |
Collapse
|
16
|
Rigo S, Gunkel-Grabole G, Meier W, Palivan CG. Surfaces with Dual Functionality through Specific Coimmobilization of Self-Assembled Polymeric Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4557-4565. [PMID: 30296105 DOI: 10.1021/acs.langmuir.8b02812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Coimmobilization of functional, nanosized assemblies broadens the possibility to engineer dually functionalized active surfaces with a nanostructured texture. Surfaces decorated with different nanoassemblies, such as micelles, polymersomes, or nanoparticles are in high demand for various applications ranging from catalysis, biosensing up to antimicrobial surfaces. Here, we present a combination of bio-orthogonal and catalyst-free strain-promoted azide-alkyne click (SPAAC) and thiol-ene reactions to simultaneously coimmobilize various nanoassemblies; we selected polymersome-polymersome and polymersome-micelle assemblies. For the first time, the immobilization method using SPAAC reaction was studied in detail to attach soft, polymeric assemblies on a solid support. Together, the SPAAC and thiol-ene reactions successfully coimmobilized two unique self-assembled structures on the surfaces. Additionally, poly(dimethylsiloxane) (PDMS)-based polymersomes were used as "ink" for direct immobilization from a PDMS-based microstamp onto a surface creating locally defined patterns. Combining immobilization reactions has the advantage to attach any kind of nanoassembly pairs, resulting in surfaces with "desired" interfacial properties. Different nanoassemblies that encapsulate multiple active compounds coimmobilized on a surface will pave the way for the development of multifunctional surfaces with controlled properties and efficiency.
Collapse
Affiliation(s)
- Serena Rigo
- Department of Chemistry , University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4002 Basel , Switzerland
| | - Gesine Gunkel-Grabole
- Department of Chemistry , University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4002 Basel , Switzerland
| | - Wolfgang Meier
- Department of Chemistry , University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4002 Basel , Switzerland
| | - Cornelia G Palivan
- Department of Chemistry , University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4002 Basel , Switzerland
| |
Collapse
|
17
|
Polymer membranes as templates for bio-applications ranging from artificial cells to active surfaces. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Hirschi S, Fischer N, Kalbermatter D, Laskowski PR, Ucurum Z, Müller DJ, Fotiadis D. Design and assembly of a chemically switchable and fluorescently traceable light-driven proton pump system for bionanotechnological applications. Sci Rep 2019; 9:1046. [PMID: 30705382 PMCID: PMC6355921 DOI: 10.1038/s41598-018-37260-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Energy-supplying modules are essential building blocks for the assembly of functional multicomponent nanoreactors in synthetic biology. Proteorhodopsin, a light-driven proton pump, is an ideal candidate to provide the required energy in form of an electrochemical proton gradient. Here we present an advanced proteoliposome system equipped with a chemically on-off switchable proteorhodopsin variant. The proton pump was engineered to optimize the specificity and efficiency of chemical deactivation and reactivation. To optically track and characterize the proteoliposome system using fluorescence microscopy and nanoparticle tracking analysis, fluorescenlty labelled lipids were implemented. Fluorescence is a highly valuable feature that enables detection and tracking of nanoreactors in complex media. Cryo-transmission electron microscopy, and correlative atomic force and confocal microscopy revealed that our procedure yields polylamellar proteoliposomes, which exhibit enhanced mechanical stability. The combination of these features makes the presented energizing system a promising foundation for the engineering of complex nanoreactors.
Collapse
Affiliation(s)
- S Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - N Fischer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - D Kalbermatter
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - P R Laskowski
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Z Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - D J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - D Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2019; 6:645. [PMID: 30671429 PMCID: PMC6331732 DOI: 10.3389/fchem.2018.00645] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Biological membranes constitute an interface between cells and their surroundings and form distinct compartments within the cell. They also host a variety of biomolecules that carry out vital functions including selective transport, signal transduction and cell-cell communication. Due to the vast complexity and versatility of the different membranes, there is a critical need for simplified and specific model membrane platforms to explore the behaviors of individual biomolecules while preserving their intrinsic function. Information obtained from model membrane platforms should make invaluable contributions to current and emerging technologies in biotechnology, nanotechnology and medicine. Amphiphilic block co-polymers are ideal building blocks to create model membrane platforms with enhanced stability and robustness. They form various supramolecular assemblies, ranging from three-dimensional structures (e.g., micelles, nanoparticles, or vesicles) in aqueous solution to planar polymer membranes on solid supports (e.g., polymer cushioned/tethered membranes,) and membrane-like polymer brushes. Furthermore, polymer micelles and polymersomes can also be immobilized on solid supports to take advantage of a wide range of surface sensitive analytical tools. In this review article, we focus on self-assembled amphiphilic block copolymer platforms that are hosting biomolecules. We present different strategies for harnessing polymer platforms with biomolecules either by integrating proteins or peptides into assemblies or by attaching proteins or DNA to their surface. We will discuss how to obtain synthetic structures on solid supports and their characterization using different surface sensitive analytical tools. Finally, we highlight present and future perspectives of polymer micelles and polymersomes for biomedical applications and those of solid-supported polymer membranes for biosensing.
