1
|
Wang R, Pi Z, Zhu X, Wang X, Zhang H, Ji F, Tang H. Nicorandil-based hydrogel promotes bone defect reconstruction by targeting Hmox1. Colloids Surf B Biointerfaces 2024; 245:114299. [PMID: 39378704 DOI: 10.1016/j.colsurfb.2024.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND The local use of drugs to promote bone healing is still difficult to apply clinically. We aimed to construct a nicorandil-based hydrogel to promote local bone healing by promoting angiogenesis and inhibiting osteoclastogenesis. RESULTS In this study, we constructed a nicorandil-based hydrogel and used it to intervene in bone repair during bone defect reconstruction. The results showed that the nicorandil-based hydrogel significantly inhibited osteoclast differentiation and promoted angiogenesis in vitro. Furthermore, bone formation was significantly promoted by the use of a nicorandil-based hydrogel. Mechanistically, Hmox1 was directly targeted by nicorandil, and overexpression of Hmox1 was found to promote bone defect reconstruction. CONCLUSION Our study provides a fresh perspective and a potential therapeutic approach for the use of local nicorandil-based hydrogels to improve bone defect reconstruction.
Collapse
Affiliation(s)
- Renkai Wang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China; Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopaedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Zhilong Pi
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopaedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Xiang Zhu
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xinzhe Wang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hao Zhang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China.
| | - Fang Ji
- Department of Orthopedics, The Ninth People's Hospital, Shanghai Jiaotong University, No.639 Manufacturing Bureau Road, Huangpu District, Shanghai, China.
| | - Hao Tang
- Department of Orthopaedics, Changhai Hospital, Naval Military Medical University, Shanghai, China.
| |
Collapse
|
2
|
Rosalia M, Rubes D, Serra M, Genta I, Dorati R, Conti B. Polyglycerol Sebacate Elastomer: A Critical Overview of Synthetic Methods and Characterisation Techniques. Polymers (Basel) 2024; 16:1405. [PMID: 38794598 PMCID: PMC11124930 DOI: 10.3390/polym16101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Poly (glycerol sebacate) is a widely studied elastomeric copolymer obtained from the polycondensation of two bioresorbable monomers, glycerol and sebacic acid. Due to its biocompatibility and the possibility to tailor its biodegradability rate and mechanical properties, PGS has gained lots of interest in the last two decades, especially in the soft tissue engineering field. Different synthetic approaches have been proposed, ranging from classic thermal polyesterification and curing to microwave-assisted organic synthesis, UV crosslinking and enzymatic catalysis. Each technique, characterized by its advantages and disadvantages, can be tailored by controlling the crosslinking density, which depends on specific synthetic parameters. In this work, classic and alternative synthetic methods, as well as characterisation and tailoring techniques, are critically reviewed with the aim to provide a valuable tool for the reproducible and customized production of PGS for tissue engineering applications.
Collapse
Affiliation(s)
- Mariella Rosalia
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.R.); (M.S.); (I.G.); (R.D.); (B.C.)
| | | | | | | | | | | |
Collapse
|
3
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Yang K, Li Q, Tian S, Wang J, Lu G, Guo H, Xu S, Zhang L, Yang J. Highly Stretchable, Self-Healing, and Sensitive E-Skins at -78 °C for Polar Exploration. J Am Chem Soc 2024; 146:10699-10707. [PMID: 38518116 DOI: 10.1021/jacs.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Ultralow temperature-tolerant electronic skins (e-skins) can endow polar robots with tactile feedback for exploring in extremely cold polar environments. However, it remains a challenge to develop e-skins that enable sensitive touch sensation and self-healing at ultralow temperatures. Herein, we describe the development of a sensitive robotic hand e-skin that can stretch, self-heal, and sense at temperatures as low as -78 °C. The elastomeric substrate of this e-skin is based on poly(dimethylsiloxane) supramolecular polymers and multistrength dynamic H-bonds, in particular with quadruple H-bonding motifs (UPy). The structure-performance relationship of the elastomer at ultralow temperatures is investigated. The results show that elastomers with side-chain UPy units exhibit higher stretchability (∼3257%) and self-healing efficiency compared to those with main-chain UPy units. This is attributed to the lower binding energy variation and lower potential well. Based on the elastomer with side-chain UPy and man-made electric ink, a sensitive robotic hand e-skin for usage at -78 °C is constructed to precisely sense the shape of objects and specific symbols, and its sensation can completely self-recover after being damaged. The findings of this study contribute to the concept of using robotic hands with e-skins in polar environments that make human involvement limited, dangerous, or impossible.
Collapse
Affiliation(s)
- Kai Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Shu Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Jiancheng Wang
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong 256606, China
| | - Guangming Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Sijia Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Wang Z, Zhang M, Liu L, Mithieux SM, Weiss AS. Polyglycerol sebacate-based elastomeric materials for arterial regeneration. J Biomed Mater Res A 2024; 112:574-585. [PMID: 37345954 DOI: 10.1002/jbm.a.37583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Synthetic vascular grafts are commonly used in patients with severe occlusive arterial disease when autologous grafts are not an option. Commercially available synthetic grafts are confronted with challenging outcomes: they have a lower patency rate than autologous grafts and are currently unable to promote arterial regeneration. Polyglycerol sebacate (PGS), a non-toxic polymer with a tunable degradation profile, has shown promising results as a small-diameter vascular graft component that can support the formation of neoarteries. In this review, we first present an overview of the synthesis and modification of PGS followed by an examination of its mechanical properties. We then report on the performance, degradation, regeneration, and remodeling of PGS-based small-diameter vascular grafts, with a focus on efforts to reduce thrombosis, prevent dilation, and promote cellular residency and extracellular matrix regeneration that resembles the native artery in spatial distribution and organization. We also highlight recent advances in the incorporation of novel in situ cell sources for arterial regeneration and their potential application in PGS-based vascular grafts. Finally, we compare vascular grafts fabricated using PGS-based materials with other elastomeric alternatives.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Miao Zhang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony S Weiss
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- The University of Sydney Nano Institute, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
6
|
Shi W, Jiang Y, Wu T, Zhang Y, Li T. Advancements in drug-loaded hydrogel systems for bone defect repair. Regen Ther 2024; 25:174-185. [PMID: 38230308 PMCID: PMC10789937 DOI: 10.1016/j.reth.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Bone defects are primarily the result of high-energy trauma, pathological fractures, bone tumor resection, or infection debridement. The treatment of bone defects remains a huge clinical challenge. The current treatment options for bone defects include bone traction, autologous/allogeneic bone transplantation, gene therapy, and bone tissue engineering amongst others. With recent developments in the field, composite scaffolds prepared using tissue engineering techniques to repair bone defects are used more often. Among the various composite scaffolds, hydrogel exhibits the advantages of good biocompatibility, high water content, and degradability. Its three-dimensional structure is similar to that of the extracellular matrix, and as such it is possible to load stem cells, growth factors, metal ions, and small molecule drugs upon these scaffolds. Therefore, the hydrogel-loaded drug system has great potential in bone defect repair. This review summarizes the various natural and synthetic materials used in the preparation of hydrogels, in addition to the latest research status of hydrogel-loaded drug systems.
