1
|
Lee H, Vanhecke D, Balog S, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. The impact of macrophage phenotype and heterogeneity on the total internalized gold nanoparticle counts. NANOSCALE ADVANCES 2024; 6:4572-4582. [PMID: 39263406 PMCID: PMC11385547 DOI: 10.1039/d4na00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/30/2024] [Indexed: 09/13/2024]
Abstract
Macrophages play a pivotal role in the internalization and processing of administered nanoparticles (NPs). Furthermore, the phagocytic capacity and immunological properties of macrophages can vary depending on their microenvironment, exhibiting a spectrum of polarization states ranging from pro-inflammatory M1 to anti-inflammatory M2. However, previous research investigating this phenotype-dependent interaction with NPs has predominantly relied on semi-quantitative techniques or conventional metrics to assess intracellular NPs. Here, we focus on the interaction of human monocyte-derived macrophage phenotypes (M1-like and M2-like) with gold NPs (AuNPs) by combining population-based metrics and single-cell analysis by focused ion beam-scanning electron microscopy (FIB-SEM). The multimodal analysis revealed phenotype-dependent response and uptake behavior differences, becoming more pronounced after 48 hours. The study also highlighted phenotype-dependent cell-to-cell heterogeneity in AuNPs uptake and variability in particle number at the single-cell level, which was particularly evident in M2-like macrophages, which increases with time, indicating enhanced heteroscedasticity. Future efforts to design NPs targeting macrophages should consider the phenotypic variations and the distribution of NPs concentrations within a population, including the influence of cell-to-cell heterogeneity. This comprehensive understanding will be critical in developing safe and effective NPs to target different macrophage phenotypes.
Collapse
Affiliation(s)
- Henry Lee
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
| | - Dimitri Vanhecke
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
- Department of Chemistry, University of Fribourg Chemin du Musée 9 Fribourg Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
| |
Collapse
|
2
|
Wang Q, Dunnwald M, Kacmarynski D, Worthington K. Development and Characterization of a Novel Composite Hydrogel Biomaterial for Improved Mucoperiosteal Wound Repair. J Biomed Mater Res B Appl Biomater 2024; 112:e35476. [PMID: 39223753 PMCID: PMC11407746 DOI: 10.1002/jbm.b.35476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Mucoperiosteal wound healing, as it occurs after pediatric cleft palate surgery, can be challenging due to the limitations of current treatments such as tissue flaps secured with sutures and fibrin glue. In this study, we characterized the in vitro performance of a novel composite hydrogel biomaterial designed to be employed as an in situ wound filler and enhance mucoperiosteal wound healing. We evaluated a range of photopolymerizable formulations containing methacrylated gelatin (GelMA), glycol chitosan, and bioglass microparticles. Our aim was to identify one or more formulations with an appropriate balance of properties against a set of functional requirements that we established for this application. To test the formulations against these criteria, we measured photopolymerization kinetics, mechanical properties, degradation rate, in vitro biocompatibility, and ex vivo tissue adhesion. All formulations polymerized in less than 90 s using violet light. In addition, we found that GelMA-based hydrogels were more adhesive to mucoperiosteal tissue than clinical standard fibrin glue. Inclusion of small amounts of bioglass in the formulation increased mechanical compatibility with mucoperiosteal tissue, enhanced cytoconductivity, and promoted cell proliferation. Taken together, our results support the suitability of these photopolymerized composite hydrogels as in situ mucoperiosteal wound fillers. Overall, this study lays the groundwork for investigating the in vivo, pre-clinical effectiveness of these composite hydrogels in improving mucoperiosteal wound healing outcomes.
Collapse
Affiliation(s)
- Q. Wang
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa
| | - M. Dunnwald
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa
| | - D.S.F. Kacmarynski
- Department of Otolaryngology – Head and Neck Surgery, Carver College of Medicine, The University of Iowa
| | - K.S. Worthington
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa
| |
Collapse
|
3
|
Wei F, Liu H, Wang Y, Li Y, Han S. Engineering macrophages and their derivatives: A new hope for antitumor therapy. Biomed Pharmacother 2024; 177:116925. [PMID: 38878637 DOI: 10.1016/j.biopha.2024.116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
Macrophages are central to the immune system and are found in nearly all tissues. Recently, the development of therapies based on macrophages has attracted significant interest. These therapies utilize macrophages' key roles in immunity, their ability to navigate biological barriers, and their tendency to accumulate in tumors. This review explores the advancement of macrophage-based treatments. We discuss the bioengineering of macrophages for improved anti-tumor effects, the use of CAR macrophage therapy for targeting cancer cells, and macrophages as vehicles for therapeutic delivery. Additionally, we examine engineered macrophage products, like extracellular vesicles and membrane-coated nanoparticles, for their potential in precise and less toxic tumor therapy. Challenges in moving these therapies from research to clinical practice are also highlighted. The aim is to succinctly summarize the current status, challenges, and future directions of engineered macrophages in cancer therapy.
Collapse
Affiliation(s)
- Fang Wei
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Haiyang Liu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China.
| | - Shuo Han
- Department of Cardiology, the Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China.
| |
Collapse
|
4
|
Fang Z, Yan Z, Li Z, Yan C, Jia S, Qiu X, Wang Q, Hou H, Wu Y, Du F, Gong A, Zhang M. Polydopamine nanoparticles cross-linked hyaluronic acid photothermal hydrogel with cascading immunoinducible effects for in situ antitumor vaccination. Int J Biol Macromol 2024; 269:132177. [PMID: 38729484 DOI: 10.1016/j.ijbiomac.2024.132177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Tumor vaccine, which can effectively prevent tumor recurrence and metastasis, is a promising tool in tumor immunotherapy. However, heterogeneity of tumors and the inability to achieve a cascade effect limit the therapeutic effects of most developing tumor vaccine. We have developed a cascading immunoinducible in-situ mannose-functionalized polydopamine loaded with imiquimod phenylboronic hyaluronic acid nanocomposite gel vaccine (M/P-PDA@IQ PHA) through a boronic ester-based reaction. This reaction utilizes mannose-functionalized polydopamine loaded with imiquimod (M/P-PDA@IQ NAs) as a cross-linking agent to react with phenylboronic-grafted hyaluronic acid. Under near-infrared light irradiation, the M/P-PDA@IQ PHA caused local hyperthermia to trigger immunogenic cell death of tumor cells and tumor-associated antigens (TAAs) releasing. Subsequently, the M/P-PDA@IQ NAs which were gradually released by the pH/ROS/GSH-triggered degradation of M/P-PDA@IQ PHA, could capture and deliver these TAAs to lymph nodes. Finally, the M/P-PDA@IQ NAs facilitated maturation and cross-presentation of dendritic cells, as well as activation of cytotoxic T lymphocytes. Overall, the M/P-PDA@IQ PHA could serve as a novel in situ vaccine to stimulate several key nodes including TAAs release and capture, targeting lymph nodes and enhanced dendritic cells uptake and maturation as well as T cells activation. This cascading immune activation strategy can effectively elicit antitumor immune response.
