1
|
Cui J, Xia Y, Yu Y, Xu H, Zhang N, Tuo Z, Liu Z, Lin Z, Ma S, Liang Y, Ren L. Preparation and Application of Nature-inspired High-performance Mechanical Materials. Acta Biomater 2025:S1742-7061(25)00015-7. [PMID: 39798641 DOI: 10.1016/j.actbio.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Natural materials are valued for their lightweight properties, high strength, impact resistance, and fracture toughness, often outperforming human-made materials. This paper reviews recent research on biomimetic composites, focusing on how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It explores biological structures such as mollusk shells, bones, and insect exoskeletons that inspire lightweight designs, including honeycomb structures for weight reduction and impact resistance. The paper also discusses the flexibility and durability of fibrous materials like arachnid proteins and evaluates traditional and modern fabrication techniques, including machine learning. The development of superior, multifunctional, and eco-friendly materials will benefit transportation, mechanical engineering, architecture, and biomedicine, promoting sustainable materials science. STATEMENT OF SIGNIFICANCE: Natural materials excel in strength, lightweight, impact resistance, and fracture toughness. This review focuses on biomimetic composites inspired by nature, examining how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It analyzes biological structures such as shells, bones, and exoskeletons, emphasizing honeycomb strength and lightness. The review also explores the flexibility and durability of fibrous materials like arachnid proteins and discusses fabrication techniques for biomaterials. It highlights impact-resistant materials that combine soft and hard components for enhanced strength and toughness, as well as lightweight, wear-resistant biomimetic materials that respond uniquely to cyclic stress. The article aims to advance sustainable materials science by exploring innovations in multifunctional and eco-friendly materials for various applications.
Collapse
Affiliation(s)
- Jiandong Cui
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; CRRC ChangChun Railway Vehicles., LTD, Changchun 130025, China
| | - Yan Xia
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Yingqing Yu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Zhiwei Tuo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zirui Liu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China.
| | - Zhaohua Lin
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Suqian Ma
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; The National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China.
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; The National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China.
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| |
Collapse
|
2
|
Wu J, Cortes KAF, Li C, Wang Y, Guo C, Momenzadeh K, Yeritsyan D, Hanna P, Lechtig A, Nazarian A, Lin SJ, Kaplan DL. Tuning the Biodegradation Rate of Silk Materials via Embedded Enzymes. ACS Biomater Sci Eng 2024; 10:2607-2615. [PMID: 38478959 DOI: 10.1021/acsbiomaterials.3c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Conventional thinking when designing biodegradable materials and devices is to tune the intrinsic properties and morphological features of the material to regulate their degradation rate, modulating traditional factors such as molecular weight and crystallinity. Since regenerated silk protein can be directly thermoplastically molded to generate robust dense silk plastic-like materials, this approach afforded a new tool to control silk degradation by enabling the mixing of a silk-degrading protease into bulk silk material prior to thermoplastic processing. Here we demonstrate the preparation of these silk-based devices with embedded silk-degrading protease to modulate the degradation based on the internal presence of the enzyme to support silk degradation, as opposed to the traditional surface degradation for silk materials. The degradability of these silk devices with and without embedded protease XIV was assessed both in vitro and in vivo. Ultimately, this new process approach provides direct control of the degradation lifetime of the devices, empowered through internal digestion via water-activated proteases entrained and stabilized during the thermoplastic process.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Kareen A Fajardo Cortes
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Kaveh Momenzadeh
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Diana Yeritsyan
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Philip Hanna
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Aron Lechtig
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Ara Nazarian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Samuel J Lin
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
3
|
Su D, Swearson S, Krongbaramee T, Sun H, Hong L, Amendt BA. Exploring microRNAs in craniofacial regenerative medicine. Biochem Soc Trans 2023; 51:841-854. [PMID: 37073783 PMCID: PMC11244734 DOI: 10.1042/bst20221448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023]
Abstract
microRNAs (miRs) have been reported over the decades as important regulators in bone development and bone regeneration. They play important roles in maintaining the stem cell signature as well as regulating stem cell fate decisions. Thus, delivering miRs and miR inhibitors to the defect site is a potential treatment towards craniofacial bone defects. However, there are challenges in translation of basic research to clinics, including the efficiency, specificity, and efficacy of miR manipulation methods and the safety of miR delivery systems. In this review, we will compare miR oligonucleotides, mimics and antagomirs as therapeutic reagents to treat disease and regenerate tissues. Newer technology will be discussed as well as the efficiency and efficacy of using these technologies to express or inhibit miRs in treating and repairing oral tissues. Delivery of these molecules using extracellular vesicles and nanoparticles can achieve different results and depending on their composition will elicit specific effects. We will highlight the specificity, toxicity, stability, and effectiveness of several miR systems in regenerative medicine.
Collapse
Affiliation(s)
- Dan Su
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
| | - Samuel Swearson
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
| | - Tadkamol Krongbaramee
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
- Division of Endodontics, Department of Restorative Dentistry & Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Hongli Sun
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| | - Liu Hong
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| |
Collapse
|
4
|
Yan S, He L, Hai AM, Hu Z, You R, Zhang Q, Kaplan DL. Controllable Production of Natural Silk Nanofibrils for Reinforcing Silk-Based Orthopedic Screws. Polymers (Basel) 2023; 15:polym15071645. [PMID: 37050259 PMCID: PMC10096991 DOI: 10.3390/polym15071645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
As a natural high-performance material with a unique hierarchical structure, silk is endowed with superior mechanical properties. However, the current approaches towards producing regenerated silk fibroin (SF) for the preparation of biomedical devices fail to fully exploit the mechanical potential of native silk materials. In this study, using a top-down approach, we exfoliated natural silk fibers into silk nanofibrils (SNFs), through the disintegration of interfibrillar binding forces. The as-prepared SNFs were employed to reinforce the regenerated SF solution to fabricate orthopedic screws with outstanding mechanical properties (compression modulus > 1.1 GPa in a hydrated state). Remarkably, these screws exhibited tunable biodegradation and high cytocompatibility. After 28 days of degradation in protease XIV solution, the weight loss of the screw was ~20% of the original weight. The screws offered a favorable microenvironment to human bone marrow mesenchymal stem cell growth and spread as determined by live/dead staining, F-action staining, and Alamar blue staining. The synergy between native structural components (SNFs) and regenerated SF solutions to form bionanocomposites provides a promising design strategy for the fabrication of biomedical devices with improved performance.
Collapse
|
5
|
Ma R, Tang X, Wang M, Du Z, Chen S, Heng Y, Zhu L, Alifu N, Zhang X, Ma C. Clinical indocyanine green-based silk fibroin theranostic nanoprobes for in vivo NIR-I/II fluorescence imaging of cervical diseases. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102615. [PMID: 36265558 DOI: 10.1016/j.nano.2022.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Cervical diseases such as lymph node disease and tubal obstruction have threatened women's health. However, the traditional diagnostic methods still have shortcomings. NIR-II fluorescence imaging with advantages of low scattering, negligible autofluorescence, and high spatial resolution could be an ideal option. To obtain high quality NIR-II fluorescence imaging, selecting appropriate nanoprobes becomes the important issue. As a small molecular photothermal agent, extensive applications of ICG are rather limited because of its drawbacks. Herein, natural silk fibroin (SF) was synthesized and encapsulated ICG molecules to form SF@ICG nanoparticles (NPs). After detailed analysis, SF@ICG NPs showed excellent stability and long circulation time, as well as strong NIR-II fluorescence emission, well photo-stability, biocompatibility and well photothermal property under 808 nm laser irradiation. Furthermore, SF@ICG NPs were utilized for NIR-II fluorescence imaging of lymph node/lymphangiography and angiography of fallopian tubes. The process of fallopian tubes could be detected with high resolution and high sensitivity.