Collapse
Affiliation(s)
- Weipeng Shi
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tingyu Wu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Atif AR, Aramesh M, Carter SS, Tenje M, Mestres G. Universal Biomaterial-on-Chip: a versatile platform for evaluating cellular responses on diverse biomaterial substrates. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:2. [PMID: 38206428 PMCID: PMC10784356 DOI: 10.1007/s10856-023-06771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Microfluidics has emerged as a promising approach for assessing cellular behavior in vitro, providing more physiologically relevant cell culture environments with dynamic flow and shear stresses. This study introduces the Universal Biomaterial-on-Chip (UBoC) device, which enables the evaluation of cell response on diverse biomaterial substrates in a 3D-printed microfluidic device. The UBoC platform offers mechanical stimulation of the cells and monitoring of their response on diverse biomaterials, enabling qualitative and quantitative in vitro analysis both on- and off-chip. Cell adhesion and proliferation were assessed to evaluate the biocompatibility of materials with different physical properties, while mechanical stimulation was performed to investigate shear-dependent calcium signaling in pre-osteoblasts. Moreover, the applicability of the UBoC platform in creating more complex in vitro models by culturing multiple cell types was demonstrated, establishing a dynamic multicellular environment to investigate cellular interfaces and their significance in biological processes. Overall, the UBoC presents an adaptable tool for in vitro evaluation of cellular behavior, offering opportunities for studying various biomaterials and cell interactions in microfluidic environments.
Collapse
Affiliation(s)
- Abdul Raouf Atif
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden
| | - Morteza Aramesh
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden.
| | - Sarah-Sophia Carter
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden
| | - Maria Tenje
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden
| | - Gemma Mestres
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden
| |
Collapse
|
8
|
Han X, Wang Z, Zhou Z, Peng Y, Zhang T, Chen H, Wang S, Pu J. Aldehyde modified cellulose-based dual stimuli responsive multiple cross-linked network ionic hydrogel toward ionic skin and aquatic environment communication sensors. Int J Biol Macromol 2023; 252:126533. [PMID: 37634784 DOI: 10.1016/j.ijbiomac.2023.126533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Recently, materials with complicated environmentally-sensitive abilities, high stretchability and excellent conductive sensitivity are interesting actuators in future applications. Herein, we fabricated a versatile and facile polyvinyl alcohol/polyacrylic acid/dialdehyde cellulose nanofibrils-Fe3+ hydrogel integrated with programmable dual-shape memory properties, high mechanical strength, good recoverability, and heat-induced self-healing capability. Benefiting from the synergistic effect of hydrogen bonds and dual metal coordination bonds of cellulose-based dialdehyde and carboxyl with Fe3+and then heating-freeze-thawing cycle treatment, the obtained hydrogel exhibited dual shape memory abilities, high tensile strain (up to 600 %), good self-recovery, and anti-fatigue properties. Moreover, the resultant hydrogel sensors showed revealed high strain sensitivity (gauge factor = 2.95) and satisfactory electrochemical performance; and such hydrogel-based sensor could be used as ionic skin to detect various human motions in real-time and barrier-free communication in the aquatic environment. The composite hydrogel with superior and versatile performances reported in this study could offer a great promise to be applied under extreme conditions as multifunctional sensors.
Collapse
Affiliation(s)
- Xuewen Han
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Zhenxing Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Zijing Zhou
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Yukang Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Tao Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Heyu Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sijie Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China.
| | - Junwen Pu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China.
| |
Collapse
|
9
|
Guo B, Liang Y, Dong R. Physical dynamic double-network hydrogels as dressings to facilitate tissue repair. Nat Protoc 2023; 18:3322-3354. [PMID: 37758844 DOI: 10.1038/s41596-023-00878-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/22/2023] [Indexed: 09/29/2023]
Abstract
Double-network hydrogels can be tuned to have high mechanical strength, stability, elasticity and bioresponsive properties, which can be combined to create self-healing, adhesive and antibacterial wound dressings. Compared with single-network hydrogel, double-network hydrogel shows stronger mechanical properties and better stability. In comparison with chemical bonds, the cross-linking in double networks makes them more flexible than single-network hydrogels and capable of self-healing following mechanical damage. Here, we present the stepwise synthesis of physical double-network hydrogels where hydrogen bonds and coordination reactions provide self-healing, pH-responsive, tissue-adhesive, antioxidant, photothermal and antibacterial properties, and can be removed on demand. We then explain how to carry out physical, chemical and biological characterizations of the hydrogels for use as wound dressings, yet the double-network hydrogels could also be used in different applications such as tissue engineering scaffolds, cell/drug delivery systems, hemostatic agents or in flexible wearable devices for monitoring physiological and pathological parameters. We also outline how to use the double-network hydrogels in vivo as wound dressings or hemostatic agents. The synthesis of the ureido-pyrimidinone-modified gelatin, catechol-modified polymers and the hydrogels requires 84 h, 48 h and 1 h, respectively, whereas the in vivo assays require 3.5 weeks. The procedure is suitable for users with expertise in biomedical polymer materials.
Collapse
Affiliation(s)
- Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ruonan Dong
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Chen L, Xu J, Zhu M, Zeng Z, Song Y, Zhang Y, Zhang X, Deng Y, Xiong R, Huang C. Self-healing polymers through hydrogen-bond cross-linking: synthesis and electronic applications. MATERIALS HORIZONS 2023; 10:4000-4032. [PMID: 37489089 DOI: 10.1039/d3mh00236e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Recently, polymers capable of repeatedly self-healing physical damage and restoring mechanical properties have attracted extensive attention. Among the various supramolecular chemistry, hydrogen-bonding (H-bonding) featuring reversibility, directionality and high per-volume concentration has become one of the most attractive directions for the development of self-healing polymers (SHPs). Herein, we review the recent advances in the design of high-performance SHPs based on different H-bonding types, for example, H-bonding motifs and excessive H-bonding. In particular, the effects of the structural design of SHPs on their mechanical performance and healing efficiency are discussed in detail. Moreover, we also summarize how to employ H-bonding-based SHPs for the preparation of self-healable electronic devices, focusing on promising topics, including energy harvesting devices, energy storage devices, and flexible sensing devices. Finally, the current challenges and possible strategies for the development of H-bonding-based SHPs and their smart electronic applications are highlighted.