Collapse
Affiliation(s)
- Zhengzou Fang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Zhihui Yan
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No. 62, Huaihai Road (S.), Huai'an 223002, China
| | - Zhangzuo Li
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Chao Yan
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No. 62, Huaihai Road (S.), Huai'an 223002, China
| | - Sheng Jia
- Division of Cariology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaonan Qiu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Qingxin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hanjin Hou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yuqing Wu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fengyi Du
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Aihua Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Miaomiao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
5
|
Campos Pacheco JE, Yalovenko T, Riaz A, Kotov N, Davids C, Persson A, Falkman P, Feiler A, Godaly G, Johnson CM, Ekström M, Pilkington GA, Valetti S. Inhalable porous particles as dual micro-nano carriers demonstrating efficient lung drug delivery for treatment of tuberculosis. J Control Release 2024; 369:231-250. [PMID: 38479444 DOI: 10.1016/j.jconrel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/24/2024]
Abstract
Inhalation therapy treating severe infectious disease is among the more complex and emerging topics in controlled drug release. Micron-sized carriers are needed to deposit drugs into the lower airways, while nano-sized carriers are of preference for cell targeting. Here, we present a novel and versatile strategy using micron-sized spherical particles with an excellent aerodynamic profile that dissolve in the lung fluid to ultimately generate nanoparticles enabling to enhance both extra- and intra-cellular drug delivery (i.e., dual micro-nano inhalation strategy). The spherical particles are synthesised through the condensation of nano-sized amorphous silicon dioxide resulting in high surface area, disordered mesoporous silica particles (MSPs) with monodispersed size of 2.43 μm. Clofazimine (CLZ), a drug shown to be effective against multidrug-resistant tuberculosis, was encapsulated in the MSPs obtaining a dry powder formulation with high respirable fraction (F.P.F. <5 μm of 50%) without the need of additional excipients. DSC, XRPD, and Nitrogen adsorption-desorption indicate that the drug was fully amorphous when confined in the nano-sized pores (9-10 nm) of the MSPs (shelf-life of 20 months at 4 °C). Once deposited in the lung, the CLZ-MSPs exhibited a dual action. Firstly, the nanoconfinement within the MSPs enabled a drastic dissolution enhancement of CLZ in simulated lung fluid (i.e., 16-fold higher than the free drug), increasing mycobacterial killing than CLZ alone (p = 0.0262) and reaching concentrations above the minimum bactericidal concentration (MBC) against biofilms of M. tuberculosis (i.e., targeting extracellular bacteria). The released CLZ permeated but was highly retained in a Calu-3 respiratory epithelium model, suggesting a high local drug concentration within the lung tissue minimizing risk for systemic side effects. Secondly, the micron-sized drug carriers spontaneously dissolve in simulated lung fluid into nano-sized drug carriers (shown by Nano-FTIR), delivering high CLZ cargo inside macrophages and drastically decreasing the mycobacterial burden inside macrophages (i.e., targeting intracellular bacteria). Safety studies showed neither measurable toxicity on macrophages nor Calu-3 cells, nor impaired epithelial integrity. The dissolved MSPs also did not show haemolytic effect on human erythrocytes. In a nutshell, this study presents a low-cost, stable and non-invasive dried powder formulation based on a dual micro-nano carrier to efficiently deliver drug to the lungs overcoming technological and practical challenges for global healthcare.
Collapse
Affiliation(s)
- Jesús E Campos Pacheco
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Tetiana Yalovenko
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Azra Riaz
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Nikolay Kotov
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Camilla Davids
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alva Persson
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Peter Falkman
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Adam Feiler
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Nanologica AB (publ), Forskargatan 20G, 151 36 Södertälje, Sweden
| | - Gabriela Godaly
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - C Magnus Johnson
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | | | - Georgia A Pilkington
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Nanologica AB (publ), Forskargatan 20G, 151 36 Södertälje, Sweden.
| | - Sabrina Valetti
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden.
| |
Collapse
|
6
|
Gupta G, Kaur J, Bhattacharya K, Chambers BJ, Gazzi A, Furesi G, Rauner M, Fuoco C, Orecchioni M, Delogu LG, Haag L, Stehr JE, Thomen A, Bordes R, Malmberg P, Seisenbaeva GA, Kessler VG, Persson M, Fadeel B. Exploiting Mass Spectrometry to Unlock the Mechanism of Nanoparticle-Induced Inflammasome Activation. ACS NANO 2023; 17:17451-17467. [PMID: 37643371 PMCID: PMC10510732 DOI: 10.1021/acsnano.3c05600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Nanoparticles (NPs) elicit sterile inflammation, but the underlying signaling pathways are poorly understood. Here, we report that human monocytes are particularly vulnerable to amorphous silica NPs, as evidenced by single-cell-based analysis of peripheral blood mononuclear cells using cytometry by time-of-flight (CyToF), while silane modification of the NPs mitigated their toxicity. Using human THP-1 cells as a model, we observed cellular internalization of silica NPs by nanoscale secondary ion mass spectrometry (nanoSIMS) and this was confirmed by transmission electron microscopy. Lipid droplet accumulation was also noted in the exposed cells. Furthermore, time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed specific changes in plasma membrane lipids, including phosphatidylcholine (PC) in silica NP-exposed cells, and subsequent studies suggested that lysophosphatidylcholine (LPC) acts as a cell autonomous signal for inflammasome activation in the absence of priming with a microbial ligand. Moreover, we found that silica NPs elicited NLRP3 inflammasome activation in monocytes, whereas cell death transpired through a non-apoptotic, lipid peroxidation-dependent mechanism. Together, these data further our understanding of the mechanism of sterile inflammation.
Collapse
Affiliation(s)
- Govind Gupta
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jasreen Kaur
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kunal Bhattacharya
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Arianna Gazzi
- Department
of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Giulia Furesi
- Department
of Medicine III and Center for Healthy Aging, TU Dresden, 01307 Dresden, Germany
| | - Martina Rauner
- Department
of Medicine III and Center for Healthy Aging, TU Dresden, 01307 Dresden, Germany
| | - Claudia Fuoco
- Department
of Biology, University of Rome Tor Vergata, Rome 00173, Italy
| | - Marco Orecchioni
- Division
of Inflammation Biology, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Lucia Gemma Delogu
- Department
of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Lars Haag
- Department
of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Jan Eric Stehr
- Department
of Physics, Chemistry and Biology, Linköping
University, 581 83 Linköping, Sweden
| | - Aurélien Thomen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Romain Bordes
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Per Malmberg
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Gulaim A. Seisenbaeva
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Vadim G. Kessler
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Michael Persson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Bengt Fadeel
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
7
|
Graham UM, Dozier AK, Feola DJ, Tseng MT, Yokel RA. Macrophage Polarization Status Impacts Nanoceria Cellular Distribution but Not Its Biotransformation or Ferritin Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2298. [PMID: 37630884 PMCID: PMC10459093 DOI: 10.3390/nano13162298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
The innate immune system is the first line of defense against external threats through the initiation and regulation of inflammation. Macrophage differentiation into functional phenotypes influences the fate of nanomaterials taken up by these immune cells. High-resolution electron microscopy was used to investigate the uptake, distribution, and biotransformation of nanoceria in human and murine M1 and M2 macrophages in unprecedented detail. We found that M1 and M2 macrophages internalize nanoceria differently. M1-type macrophages predominantly sequester nanoceria near the plasma membrane, whereas nanoceria are more uniformly distributed throughout M2 macrophage cytoplasm. In contrast, both macrophage phenotypes show identical nanoceria biotransformation to cerium phosphate nanoneedles and simultaneous nanoceria with ferritin co-precipitation within the cells. Ferritin biomineralization is a direct response to nanoparticle uptake inside both macrophage phenotypes. We also found that the same ferritin biomineralization mechanism occurs after the uptake of Ce-ions into polarized macrophages and into unpolarized human monocytes and murine RAW 264.7 cells. These findings emphasize the need for evaluating ferritin biomineralization in studies that involve the internalization of nano objects, ranging from particles to viruses to biomolecules, to gain greater mechanistic insights into the overall immune responses to nano objects.
Collapse
Affiliation(s)
- Uschi M. Graham
- Pharmaceutical Sciences Department, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA;
| | - Alan K. Dozier
- National Institute of Occupational Safety and Health (NIOSH), Cincinnati, OH 45213-2515, USA;
| | - David J. Feola
- Pharmacy Practice and Science Department, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA;
| | - Michael T. Tseng
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Robert A. Yokel
- Pharmaceutical Sciences Department, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA;
| |
Collapse
|
8
|
Guo C, Zhao X, Ma R, Zhu L, Chen Y, Yang Z, Cai Z, Sun Z, Li Y. Silica nanoparticles promoted pro-inflammatory macrophage and foam cell transformation via ROS/PPARγ/NF-κB signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163430. [PMID: 37059130 DOI: 10.1016/j.scitotenv.2023.163430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
Experimental evidence has pointed out silica nanoparticles (SiNPs) possessing a proatherogenic capability. However, the interplay between SiNPs and macrophages in the pathogenesis of atherosclerosis was poorly understood. Here, we demonstrated SiNPs could promote macrophage adhesion to endothelial cells, accompanied by elevated Vcam1 and Mcp1. Upon SiNPs stimuli, macrophages manifested enhanced phagocytic activity and a pro-inflammatory phenotype, as reflected by the transcriptional determination of M1/M2-related biomarkers. In particular, our data certified the increased macrophage M1 subset facilitated more lipid accumulation and resultant foam cell transformation in comparison to the M2 phenotype. More importantly, the mechanistic investigations revealed ROS-mediated PPARγ/NF-κB signaling was a key contributor to the above phenomena. That was, SiNPs caused ROS accumulation in macrophages, resulting in the deactivation of PPARγ, nuclear translocation of NF-κB, ultimately contributing to macrophage phenotype shift toward M1 and foam cell transformation. Collectively, we first revealed SiNPs facilitated pro-inflammatory macrophage and foam cell transformation via ROS/PPARγ/NF-κB signaling. These data would provide new insight into the atherogenic property of SiNPs in a macrophage model.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lingnan Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yueyue Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Silver nanoparticle-induced impaired autophagic flux and lysosomal dysfunction contribute to the microglia inflammation polarization. Food Chem Toxicol 2022; 170:113469. [DOI: 10.1016/j.fct.2022.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
10
|
Panico S, Capolla S, Bozzer S, Toffoli G, Dal Bo M, Macor P. Biological Features of Nanoparticles: Protein Corona Formation and Interaction with the Immune System. Pharmaceutics 2022; 14:pharmaceutics14122605. [PMID: 36559099 PMCID: PMC9781747 DOI: 10.3390/pharmaceutics14122605] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoparticles (NPs) are versatile candidates for nanomedical applications due to their unique physicochemical properties. However, their clinical applicability is hindered by their undesirable recognition by the immune system and the consequent immunotoxicity, as well as their rapid clearance in vivo. After injection, NPs are usually covered with layers of proteins, called protein coronas (PCs), which alter their identity, biodistribution, half-life, and efficacy. Therefore, the characterization of the PC is for in predicting the fate of NPs in vivo. The aim of this review was to summarize the state of the art regarding the intrinsic factors closely related to the NP structure, and extrinsic factors that govern PC formation in vitro. In addition, well-known opsonins, including complement, immunoglobulins, fibrinogen, and dysopsonins, such as histidine-rich glycoprotein, apolipoproteins, and albumin, are described in relation to their role in NP detection by immune cells. Particular emphasis is placed on their role in mediating the interaction of NPs with innate and adaptive immune cells. Finally, strategies to reduce PC formation are discussed in detail.