Collapse
Affiliation(s)
- Rong Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Xiaohui Tang
- School of Pharmacy, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Mei Wang
- School of Pharmacy, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Zhong Du
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Shuang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Youqiang Heng
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Lijun Zhu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China.
| |
Collapse
|
6
|
Nie K, Zhou S, Li H, Tian J, Shen W, Huang W. Advanced silk materials for musculoskeletal tissue regeneration. Front Bioeng Biotechnol 2023; 11:1199507. [PMID: 37200844 PMCID: PMC10185897 DOI: 10.3389/fbioe.2023.1199507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Musculoskeletal diseases are the leading causes of chronic pain and physical disability, affecting millions of individuals worldwide. Over the past two decades, significant progress has been made in the field of bone and cartilage tissue engineering to combat the limitations of conventional treatments. Among various materials used in musculoskeletal tissue regeneration, silk biomaterials exhibit unique mechanical robustness, versatility, favorable biocompatibility, and tunable biodegradation rate. As silk is an easy-to-process biopolymer, silks have been reformed into various materials formats using advanced bio-fabrication technology for the design of cell niches. Silk proteins also offer active sites for chemical modifications to facilitate musculoskeletal system regeneration. With the emergence of genetic engineering techniques, silk proteins have been further optimized from the molecular level with other functional motifs to introduce new advantageous biological properties. In this review, we highlight the frontiers in engineering natural and recombinant silk biomaterials, as well as recent progress in the applications of these new silks in the field of bone and cartilage regeneration. The future potentials and challenges of silk biomaterials in musculoskeletal tissue engineering are also discussed. This review brings together perspectives from different fields and provides insight into improved musculoskeletal engineering.
Collapse
Affiliation(s)
- Kexin Nie
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Sicheng Zhou
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hu Li
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingyi Tian
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Huang
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Wenwen Huang,
| |
Collapse
|
7
|
Wu J, Shaidani S, Theodossiou SK, Hartzell EJ, Kaplan DL. Localized, on-demand, sustained drug delivery from biopolymer-based materials. Expert Opin Drug Deliv 2022; 19:1317-1335. [PMID: 35930000 PMCID: PMC9617770 DOI: 10.1080/17425247.2022.2110582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Local drug delivery facilitiates higher concentrations of drug molecules at or near the treatment site to enhance treatment efficiency and reduce drug toxicity and other systemic side effects. However, local drug delivery systems face challenges in terms of encapsulation, delivery, and controlled release of therapeutics. AREAS COVERED We provide an overview of naturally derived biopolymer-based drug delivery systems for localized, sustained, and on-demand treatment. We introduce the advantages and limitations of these systems for drug encapsulation, delivery, and local release, as well as recent applications. EXPERT OPINION Naturally derived biopolymers like cellulose, silk fibroin, chitosan, alginate, hyaluronic acid, and gelatin are good candidates for localized drug delivery because they are readily chemically modified, biocompatible, biodegradable (with the generation of metabolically compatible degradation products), and can be processed in aqueous and ambient environments to maintain the bioactivity of various therapeutics. The tradeoff between the effective treatment dosage and the response by local healthy tissue should be balanced during the design of these delivery systems. Future directions will be focused on strategies to design tunable and controlled biodegradation rates, as well as to explore commercial utility in substituting biopolymer-based systems for currently utilized synthetic polymers for implants for drug delivery.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Sawnaz Shaidani
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Sophia K. Theodossiou
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Emily J. Hartzell
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| |
Collapse
|
8
|
Mu X, Gonzalez-Obeso C, Xia Z, Sahoo JK, Li G, Cebe P, Zhang YS, Kaplan DL. 3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin. Molecules 2022; 27:molecules27072148. [PMID: 35408547 PMCID: PMC9000323 DOI: 10.3390/molecules27072148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/10/2022] Open
Abstract
Silk fibroin, regenerated from Bombyx mori, has shown considerable promise as a printable, aqueous-based ink using a bioinspired salt-bath system in our previous work. Here, we further developed and characterized silk fibroin inks that exhibit concentration-dependent fluorescence spectra at the molecular level. These insights supported extrusion-based 3D printing using concentrated silk fibroin solutions as printing inks. 3D monolithic proteinaceous structures with high aspect ratios were successfully printed using these approaches, including cantilevers only supported at one end. This work provides further insight and broadens the utility of 3D printing with silk fibroin inks for the microfabrication of proteinaceous structures.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Constancio Gonzalez-Obeso
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
| | - Zhiyu Xia
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
| | - Gang Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA;
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Correspondence: (Y.S.Z.); (D.L.K.)
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
- Correspondence: (Y.S.Z.); (D.L.K.)
| |
Collapse
|
9
|
Li C, Wu J, Shi H, Xia Z, Sahoo JK, Yeo J, Kaplan DL. Fiber-Based Biopolymer Processing as a Route toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105196. [PMID: 34647374 PMCID: PMC8741650 DOI: 10.1002/adma.202105196] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/04/2021] [Indexed: 05/02/2023]
Abstract
Some of the most abundant biomass on earth is sequestered in fibrous biopolymers like cellulose, chitin, and silk. These types of natural materials offer unique and striking mechanical and functional features that have driven strong interest in their utility for a range of applications, while also matching environmental sustainability needs. However, these material systems are challenging to process in cost-competitive ways to compete with synthetic plastics due to the limited options for thermal processing. This results in the dominance of solution-based processing for fibrous biopolymers, which presents challenges for scaling, cost, and consistency in outcomes. However, new opportunities to utilize thermal processing with these types of biopolymers, as well as fibrillation approaches, can drive renewed opportunities to bridge this gap between synthetic plastic processing and fibrous biopolymers, while also holding sustainability goals as critical to long-term successful outcomes.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Haoyuan Shi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - Zhiyu Xia
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
10
|
Wolfe AJ, Guasto JS, Omenetto FG, Kaplan DL. Silk Reservoir Implants for Sustained Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:869-880. [DOI: 10.1021/acsabm.0c01382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander J. Wolfe
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, United States
- Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, United States
| | - Jeffrey S. Guasto
- Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, United States
| | - Fiorenzo G. Omenetto
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
11
|
Yan Z, Chen W, Jin W, Sun Y, Cai J, Gu K, Mi R, Chen N, Chen S, Shao Z. An interference screw made using a silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model. J Mater Chem B 2021; 9:5352-5364. [PMID: 34152356 DOI: 10.1039/d1tb01006a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Upgradation is still in need for the clinically applied interference screws in anterior cruciate ligament reconstruction for more reliable fixation. Silk fibroin bulk materials offer a promising opportunity for this application except lacking osteoinductivity to some extent. Here we report a novel silk-based bulk material with high content of hydroxyapatite-silk fibroin (HA-SF) hybrid particles, which is prepared via a dual-network hydrogel. This composite bulk material possesses a compression modulus of 3.2 GPa, comparable to that of the natural compact bone, and presents satisfactory cytocompatibility and osteoinductivity in vitro when combined with the HA-SF nanoparticles particularly. This composite bulk material shaped into interference screws exhibits remarkable biomechanical properties and significant new-bone ingrowth in the host bone tunnel in a rabbit anterior cruciate ligament reconstruction (ACLR) model at 4 weeks and 12 weeks post-operatively. Moreover, considering that this "hydrogel method" allows the material to be formed in a mold, avoiding complicated post fabrication, it is a potential candidate for clinical translation.