Collapse
|
20
|
Garni M, Einfalt T, Goers R, Palivan CG, Meier W. Live Follow-Up of Enzymatic Reactions Inside the Cavities of Synthetic Giant Unilamellar Vesicles Equipped with Membrane Proteins Mimicking Cell Architecture. ACS Synth Biol 2018; 7:2116-2125. [PMID: 30145889 DOI: 10.1021/acssynbio.8b00104] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Compartmentalization of functional biological units, cells, and organelles serves as an inspiration for the development of biomimetic materials with unprecedented properties and applications in biosensing and medicine. Because of the complexity of cells, the design of ideal functional materials remains a challenge. An elegant strategy to obtain cell-like compartments as novel materials with biofunctionality is the combination of synthetic micrometer-sized giant unilamellar vesicles (GUVs) with biomolecules because it enables studying the behavior of biomolecules and processes within confined cavities. Here we introduce a functional cell-mimetic compartment formed by insertion of the model biopore bacterial membrane protein OmpF in thick synthetic membranes of an artificial GUV compartment that encloses-as a model-the oxidative enzyme horseradish peroxidase. In this manner, a simple and robust cell mimic is designed: the biopore serves as a gate that allows substrates to enter cavities of the GUVs, where they are converted into products by the encapsulated enzyme and then released in the environments of GUVs. Our bioequipped GUVs facilitate the control of specific catalytic reactions in confined microscale spaces mimicking cell size and architecture and thus provide a straightforward approach serving to obtain deeper insights into biological processes inside cells in real time.
Collapse
Affiliation(s)
- Martina Garni
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| | - Tomaz Einfalt
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| | - Roland Goers
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| |
Collapse
|
21
|
Idrissi ME, Meyer CE, Zartner L, Meier W. Nanosensors based on polymer vesicles and planar membranes: a short review. J Nanobiotechnology 2018; 16:63. [PMID: 30165853 PMCID: PMC6116380 DOI: 10.1186/s12951-018-0393-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/25/2018] [Indexed: 12/05/2022] Open
Abstract
This review aims to summarize the advance in the field of nanosensors based on two particular materials: polymer vesicles (polymersomes) and polymer planar membranes. These two types of polymer-based structural arrangements have been shown to be efficient in the production of sensors as their features allow to adapt to different environment but also to increase the sensitivity and the selectivity of the sensing device. Polymersomes and planar polymer membranes offer a platform of choice for a wide range of chemical functionalization and characteristic structural organization which allows a convenient usage in numerous sensing applications. These materials appear as great candidates for such nanosensors considering the broad variety of polymers. They also enable the confection of robust nanosized architectures providing interesting properties for numerous applications in many domains ranging from pollution to drug monitoring. This report gives an overview of these different sensing strategies whether the nanosensors aim to detect chemicals, biological or physical signals.
Collapse
Affiliation(s)
- Mohamed El Idrissi
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| | - Claire Elsa Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| | - Luisa Zartner
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| |
Collapse
|
22
|
Wang M, Wölfer C, Otrin L, Ivanov I, Vidaković-Koch T, Sundmacher K. Transmembrane NADH Oxidation with Tetracyanoquinodimethane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5435-5443. [PMID: 29718667 DOI: 10.1021/acs.langmuir.8b00443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The design of efficient schemes for nicotinamide adenine dinucleotide (NAD) regeneration is essential for the development of enzymatic biotechnological processes in order to sustain continuous production. In line with our motivation for the encapsulation of redox cascades in liposomes to serve as microbioreactors, we developed a straightforward strategy for the interfacial oxidation of entrapped NADH by ferricyanide as an external electron acceptor. Instead of the commonly applied enzymatic regeneration methods, we employed a hydrophobic redox shuttle embedded in the liposome bilayer. Tetracyanoquinodimethane (TCNQ) mediated electron transfer across the membrane and thus allowed us to shortcut and emulate part of the electron transfer chain functionality without the involvement of membrane proteins. To describe the experimental system, we developed a mathematical model which allowed for the determination of rate constants and exhibited handy predictive utility.