Collapse
Affiliation(s)
- Sonia Panico
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Sara Bozzer
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0405588683
| |
Collapse
|
11
|
Moreno-Echeverri AM, Susnik E, Vanhecke D, Taladriz-Blanco P, Balog S, Petri-Fink A, Rothen-Rutishauser B. Pitfalls in methods to study colocalization of nanoparticles in mouse macrophage lysosomes. J Nanobiotechnology 2022; 20:464. [PMID: 36309696 PMCID: PMC9618187 DOI: 10.1186/s12951-022-01670-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background In the field of nanoscience there is an increasing interest to follow dynamics of nanoparticles (NP) in cells with an emphasis on endo-lysosomal pathways and long-term NP fate. During our research on this topic, we encountered several pitfalls, which can bias the experimental outcome. We address some of these pitfalls and suggest possible solutions. The accuracy of fluorescence microscopy methods has an important role in obtaining insights into NP interactions with lysosomes at the single cell level including quantification of NP uptake in a specific cell type. Methods Here we use J774A.1 cells as a model for professional phagocytes. We expose them to fluorescently-labelled amorphous silica NP with different sizes and quantify the colocalization of fluorescently-labelled NP with lysosomes over time. We focus on confocal laser scanning microscopy (CLSM) to obtain 3D spatial information and follow live cell imaging to study NP colocalization with lysosomes. Results We evaluate different experimental parameters that can bias the colocalization coefficients (i.e., Pearson’s and Manders’), such as the interference of phenol red in the cell culture medium with the fluorescence intensity and image post-processing (effect of spatial resolution, optical slice thickness, pixel saturation and bit depth). Additionally, we determine the correlation coefficients for NP entering the lysosomes under four different experimental set-ups. First, we found out that not only Pearson’s, but also Manders’ correlation coefficient should be considered in lysosome-NP colocalization studies; second, there is a difference in NP colocalization when using NP of different sizes and fluorescence dyes and last, the correlation coefficients might change depending on live-cell and fixed-cell imaging set-up. Conclusions The results summarize detailed steps and recommendations for the experimental design, staining, sample preparation and imaging to improve the reproducibility of colocalization studies between the NP and lysosomes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01670-9.
Collapse
|
12
|
Chen X, Jia Z, Wen Y, Huang Y, Yuan X, Chen Y, Liu Y, Liu J. Bidirectional anisotropic palladium nanozymes reprogram macrophages to enhance collaborative chemodynamic therapy of colorectal cancer. Acta Biomater 2022; 151:537-548. [PMID: 35981687 DOI: 10.1016/j.actbio.2022.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/17/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
In the complex tumor microenvironment (TME), tumor-associated macrophages (TAMs) play an important role in immunosuppression and tumor growth; hence, tumor cells are no longer the only target during tumor treatment. However, how to simultaneously target both tumor cells and TAMs to effectively eliminate the tumor remains a challenge. Herein, based on the specific receptors for cancer cells and TAMs, we prepared bidirectional anisotropic palladium nanoclusters (Pd-HA+Pd-M@R NPs) to simultaneously target tumor cells and TAMs for enhancing the therapeutic effect. In these nanoclusters, the Pd-HA part was obtained by modifying hyaluronic acid (HA) on the surface of ultra-small Pd nanozymes that could target CT26 cells. Moreover, with the high peroxidase (POD) and catalase (CAT) activity of Pd nanozymes, Pd-HA NPs directly caused cancer cell death by producing H2O2 and highly toxic reactive oxygen therapy (ROS) through chemodynamic therapy (CDT). The other part of Pd NPs functioned as a carrier that linked mannose (Man) and the imiquimod molecule (R837) to obtain Pd-M@R NPs, which could specifically connect the mannose receptor of TAMs and perform targeted reprogramming of TAMs to M1 phenotype to reverse immunosuppression and further activate immunotherapy to form "double therapy". Therefore, the strategy of "double therapy" provides new sights for treating malignant tumors. STATEMENT OF SIGNIFICANCE: The bidirectional anisotropic Pd nanoclusters (Pd-HA+Pd-M@R NPs) that can simultaneously target the tumor cells and TAMs with the modification of HA and mannose, respectively. Under the biodirectional anisotropic effect, the Pd nanozymes in Pd-HA can directly kill CT 26 cells through catalyze producing toxic ROS. The Pd-M@R exhibited effectively delivery the imiquimod molecule (R837) to TAMs and specifically induced it transformed into M1 phenotype to reverse tumor immunosuppression to form the "double therapy".
Collapse
Affiliation(s)
- Xu Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Zhi Jia
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Yayu Wen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Yuqin Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Xiaoyu Yuan
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Yutong Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Yanan Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Jie Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
13
|
Peng G, Fadeel B. Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system. Adv Drug Deliv Rev 2022; 188:114422. [PMID: 35810883 DOI: 10.1016/j.addr.2022.114422] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022]
Abstract
Two-dimensional (2D) materials such as the graphene-based materials, transition metal dichalcogenides, transition metal carbides and nitrides (MXenes), black phosphorus, hexagonal boron nitride, and others have attracted considerable attention due to their unique physicochemical properties. This is true not least in the field of medicine. Understanding the interactions between 2D materials and the immune system is therefore of paramount importance. Furthermore, emerging evidence suggests that 2D materials may interact with microorganisms - pathogens as well as commensal bacteria that dwell in and on our body. We discuss the interplay between 2D materials, the immune system, and the microbial world in order to bring a systems perspective to bear on the biological interactions of 2D materials. The use of 2D materials as vectors for drug delivery and as immune adjuvants in tumor vaccines, and 2D materials to counteract inflammation and promote tissue regeneration, are explored. The bio-corona formation on and biodegradation of 2D materials, and the reciprocal interactions between 2D materials and microorganisms, are also highlighted. Finally, we consider the future challenges pertaining to the biomedical applications of various classes of 2D materials.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
14
|
Peng G, Keshavan S, Delogu L, Shin Y, Casiraghi C, Fadeel B. Two-Dimensional Transition Metal Dichalcogenides Trigger Trained Immunity in Human Macrophages through Epigenetic and Metabolic Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107816. [PMID: 35434920 DOI: 10.1002/smll.202107816] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Trained immunity is a recently described phenomenon whereby cells of the innate immune system undergo long-term epigenetic and/or metabolic reprogramming following a short-term interaction with microbes or microbial products. Here, it is shown that 2D transition metal dichalcogenides (TMDs) trigger trained immunity in primary human monocyte-derived macrophages. First, aqueous dispersions of 2D crystal formulations of MoS2 and WS2 are tested, and no cytotoxicity is found despite avid uptake of these materials by macrophages. However, when macrophages are pre-exposed to TMDs, followed by a resting period, this causes a marked modulation of immune-specific gene expression upon subsequent challenge with a microbial agent (i.e., bacterial lipopolysaccharides). Specifically, MoS2 triggers trained immunity through an epigenetic pathway insofar as the histone methyltransferase inhibitor methylthioadenosine reverses these effects. Furthermore, MoS2 triggers an elevation of cyclic adenosine monophosphate (cAMP) levels in macrophages and increased glycolysis is also evidenced in cells subjected to MoS2 training, pointing toward a metabolic rewiring of the cells. Importantly, it is observed that MoS2 triggers the upregulation of Mo-dependent enzymes in macrophages, thus confirming that Mo is bioavailable in these cells. In conclusion, MoS2 is identified as a novel inducer of trained immunity. Thus, TMDs could potentially be harnessed as immunomodulatory agents.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Sandeep Keshavan
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Lucia Delogu
- Department of Biomedical Sciences, University of Padua, Padua, 35122, Italy
| | - Yuyoung Shin
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
15
|
Torres A, Collin-Faure V, Diemer H, Moriscot C, Fenel D, Gallet B, Cianférani S, Sergent JA, Rabilloud T. Repeated Exposure of Macrophages to Synthetic Amorphous Silica Induces Adaptive Proteome Changes and a Moderate Cell Activation. NANOMATERIALS 2022; 12:nano12091424. [PMID: 35564134 PMCID: PMC9105884 DOI: 10.3390/nano12091424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