Collapse
Affiliation(s)
- Zhuo Yan
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Wenbo Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wenhe Jin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jiangyu Cai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Kai Gu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Ruixin Mi
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Ni Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
12
|
Belda Marín C, Fitzpatrick V, Kaplan DL, Landoulsi J, Guénin E, Egles C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front Chem 2020; 8:604398. [PMID: 33335889 PMCID: PMC7736416 DOI: 10.3389/fchem.2020.604398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Jessem Landoulsi
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Erwann Guénin
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
| | - Christophe Egles
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
13
|
Wenhao Z, Zhang T, Yan J, Li Q, Xiong P, Li Y, Cheng Y, Zheng Y. In vitro and in vivo evaluation of structurally-controlled silk fibroin coatings for orthopedic infection and in-situ osteogenesis. Acta Biomater 2020; 116:223-245. [PMID: 32889111 DOI: 10.1016/j.actbio.2020.08.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/19/2023]
Abstract
Biomedical device-associated infections (BAI) and osteosynthesis are two main complications following the orthopedic implant surgery, especially while infecting bacteria form a mature biofilm, which can protect the organisms from the host immune system and antibiotic therapy. Comparing with the single antibiotics therapeutic method, the combination of silver nanoparticles (AgNPs) and conventional antibiotics exert a high level of antibacterial activity. Nevertheless, one major issue that extremely restricts the potential application of AgNP/antiviotics is the uncontrolled release. Moreover, the lack of osteogenic ability may cause the osteosynthesis. Thus, herein we fabricated a structure-controlled drug-loaded silk fibroin (SF) coating that can achieve the size and release control of AgNPs and high efficient osteogenesis. Three comparative SF-based coatings were fabricated: α-structured coating (α-helices 32.7%,), m-structured coating (β-sheets 28.3%) and β-structured coating (β-sheets 41%). Owning to the high content of α-helices structure and small AgNPs (20 nm), α-structured coating displayed better protein adsorption and hydrophilicity, as well as pH-dependent and long-lasting antibacterial performance. In vitro studies demonstrated that α coating showed biocompatibility (cellular attachment, spreading and proliferation), high ALP expression, collagen secretion and calcium mineralization. Moreover, after one month subcutaneous implantation in vivo, α-structured coating elicited minimal, comparable inflammatory response. Additionally, in a rabbit femoral defect model, α-structured coating displayed a significant improvement on the generation of new-born bone and bonding between the new bone and the tissue, implying a rapid and durable osteointegration. Expectedly, this optimized structure-controlled SF-based coating can be an alternative and prospective solution for the current challenges in orthopedics. STATEMENT OF SIGNIFICANCE: In this study, an AgNPs/Gentamycin-loaded structured-controlled silk fibroin coatings were constructed on Ti implant's surface to guarantee the success of implantation even in the face of bacterial infection. In comparison, the α-structured coating had the lowest content of β-sheets structure (19.0%) and the smallest particle size of AgNPs (~ 20 nm), and owned pH-responsive characteristic due to reversible α-helices structural. Thanks to pH-responsive release of Ag+, the α-structure coating could effectively inhibit adhesive bacteria and kill planktonic bacteria by releasing a large amount of reactive oxygen radicals. Through in vitro biological results (cell proliferation, differentiation and osteogenic gene expression) and in vivo rabbit femur implantation results, the α-structure coating had good biocompatible and osteogenic properties.
Collapse
Affiliation(s)
- Zhou Wenhao
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Teng Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
| | - Jianglong Yan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - QiYao Li
- Department of Biomedical Engineering, Materials Research Institute, Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Panpan Xiong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yangyang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Yufeng Zheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Mu X, Fitzpatrick V, Kaplan DL. From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Adv Healthc Mater 2020; 9:e1901552. [PMID: 32109007 PMCID: PMC7415583 DOI: 10.1002/adhm.201901552] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/18/2019] [Indexed: 12/25/2022]
Abstract
Silk spinning offers an evolution-based manufacturing strategy for industrial polymer manufacturing, yet remains largely inaccessible as the manufacturing mechanisms in biological and synthetic systems, especially at the molecular level, are fundamentally different. The appealing characteristics of silk spinning include the sustainable sourcing of the protein material, the all-aqueous processing into fibers, and the unique material properties of silks in various formats. Substantial progress has been made to mimic silk spinning in artificial manufacturing processes, despite the gap between natural and artificial systems. This report emphasizes the universal spinning conditions utilized by both spiders and silkworms to generate silk fibers in nature, as a scientific and technical framework for directing molecular assembly into high-performance structures. The preparation of regenerated silk feedstocks and mimicking native spinning conditions in artificial manufacturing are discussed, as is progress and challenges in fiber spinning and 3D printing of silk-composites. Silk spinning is a biomimetic model for advanced and sustainable artificial polymer manufacturing, offering benefits in biomedical applications for tissue scaffolds and implantable devices.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
15
|
Bessonov I, Moysenovich A, Arkhipova A, Ezernitskaya M, Efremov Y, Solodilov V, Timashev P, Shaytan K, Shtil A, Moisenovich M. The Mechanical Properties, Secondary Structure, and Osteogenic Activity of Photopolymerized Fibroin. Polymers (Basel) 2020; 12:E646. [PMID: 32178313 PMCID: PMC7182815 DOI: 10.3390/polym12030646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Previously, we have described the preparation of a novel fibroin methacrylamide (FbMA), a polymer network with improved functionality, capable of photocrosslinking into Fb hydrogels with elevated stiffness. However, it was unclear how this new functionality affects the structure of the material and its beta-sheet-associated crystallinity. Here, we show that the proposed method of Fb methacrylation does not disturb the protein's ability to self-aggregate into the stable beta-sheet-based crystalline domains. Fourier transform infrared spectroscopy (FTIR) shows that, although the precursor ethanol-untreated Fb films exhibited a slightly higher degree of beta-sheet content than the FbMA films (46.9% for Fb-F-aq and 41.5% for FbMA-F-aq), both materials could equally achieve the highest possible beta-sheet content after ethanol treatment (49.8% for Fb-F-et and 49.0% for FbMA-F-et). The elasticity modulus for the FbMA-F-et films was twofold higher than that of the Fb-F-et as measured by the uniaxial tension (130 ± 1 MPa vs. 64 ± 6 MPa), and 1.4 times higher (51 ± 11 MPa vs. 36 ± 4 MPa) as measured by atomic force microscopy. The culturing of human MG63 osteoblast-like cells on Fb-F-et, FbMA-F-et-w/oUV, and FbMA-F-et substrates revealed that the photocrosslinking-induced increment of stiffness increases the area covered by the cells, rearrangement of actin cytoskeleton, and vinculin distribution in focal contacts, altogether enhancing the osteoinductive activity of the substrate.