Collapse
Affiliation(s)
| | | | | | | | | | - Kai Sundmacher
- Department of Process Systems Engineering , Otto-von-Guericke University Magdeburg , Universitätsplatz 2 , 39106 Magdeburg , Germany
| |
Collapse
|
23
|
Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment. Nat Commun 2018; 9:1127. [PMID: 29555899 PMCID: PMC5859287 DOI: 10.1038/s41467-018-03560-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AOs) as cellular implants, with endogenous stimuli-triggered enzymatic activity. AOs are produced by inserting protein gates in the membrane of polymersomes containing horseradish peroxidase enzymes selected as a model for natures own enzymes involved in the redox homoeostasis. The inserted protein gates are engineered by attaching molecular caps to genetically modified channel porins in order to induce redox-responsive control of the molecular flow through the membrane. AOs preserve their structure and are activated by intracellular glutathione levels in vitro. Importantly, our biomimetic AOs are functional in vivo in zebrafish embryos, which demonstrates the feasibility of using AOs as cellular implants in living organisms. This opens new perspectives for patient-oriented protein therapy. The efficacy of stimuli-responsive enzyme delivery systems is usually limited to in vitro applications. Here the authors form artificial organelles by inserting stimuli-responsive protein gates in membranes of polymersomes loaded with enzymes and obtain a triggered functionality both in vitro and in vivo.
Collapse
|
24
|
Craciun I, Denes AS, Gunkel-Grabole G, Belluati A, Palivan CG. Surfaces Decorated with Polymeric Nanocompartments for pH Reporting. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ioana Craciun
- Department of Chemistry; University of Basel; BPR 1096 Mattenstrasse 24a 4002 Basel Switzerland
| | - Alexandru S. Denes
- Department of Chemistry; University of Basel; BPR 1096 Mattenstrasse 24a 4002 Basel Switzerland
| | - Gesine Gunkel-Grabole
- Department of Chemistry; University of Basel; BPR 1096 Mattenstrasse 24a 4002 Basel Switzerland
| | - Andrea Belluati
- Department of Chemistry; University of Basel; BPR 1096 Mattenstrasse 24a 4002 Basel Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry; University of Basel; BPR 1096 Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
25
|
Huo F, Zhang Y, Yin C. Recent Progress in Chemosensors Using Aldehyde-bearing Fluorophores for the Detection of Specific Analytes and their Bioimaging. Curr Med Chem 2018; 26:4003-4028. [PMID: 29345575 DOI: 10.2174/0929867325666180117095528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/16/2017] [Accepted: 09/21/2017] [Indexed: 11/22/2022]
Abstract
In recent years, aldehyde-appended fluorescence probes have attracted increasing attention. Fluorescent biological imaging includes many modern applications for cell and tissue imaging in biomedical research. Meanwhile, the nucleophilic mechanism is a very simple and convenient procedure for the preparation of aldehyde-sensing probes. This tutorial review focuses on aldehyde-bearing chemosensors based on nucleophilic addition mechanism with biological applications.
Collapse
Affiliation(s)
- Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - Yaqiong Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
26
|
Edlinger C, Einfalt T, Spulber M, Car A, Meier W, Palivan CG. Biomimetic Strategy To Reversibly Trigger Functionality of Catalytic Nanocompartments by the Insertion of pH-Responsive Biovalves. NANO LETTERS 2017; 17:5790-5798. [PMID: 28851220 DOI: 10.1021/acs.nanolett.7b02886] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe an innovative strategy to generate catalytic compartments with triggered functionality at the nanoscale level by combining pH-reversible biovalves and enzyme-loaded synthetic compartments. The biovalve has been engineered by the attachment of stimuli-responsive peptides to a genetically modified channel porin, enabling a reversible change of the molecular flow through the pores of the porin in response to a pH change in the local environment. The biovalve functionality triggers the reaction inside the cavity of the enzyme-loaded compartments by switching the in situ activity of the enzymes on/off based on a reversible change of the permeability of the membrane, which blocks or allows the passage of substrates and products. The complex functionality of our catalytic compartments is based on the preservation of the integrity of the compartments to protect encapsulated enzymes. An increase of the in situ activity compared to that of the free enzyme and a reversible on/off switch of the activity upon the presence of a specific stimulus is achieved. This strategy provides straightforward solutions for the development of catalytic nanocompartments efficiently producing desired molecules in a controlled, stimuli-responsive manner with high potential in areas, such as medicine, analytical chemistry, and catalysis.