Synthetic amorphous silica (SAS) is a nanomaterial used in a wide variety of applications, including the use as a food additive. Two types of SAS are commonly employed as a powder additive, precipitated silica and fumed silica. Numerous studies have investigated the effects of synthetic amorphous silica on mammalian cells. However, most of them have used an exposure scheme based on a single dose of SAS. In this study, we have used instead a repeated 10-day exposure scheme in an effort to better simulate the occupational exposure encountered in daily life by consumers and workers. As a biological model, we have used the murine macrophage cell line J774A.1, as macrophages are very important innate immune cells in the response to particulate materials. In order to obtain a better appraisal of the macrophage responses to this repeated exposure to SAS, we have used proteomics as a wide-scale approach. Furthermore, some of the biological pathways detected as modulated by the exposure to SAS by the proteomic experiments have been validated through targeted experiments. Overall, proteomics showed that precipitated SAS induced a more important macrophage response than fumed SAS at equal dose. Nevertheless, validation experiments showed that most of the responses detected by proteomics are indeed adaptive, as the cellular homeostasis appeared to be maintained at the end of the exposure. For example, the intracellular glutathione levels or the mitochondrial transmembrane potential at the end of the 10 days exposure were similar for SAS-exposed cells and for unexposed cells. Similarly, no gross lysosomal damage was observed after repeated exposure to SAS. Nevertheless, important functions of macrophages such as phagocytosis, TNFα, and interleukin-6 secretion were up-modulated after exposure, as was the expression of important membrane proteins such as the scavenger receptors, MHC-II, or the MAC-1 receptor. These results suggest that repeated exposure to low doses of SAS slightly modulates the immune functions of macrophages, which may alter the homeostasis of the immune system.
Collapse
Affiliation(s)
- Anaelle Torres
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
| | - Véronique Collin-Faure
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Centre National de la Rech erche Scientifique, Hubert Curien Pluridisciplinary Institute UMR 7178, Strasbourg University, 67087 Strasbourg, France; (H.D.); (S.C.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | - Christine Moriscot
- Integrated Structural Biology Grenoble (ISBG), European Molecular Biology Laboratory Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, 71 Avenue des Martyrs, 38042 Grenoble, France;
| | - Daphna Fenel
- Institute of Structural Biology (IBS), Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38044 Grenoble, France; (D.F.); (B.G.)
| | - Benoît Gallet
- Institute of Structural Biology (IBS), Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38044 Grenoble, France; (D.F.); (B.G.)
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Centre National de la Rech erche Scientifique, Hubert Curien Pluridisciplinary Institute UMR 7178, Strasbourg University, 67087 Strasbourg, France; (H.D.); (S.C.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | | | - Thierry Rabilloud
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
- Correspondence: ; Tel.: +33-43-878-3212
| |
Collapse
|
16
|
Kuschnerus I, Giri K, Ruan J, Huang Y, Bedford N, Garcia-Bennett A. On the growth of the soft and hard protein corona of mesoporous silica particles with varying morphology. J Colloid Interface Sci 2022; 612:467-478. [PMID: 34999551 DOI: 10.1016/j.jcis.2021.12.161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023]
Abstract
The characterization of the protein corona has become an essential part of understanding the biological properties of nanomaterials. This is also important in the case of mesoporous silica particles intended for use as drug delivery excipients. A combination of scattering, imaging and protein characterization techniques is used here to assess the effect of particle shape and growth of the reversible (soft) and strongly bound (hard) corona of three types mesoporous silica particles with different aspect ratios. Notable differences in the protein composition, surface coverage and particle agglomeration of the protein corona-particle complex point to specific protein adsorption profiles highly dependent on exposed facets and aspect ratio. Spherical particles form relatively homogeneous soft and hard protein coronas (approx.10 nm thick) with higher albumin content. In contrast to rod-shaped and faceted particles, which possess soft coronas weakly bound to the external surface and influenced to a greater extent by the particle morphology. These differences are likely important contributors to observed changes in biological properties, such as cell viability and immunological behaviour, with mesoporous silica particle shape.
Collapse
Affiliation(s)
- Inga Kuschnerus
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia; School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kalpeshkumar Giri
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia; Centre for Nanoscale and BioPhotonics, Macquarie University, Sydney, NSW, Australia
| | - Juanfang Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yanan Huang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Nicholas Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Alfonso Garcia-Bennett
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia; Centre for Nanoscale and BioPhotonics, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Fadeel B. Understanding the immunological interactions of engineered nanomaterials: Role of the bio-corona. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1798. [PMID: 36416023 PMCID: PMC9787869 DOI: 10.1002/wnan.1798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
Engineered nanomaterials are a broad class of materials with the potential for breakthrough applications in many sectors of society not least in medicine. Consequently, safety assessment of nanomaterials and nano-enabled products with respect to human health and the environment is of key importance. To this end, the biological interactions of nanoscale materials must be understood. Here, the dual "identities" of nanomaterials, namely, the material-intrinsic properties or synthetic identity and the acquired, context-dependent properties or biological identity, are discussed in relation to nanomaterial interactions with the immune system, our main defense against foreign intrusion. Specifically, we address whether macrophages and other innate immune cells respond to the synthetic identity or the biological identity of nanomaterials, that is, the surface adsorbed proteins and/or other biomolecules known as the bio-corona, or both? This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory (NNL), Division of Molecular ToxicologyInstitute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| |
Collapse
|
18
|
Robust polymeric scaffold from 3D soft confinement self-assembly of polycondensation aromatic polymer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Torres Andón F, Bondarenko O. Recent Discoveries in Nanoparticle-Macrophage Interactions: In Vitro Models for Nanosafety Testing and Novel Nanomedical Approaches for Immunotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2971. [PMID: 34835734 PMCID: PMC8619259 DOI: 10.3390/nano11112971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Nanoparticles (NPs) offer unique properties for biomedical applications, leading to new nanomedicines [...].
Collapse
Affiliation(s)
- Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain
- IRCCS Istituto Clinico Humanitas, Via A. Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Olesja Bondarenko
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland
| |
Collapse
|
20
|
Keshavan S, Gupta G, Martin S, Fadeel B. Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils. Nanotoxicology 2021; 15:1125-1150. [PMID: 34657549 DOI: 10.1080/17435390.2021.1988171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carbon nanotubes (CNTs) have been extensively investigated, and several studies have shown that multi-walled CNTs can trigger inflammation and fibrosis in animal models. However, while neutrophils are involved in inflammation, most in vitro studies have addressed macrophages. Here we explored the impact of three MWCNTs with varying morphology (i.e. long and rigid versus short and/or tangled) on primary human macrophages and macrophage-differentiated THP-1 cells versus primary human neutrophils and neutrophil-differentiated HL-60 cells. We found that long and rigid MWCNTs triggered caspase-dependent cell death in macrophages, accompanied by NLRP3 inflammasome activation and gasdermin D (GSDMD)-mediated release of pro-inflammatory IL-1β. The release of IL-1β was suppressed by disulfiram, an FDA-approved drug known to act as an inhibitor of membrane pore formation by GSDMD. Evidence of autophagic cell death was noted in macrophages exposed to higher concentrations of the long and rigid MWCNTs. Furthermore, lysosomal damage with cytosolic release of cathepsin B was observed in macrophages exposed to the latter MWCNTs. On the other hand, there was little evidence of uptake of MWCNTs in neutrophils and the cells failed to undergo MWCNT-triggered cell death. Our studies have demonstrated that long and rigid MWCNTs trigger pyroptosis in human macrophages.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Moroni I, Garcia-Bennett AE. Effects of Absorption Kinetics on the Catabolism of Melatonin Released from CAP-Coated Mesoporous Silica Drug Delivery Vehicles. Pharmaceutics 2021; 13:1436. [PMID: 34575512 PMCID: PMC8464897 DOI: 10.3390/pharmaceutics13091436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Melatonin (MLT) is a pineal hormone involved in the regulation of the sleep/wake cycle. The efficacy of exogenous MLT for the treatment of circadian and sleep disorders is variable due to a strong liver metabolism effect. In this work, MLT is encapsulated in mesoporous silica (AMS-6) with a loading capacity of 28.8 wt%, and the mesopores are blocked using a coating of cellulose acetate phthalate (CAP) at 1:1 and 1:2 AMS-6/MLT:CAP ratios. The release kinetics of MLT from the formulations is studied in simulated gastrointestinal fluids. The permeability of the MLT released from the formulations and its 6-hydroxylation are studied in an in vitro model of the intestinal tract (Caco-2 cells monolayer). The release of MLT from AMS-6/MLT:CAP 1:2 is significantly delayed in acidic environments up to 40 min, while remaining unaffected in neutral environments. The presence of CAP decreases the absorption of melatonin and increases its catabolism into 6-hydroxylation by the cytochrome P450 enzyme CYP1A2. The simple confinement of melatonin into AMS-6 pores slightly affects the permeability and significantly decreases melatonin 6-hydroxylation. Measurable amounts of silicon in the basolateral side of the Caco-2 cell monolayer might suggest the dissolution of AMS-6 during the experiment.