Collapse
Affiliation(s)
- Ivan Bessonov
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
- JSC Efferon, 143026 Moscow, Russia
| | - Anastasia Moysenovich
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
| | - Anastasia Arkhipova
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
- Regional Research and Clinical Institute (“MONIKI”), 129110 Moscow, Russia
| | - Mariam Ezernitskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (Y.E.); (P.T.)
| | - Vitaliy Solodilov
- Semenov Institute of Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (Y.E.); (P.T.)
- Semenov Institute of Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Konstantin Shaytan
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
| | - Alexander Shtil
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia;
- Institute of Gene Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Mikhail Moisenovich
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.); (A.M.); (A.A.); (K.S.)
| |
Collapse
|
16
|
Guo C, Li C, Mu X, Kaplan DL. Engineering Silk Materials: From Natural Spinning to Artificial Processing. APPLIED PHYSICS REVIEWS 2020; 7:011313. [PMID: 34367402 PMCID: PMC8340942 DOI: 10.1063/1.5091442] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 01/23/2020] [Indexed: 05/17/2023]
Abstract
Silks spun by the arthropods are "ancient' materials historically utilized for fabricating high-quality textiles. Silks are natural protein-based biomaterials with unique physical and biological properties, including particularly outstanding mechanical properties and biocompatibility. Current goals to produce artificially engineered silks to enable additional applications in biomedical engineering, consumer products, and device fields, have prompted considerable effort towards new silk processing methods using bio-inspired spinning and advanced biopolymer processing. These advances have redefined silk as a promising biomaterial past traditional textile applications and into tissue engineering, drug delivery, and biodegradable medical devices. In this review, we highlight recent progress in understanding natural silk spinning systems, as well as advanced technologies used for processing and engineering silk into a broad range of new functional materials.
Collapse
Affiliation(s)
- Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
17
|
Datta LP, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials 2020; 230:119633. [DOI: 10.1016/j.biomaterials.2019.119633] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
|
18
|
Sun J, Su J, Ma C, Göstl R, Herrmann A, Liu K, Zhang H. Fabrication and Mechanical Properties of Engineered Protein-Based Adhesives and Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906360. [PMID: 31805206 DOI: 10.1002/adma.201906360] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Protein-based structural biomaterials are of great interest for various applications because the sequence flexibility within the proteins may result in their improved mechanical and structural integrity and tunability. As the two representative examples, protein-based adhesives and fibers have attracted tremendous attention. The typical protein adhesives, which are secreted by mussels, sandcastle worms, barnacles, and caddisfly larvae, exhibit robust underwater adhesion performance. In order to mimic the adhesion performance of these marine organisms, two main biological adhesives are presented, including genetically engineered protein-based adhesives and biomimetic chemically synthetized adhesives. Moreover, various protein-based fibers inspired by spider and silkworm proteins, collagen, elastin, and resilin are studied extensively. The achievements in synthesis and fabrication of structural biomaterials by DNA recombinant technology and chemical regeneration certainly will accelerate the explorations and applications of protein-based adhesives and fibers in wound healing, tissue regeneration, drug delivery, biosensors, and other high-tech applications. However, the mechanical properties of the biological structural materials still do not match those of natural systems. More efforts need to be devoted to the study of the interplay of the protein structure, cohesion and adhesion effects, fiber processing, and mechanical performance.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Juanjuan Su
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Chao Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| |
Collapse
|
19
|
Guo C, Li C, Vu HV, Hanna P, Lechtig A, Qiu Y, Mu X, Ling S, Nazarian A, Lin SJ, Kaplan DL. Thermoplastic moulding of regenerated silk. NATURE MATERIALS 2020; 19:102-108. [PMID: 31844276 PMCID: PMC6986341 DOI: 10.1038/s41563-019-0560-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 11/08/2019] [Indexed: 05/08/2023]
Abstract
Early insights into the unique structure and properties of native silk suggested that β-sheet nanocrystallites in silk would degrade prior to melting when subjected to thermal processing. Since then, canonical approaches for fabricating silk-based materials typically involve solution-derived processing methods, which have inherent limitations with respect to silk protein solubility and stability in solution, and time and cost efficiency. Here we report a thermal processing method for the direct solid-state moulding of regenerated silk into bulk 'parts' or devices with tunable mechanical properties. At elevated temperature and pressure, regenerated amorphous silk nanomaterials with ultralow β-sheet content undergo thermal fusion via molecular rearrangement and self-assembly assisted by bound water to form a robust bulk material that retains biocompatibility, degradability and machinability. This technique reverses presumptions about the limitations of direct thermal processing of silk into a wide range of new material formats and composite materials with tailored properties and functionalities.
Collapse
Affiliation(s)
- Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - Hiep V Vu
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Philip Hanna
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aron Lechtig
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yimin Qiu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ara Nazarian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| | - Samuel J Lin
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
20
|
Milazzo M, Muyshondt PGG, Carstensen J, Dirckx JJJ, Danti S, Buehler MJ. De novo topology optimization of total ossicular replacement prostheses. J Mech Behav Biomed Mater 2019; 103:103541. [PMID: 31786510 DOI: 10.1016/j.jmbbm.2019.103541] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
Abstract
Conductive hearing loss, due to middle ear pathologies or traumas, affects more than 5% of the population worldwide. Passive prostheses to replace the ossicular chain mainly rely on piston-like titanium and/or hydroxyapatite devices, which in the long term suffer from extrusion. Although the basic shape of such devices always consists of a base for contact with the eardrum and a stem to have mechanical connection with the residual bony structures, a plethora of topologies have been proposed, mainly to help surgical positioning. In this work, we optimize the topology of a total ossicular replacement prosthesis, by maximizing the global stiffness and under the smallest possible volume constraint that ensures material continuity. This investigation optimizes the prosthesis topology in response to static displacement loads with amplitudes that normally occur during sound stimulation in a frequency range between 100 Hz and 10 kHz. Following earlier studies, we discuss how the presence and arrangement of holes on the surface of the prosthesis plate in contact with the umbo affect the overall geometry. Finally, we validate the designs through a finite-element model, in which we assess the prosthesis performance upon dynamic sound pressure loads by considering four different constitutive materials: titanium, cortical bone, silk, and collagen/hydroxyapatite. The results show that the selected prostheses present, almost independently of their constitutive material, a vibroacustic behavior close to that of the native ossicular chain, with a slight almost constant positive shift that reaches a maximum of ≈5 dB close to 1 kHz. This work represents a reference for the development of a new generation of middle ear prostheses with non-conventional topologies for fabrication via additive manufacturing technologies or ultraprecision machining in order to create patient-specific devices to recover from conductive hearing loss.