Collapse
Affiliation(s)
- Long Chen
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Jianhua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Ziyuan Zeng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| |
Collapse
|
11
|
Tadge T, Garje S, Saxena V, Raichur AM. Application of Shape Memory and Self-Healable Polymers/Composites in the Biomedical Field: A Review. ACS OMEGA 2023; 8:32294-32310. [PMID: 37720748 PMCID: PMC10500588 DOI: 10.1021/acsomega.3c04569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Shape memory-assisted self-healing polymers have drawn attention over the past few years owing to their interdisciplinary and wide range of applications. Self-healing and shape memory are two approaches used to improve the applicability of polymers in the biomedical field. Combining both these approaches in a polymer composite opens new possibilities for its use in biomedical applications, such as the "close then heal" concept, which uses the shape memory capabilities of polymers to bring injured sections together to promote autonomous healing. This review focuses on using shape memory-assisted self-healing approaches along with their respective affecting factors for biomedical applications such as tissue engineering, drug delivery, biomaterial-inks, and 4D printed scaffolds, soft actuators, wearable electronics, etc. In addition, quantification of self-healing and shape memory efficiency is also discussed. The challenges and prospects of these polymers for biomedical applications have been summarized.
Collapse
Affiliation(s)
| | | | - Varun Saxena
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ashok M. Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Yue X, Zhao S, Qiu M, Zhang J, Zhong G, Huang C, Li X, Zhang C, Qu Y. Physical dual-network photothermal antibacterial multifunctional hydrogel adhesive for wound healing of drug-resistant bacterial infections synthesized from natural polysaccharides. Carbohydr Polym 2023; 312:120831. [PMID: 37059558 DOI: 10.1016/j.carbpol.2023.120831] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
Wound-healing of drug-resistant bacterial infections has always been a clinical challenge. The design and development of effective and economically safe wound dressings with antimicrobial activity and healing-promoting properties is highly desirable, especially in the context of wound-infections. Herein, we designed a physical dual-network multifunctional hydrogel adhesive based on polysaccharide material for the treatment of full-thickness skin defects infected with multidrug-resistant bacteria. The hydrogel utilized ureido-pyrimidinone (UPy)-modified Bletilla striata polysaccharide (BSP) as the first physical interpenetrating network for providing some brittleness and rigidity; and then branched macromolecules formed after cross-linking Fe3+ with dopamine-conjugated di-aldehyde-hyaluronic acid as the second physical interpenetrating network for providing some flexibility and elasticity. In this system, BSP and hyaluronic acid (HA) are used as synthetic matrix materials to provide strong biocompatibility and wound-healing ability. In addition, ligand cross-linking of catechol-Fe3+ and quadrupole hydrogen-bonding cross-linking of UPy-dimer can form a highly dynamic physical dual-network structure, which imparts good rapid self-healing, injectability, shape-adaptation, NIR/pH responsiveness, high tissue-adhesion and mechanical properties of this hydrogel. Meanwhile, bioactivity experiments demonstrated that the hydrogel also possesses powerful antioxidant, hemostatic, photothermal-antibacterial and wound-healing effects. In conclusion, this functionalized hydrogel is a promising candidate for clinical treatment of full-thickness bacteria-stained wound dressing materials.
Collapse
Affiliation(s)
- Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
13
|
Qiao J, Jiang Y, Ren Z, Tang K. Protocatechualdehyde-ferric iron tricomplex embedded gelatin hydrogel with adhesive, antioxidant and photothermal antibacterial capacities for infected wound healing promotion. Int J Biol Macromol 2023:125029. [PMID: 37244333 DOI: 10.1016/j.ijbiomac.2023.125029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Because of the indiscriminate use of antibiotics and the increasing threat of drug-resist bacteria, there is an urgent need to develop novel antibacterial strategies to combat infected wounds. In this work, stable tricomplex molecules (PA@Fe) assembled by protocatechualdehyde (PA) and ferric iron (Fe) were successfully synthesized and then embedded in the gelatin matrix to obtain a series of Gel-PA@Fe hydrogels. The embedded PA@Fe served as a crosslinker to improve the mechanical, adhesive and antioxidant properties of hydrogels through coordination bonds (catechol-Fe) and dynamic Schiff base bonds, meanwhile acting as a photothermal agent to convert near-infrared (NIR) light into heat to kill bacteria effectively. Importantly, in vivo evaluation through an infected full-thickness skin wound mice model revealed that Gel-PA@Fe hydrogel developed collagen deposition, and accelerated reconstruction of wound closure, indicating great potential of Gel-PA@Fe hydrogel in promoting the healing process of infected full-thickness wounds.
Collapse
Affiliation(s)
- Jialu Qiao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongchao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhitao Ren
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Lin X, Yang X, Li P, Xu Z, Zhao L, Mu C, Li D, Ge L. Antibacterial Conductive Collagen-Based Hydrogels for Accelerated Full-Thickness Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22817-22829. [PMID: 37145770 DOI: 10.1021/acsami.2c22932] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Antibacterial conductive hydrogels have been extensively utilized in tissue repair and regeneration on account of their unique electrochemical performances and advantages of anti-pathogenic bacterial infection. Here, multi-functional collagen-based hydrogels (CHLY) with adhesivity, conductivity, and antibacterial and antioxidant activities were developed by introducing cysteine-modified ε-poly(l-lysine) (ε-PL-SH) and in situ-polymerized polypyrrole (PPy) nanoparticles to induce full-thickness wound healing. CHLY hydrogels have a low swelling ratio, good compressive strength, and viscoelasticity due to chemical crosslinking, chelation, physical interaction, and nano-reinforcements in the matrix network of hydrogels. CHLY hydrogels possess excellent tissue adhesion ability, low cytotoxicity, enhanced cell migration ability, and good blood coagulation performance without causing hemolysis. Interestingly, the chemical conjugation of ε-PL-SH in the hydrogel matrix gives hydrogels an inherently robust and broad-spectrum antibacterial activity, while the introduction of PPy endows hydrogels with superior free radical scavenging capacity and good electroactivity. Significantly, CHLY hydrogels have advantages in alleviating persistent inflammatory response as well as promoting angiogenesis, epidermis regeneration, and orderly collagen deposition at the wound sites through their multi-functional synergies, thus effectively accelerating full-thickness wound healing and improving wound healing quality. Overall, our developed multi-functional collagen-based hydrogel dressing demonstrates promising application prospects in the field of tissue engineering to induce skin regeneration.