Collapse
Affiliation(s)
- Irene Moroni
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Alfonso E. Garcia-Bennett
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- ARC Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
22
|
Peng G, Duan T, Guo M, Xue Y, Chen C, Li Y, Leifer K, Fadeel B. Biodegradation of graphdiyne oxide in classically activated (M1) macrophages modulates cytokine production. NANOSCALE 2021; 13:13072-13084. [PMID: 34477791 DOI: 10.1039/d1nr02473f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphdiyne oxide (GDYO) is a carbon-based nanomaterial possessing sp2 and sp-hybridized carbon atoms with many promising applications. However, its biocompatibility and potential biodegradability remain poorly understood. Using human primary monocyte-derived macrophages as a model we show here that GDYO elicited little or no cytotoxicity toward classically activated (M1) and alternatively activated (M2) macrophages. Moreover, GDYO reprogrammed M2 macrophages towards M1 macrophages, as evidenced by the elevation of specific cell surface markers and cytokines and the induction of NOS2 expression. We could also show inducible nitric oxide synthase (iNOS)-dependent biodegradation of GDYO in M1 macrophages, and this was corroborated in an acellular system using the peroxynitrite donor, SIN-1. Furthermore, GDYO elicited the production of pro-inflammatory cytokines in a biodegradation-dependent manner. Our findings shed new light on the reciprocal interactions between GDYO and human macrophages. This is relevant for biomedical applications of GDYO such as the re-education of tumor-associated macrophages or TAMs.
Collapse
Affiliation(s)
- Guotao Peng
- Nanosafety & Nanomedicine Laboratory (NNL), Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bao J, Zhang Q, Duan T, Hu R, Tang J. The Fate of Nanoparticles In Vivo and the Strategy of Designing Stealth Nanoparticle for Drug Delivery. Curr Drug Targets 2021; 22:922-946. [PMID: 33461465 DOI: 10.2174/1389450122666210118105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Nano-drug delivery systems (Nano-DDS) offer powerful advantages in drug delivery and targeted therapy for diseases. Compared to the traditional drug formulations, Nano-DDS can increase solubility, biocompatibility, and reduce off-targeted side effects of free drugs. However, they still have some disadvantages that pose a limitation in reaching their full potential in clinical use. Protein adsorption in blood, activation of the complement system, and subsequent sequestration by the mononuclear phagocyte system (MPS) consequently result in nanoparticles (NPs) to be rapidly cleared from circulation. Therefore, NPs have low drug delivery efficiency. So, it is important to develop stealth NPs for reducing bio-nano interaction. In this review, we first conclude the interaction between NPs and biological environments, such as blood proteins and MPS, and factors influencing each other. Next, we will summarize the new strategies to reduce NPs protein adsorption and uptake by the MPS based on current knowledge of the bio-nano interaction. Further directions will also be highlighted for the development of biomimetic stealth nano-delivery systems by combining targeted strategies for a better therapeutic effect.
Collapse
Affiliation(s)
- Jianwei Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tijie Duan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rongfeng Hu
- key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Anhui "115" Xin'an Medicine Research & Development Innovation Team, Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Jihui Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
24
|
Kokalari I, Keshavan S, Rahman M, Gazzano E, Barzan G, Mandrile L, Giovannozzi A, Ponti J, Antonello G, Monopoli M, Perrone G, Bergamaschi E, Riganti C, Fadeel B, Fenoglio I. Efficacy, biocompatibility and degradability of carbon nanoparticles for photothermal therapy of lung cancer. Nanomedicine (Lond) 2021; 16:689-707. [PMID: 33851540 DOI: 10.2217/nnm-2021-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: To investigate near infrared-induced phototoxicity toward lung cancer cells, and the biodegradability and effect on immune cells of glucose-derived carbon nanoparticles (CNPs). Methods: The human A549 lung adenocarcinoma cell line was used as a model to study the phototoxicity of CNPs. The biodegradability and the effect on immune cells was demonstrated in primary human neutrophils and macrophages. Results: Near infrared-activated CNPs elicited rapid cell death, characterized by the elevation of heat shock proteins and the induction of DNA damage. CNPs were found to be noncytotoxic toward primary human macrophages and were susceptible to biodegradation when cocultured with human neutrophils. Conclusions: Our results identify CNPs as promising platforms for photothermal therapy of lung cancer.
Collapse
Affiliation(s)
- Ida Kokalari
- Department of Chemistry, University of Torino, 10125, Torino, Italy
| | - Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Mizanur Rahman
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Elena Gazzano
- Department of Life Sciences & Systems Biology, University of Torino, 10123, Torino, Italy
| | - Giulia Barzan
- National Institute of Metrological Research (INRiM), 10135, Torino, Italy.,Department of Electronics andTelecommunications, Politecnico di Torino, 10129, Turin, Italy
| | - Luisa Mandrile
- National Institute of Metrological Research (INRiM), 10135, Torino, Italy
| | - Andrea Giovannozzi
- National Institute of Metrological Research (INRiM), 10135, Torino, Italy
| | - Jessica Ponti
- EuropeanCommission, Joint Research Centre (JRC), 21027, Ispra (VA), Italy
| | - Giulia Antonello
- Department of Chemistry, University of Torino, 10125, Torino, Italy
| | - Marco Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
| | - Guido Perrone
- Department of Electronics & Telecommunications, Polytechnic of Torino, 10129, Torino, Italy
| | - Enrico Bergamaschi
- Department of Public Health & Pediatrics, University of Torino, 10126, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126, Torino, Italy
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, 10125, Torino, Italy
| |
Collapse
|
25
|
Zhou Q, Gong N, Zhang D, Li J, Han X, Dou J, Huang J, Zhu K, Liang P, Liang XJ, Yu J. Mannose-Derived Carbon Dots Amplify Microwave Ablation-Induced Antitumor Immune Responses by Capturing and Transferring "Danger Signals" to Dendritic Cells. ACS NANO 2021; 15:2920-2932. [PMID: 33523631 DOI: 10.1021/acsnano.0c09120] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hepatocellular carcinoma recurrence and metastasis after microwave ablation (MWA) are challenges in the clinic. This study showed that mannose-derived carbon dots (Man-CDs) could effectively capture several "danger signals" (DS) after MWA treatment and then deliver DS specifically to dendritic cells (DCs). This improved delivery of DS to DCs enhanced the processing and presentation of tumor-associated antigens by DCs. The results demonstrated that intratumoral injection of Man-CDs after MWA therapy elicited a potent tumor-specific immune response and finally led to the effective suppression of both primary and distant tumors. MWA + Man-CD treatment could efficiently reject tumor cell rechallenge in vivo. This study demonstrated that Man-CD nanoparticles are effective adjuvants that can improve MWA therapy by eliciting a tumor-specific immune response.