Collapse
Affiliation(s)
- Mario Milazzo
- Dept. of Civil and Environmental Engineering at Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA; The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy
| | - Pieter G G Muyshondt
- Laboratory of Biophysics and Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Josephine Carstensen
- Dept. of Civil and Environmental Engineering at Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Joris J J Dirckx
- Laboratory of Biophysics and Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Serena Danti
- Dept. of Civil and Environmental Engineering at Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA; The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy; Dept. of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122, Pisa, Italy
| | - Markus J Buehler
- Dept. of Civil and Environmental Engineering at Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.
| |
Collapse
|
21
|
Zhong J, Liu Y, Ren J, Tang Y, Qi Z, Zhou X, Chen X, Shao Z, Chen M, Kaplan DL, Ling S. Understanding Secondary Structures of Silk Materials via Micro- and Nano-Infrared Spectroscopies. ACS Biomater Sci Eng 2019; 5:3161-3183. [PMID: 33405510 DOI: 10.1021/acsbiomaterials.9b00305] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The secondary structures (also termed conformations) of silk fibroin (SF) in animal silk fibers and regenerated SF materials are critical in determining mechanical performance and function of the materials. In order to understand the structure-mechanics-function relationships of silk materials, a variety of advanced infrared spectroscopic techniques, such as micro-infrared spectroscopies (micro-IR spectroscopies for short), synchrotron micro-IR spectroscopy, and nano-infrared spectroscopies (nano-IR spectroscopies for short), have been used to determine the conformations of SF in silk materials. These IR spectroscopic methods provide a useful toolkit to understand conformations and conformational transitions of SF in various silk materials with spatial resolution from the nano-scale to the micro-scale. In this Review, we first summarize progress in understanding the structure and structure-mechanics relationships of silk materials. We then discuss the state-of-the-art micro- and nano-IR spectroscopic techniques used for silk materials characterization. We also provide a systematic discussion of the strategies to collect high-quality spectra and the methods to analyze these spectra. Finally, we demonstrate the challenges and directions for future exploration of silk-based materials with IR spectroscopies.
Collapse
Affiliation(s)
- Jiajia Zhong
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yawen Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yuzhao Tang
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xiaojie Zhou
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Min Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
22
|
Ryu M, Honda R, Cernescu A, Vailionis A, Balčytis A, Vongsvivut J, Li JL, Linklater DP, Ivanova EP, Mizeikis V, Tobin MJ, Morikawa J, Juodkazis S. Nanoscale optical and structural characterisation of silk. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:922-929. [PMID: 31165019 PMCID: PMC6541335 DOI: 10.3762/bjnano.10.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The nanoscale composition of silk defining its unique properties via a hierarchial structural anisotropy needs to be analysed at the highest spatial resolution of tens of nanometers corresponding to the size of fibrils made of β-sheets, which are the crystalline building blocks of silk. Nanoscale optical and structural properties of silk have been measured from 100 nm thick longitudinal slices of silk fibers with ca. 10 nm resolution, the highest so far. Optical sub-wavelength resolution in hyperspectral mapping of absorbance and molecular orientation were carried out for comparison at IR wavelengths of 2-10 μm using synchrotron radiation. A reliable distinction of transmission changes by only 1-2% as the anisotropy of amide bands was obtained from nanometer-thin slices of silk.
Collapse
Affiliation(s)
- Meguya Ryu
- Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Reo Honda
- Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | | | - Arturas Vailionis
- Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Kaunas University of Technology, Studentu street 50, LT-51368 Kaunas, Lithuania
| | - Armandas Balčytis
- Swinburne University of Technology, John st., Hawthorn, 3122 Vic, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Jing-Liang Li
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia
| | - Denver P Linklater
- Swinburne University of Technology, John st., Hawthorn, 3122 Vic, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Vygantas Mizeikis
- Research Institute of Electronics, Shizuoka University, Naka-ku, 3-5-3-1 Johoku, Hamamatsu, Shizuoka 4328561, Japan
| | - Mark J Tobin
- Infrared Microspectroscopy Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Junko Morikawa
- Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Saulius Juodkazis
- Tokyo Tech World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Melbourne Center for Nanofabrication, Australian National Fabrication Facility, Clayton 3168, Melbourne, Australia
- Swinburne University of Technology, John st., Hawthorn, 3122 Vic, Australia
| |
Collapse
|
23
|
Kook G, Jeong S, Kim SH, Kim MK, Lee S, Cho IJ, Choi N, Lee HJ. Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:115-124. [PMID: 30480426 DOI: 10.1021/acsami.8b13170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Silk fibroin is an excellent candidate for biomedical implantable devices because of its biocompatibility, controllable biodegradability, solution processability, flexibility, and transparency. Thus, fibroin has been widely explored in biomedical applications as biodegradable films as well as functional microstructures. Although there exists a large number of patterning methods for fibroin thin films, multilayer micropatterning of fibroin films interleaved with metal layers still remains a challenge. Herein, we report a new wafer-scale multilayer microfabrication process named aluminum hard mask on silk fibroin (AMoS), which is capable of micropatterning multiple layers composed of both fibroin and inorganic materials (e.g., metal and dielectrics) with high-precision microscale alignment. To the best of our knowledge, our AMoS process is the first demonstration of wafer-scale multilayer processing of both silk fibroin and metal micropatterns. In the AMoS process, aluminum deposited on fibroin is first micropatterned using conventional ultraviolet (UV) photolithography, and the patterned aluminum layer is then used as a mask to pattern fibroin underneath. We demonstrate the versatility of our fabrication process by fabricating fibroin microstructures with different dimensions, passive electronic components composed of both fibroin and metal layers, and functional fibroin microstructures for drug delivery. Furthermore, because one of the crucial advantages of fibroin is biocompatibility, we assess the biocompatibility of our fabrication process through the culture of highly susceptible primary neurons. Because the AMoS process utilizes conventional UV photolithography, the principal advantages of our process are multilayer fabrication with high-precision alignment, high resolution, wafer-scale large area processing, no requirement for chemical modification of the protein, and high throughput and thus low cost, all of which have not been feasible with silk fibroin. Therefore, the proposed fabrication method is a promising candidate for batch fabrication of functional fibroin microelectronics (e.g., memristors and organic thin film transistors) for next-generation implantable biomedical applications.