Collapse
Affiliation(s)
- Xianyu Lin
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xue Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Panyu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
15
|
Gao J, Liu X, Cheng J, Deng J, Han Z, Li M, Wang X, Liu J, Zhang L. Application of photocrosslinkable hydrogels based on photolithography 3D bioprinting technology in bone tissue engineering. Regen Biomater 2023; 10:rbad037. [PMID: 37250979 PMCID: PMC10219790 DOI: 10.1093/rb/rbad037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/31/2023] Open
Abstract
Bone tissue engineering (BTE) has been proven to be an effective method for the treatment of bone defects caused by different musculoskeletal disorders. Photocrosslinkable hydrogels (PCHs) with good biocompatibility and biodegradability can significantly promote the migration, proliferation and differentiation of cells and have been widely used in BTE. Moreover, photolithography 3D bioprinting technology can notably help PCHs-based scaffolds possess a biomimetic structure of natural bone, meeting the structural requirements of bone regeneration. Nanomaterials, cells, drugs and cytokines added into bioinks can enable different functionalization strategies for scaffolds to achieve the desired properties required for BTE. In this review, we demonstrate a brief introduction of the advantages of PCHs and photolithography-based 3D bioprinting technology and summarize their applications in BTE. Finally, the challenges and potential future approaches for bone defects are outlined.
Collapse
Affiliation(s)
| | | | | | - Junhao Deng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Zhenchuan Han
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Xiumei Wang
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| | - Jianheng Liu
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| | - Licheng Zhang
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| |
Collapse
|
16
|
Nie L, Wei Q, Li J, Deng Y, He X, Gao X, Ma X, Liu S, Sun Y, Jiang G, Okoro OV, Shavandi A, Jing S. Fabrication and desired properties of conductive hydrogel dressings for wound healing. RSC Adv 2023; 13:8502-8522. [PMID: 36926300 PMCID: PMC10012873 DOI: 10.1039/d2ra07195a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Conductive hydrogels are platforms recognized as constituting promising materials for tissue engineering applications. This is because such conductive hydrogels are characterized by the inherent conductivity properties while retaining favorable biocompatibility and mechanical properties. These conductive hydrogels can be particularly useful in enhancing wound healing since their favorable conductivity can promote the transport of essential ions for wound healing via the imposition of a so-called transepithelial potential. Other valuable properties of these conductive hydrogels, such as wound monitoring, stimuli-response etc., are also discussed in this study. Crucially, the properties of conductive hydrogels, such as 3D printability and monitoring properties, suggest the possibility of its use as an alternative wound dressing to traditional dressings such as bandages. This review, therefore, seeks to comprehensively explore the functionality of conductive hydrogels in wound healing, types of conductive hydrogels and their preparation strategies and crucial properties of hydrogels. This review will also assess the limitations of conductive hydrogels and future perspectives, with an emphasis on the development trend for conductive hydrogel uses in wound dressing fabrication for subsequent clinical applications.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Qianqian Wei
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Jingyu Li
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Yaling Deng
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology Nanjing 211169 P.R. China
| | - Xiaorui He
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Xinyue Gao
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Xiao Ma
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Shuang Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Shengli Jing
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| |
Collapse
|
17
|
Kang F, Yang Y, Wang W, Li Z. Self-healing polyester elastomer with tuning toughness and elasticity through intermolecular quadruple hydrogen bonding. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Wang X, Zhang X, Yang X, Guo X, Liu Y, Li Y, Ding Z, Teng Y, Hou S, Shi J, Lv Q. An Antibacterial and Antiadhesion In Situ Forming Hydrogel with Sol-Spray System for Noncompressible Hemostasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:662-676. [PMID: 36562696 DOI: 10.1021/acsami.2c19662] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noncompressible hemorrhage is a major cause of posttrauma death and occupies the leading position among potentially preventable trauma-associated deaths. Recently, multiple studies have shown that strongly adhesive materials can serve as hemostatic materials for noncompressible hemorrhage. However, the risk of severe tissue adhesion limits the use of adhesive hydrogels as hemostatic materials. Here, we report a promising material system comprising an injectable sol and liquid spray as a potential solution. Injectable sol is mainly composed of gelatin (GEL) and sodium alginate (SA), which possess hemostasis and adhesive properties. The liquid spray component, a mixture of tannic acid (TA) and calcium chloride (CaCl2), rapidly forms an antibacterial, antiadhesive and smooth film structure upon contact with the sol. In vitro and in vivo experiments demonstrated the bioabsorbable, biocompatible, antibacterial, and antiadhesion properties of the in situ forming hydrogel with a sol-spray system. Importantly, the addition of tranexamic acid (TXA) enhanced hemostatic performance in noncompressible areas and in deep wound hemorrhage. Our study offers a new multifunctional hydrogel system to achieve noncompressible hemostasis.
Collapse
Affiliation(s)
- Xiudan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xin Zhang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xinran Yang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xiaoqin Guo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yanqing Liu
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yongmao Li
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Ziling Ding
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yanjiao Teng
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Jie Shi
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Qi Lv
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| |
Collapse
|
19
|
Chen Y, Yang W, Liu J, Wang Y, Luo Y. The characteristics and mechanism of hydrogen bonding assembly in linear polyurethane with multiple pendant 2‐ureido‐4[1
H
]‐pyrimidone units. J Appl Polym Sci 2022. [DOI: 10.1002/app.53520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yimei Chen
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Wei Yang
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Juan Liu
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Yuanliang Wang
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Yanfeng Luo
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| |
Collapse
|
20
|
Yu L, Zeng G, Xu J, Han M, Wang Z, Li T, Long M, Wang L, Huang W, Wu Y. Development of Poly(Glycerol Sebacate) and Its Derivatives: A Review of the Progress over the past Two Decades. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanjie Zeng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Mingying Han
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Godinho B, Gama N, Ferreira A. Different methods of synthesizing poly(glycerol sebacate) (PGS): A review. Front Bioeng Biotechnol 2022; 10:1033827. [PMID: 36532580 PMCID: PMC9748623 DOI: 10.3389/fbioe.2022.1033827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 08/24/2023] Open
Abstract
Poly(glycerol sebacate) (PGS) is a biodegradable elastomer that has attracted increasing attention as a potential material for applications in biological tissue engineering. The conventional method of synthesis, first described in 2002, is based on the polycondensation of glycerol and sebacic acid, but it is a time-consuming and energy-intensive process. In recent years, new approaches for producing PGS, PGS blends, and PGS copolymers have been reported to not only reduce the time and energy required to obtain the final material but also to adjust the properties and processability of the PGS-based materials based on the desired applications. This review compiles more than 20 years of PGS synthesis reports, reported inconsistencies, and proposed alternatives to more rapidly produce PGS polymer structures or PGS derivatives with tailor-made properties. Synthesis conditions such as temperature, reaction time, reagent ratio, atmosphere, catalysts, microwave-assisted synthesis, and PGS modifications (urethane and acrylate groups, blends, and copolymers) were revisited to present and discuss the diverse alternatives to produce and adapt PGS.