Collapse
Affiliation(s)
- Qunfang Zhou
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 100853 Beijing, China
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| | - Ningqiang Gong
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 100190 Beijing, China
| | - Dongyun Zhang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 100853 Beijing, China
| | - Jing Li
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 100190 Beijing, China
| | - Xue Han
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| | - Jianping Dou
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 100853 Beijing, China
| | - Jinhua Huang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 100853 Beijing, China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 100190 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 100853 Beijing, China
| |
Collapse
|
26
|
Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. NANOSCALE ADVANCES 2020; 2:5046-5089. [PMID: 36132021 PMCID: PMC9418019 DOI: 10.1039/d0na00478b] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/22/2020] [Indexed: 05/04/2023]
Abstract
Research efforts on nanomaterial-based therapies for the treatment of autoimmune diseases and cancer have spiked and have made rapid progress over the past years. Nanomedicine has been shown to contribute significantly to overcome current therapeutic limitations, exhibiting advantages compared to conventional therapeutics, such as sustained drug release, delayed drug degradation and site-specific drug delivery. Multiple nanodrugs have reached the clinic, but translation is often hampered by either low targeting efficiency or undesired side effects. Nanomaterials, and especially inorganic nanoparticles, have gained criticism due to their potential toxic effects, including immunological alterations. However, many strategies have been attempted to improve the therapeutic efficacy of nanoparticles and exploit their unique properties for the treatment of inflammation and associated diseases. In this review, we elaborate on the immunomodulatory effects of nanomaterials, with a strong focus on the underlying mechanisms that lead to these specific immune responses. Nanomaterials to be discussed include inorganic nanoparticles such as gold, silica and silver, as well as organic nanomaterials such as polymer-, dendrimer-, liposomal- and protein-based nanoparticles. Furthermore, various approaches for tuning nanomaterials in order to enhance their efficacy and attenuate their immune stimulation or suppression, with respect to the therapeutic application, are described. Additionally, we illustrate how the acquired insights have been used to design immunotherapeutic strategies for a variety of diseases. The potential of nanomedicine-based therapeutic strategies in immunotherapy is further illustrated by an up to date overview of current clinical trials. Finally, recent efforts into enhancing immunogenic cell death through the use of nanoparticles are discussed.
Collapse
Affiliation(s)
- Vincent Lenders
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Xanthippi Koutsoumpou
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Ara Sargsian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| |
Collapse
|
27
|
Gallud A, Delaval M, Kinaret P, Marwah VS, Fortino V, Ytterberg J, Zubarev R, Skoog T, Kere J, Correia M, Loeschner K, Al‐Ahmady Z, Kostarelos K, Ruiz J, Astruc D, Monopoli M, Handy R, Moya S, Savolainen K, Alenius H, Greco D, Fadeel B. Multiparametric Profiling of Engineered Nanomaterials: Unmasking the Surface Coating Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002221. [PMID: 33240770 PMCID: PMC7675037 DOI: 10.1002/advs.202002221] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/29/2020] [Indexed: 05/02/2023]
Abstract
Despite considerable efforts, the properties that drive the cytotoxicity of engineered nanomaterials (ENMs) remain poorly understood. Here, the authors inverstigate a panel of 31 ENMs with different core chemistries and a variety of surface modifications using conventional in vitro assays coupled with omics-based approaches. Cytotoxicity screening and multiplex-based cytokine profiling reveals a good concordance between primary human monocyte-derived macrophages and the human monocyte-like cell line THP-1. Proteomics analysis following a low-dose exposure of cells suggests a nonspecific stress response to ENMs, while microarray-based profiling reveals significant changes in gene expression as a function of both surface modification and core chemistry. Pathway analysis highlights that the ENMs with cationic surfaces that are shown to elicit cytotoxicity downregulated DNA replication and cell cycle responses, while inflammatory responses are upregulated. These findings are validated using cell-based assays. Notably, certain small, PEGylated ENMs are found to be noncytotoxic yet they induce transcriptional responses reminiscent of viruses. In sum, using a multiparametric approach, it is shown that surface chemistry is a key determinant of cellular responses to ENMs. The data also reveal that cytotoxicity, determined by conventional in vitro assays, does not necessarily correlate with transcriptional effects of ENMs.
Collapse
Affiliation(s)
- Audrey Gallud
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Mathilde Delaval
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Pia Kinaret
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Veer Singh Marwah
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Vittorio Fortino
- Institute of BiomedicineUniversity of Eastern FinlandKuopio70211Finland
| | - Jimmy Ytterberg
- Department of Medical Biochemistry & BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry & BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Tiina Skoog
- Department of Biosciences & NutritionKarolinska InstitutetHuddinge141 83Sweden
| | - Juha Kere
- Department of Biosciences & NutritionKarolinska InstitutetHuddinge141 83Sweden
| | - Manuel Correia
- National Food InstituteTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Katrin Loeschner
- National Food InstituteTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Zahraa Al‐Ahmady
- Faculty of BiologyMedicine & HealthUniversity of ManchesterManchesterM20 4GJUK
- School of Science & TechnologyNottingham Trent UniversityNottinghamNG1 8NSUK
| | - Kostas Kostarelos
- Faculty of BiologyMedicine & HealthUniversity of ManchesterManchesterM20 4GJUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Barcelona08193Spain
| | - Jaime Ruiz
- ISMUMR CNRS No. 5255University of BordeauxTalence33 405France
| | - Didier Astruc
- ISMUMR CNRS No. 5255University of BordeauxTalence33 405France
| | - Marco Monopoli
- Department of Pharmaceutical & Medicinal ChemistryRoyal College of Surgeons in Ireland (RCSI)Dublin2Ireland
| | - Richard Handy
- School of Biological & Marine SciencesUniversity of PlymouthPlymouthPL4 8AAUK
| | - Sergio Moya
- Soft Matter Nanotechnology LaboratoryCIC biomaGUNEDonostia‐San Sebastián20014Spain
| | - Kai Savolainen
- Finnish Institute of Occupational HealthHelsinki00032Finland
| | - Harri Alenius
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Dario Greco
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Bengt Fadeel
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| |
Collapse
|
28
|
Susnik E, Taladriz-Blanco P, Drasler B, Balog S, Petri-Fink A, Rothen-Rutishauser B. Increased Uptake of Silica Nanoparticles in Inflamed Macrophages but Not upon Co-Exposure to Micron-Sized Particles. Cells 2020; 9:cells9092099. [PMID: 32942641 PMCID: PMC7564500 DOI: 10.3390/cells9092099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022] Open
Abstract
Silica nanoparticles (NPs) are widely used in various industrial and biomedical applications. Little is known about the cellular uptake of co-exposed silica particles, as can be expected in our daily life. In addition, an inflamed microenvironment might affect a NP’s uptake and a cell’s physiological response. Herein, prestimulated mouse J774A.1 macrophages with bacterial lipopolysaccharide were post-exposed to micron- and nanosized silica particles, either alone or together, i.e., simultaneously or sequentially, for different time points. The results indicated a morphological change and increased expression of tumor necrosis factor alpha in lipopolysaccharide prestimulated cells, suggesting a M1-polarization phenotype. Confocal laser scanning microscopy revealed the intracellular accumulation and uptake of both particle types for all exposure conditions. A flow cytometry analysis showed an increased particle uptake in lipopolysaccharide prestimulated macrophages. However, no differences were observed in particle uptakes between single- and co-exposure conditions. We did not observe any colocalization between the two silica (SiO2) particles. However, there was a positive colocalization between lysosomes and nanosized silica but only a few colocalized events with micro-sized silica particles. This suggests differential intracellular localizations of silica particles in macrophages and a possible activation of distinct endocytic pathways. The results demonstrate that the cellular uptake of NPs is modulated in inflamed macrophages but not in the presence of micron-sized particles.