Collapse
Affiliation(s)
- Geon Kook
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Sohyeon Jeong
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - So Hyun Kim
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- SK Biopharmaceuticals Co., Ltd. , 221 Pangyoyeok-ro , Bundang-gu, Seongnam-si , Gyeonggi-do 13494 , Republic of Korea
| | - Mi Kyung Kim
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Sungwoo Lee
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - Hyunjoo J Lee
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| |
Collapse
|
24
|
Facile incorporation of REDV into porous silk fibroin scaffolds for enhancing vascularization of thick tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:96-105. [DOI: 10.1016/j.msec.2018.07.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
|
25
|
Pereira RFP, Zehbe K, Günter C, dos Santos T, Nunes SC, Paz FAA, Silva MM, Granja PL, Taubert A, de Zea Bermudez V. Ionic Liquid-Assisted Synthesis of Mesoporous Silk Fibroin/Silica Hybrids for Biomedical Applications. ACS OMEGA 2018; 3:10811-10822. [PMID: 30320252 PMCID: PMC6173513 DOI: 10.1021/acsomega.8b02051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
New mesoporous silk fibroin (SF)/silica hybrids were processed via a one-pot soft and energy-efficient sol-gel chemistry and self-assembly from a silica precursor, an acidic or basic catalyst, and the ionic liquid 1-butyl-3-methylimidazolium chloride, acting as both solvent and mesoporosity-inducer. The as-prepared materials were obtained as slightly transparent-opaque, amorphous monoliths, easily transformed into powders, and stable up to ca. 300 °C. Structural data suggest the formation of a hexagonal mesostructure with low range order and apparent surface areas, pore volumes, and pore radii of 205-263 m2 g-1, 0.16-0.19 cm3 g-1, and 1.2-1.6 nm, respectively. In all samples, the dominating conformation of the SF chains is the β-sheet. Cytotoxicity/bioactivity resazurin assays and fluorescence microscopy demonstrate the high viability of MC3T3 pre-osteoblasts to indirect (≥99 ± 9%) and direct (78 ± 2 to 99 ± 13%) contact with the SF/silica materials. Considering their properties and further improvements, these systems are promising candidates to be explored in bone tissue engineering. They also offer excellent prospects as electrolytes for solid-state electrochemical devices, in particular for fuel cells.
Collapse
Affiliation(s)
- Rui F. P. Pereira
- Chemistry
Center, University of Minho, 4710-057 Braga, Portugal
- CQ-VR and Chemistry Department, University of Trás-os-Montes
e Alto Douro, 5000-801 Vila Real, Portugal
| | - Kerstin Zehbe
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | - Christina Günter
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | - Tiago dos Santos
- i3S—Instituto de Investigação
e Inovação
em Saúde and INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sílvia C. Nunes
- Chemistry
Department and CICS—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Filipe A. Almeida Paz
- Chemistry
Department, University of Aveiro, CICECO-Aveiro
Institute of Materials, 3810-193 Aveiro, Portugal
| | - Maria M. Silva
- Chemistry
Center, University of Minho, 4710-057 Braga, Portugal
| | - Pedro L. Granja
- i3S—Instituto de Investigação
e Inovação
em Saúde and INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto
de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4200-465 Porto, Portugal
- Faculdade
de Engenharia, Universidade
do Porto, 4200-465 Porto, Portugal
| | - Andreas Taubert
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | - Verónica de Zea Bermudez
- CQ-VR and Chemistry Department, University of Trás-os-Montes
e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
26
|
Kim DK, Lee JM, Jeong JY, Park HJ, Lee OJ, Chao J, Kim SH, Park HS, Khang G, Park CH. New fabrication method of silk fibroin plate and screw based on a centrifugal casting technique. J Tissue Eng Regen Med 2018; 12:2221-2229. [PMID: 30265448 DOI: 10.1002/term.2752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/14/2018] [Accepted: 09/08/2018] [Indexed: 11/07/2022]
Abstract
Recently, a newer generation of absorbable biomaterials has been developed from silk. Silk is approved by the US Food and Drug Administration, has robust mechanical features, and is biocompatible. Moreover, it offers the ability to be functionalized with bioactive compounds, making it ideal for use in new medical devices. Thus, many researchers have considered that absorbable devices made from silk may be able to overcome current limitations and could be used to meet a broader range of fixation needs. Here, we describe a novel method for the fabrication of silk fibroin (SF)-based bioabsorbable fixation systems using a centrifugal casting technique and incorporating a 3D printer. This approach allows us to create the desired geometric design for the fixation system easily. Moreover, our products demonstrated smoother surface profiles and more homogenous and dense cross-sectional architectures. Furthermore, our plates exhibited very similar mechanical properties compared with commercially used one, and our screws showed more than 70% of their initial mass after 7 weeks on the enzymatic degradation test. On in vivo analysis, we found that our devices were well-maintained in the location of initial fixation, and new bone formation was also observed around this. By these results, we suggest that the SF-based plate/screw prepared by our novel method might be used for the internal fixation of fracture sites.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Nano-Bio Regenerative Medical Institute, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jung Min Lee
- Nano-Bio Regenerative Medical Institute, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ju Yeon Jeong
- Nano-Bio Regenerative Medical Institute, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hyun Jung Park
- Nano-Bio Regenerative Medical Institute, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Janet Chao
- Division of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hae Sang Park
- Nano-Bio Regenerative Medical Institute, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer. Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
27
|
James EN, Van Doren E, Li C, Kaplan DL. Silk Biomaterials-Mediated miRNA Functionalized Orthopedic Devices. Tissue Eng Part A 2018; 25:12-23. [PMID: 29415631 DOI: 10.1089/ten.tea.2017.0455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Silk-based bioresorbable medical devices, such as screws, plates, and rods, have been under investigation due to their promising properties for orthopedic repairs. Options to functionalize these new devices for enhanced control of bone regeneration would also exploit the compatible processing methods used to generate the devices. MicroRNAs are important regulators of bone maintenance and formation, and miRNA-based therapeutics have the potential to aid bone repair, utilizing a transient therapeutic approach with local bioactivity. We hypothesized that silk-based orthopedic devices could be used for the local delivery of miRNAs, using anti-sense miR-214 (AS-miR-214), to inhibit endogenous expression of osteoinductive antagonist and thereby supporting the upregulation of osteoinductive target molecules activating transcription factor 4 (ATF4) and Osterix (Osx). AS-miR-214 silk devices, prepared using surface coating, demonstrated continuous release of miRNA inhibitors up to 7 days in vitro. Additionally, human mesenchymal stem cells seeded on AS-miR-214 silk films expressed higher levels of osteogenic genes ATF4, Osx, Runx2, and Osteocalcin. Interestingly, these cells exhibited lower cell viability and DNA content over 21 days. Conversely, the cells demonstrated significantly higher levels of alkaline phosphatase expression and calcium deposition compared with cells seeded on silk films with nontargeting miRNA controls. The study demonstrated that the silk-based orthopedic devices, in conjunction with bioactive miRNA-based therapeutics, may serve as a novel system for localized bone tissue engineering, enhancing osteogenesis at the implant interface while avoiding detrimental systematic side effects.
Collapse
Affiliation(s)
- Eric N James
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Emily Van Doren
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
28
|
Zhou Z, Zhang S, Cao Y, Marelli B, Xia X, Tao TH. Engineering the Future of Silk Materials through Advanced Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706983. [PMID: 29956397 DOI: 10.1002/adma.201706983] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/19/2018] [Indexed: 05/05/2023]
Abstract
Silk is a natural fiber renowned for its outstanding mechanical properties that have enabled the manufacturing of ultralight and ultrastrong textiles. Recent advances in silk processing and manufacturing have underpinned a re-interpretation of silk from textiles to technological materials. Here, it is argued that silk materials-optimized by selective pressure to work in the environment at the biotic-abiotic interface-can be harnessed by human micro- and nanomanufacturing technology to impart new functionalities and opportunities. A critical overview of recent progress in silk technology is presented with emphasis on high-tech applications enabled by recent innovations in multilevel modifications, multiscale manufacturing, and multimodal characterization of silk materials. These advances have enabled successful demonstrations of silk materials across several disciplines, including tissue engineering, drug delivery, implantable medical devices, and biodissolvable/degradable devices.