Collapse
Affiliation(s)
- Bruno Godinho
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Nuno Gama
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Artur Ferreira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- ESTGA-Águeda School of Technology and Management, Águeda, Portugal
| |
Collapse
|
22
|
Benny Mattam L, Bijoy A, Abraham Thadathil D, George L, Varghese A. Conducting Polymers: A Versatile Material for Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202201765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liya Benny Mattam
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Anusha Bijoy
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Louis George
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| |
Collapse
|
23
|
Wong JHM, Tan RPT, Chang JJ, Ow V, Yew PYM, Chee PL, Kai D, Loh XJ, Xue K. Dynamic grafting of carboxylates onto poly(vinyl alcohol) polymers for supramolecularly-crosslinked hydrogel formation. Chem Asian J 2022; 17:e202200628. [PMID: 35977910 DOI: 10.1002/asia.202200628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/15/2022] [Indexed: 11/05/2022]
Abstract
Supramolecular hydrogels have attracted considerable interest due to their unique stimuli-responsive and self-healing properties. However, these hydrogel systems are usually achieved by covalent grafting of supramolecular units onto the polymer backbone, which in turn limits their reprocessability. Herein, we prepared a supramolecular hydrogel system by forming dynamic covalent crosslinks between 4-carboxyphenylboronic acid (CPBA) and polyvinyl alcohol (PVA). The system was then further crosslinked with either calcium ions or branched polyethylenimine (PEI) to generate hydrogels with distinctly different properties. Incorporation of calcium ions resulted in the formation of hydrogels with higher storage modulus of 7290 Pa but without self-healing properties. On the other hand, PEI-crosslinked hydrogel (PVA-CPBA-PEI) exhibited >2000% critical strain value, demonstrated high stability over 52 days and showed sustained antibacterial effect. A combination of supramolecular interactions and dynamic covalent crosslinks can be an alternate strategy to fabricate next generation hydrogel materials.
Collapse
Affiliation(s)
- Joey Hui Min Wong
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | | - Jun Jie Chang
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | - Valerie Ow
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | | - Pei Lin Chee
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | - Dan Kai
- Institute of Materials Research and Engineering, Strategic Research Initiative, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | |
Collapse
|
24
|
Ebhodaghe SO. A short review on chitosan and gelatin-based hydrogel composite polymers for wound healing. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 33:1595-1622. [DOI: 10.1080/09205063.2022.2068941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
25
|
Zhou C, Wu T, Xie X, Song G, Ma X, Mu Q, Huang Z, Liu X, Sun C, Xu W. Advances and challenges in conductive hydrogels: From properties to applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Mohd Sani NF, Yee HJ, Othman N, Talib AA, Shuib RK. Intrinsic self-healing rubber: A review and perspective of material and reinforcement. POLYMER TESTING 2022; 111:107598. [DOI: 10.1016/j.polymertesting.2022.107598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Chang S, Wang S, Liu Z, Wang X. Advances of Stimulus-Responsive Hydrogels for Bone Defects Repair in Tissue Engineering. Gels 2022; 8:gels8060389. [PMID: 35735733 PMCID: PMC9222548 DOI: 10.3390/gels8060389] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/16/2022] Open
Abstract
Bone defects, as one of the most urgent problems in the orthopedic clinic, have attracted much attention from the biomedical community and society. Hydrogels have been widely used in the biomedical field for tissue engineering research because of their excellent hydrophilicity, biocompatibility, and degradability. Stimulus-responsive hydrogels, as a new type of smart biomaterial, have more advantages in sensing external physical (light, temperature, pressure, electric field, magnetic field, etc.), chemical (pH, redox reaction, ions, etc.), biochemical (glucose, enzymes, etc.) and other different stimuli. They can respond to stimuli such as the characteristics of the 3D shape and solid-liquid phase state, and exhibit special properties (injection ability, self-repair, shape memory, etc.), thus becoming an ideal material to provide cell adhesion, proliferation, and differentiation, and achieve precise bone defect repair. This review is focused on the classification, design concepts, and research progress of stimulus-responsive hydrogels based on different types of external environmental stimuli, aiming at introducing new ideas and methods for repairing complex bone defects.
Collapse
Affiliation(s)
- Shuai Chang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (S.C.); (S.W.)
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Shaobo Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (S.C.); (S.W.)
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (S.C.); (S.W.)
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (Z.L.); (X.W.)
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Z.L.); (X.W.)
| |
Collapse
|
28
|
Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci 2022; 17:353-384. [PMID: 35782328 PMCID: PMC9237601 DOI: 10.1016/j.ajps.2022.01.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health. And bacterial contamination could significantly menace the wound healing process. Considering the sophisticated wound healing process, novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients, antibacterial agents included, into biomaterials with different morphologies to improve cell behaviors and promote wound healing. However, a comprehensive review on anti-bacterial wound dressing to enhance wound healing has not been reported. In this review, various antibacterial biomaterials as wound dressings will be discussed. Different kinds of antibacterial agents, including antibiotics, nanoparticles (metal and metallic oxides, light-induced antibacterial agents), cationic organic agents, and others, and their recent advances are summarized. Biomaterial selection and fabrication of biomaterials with different structures and forms, including films, hydrogel, electrospun nanofibers, sponge, foam and three-dimension (3D) printed scaffold for skin regeneration, are elaborated discussed. Current challenges and the future perspectives are presented in this multidisciplinary field. We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing.
Collapse
Affiliation(s)
- Yuqing Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yongping Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hualei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
29
|
Chen S, Wu Z, Chu C, Ni Y, Neisiany RE, You Z. Biodegradable Elastomers and Gels for Elastic Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105146. [PMID: 35212474 PMCID: PMC9069371 DOI: 10.1002/advs.202105146] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Indexed: 05/30/2023]
Abstract
Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure-properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Zekai Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer EngineeringFaculty of EngineeringHakim Sabzevari UniversitySabzevar9617976487Iran
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| |
Collapse
|
30
|
Recent progress in advanced biomaterials for long-acting reversible contraception. J Nanobiotechnology 2022; 20:138. [PMID: 35300702 PMCID: PMC8932341 DOI: 10.1186/s12951-022-01329-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Unintended pregnancy is a global issue with serious ramifications for women, their families, and society, including abortion, infertility, and maternal death. Although existing contraceptive strategies have been widely used in people's lives, there have not been satisfactory feedbacks due to low contraceptive efficacy and related side effects (e.g., decreased sexuality, menstrual cycle disorder, and even lifelong infertility). In recent years, biomaterials-based long-acting reversible contraception has received increasing attention from the viewpoint of fundamental research and practical applications mainly owing to improved delivery routes and controlled drug delivery. This review summarizes recent progress in advanced biomaterials for long-acting reversible contraception via various delivery routes, including subcutaneous implant, transdermal patch, oral administration, vaginal ring, intrauterine device, fallopian tube occlusion, vas deferens contraception, and Intravenous administration. In addition, biomaterials, especially nanomaterials, still need to be improved and prospects for the future in contraception are mentioned.