Collapse
Affiliation(s)
- Eva Susnik
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
- Correspondence: ; Tel.: +41-26-300-95-02
| |
Collapse
|
29
|
Yokel RA, Tseng MT, Butterfield DA, Hancock ML, Grulke EA, Unrine JM, Stromberg AJ, Dozier AK, Graham UM. Nanoceria distribution and effects are mouse-strain dependent. Nanotoxicology 2020; 14:827-846. [DOI: 10.1080/17435390.2020.1770887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Robert A. Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Michael T. Tseng
- Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY, USA
| | | | - Matthew L. Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Eric A. Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Jason M. Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | - Uschi M. Graham
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
- CDC, NIOSH, Cincinnati, OH, USA
| |
Collapse
|
30
|
Čolić M, Tomić S, Bekić M. Immunological aspects of nanocellulose. Immunol Lett 2020; 222:80-89. [PMID: 32278785 DOI: 10.1016/j.imlet.2020.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/21/2020] [Accepted: 04/04/2020] [Indexed: 12/31/2022]
Abstract
Cellulose is the most abundant natural polymer in the world. Nanoscale forms of cellulose, including cellulose nanofibers (CNF), cellulose nanocrystals (CNC) and bacterial nanocellulose (BC), are very attractive in industry, medicine and pharmacy. Biomedical applications of nanocellulose in tissue engineering, regenerative medicine, and controlled drug delivery are the most promising. Nanocellulose is considered a biocompatible nanomaterial and relatively safe for biomedical applications. However, more studies are needed to prove this hypothesis, especially those related to chronic exposure to nanocellulose. Besides toxicity, the response of the immune system is of particular importance in this sense. This paper provides a comprehensive and critical review of the current-state knowledge of the impact of nanocellulose on the immune system, especially on macrophages and dendritic cells (DC), as the central immunoregulatory cells, which has not been addressed in the literature sufficiently. Nanocellulose, especially CNC, can induce the inflammatory response upon the internalization by macrophages, but this reaction may be significantly modulated by introducing different functional groups on their surface. Our original results showed that nanocellulose has a potent immunotolerogenic potential. Native CNF potentiated the capacity of DC to induce conventional Tregs. When carboxyl groups were introduced on the CNF surface, the tolerogenic potential of DC was shifted towards the induction of regulatory CD8+ T cells, whereas the introduction of phosphonates on CNF surface potentiated DCs' capacity to induce both regulatory CD8+ T cells and Type 1 regulatory (Tr-1) cells. These results are extremely important when considering the application of nanocellulose in vivo, especially for tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Miodrag Čolić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia; University of East Sarajevo, Medical Faculty Foča, R.Srpska, BiH; Serbian Academy of Sciences and Arts, Belgrade, Serbia.
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia
| |
Collapse
|
31
|
Heinlaan M, Kasemets K, Aruoja V, Blinova I, Bondarenko O, Lukjanova A, Khosrovyan A, Kurvet I, Pullerits M, Sihtmäe M, Vasiliev G, Vija H, Kahru A. Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136073. [PMID: 31869615 DOI: 10.1016/j.scitotenv.2019.136073] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Plastic is a wide-spread pollutant and must be evaluated for potential adverse effects of its breakdown product, microplastic (≤5 mm) along with its subfraction, nanoplastic (1-100 nm). Risk assessment of pollutants cannot be conducted without their toxicity (dose-response) data. In this study, toxicity of polystyrene nanoplastics (PS-NPL) was evaluated using 8 acute and 1 subchronic toxicity assays with 10 organisms of different biological complexity (bacteria, yeast, algae, protozoans, mammalian cells in vitro, crustaceans, midge larvae). Commercial 26 and 100 nm carboxylated PS-NPL spheres were chosen as model and tested in nominal concentrations up to 100 mg/L (1.025·1016 26 nm and 1.83·1014 100 nm particles/L). In most of the assays, both PS-NPL proved non-toxic (L(E)C50 > 100 mg/L) but three tests (V. fischeri, R. subcapitata, D. magna) flagged toxicity in 'as received' 26 nm PS-NPL and D. magna also in 100 nm PS-NPL (EC50 ranging from 13 to 71 mg/L). As, according to manufacturers, both PS-NPL suspensions contained additives (surfactants and biocidal NaN3), the three toxicity tests were repeated also on dialysed PS-NPL and on NaN3. Non-toxicity of dialysed PS-NPL indicated that the toxicity of 'as-received' PS-NPL was not particle-specific but false positive due to water-soluble additives in the PS-NPL preparations. NaN3 was very toxic to D. magna (48 h EC50 = 0.05 ± 0.03 mg NaN3/L), toxic to R. subcapitata (72 h EC50 = 4.97 ± 3.7 mg NaN3/L) and non-toxic to V. fischeri. Toxicity of 'as-received' PS-NPL was not fully explainable by NaN3 but also attributable to other additives in the suspensions. Toxicity research of microplastic using commercial model particles must always consider the potential influence of additives, e.g. test the toxicity of dialysed NPL for comparison. In our study, D. magna, R. subcapitata and V. fischeri were the most sensitive to PS-NPL water-soluble additives and flagged their presence in NPL preparations.
Collapse
Affiliation(s)
- Margit Heinlaan
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Villem Aruoja
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Olesja Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Aljona Lukjanova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Alla Khosrovyan
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Mirjam Pullerits
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Mariliis Sihtmäe
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Grigory Vasiliev
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Department of Natural Sciences, TalTech, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
32
|
Hayashi Y, Takamiya M, Jensen PB, Ojea-Jiménez I, Claude H, Antony C, Kjaer-Sorensen K, Grabher C, Boesen T, Gilliland D, Oxvig C, Strähle U, Weiss C. Differential Nanoparticle Sequestration by Macrophages and Scavenger Endothelial Cells Visualized in Vivo in Real-Time and at Ultrastructural Resolution. ACS NANO 2020; 14:1665-1681. [PMID: 31922724 DOI: 10.1021/acsnano.9b07233] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the common knowledge that the reticuloendothelial system is largely responsible for blood clearance of systemically administered nanoparticles, the sequestration mechanism remains a "black box". Using transgenic zebrafish embryos with cell type-specific fluorescent reporters and fluorescently labeled model nanoparticles (70 nm SiO2), we here demonstrate simultaneous three-color in vivo imaging of intravenously injected nanoparticles, macrophages, and scavenger endothelial cells (SECs). The trafficking processes were further revealed at ultrastructural resolution by transmission electron microscopy. We also find, using a correlative light-electron microscopy approach, that macrophages rapidly sequester nanoparticles via membrane adhesion and endocytosis (including macropinocytosis) within minutes after injection. In contrast, SECs trap single nanoparticles via scavenger receptor-mediated endocytosis, resulting in gradual sequestration with a time scale of hours. Inhibition of the scavenger receptors prevented SECs from accumulating nanoparticles but enhanced uptake in macrophages, indicating the competitive nature of nanoparticle clearance in vivo. To directly quantify the relative contributions of the two cell types to overall nanoparticle sequestration, the differential sequestration kinetics was studied within the first 30 min post-injection. This revealed a much higher and increasing relative contribution of SECs, as they by far outnumber macrophages in zebrafish embryos, suggesting the importance of the macrophage:SECs ratio in a given tissue. Further characterizing macrophages on their efficiency in nanoparticle clearance, we show that inflammatory stimuli diminish the uptake of nanoparticles per cell. Our study demonstrates the strength of transgenic zebrafish embryos for intravital real-time and ultrastructural imaging of nanomaterials that may provide mechanistic insights into nanoparticle clearance in rodent models and humans.
Collapse
Affiliation(s)
- Yuya Hayashi
- Department of Molecular Biology and Genetics , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus C , Denmark
- Institute of Toxicology and Genetics , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Masanari Takamiya
- Institute of Toxicology and Genetics , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Pia Bomholt Jensen
- iNANO Interdisciplinary Nanoscience Center , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Isaac Ojea-Jiménez
- Institute for Health and Consumer Protection , European Commission Joint Research Centre , Via E. Fermi 2749 , 21027 Ispra , Varese , Italy
| | - Hélicia Claude
- Institute of Toxicology and Genetics , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Claude Antony
- Institute of Toxicology and Genetics , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus C , Denmark
| | - Clemens Grabher
- Institute of Toxicology and Genetics , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Thomas Boesen
- Department of Molecular Biology and Genetics , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus C , Denmark
- iNANO Interdisciplinary Nanoscience Center , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Douglas Gilliland
- Institute for Health and Consumer Protection , European Commission Joint Research Centre , Via E. Fermi 2749 , 21027 Ispra , Varese , Italy
| | - Claus Oxvig
- Department of Molecular Biology and Genetics , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus C , Denmark
| | - Uwe Strähle
- Institute of Toxicology and Genetics , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Carsten Weiss
- Institute of Toxicology and Genetics , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| |
Collapse
|
33
|
Alsaleh NB, Brown JM. Engineered Nanomaterials and Type I Allergic Hypersensitivity Reactions. Front Immunol 2020; 11:222. [PMID: 32117324 PMCID: PMC7033602 DOI: 10.3389/fimmu.2020.00222] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Type I allergic hypersensitivity disorders (atopy) including asthma, atopic dermatitis, allergic rhinitis, and food allergy are on the rise in developed and developing countries. Engineered nanomaterials (ENMs) span a large spectrum of material compositions including carbonic, metals, polymers, lipid-based, proteins, and peptides and are being utilized in a wide range of industries including healthcare and pharmaceuticals, electronics, construction, and food industry, and yet, regulations for the use of ENMs in consumer products are largely lacking. Prior evidence has demonstrated the potential of ENMs to induce and/or aggravate type I allergic hypersensitivity responses. Furthermore, previous studies have shown that ENMs could directly interact with and activate key T-helper 2 (Th2) effector cell types (such as mast cells) and the complement system, which could result in pseudoallergic (non-IgE-mediated) hypersensitivity reactions. Nevertheless, the underlying molecular mechanisms of ENM-mediated induction and/or exacerbation of type I immune responses are poorly understood. In this review, we first highlight key examples of studies that have demonstrated inherent immunomodulatory properties of ENMs in the context of type I allergic hypersensitivity reactions, and most importantly, we attempt to put together the potential molecular mechanisms that could drive ENM-mediated stimulation and/or aggravation of type I allergic hypersensitivity responses.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
34
|
Madamsetty VS, Sharma A, Toma M, Samaniego S, Gallud A, Wang E, Pal K, Mukhopadhyay D, Fadeel B. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 18:112-121. [PMID: 30849547 PMCID: PMC6588439 DOI: 10.1016/j.nano.2019.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/25/2018] [Accepted: 02/05/2019] [Indexed: 01/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related deaths and novel treatment approaches are urgently needed. Here we show that poly(ethylene glycol)-functionalized nanodiamonds loaded with doxorubicin (ND-PEG-DOX) afforded a considerable improvement over free drug in an orthotopic pancreatic xenograft model. ND-PEG-DOX complexes were also superior to free DOX in 3-dimensional (3D) tumor spheroids of PDAC. ND-PEG showed no cytotoxicity towards macrophages, and histopathological analysis showed no abnormalities of major organs upon in vivo administration of ND-PEG-DOX. These results provide evidence that ND-mediated drug delivery may serve as a means of improving the therapeutic outcome in PDAC.