Collapse
Affiliation(s)
- Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoqing Zhang
- Department of Mechanical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Xiaoxia Xia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Mechanical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
29
|
Zheng K, Ling S. De Novo Design of Recombinant Spider Silk Proteins for Material Applications. Biotechnol J 2018; 14:e1700753. [PMID: 29781251 DOI: 10.1002/biot.201700753] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/22/2018] [Indexed: 01/08/2023]
Abstract
Spider silks are well known for their superior mechanical properties that are stronger and tougher than steel despite being assembled at close to ambient conditions and using water as the solvent. However, it is a significant challenge to utilize spider silks for practical applications due to their limited sources. Fortunately, genetic engineering techniques offer a promising approach to produce useable amounts of spider silk variants. Starting from these recombinant spider silk proteins, a series of experiments and simulations strategies are developed to improve the recombinant spider silk proteins (RSSP) material design and fabrication with the aim of biomimicking the structure-property-function relationships of spider silks. Accordingly, in this review, the authors first introduce the structure-property-function relationship of spider silks. Then, the recent progress in the genetic synthesis of RSSPs is discussed and their related multiscale self-assembly behaviors is summarized. Finally, the authors outline works utilizing multiscale modeling to assist RSSP material design.
Collapse
Affiliation(s)
- Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
30
|
Guo J, Ling S, Li W, Chen Y, Li C, Omenetto FG, Kaplan DL. Coding cell micropatterns through peptide inkjet printing for arbitrary biomineralized architectures. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1800228. [PMID: 32440260 PMCID: PMC7241601 DOI: 10.1002/adfm.201800228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 05/20/2023]
Abstract
Well-designed micropatterns present in native tissues and organs involve changes in extracellular matrix compositions, cell types and mechanical properties to reflect complex biological functions. However, the design and fabrication of these micropatterns in vitro to meet task-specific biomedical applications remains a challenge. A de novo design strategy to code and synthesize functional micropatterns is presented to engineer cell alignment through the integration of aqueous-peptide inkjet printing and site-specific biomineralization. The inkjet printing provides direct writing of macroscopic biosilica selective peptide-R5 patterns with micrometer-scale resolution on the surface of a biopolymer (silk) hydrogel. This is combined with in situ biomineralization of the R5 peptide for site-specific growth of silica nanoparticles on the micropatterns, avoiding the use of harsh chemicals or complex processing. The functional micropatterned systems are used to align human mesenchymal stem cells and bovine serum albumin. This combination of peptide printing and site-specific biomineralization provides a new route for developing cost-effective micropatterns, with implications for broader materials designs. Coding cell micropatterns through peptide inkjet printing for arbitrary biomineralized architectures is demonstrated here. The functional micropatterned systems are used to align human mesenchymal stem cells and bovine serum albumin in vitro, avoiding the use of harsh chemicals or complex processing, while providing potential applications in developing cost-effective micropatterns to meet task-specific biomedical applications.
Collapse
Affiliation(s)
- Jin Guo
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Wenyi Li
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| |
Collapse
|
31
|
Yeo J, Jung GS, Martín-Martínez FJ, Ling S, Gu GX, Qin Z, Buehler MJ. Materials-by-Design: Computation, Synthesis, and Characterization from Atoms to Structures. PHYSICA SCRIPTA 2018; 93:053003. [PMID: 31866694 PMCID: PMC6924929 DOI: 10.1088/1402-4896/aab4e2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the 50 years that succeeded Richard Feynman's exposition of the idea that there is "plenty of room at the bottom" for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.
Collapse
Affiliation(s)
- Jingjie Yeo
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francisco J. Martín-Martínez
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shengjie Ling
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Grace X. Gu
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Zheng Z, Wu J, Liu M, Wang H, Li C, Rodriguez MJ, Li G, Wang X, Kaplan DL. 3D Bioprinting of Self-Standing Silk-Based Bioink. Adv Healthc Mater 2018; 7:e1701026. [PMID: 29292585 DOI: 10.1002/adhm.201701026] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/11/2017] [Indexed: 01/19/2023]
Abstract
Silk/polyethylene glycol (PEG) hydrogels are studied as self-standing bioinks for 3D printing for tissue engineering. The two components of the bioink, silk fibroin protein (silk) and PEG, are both Food and Drug Administration approved materials in drug and medical device products. Mixing PEG with silk induces silk β-sheet structure formation and thus gelation and water insolubility due to physical crosslinking. A variety of constructs with high resolution, high shape fidelity, and homogeneous gel matrices are printed. When human bone marrow mesenchymal stem cells are premixed with the silk solution prior to printing and the constructs are cultured in this medium, the cell-loaded constructs maintain their shape over at least 12 weeks. Interestingly, the cells grow faster in the higher silk concentration (10%, w/v) gel than in lower ones (7.5 and 5%, w/v), likely due to the difference in material stiffness and the amount of residual PEG remaining in the gel related to material hydrophobicity. Subcutaneous implantation of 7.5% (w/v) bioink gels with and without printed fibroblast cells in mice reveals that the cells survive and proliferate in the gel matrix for at least 6 week postimplantation. The results suggest that these silk/PEG bioink gels may provide suitable scaffold environments for cell printing and function.
Collapse
Affiliation(s)
- Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 People's Republic of China
| | - Jianbing Wu
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 People's Republic of China
| | - Meng Liu
- The Cyrus Tang Hematology Center Soochow University Suzhou 215123 People's Republic of China
| | - Heng Wang
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 People's Republic of China
| | - Chunmei Li
- Department of Biomedical Engineering Tufts University 4 Colby Street Medford MA 02155 USA
| | - María J. Rodriguez
- Department of Biomedical Engineering Tufts University 4 Colby Street Medford MA 02155 USA
| | - Gang Li
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 People's Republic of China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 People's Republic of China
| | - David L. Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street Medford MA 02155 USA
| |
Collapse
|
33
|
Liu K, Shi Z, Zhang S, Zhou Z, Sun L, Xu T, Zhang Y, Zhang G, Li X, Chen L, Mao Y, Tao TH. A Silk Cranial Fixation System for Neurosurgery. Adv Healthc Mater 2018; 7:e1701359. [PMID: 29377631 DOI: 10.1002/adhm.201701359] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/24/2017] [Indexed: 11/09/2022]
Abstract
Cranial fixation should be safe, reliable, ideally degradable, and produce no hazardous residues and no artifacts on neuroimaging. Protein-based fixation devices offer an exciting opportunity for this application. Here, the preclinical development and in vivo efficacy verification of a silk cranial fixation system in functional models are reported by addressing key challenges toward clinical use. A comprehensive study on this fixation system in rodent and canine animal models for up to 12 months is carried out. The silk fixation system shows a superb performance on the long-term stability of the internal structural support for cranial flap fixation and bone reconnection and has good magnetic resonance imaging compatibility, and tolerability to high dose radiotherapy, underscoring the favorable clinical application of this system for neurosurgery compared to the current gold standard.