Collapse
|
31
|
Shi M, Bai L, Xu M, Li Z, Hu T, Hu J, Zhang Z, Yin Z, Guo B. Micropatterned conductive elastomer patch based on poly(glycerol sebacate)-graphene for cardiac tissue repair. Biofabrication 2022; 14. [PMID: 35235923 DOI: 10.1088/1758-5090/ac59f2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Abstract
Preparing a micropatterned elastomer film with characteristics that can simulate the mechanical properties, anisotropy, and electroactivity of natural myocardial tissues is crucial in cardiac tissue engineering after myocardial infarction (MI). Therefore, in this study, we developed several elastomeric films with a surface micropattern based on poly (glycerol sebacate) (PGS) and graphene (Gr). These films have sufficient mechanical strength (0.6 ± 0.1-3.2 ± 0.08 MPa) to withstand heartbeats, and the micropatterned structure also satisfies the natural myocardium anisotropy in the transverse and vertical. Moreover, Gr makes these films conductive (up to 5.80 × 10-7 S/m), which is necessary for the conduction of electrical signals between cardiomyocytes and the cardiac tissue. Furthermore, they have good cytocompatibility and can promote cell proliferation in H9c2 rat cardiomyocyte cell lines. In vivo test results indicate that these films have good biocompatibility. Notably, a film with 1 wt% Gr content (PGS-Gr1) significantly affects the recovery of myocardial function in rats after MI. This film effectively decreased the infarct size and degree of myocardial fibrosis and reduced collagen deposition. Echocardiographic evaluation showed that after treatment with this film, the left ventricular internal dimension in systole and left ventricular internal dimension in diastole of rats exhibited a significant downward trend, whereas the fractional shortening and ejection fraction were significantly increased compared with the control group. These data indicate that this electroactive micropatterned anisotropic elastomer film can be applied in cardiac tissue engineering.
Collapse
Affiliation(s)
- Mengting Shi
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Lang Bai
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710061, CHINA
| | - Zhenlong Li
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Tianli Hu
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Juan Hu
- Xi'an Jiaotong University, Xiwu Road, Xi'an, Shaanxi, 710049, CHINA
| | - Zixi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta Road, Xi'an, 710061, CHINA
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710061, CHINA
| | - Baolin Guo
- Xi'an Jiaotong University, Frontier Institute of Science and Technology, Xi'an, 710049, CHINA
| |
Collapse
|
32
|
Tuning the dual- and triple-shape-memory effect of thermoplastic polyurethane/polylactic acid/poly(propylene carbonate) ternary blends via morphology control. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
O'Donnell A, Salimi S, Hart L, Babra T, Greenland B, Hayes W. Applications of supramolecular polymer networks. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Gilpin A, Zeng Y, Hoque J, Ryu JH, Yang Y, Zauscher S, Eward W, Varghese S. Self-Healing of Hyaluronic Acid to Improve In Vivo Retention and Function. Adv Healthc Mater 2021; 10:e2100777. [PMID: 34601809 PMCID: PMC8666142 DOI: 10.1002/adhm.202100777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Convergent advances in the field of soft matter, macromolecular chemistry, and engineering have led to the development of biomaterials that possess autonomous, adaptive, and self-healing characteristics similar to living systems. These rationally designed biomaterials can surpass the capabilities of their parent material. Herein, the modification of hyaluronic acid (HA) to exhibit self-healing properties is described, and its physical and biological function both in vitro and in vivo is studied. The in vitro findings showed that self-healing HA designed to undergo self-repair improves lubrication, enhances free radical scavenging, and attenuates enzymatic degradation compared to unmodified HA. Longitudinal imaging following intraarticular injection of self-healing HA shows improved in vivo retention despite its low molecular weight. Concomitant with these functions, intraarticular injection of self-healing HA mitigates anterior cruciate ligament injury-mediated cartilage degeneration in rodents. This proof-of-concept study shows how incorporation of functional properties such as self-healing can be used to surpass the existing capabilities of biolubricants.
Collapse
Affiliation(s)
- Anna Gilpin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Yuze Zeng
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Yong Yang
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| | - William Eward
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Shyni Varghese
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| |
Collapse
|
35
|
Sha D, Wu Z, Zhang J, Ma Y, Yang Z, Yuan Y. Development of modified and multifunctional poly(glycerol sebacate) (PGS)-based biomaterials for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Liang Y, Li M, Huang Y, Guo B. An Integrated Strategy for Rapid Hemostasis during Tumor Resection and Prevention of Postoperative Tumor Recurrence of Hepatocellular Carcinoma by Antibacterial Shape Memory Cryogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101356. [PMID: 34382336 DOI: 10.1002/smll.202101356] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/25/2021] [Indexed: 06/13/2023]
Abstract
The inevitable bleeding during tumor resection greatly increases the risk of tumor recurrence caused by metastasis of cancer cells with blood, and hemostasis and prevention of post-operation tumor recurrence is still a challenge. However, a biomaterials approach for rapid hemostasis during tumor resection and simultaneous prevention of tumor recurrence is rarely reported. Here, zeolitic imidazolate framework (ZIF-8) nanoparticle-enhanced multinetwork cryogels are proposed which provide an integrated treatment regimen for rapid hemostasis through intraoperative blood trigger shape recovery and enhanced coagulation, and prevention of postoperative cancer recurrence via sonodynamic anticancer in a hepatocellular carcinoma model. A series of antibacterial shape memory multifunctional cryogels are synthesized based on glycidyl methacrylate-functionalized quaternized chitosan (QCSG), dopamine-modified hyaluronic acid (HA-DA), and hematoporphyrin monomethyl ether (HMME)-loaded dopamine-modified ZIF-8 (ZDH). Blood loss in different bleeding models confirms good hemostasis of ZIF-8 loading cryogels. Besides, in vitro tests confirm that QCSG/HA-DA/ZDH (QH/ZDH) cryogels significantly killed cancer cells by generating reactive oxygen species under ultrasound. Finally, significantly reduced tumor recurrence after the resection of ectopic hepatocellular carcinoma further confirms the good effect of QH/ZDH cryogels in preventing recurrence by a coordinated strategy of intraoperative hemostasis and postoperative sonodynamic therapy by pH-responsive HMME release, showing great potential in clinical application.