Collapse
Affiliation(s)
- Christoph Edlinger
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Tomaz Einfalt
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Mariana Spulber
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Anja Car
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
27
|
Baumann P, Spulber M, Fischer O, Car A, Meier W. Investigation of Horseradish Peroxidase Kinetics in an "Organelle-Like" Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603943. [PMID: 28244215 DOI: 10.1002/smll.201603943] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/19/2017] [Indexed: 06/06/2023]
Abstract
In order to mimic cell organelles, artificial nanoreactors have been investigated based on polymeric vesicles with reconstituted channel proteins (outer membrane protein F) and coencapsulated enzymes horseradish peroxidase (HRP) along with a crowding agent (Ficoll or polyethylene glycol) inside the cavity. Importantly, the presence of macromolecules has a strong impact on the enzyme kinetics, but no influence on the integrity of vesicles up to certain concentrations. This particular design allows for the first time the determination of HRP kinetics inside nanoreactors with crowded milieu. The values of the Michaelis-Menten constant (K m ) measured for HRP in a confined space (encapsulated in nanoreactors) in the absence of macromolecules are ≈50% lower than in free conditions, and the presence of a crowding agent results in a further pronounced decrease. These results clearly suggest that activities of enzymes in confined spaces can be tuned by varying the concentrations of crowding compounds. The present investigation represents an advance in nanoreactor design by considering the influence of environmental factors on enzymatic performance, and it demonstrates that both encapsulation and the presence of a crowding environment increase the enzyme-substrate affinity.
Collapse
Affiliation(s)
- Patric Baumann
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Mariana Spulber
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Ozana Fischer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Anja Car
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| |
Collapse
|
28
|
Handschuh-Wang S, Wesner D, Wang T, Lu P, Tücking KS, Haas S, Druzhinin SI, Jiang X, Schönherr H. Determination of the Wall Thickness of Block Copolymer Vesicles by Fluorescence Lifetime Imaging Microscopy. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stephan Handschuh-Wang
- Department of Chemistry and Biology, Physical Chemistry I; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
- Research Center of Micro and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Daniel Wesner
- Department of Chemistry and Biology, Physical Chemistry I; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
- Research Center of Micro and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Tao Wang
- Institute of Materials Engineering; University of Siegen; Paul-Bonatz-Str. 9-11 57076 Siegen Germany
- Research Center of Micro and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Pengyu Lu
- Department of Chemistry and Biology, Physical Chemistry I; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
- Research Center of Micro and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Katrin-Stephanie Tücking
- Department of Chemistry and Biology, Physical Chemistry I; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
- Research Center of Micro and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Simon Haas
- Department of Chemistry and Biology, Physical Chemistry I; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
- Research Center of Micro and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Sergey I. Druzhinin
- Department of Chemistry and Biology, Physical Chemistry I; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
- Research Center of Micro and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Xin Jiang
- Institute of Materials Engineering; University of Siegen; Paul-Bonatz-Str. 9-11 57076 Siegen Germany
- Research Center of Micro and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Holger Schönherr
- Department of Chemistry and Biology, Physical Chemistry I; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
- Research Center of Micro and Nanochemistry and Engineering (Cμ); Adolf-Reichwein-Str. 2 57076 Siegen Germany
| |
Collapse
|
29
|
Cao Y, Li Y, Wu Y, Li W, Yu C, Huang Y, Sun L, Bao Y, Li Y. Co-Delivery of angiostatin and curcumin by a biodegradable polymersome for antiangiogenic therapy. RSC Adv 2016. [DOI: 10.1039/c6ra24426b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Illustration of the AS–Cur-loaded polymersomes formed by block polymers for antiangiogenic therapy.
Collapse
Affiliation(s)
- Yue Cao
- National Engineering Laboratory for Druggable Gene and Protein Screening
- Northeast Normal University
- Changchun 130117
- P. R. China
| | - Yan Li
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yin Wu
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Wenliang Li
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Chunlei Yu
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yanxin Huang
- Institute of Genetics and Cytology
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Luguo Sun
- Institute of Genetics and Cytology
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yongli Bao
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening
- Northeast Normal University
- Changchun 130117
- P. R. China
| |
Collapse
|