Collapse
Affiliation(s)
- Keyin Liu
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| | - Zhifeng Shi
- Department of Neurosurgery Huashan Hospital of Fudan University Shanghai 200040 China
| | - Shaoqing Zhang
- Department of Mechanical Engineering the University of Texas at Austin Austin TX 78712 USA
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
- School of Graduate Study University of Chinese Academy of Sciences Beijing 100049 China
| | - Long Sun
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| | - Tao Xu
- Department of Neurosurgery Huashan Hospital of Fudan University Shanghai 200040 China
| | - Yeshun Zhang
- Sericultural Research Institute College of Biotechnology Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Guozheng Zhang
- Sericultural Research Institute College of Biotechnology Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
- School of Graduate Study University of Chinese Academy of Sciences Beijing 100049 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 200031 China
| | - Liang Chen
- Department of Neurosurgery Huashan Hospital of Fudan University Shanghai 200040 China
| | - Ying Mao
- Department of Neurosurgery Huashan Hospital of Fudan University Shanghai 200040 China
| | - Tiger H. Tao
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
- Department of Mechanical Engineering the University of Texas at Austin Austin TX 78712 USA
- School of Graduate Study University of Chinese Academy of Sciences Beijing 100049 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 200031 China
| |
Collapse
|
34
|
Guo J, Li C, Ling S, Huang W, Chen Y, Kaplan DL. Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering. Biomaterials 2017; 145:44-55. [PMID: 28843732 PMCID: PMC5610098 DOI: 10.1016/j.biomaterials.2017.08.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023]
Abstract
Continuous gradients present at tissue interfaces such as osteochondral systems, reflect complex tissue functions and involve changes in extracellular matrix compositions, cell types and mechanical properties. New and versatile biomaterial strategies are needed to create suitable biomimetic engineered grafts for interfacial tissue engineering. Silk protein-based composites, coupled with selective peptides with mineralization domains, were utilized to mimic the soft-to-hard transition in osteochondral interfaces. The gradient composites supported tunable mineralization and mechanical properties corresponding to the spatial concentration gradient of the mineralization domains (R5 peptide). The composite system exhibited continuous transitions in terms of composition, structure and mechanical properties, as well as cytocompatibility and biodegradability. The gradient silicified silk/R5 composites promoted and regulated osteogenic differentiation of human mesenchymal stem cells in an osteoinductive environment in vitro. The cells differentiated along the composites in a manner consistent with the R5-gradient profile. This novel biomimetic gradient biomaterial design offers a useful approach to meet a broad range of needs in regenerative medicine.
Collapse
Affiliation(s)
- Jin Guo
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
35
|
Orientational Mapping Augmented Sub-Wavelength Hyper-Spectral Imaging of Silk. Sci Rep 2017; 7:7419. [PMID: 28785090 PMCID: PMC5547124 DOI: 10.1038/s41598-017-07502-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
Molecular alignment underpins optical, mechanical, and thermal properties of materials, however, its direct measurement from volumes with micrometer dimensions is not accessible, especially, for structurally complex bio-materials. How the molecular alignment is linked to extraordinary properties of silk and its amorphous-crystalline composition has to be accessed by a direct measurement from a single silk fiber. Here, we show orientation mapping of the internal silk fiber structure via polarisation-dependent IR absorbance at high spatial resolution of 4.2 μm and 1.9 μm in a hyper-spectral IR imaging by attenuated total reflection using synchrotron radiation in the spectral fingerprint region around 6 μm wavelength. Free-standing longitudinal micro-slices of silk fibers, thinner than the fiber cross section, were prepared by microtome for the four polarization method to directly measure the orientational sensitivity of absorbance in the molecular fingerprint spectral window of the amide bands of β-sheet polypeptides of silk. Microtomed lateral slices of silk fibers, which may avoid possible artefacts that affect spectroscopic measurements with fibers of an elliptical cross sections were used in the study. Amorphisation of silk by ultra-short laser single-pulse exposure is demonstrated.
Collapse
|
36
|
Ding Z, Han H, Fan Z, Lu H, Sang Y, Yao Y, Cheng Q, Lu Q, Kaplan DL. Nanoscale Silk-Hydroxyapatite Hydrogels for Injectable Bone Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16913-16921. [PMID: 28471165 DOI: 10.1021/acsami.7b03932] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Injectable hydrogel systems are important bone substitutes for regeneration because of their handling properties and the ability to fill irregular defects. Silk-hydroxyapatite composite materials with silk nanofibers in hydrogels were prepared and used as biomaterials for osteogenesis. These thixotropic silk nanofiber hydrogels and water-dispersible silk-HA nanoparticles were blended to form injectable nanoscale systems with a homogeneous distribution of a high HA content [60% (w/w)] to imitate bone niche. A modulus of ∼21 kPa was also achieved following the addition of HA in the systems, providing physical cues to induce osteodifferentiation. The composite hydrogels supported improved osteogenesis compared to that with silk nanofiber hydrogels. The newly formed bone tissue and bone defect healing were detected after implantation of the silk-HA composite hydrogels, suggesting utility for the regeneration of irregular bone defects.
Collapse
Affiliation(s)
- Zhaozhao Ding
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Hongyan Han
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University , Suzhou 215000, People's Republic of China
| | - Haijun Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University , Suzhou 215000, People's Republic of China
| | - Yonghuan Sang
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Yuling Yao
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - Qingqing Cheng
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Qiang Lu
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
37
|
Marelli B, Patel N, Duggan T, Perotto G, Shirman E, Li C, Kaplan DL, Omenetto FG. Programming function into mechanical forms by directed assembly of silk bulk materials. Proc Natl Acad Sci U S A 2017; 114:451-456. [PMID: 28028213 PMCID: PMC5255612 DOI: 10.1073/pnas.1612063114] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report simple, water-based fabrication methods based on protein self-assembly to generate 3D silk fibroin bulk materials that can be easily hybridized with water-soluble molecules to obtain multiple solid formats with predesigned functions. Controlling self-assembly leads to robust, machinable formats that exhibit thermoplastic behavior consenting material reshaping at the nanoscale, microscale, and macroscale. We illustrate the versatility of the approach by realizing demonstrator devices where large silk monoliths can be generated, polished, and reshaped into functional mechanical components that can be nanopatterned, embed optical function, heated on demand in response to infrared light, or can visualize mechanical failure through colorimetric chemistries embedded in the assembled (bulk) protein matrix. Finally, we show an enzyme-loaded solid mechanical part, illustrating the ability to incorporate biological function within the bulk material with possible utility for sustained release in robust, programmably shapeable mechanical formats.
Collapse
Affiliation(s)
- Benedetto Marelli
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Nereus Patel
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Thomas Duggan
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Giovanni Perotto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Elijah Shirman
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Chunmei Li
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - David L Kaplan
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- Department of Chemical Engineering, Tufts University, Medford, MA 02155
| | - Fiorenzo G Omenetto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA 02155;
- Department of Electrical Engineering, Tufts University, Medford, MA 02155
- Department of Physics, Tufts University, Medford, MA 02155
| |
Collapse
|