Collapse
Affiliation(s)
- Yongping Liang
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Li
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Huang
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
37
|
Li Z, Yu R, Guo B. Shape-Memory and Self-Healing Polymers Based on Dynamic Covalent Bonds and Dynamic Noncovalent Interactions: Synthesis, Mechanism, and Application. ACS APPLIED BIO MATERIALS 2021; 4:5926-5943. [PMID: 35006922 DOI: 10.1021/acsabm.1c00606] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Shape-memory and self-healing polymers have been a hotspot of research in the field of smart polymers in the past decade. Under external stimulation, shape-memory and self-healing polymers can complete programed shape transformation, and they can spontaneously repair damage, thereby extending the life of the materials. In this review, we focus on the progress in polymers with shape-memory and self-healing properties in the past decade. The physical or chemical changes in the materials during the occurrence of shape memory as well as self-healing were analyzed based on the polymer molecular structure. We classified the polymers and discussed the preparation methods for shape-memory and self-healing polymers based on the dynamic interactions which can make the polymers exhibit self-healing properties including dynamic covalent bonds (DA reaction, disulfide exchange reaction, imine exchange reaction, alkoxyamine exchange reaction, and boronic acid ester exchange reaction) and dynamic noncovalent interactions (crystallization, hydrogen bonding, ionic interaction, metal coordination interaction, host-guest interactions, and hydrophobic interactions) and their corresponding triggering conditions. In addition, we discussed the advantages and the mechanism that the shape-memory property promotes self-healing in polymers, as well as the future trends in shape-memory and self-healing polymers.
Collapse
Affiliation(s)
- Zhenlong Li
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rui Yu
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
38
|
Shin M, Shin SH, Lee M, Kim HJ, Jeong JH, Choi YH, Oh DX, Park J, Jeon H, Eom Y. Rheological criteria for distinguishing self-healing and non-self-healing hydrogels. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Wu Z, Jin K, Wang L, Fan Y. A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromol Biosci 2021; 21:e2100022. [PMID: 34117837 DOI: 10.1002/mabi.202100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Poly(glycerol sebacate) (PGS), an emerging promising thermosetting polymer synthesized from sebacic acid and glycerol, has attracted considerable attention due to its elasticity, biocompatibility, and tunable biodegradation properties. But it also has some drawbacks such as harsh synthesis conditions, rapid degradation rates, and low stiffness. To overcome these challenges and optimize PGS performance, various modification methods and fabrication techniques for PGS-based scaffolds have been developed in recent years. Outlining the current modification approaches of PGS and summarizing the fabrication techniques for PGS-based scaffolds are of great importance to accelerate the development of new materials and enable them to be appropriately used in potential applications. Thus, this review comprehensively overviews PGS derivatives, PGS composites, PGS blends, processing for PGS-based scaffolds, and their related applications. It is envisioned that this review could instruct and inspire the design of the PGS-based materials and facilitate tissue engineering advances into clinical practice.
Collapse
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kaixiang Jin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,School of Medical Science and Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
40
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. Shape memory materials and 4D printing in pharmaceutics. Adv Drug Deliv Rev 2021; 173:216-237. [PMID: 33774118 DOI: 10.1016/j.addr.2021.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Shape memory materials (SMMs), including alloys and polymers, can be programmed into a temporary configuration and then recover the original shape in which they were processed in response to a triggering external stimulus (e.g. change in temperature or pH, contact with water). For this behavior, SMMs are currently raising a lot of attention in the pharmaceutical field where they could bring about important innovations in the current treatments. 4D printing involves processing of SMMs by 3D printing, thus adding shape evolution over time to the already numerous customization possibilities of this new manufacturing technology. SMM-based drug delivery systems (DDSs) proposed in the scientific literature were here reviewed and classified according to the target pursued through the shape recovery process. Administration route, therapeutic goal, temporary and original shape, triggering stimulus, main innovation features and possible room for improvement of the DDSs were especially highlighted.
Collapse
|
41
|
Vogt L, Ruther F, Salehi S, Boccaccini AR. Poly(Glycerol Sebacate) in Biomedical Applications-A Review of the Recent Literature. Adv Healthc Mater 2021; 10:e2002026. [PMID: 33733604 PMCID: PMC11468981 DOI: 10.1002/adhm.202002026] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Poly(glycerol sebacate) (PGS) continues to attract attention for biomedical applications owing to its favorable combination of properties. Conventionally polymerized by a two-step polycondensation of glycerol and sebacic acid, variations of synthesis parameters, reactant concentrations or by specific chemical modifications, PGS materials can be obtained exhibiting a wide range of physicochemical, mechanical, and morphological properties for a variety of applications. PGS has been extensively used in tissue engineering (TE) of cardiovascular, nerve, cartilage, bone and corneal tissues. Applications of PGS based materials in drug delivery systems and wound healing are also well documented. Research and development in the field of PGS continue to progress, involving mainly the synthesis of modified structures using copolymers, hybrid, and composite materials. Moreover, the production of self-healing and electroactive materials has been introduced recently. After almost 20 years of research on PGS, previous publications have outlined its synthesis, modification, properties, and biomedical applications, however, a review paper covering the most recent developments in the field is lacking. The present review thus covers comprehensively literature of the last five years on PGS-based biomaterials and devices focusing on advanced modifications of PGS for applications in medicine and highlighting notable advances of PGS based systems in TE and drug delivery.
Collapse
Affiliation(s)
- Lena Vogt
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Florian Ruther
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Bayreuth, 95447, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
42
|
Kondratov AP, Cherkasov EP, Paley V, Volinsky AA. Macrostructure of anisotropic shape memory polymer films studied by the molecular probe method. J Appl Polym Sci 2021. [DOI: 10.1002/app.50176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander P. Kondratov
- Department of Innovative Materials in the Print Media Industry Moscow Polytechnic University Moscow Russian Federation
| | - Egor P. Cherkasov
- Department of Innovative Materials in the Print Media Industry Moscow Polytechnic University Moscow Russian Federation
| | - Vladislav Paley
- Department of Mechanical Engineering University of South Florida Tampa Florida USA
| | - Alex A. Volinsky
- Department of Mechanical Engineering University of South Florida Tampa Florida USA
| |
Collapse
|
43
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
44
|
He J, Zhang Z, Yang Y, Ren F, Li J, Zhu S, Ma F, Wu R, Lv Y, He G, Guo B, Chu D. Injectable Self-Healing Adhesive pH-Responsive Hydrogels Accelerate Gastric Hemostasis and Wound Healing. NANO-MICRO LETTERS 2021; 13:80. [PMID: 34138263 PMCID: PMC8187506 DOI: 10.1007/s40820-020-00585-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 05/09/2023]
Abstract
Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are well-established therapeutics for gastrointestinal neoplasias, but complications after EMR/ESD, including bleeding and perforation, result in additional treatment morbidity and even threaten the lives of patients. Thus, designing biomaterials to treat gastric bleeding and wound healing after endoscopic treatment is highly desired and remains a challenge. Herein, a series of injectable pH-responsive self-healing adhesive hydrogels based on acryloyl-6-aminocaproic acid (AA) and AA-g-N-hydroxysuccinimide (AA-NHS) were developed, and their great potential as endoscopic sprayable bioadhesive materials to efficiently stop hemorrhage and promote the wound healing process was further demonstrated in a swine gastric hemorrhage/wound model. The hydrogels showed a suitable gelation time, an autonomous and efficient self-healing capacity, hemostatic properties, and good biocompatibility. With the introduction of AA-NHS as a micro-cross-linker, the hydrogels exhibited enhanced adhesive strength. A swine gastric hemorrhage in vivo model demonstrated that the hydrogels showed good hemostatic performance by stopping acute arterial bleeding and preventing delayed bleeding. A gastric wound model indicated that the hydrogels showed excellent treatment effects with significantly enhanced wound healing with type I collagen deposition, α-SMA expression, and blood vessel formation. These injectable self-healing adhesive hydrogels exhibited great potential to treat gastric wounds after endoscopic treatment.
Collapse
Affiliation(s)
- Jiahui He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zixi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yutong Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fenggang Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jipeng Li
- Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shaojun Zhu
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Feng Ma
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Gang He
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Baolin Guo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
45
|
Motealleh A, Dorri P, Czieborowski M, Philipp B, Kehr NS. Bifunctional nanomaterials for simultaneously improving cell adhesion and affecting bacterial biofilm formation on silicon-based surfaces. Biomed Mater 2021; 16:025013. [PMID: 33401259 DOI: 10.1088/1748-605x/abd872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the biomedical field, silicon-based materials are widely used as implants, biomedical devices, and drug delivery systems. Although these materials show promise for implant technologies and clinical applications, many of them fail to simultaneously possess key properties, such as mechanical stability, biostability, stretchability, cell adhesiveness, biofilm inhibition, and drug delivery ability. Therefore, there is considerable need for the development and improvement of new biomaterials with improved properties. In this context, we describe the synthesis of a new hybrid nanocomposite material that is prepared by incorporating bifunctional nanomaterials onto glass and polydimethylsiloxane surfaces. The results show that our hybrid nanocomposite material is elastic, stretchable, injectable, biostable, has pH-controlled drug delivery ability, and display improved cell adhesion and proliferation and, at the same time, impacted bacterial biofilm formation on the respective surfaces.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busse-Peus-Strasse 10, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
46
|
Huang J, Ren H, Jiang Y, Wu X, Ren J. Technique Advances in Enteroatmospheric Fistula Isolation After Open Abdomen: A Review and Outlook. Front Surg 2021; 7:559443. [PMID: 33553237 PMCID: PMC7855170 DOI: 10.3389/fsurg.2020.559443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Enteroatmospheric fistula (EAF) after open abdomen adds difficulties to the management and increases the morbidity and mortality of patients. As an effective measurement, reconstructing gastrointestinal tract integrity not only reduces digestive juice wasting and wound contamination, but also allows expedient restoration of enteral nutrition and intestinal homeostasis. In this review, we introduce several technologies for the temporary isolation of EAF, including negative pressure wound therapy, fistuloclysis, fistula patch, surgical covered stent, three-dimensional (3D) printing stent, and injection molding stent. The manufacture and implantation procedures of each technique with their pros and cons are described in detail. Moreover, the approach in combination with finger measurement, x-ray imaging, and computerized tomography is used to measure anatomic parameters of fistula and design appropriate 3D printer-recognizable stereolithography files for production of isolation devices. Given the active roles that engineers playing in the technology development, we call on the cooperation between clinicians and engineers and the organization of clinical trials on these techniques.
Collapse
Affiliation(s)
| | | | | | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
47
|
Wang W, Guo Z, Liu Z, Qiu S, Li C, Zhang Q. A spontaneously healable robust ABA tri-block polyacrylate elastomer with a multiphase structure. Polym Chem 2021. [DOI: 10.1039/d1py00907a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiphase structural designed acrylate elastomer capable of autonomously repairing structures and restoring functions upon damage was developed via an effective method, realizing good mechanical properties.
Collapse
Affiliation(s)
- Wenyan Wang
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zijian Guo
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zongxu Liu
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Shuai Qiu
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
48
|
Self-healing disulfide-containing polyester-urethane networks composed of 6-armed star-shaped oligolactide and oligocaprolactone segments. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Asadi N, Pazoki-Toroudi H, Del Bakhshayesh AR, Akbarzadeh A, Davaran S, Annabi N. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. Int J Biol Macromol 2020; 170:728-750. [PMID: 33387543 DOI: 10.1016/j.ijbiomac.2020.12.202] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 01/04/2023]
Abstract
Hydrogels are widely used for wound healing applications due to their similarity to the native extracellular matrix (ECM) and ability to provide a moist environment. However, lack of multifunctionality and low mechanical properties of previously developed hydrogels may limit their ability to support skin tissue regeneration. Incorporating various biomaterials and nanostructures into the hydrogels is an emerging approach to develop multifunctional hydrogels with new functions that are beneficial for wound healing. These multifunctional hydrogels can be fabricated with a wide range of functions and properties, including antibacterial, antioxidant, bioadhesive, and appropriate mechanical properties. Two approaches can be used for development of multifunctional hydrogel-based dressings; taking the advantages of the chemical composition of biomaterials and addition of nanomaterials or nanostructures. A large number of synthetic and natural polymers, bioactive molecules, or nanomaterials have been used to obtain hydrogel-based dressings with multifunctionality for wound healing applications. In the present review paper, advances in the development of multifunctional hydrogel-based dressings for wound healing have been highlighted.
Collapse
Affiliation(s)
- Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Martín-Cabezuelo R, Vilariño-Feltrer G, Vallés-Lluch A. Influence of pre-polymerisation atmosphere on the properties of pre- and poly(glycerol sebacate). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111429. [PMID: 33321580 DOI: 10.1016/j.msec.2020.111429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 01/21/2023]
Abstract
Poly(glycerol sebacate) (PGS) is a versatile biodegradable biomaterial on account of its adjustable mechanical properties as an elastomeric polyester. Nevertheless, it has shown dissimilar results when synthesised by different research groups under equivalent synthesis conditions. This lack of reproducibility proves how crucial it is to understand the effect of the parameters involved on its manufacturing and characterize the polymer networks obtained. Several studies have been conducted in recent years to understand the role of temperature, time, and the molar ratio of its monomers, while the influence of the atmosphere applied during its pre-polymerisation remained unknown. The results obtained here allow for a better understanding about the effect of inert (Ar and N2) and oxidative (oxygen, dry air, and humid air) atmospheres on the extent of the reaction. The molecular pattern of intermediate pre-polymers and the gelation time and morphology of their corresponding cured PGS networks were studied as well. Overall, inert atmospheres promote a rather linear growth of macromers, with scarce branches, resulting in loose elastomers with long chains mainly crosslinked. Conversely, oxygen in the latter atmospheres promotes branching through secondary hydroxyl groups, leading to less-crosslinked 'defective' networks. In this way, the pre-polymerisation atmosphere could be used advantageously to adjust the reactivity of secondary hydroxyls, in order to modulate branching in the elastomeric PGS networks obtained to suit the properties required in a particular application.
Collapse
Affiliation(s)
- Rubén Martín-Cabezuelo
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | | | - Ana Vallés-Lluch
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| |
Collapse
|