Collapse
Affiliation(s)
- Vijay S Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Anil Sharma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Maria Toma
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Samaniego
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Audrey Gallud
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States.
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
35
|
Vita AA, Royse EA, Pullen NA. Nanoparticles and danger signals: Oral delivery vehicles as potential disruptors of intestinal barrier homeostasis. J Leukoc Biol 2019; 106:95-103. [PMID: 30924969 DOI: 10.1002/jlb.3mir1118-414rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/27/2022] Open
Abstract
Gut immune system homeostasis involves diverse structural interactions among resident microbiota, the protective mucus layer, and a variety of cells (intestinal epithelial, lymphoid, and myeloid). Due to the substantial surface area in direct contact with an "external" environment and the diversity of xenobiotic, abiotic, and self-interactions coordinating to maintain gut homeostasis, there is enhanced potential for the generation of endogenous danger signals when this balance is lost. Here, we focus on the potential generation and reception of damage in the gut resulting from exposure to nanoparticles (NPs), common food and drug additives. Specifically, we describe recent evidence in the literature showing that certain NPs are potential generators of damage-associated molecular patterns, as well as potential immune-stimulating molecular patterns themselves.
Collapse
Affiliation(s)
- Alexandra A Vita
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Emily A Royse
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Nicholas A Pullen
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| |
Collapse
|
36
|
Tenland E, Pochert A, Krishnan N, Umashankar Rao K, Kalsum S, Braun K, Glegola-Madejska I, Lerm M, Robertson BD, Lindén M, Godaly G. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS One 2019; 14:e0212858. [PMID: 30807612 PMCID: PMC6391042 DOI: 10.1371/journal.pone.0212858] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/12/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Intracellular delivery of antimicrobial agents by nanoparticles, such as mesoporous silica particles (MSPs), offers an interesting strategy to treat intracellular infections. In tuberculosis (TB), Mycobacterium tuberculosis avoids components of the immune system by residing primarily inside alveolar macrophages, which are the desired target for TB therapy. METHODS AND FINDINGS We have previously identified a peptide, called NZX, capable of inhibiting both clinical and multi-drug resistant strains of M. tuberculosis at therapeutic concentrations. In this study we analysed the potential of MSPs containing NZX for the treatment of tuberculosis. The MSPs released functional NZX gradually into simulated lung fluid and the peptide filled MSPs were easily taken up by primary macrophages. In an intracellular infection model, the peptide containing particles showed increased mycobacterial killing compared to free peptide. The therapeutic potential of peptide containing MSPs was investigated in a murine infection model, showing that MSPs preserved the effect to eliminate M. tuberculosis in vivo. CONCLUSIONS In this study we found that loading the antimicrobial peptide NZX into MSPs increased the inhibition of intracellular mycobacteria in primary macrophages and preserved the ability to eliminate M. tuberculosis in vivo in a murine model. Our studies provide evidence for the feasibility of using MSPs for treatment of tuberculosis.
Collapse
Affiliation(s)
- Erik Tenland
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Komal Umashankar Rao
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sadaf Kalsum
- Department of Clinical and Experimental Medicine, Faculty Medicine and Health Sciences, Linköping, Sweden
| | - Katharina Braun
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Izabela Glegola-Madejska
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Maria Lerm
- Department of Clinical and Experimental Medicine, Faculty Medicine and Health Sciences, Linköping, Sweden
| | - Brian D. Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mika Lindén
- Inorganic Chemistry II, Ulm University, Ulm, Germany
| | - Gabriela Godaly
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
37
|
Fadeel B. Hide and Seek: Nanomaterial Interactions With the Immune System. Front Immunol 2019; 10:133. [PMID: 30774634 PMCID: PMC6367956 DOI: 10.3389/fimmu.2019.00133] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
Engineered nanomaterials hold promise for a wide range of applications in medicine. However, safe use of nanomaterials requires that interactions with biological systems, not least with the immune system, are understood. Do nanomaterials elicit novel or unexpected effects, or is it possible to predict immune responses to nanomaterials based on how the immune system handles pathogens? How does the bio-corona of adsorbed biomolecules influence subsequent immune interactions of nanomaterials? How does the grafting of polymers such as poly(ethylene glycol) onto nanomaterial surfaces impact on these interactions? Can ancient immune evasion or “stealth” strategies of pathogens inform the design of nanomaterials for biomedical applications? Can nanoparticles co-opt immune cells to target diseased tissues? The answers to these questions may prove useful for the development of nanomedicines.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety and Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Ullah S, Seidel K, Türkkan S, Warwas DP, Dubich T, Rohde M, Hauser H, Behrens P, Kirschning A, Köster M, Wirth D. Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model. J Control Release 2018; 294:327-336. [PMID: 30586597 DOI: 10.1016/j.jconrel.2018.12.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
Targeted delivery of drugs is a major challenge in treatment of diverse diseases. Systemically administered drugs demand high doses and are accompanied by poor selectivity and side effects on non-target cells. Here, we introduce a new principle for targeted drug delivery. It is based on macrophages as transporters for nanoparticle-coupled drugs as well as controlled release of drugs by hyperthermia mediated disruption of the cargo cells and simultaneous deliberation of nanoparticle-linked drugs. Hyperthermia is induced by an alternating electromagnetic field (AMF) that induces heat from silica-coated superparamagnetic iron oxide nanoparticles (SPIONs). We show proof-of-principle of controlled release by the simultaneous disruption of the cargo cells and the controlled, AMF induced release of a toxin, which was covalently linked to silica-coated SPIONs via a thermo-sensitive linker. Cells that had not been loaded with SPIONs remain unaffected. Moreover, in a 3D co-culture model we demonstrate specific killing of associated tumour cells when employing a ratio as low as 1:40 (SPION-loaded macrophage: tumour cells). Overall, our results demonstrate that AMF induced drug release from macrophage-entrapped nanoparticles is tightly controlled and may be an attractive novel strategy for targeted drug release.
Collapse
Affiliation(s)
- Sami Ullah
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Katja Seidel
- Institute of Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Hannover, Germany
| | - Sibel Türkkan
- Institute of Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Hannover, Germany
| | - Dawid Peter Warwas
- Institute for Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Tatyana Dubich
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hansjörg Hauser
- Scientific Strategy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Behrens
- Institute for Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Hannover, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany; Institute for Experimental Hematology, Medical University Hannover, Hannover, Germany.
| |
Collapse
|
39
|
Sharma A, Porterfield JE, Smith E, Sharma R, Kannan S, Kannan RM. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. J Control Release 2018; 283:175-189. [PMID: 29883694 PMCID: PMC6091673 DOI: 10.1016/j.jconrel.2018.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/21/2018] [Accepted: 06/02/2018] [Indexed: 01/02/2023]
Abstract
Neurotherapeutics for the treatment of central nervous system (CNS) disorders must overcome challenges relating to the blood-brain barrier (BBB), brain tissue penetration, and the targeting of specific cells. Neuroinflammation mediated by activated microglia is a major hallmark of several neurological disorders, making these cells a desirable therapeutic target. Building on the promise of hydroxyl-terminated generation four polyamidoamine (PAMAM) dendrimers (D4-OH) for penetrating the injured BBB and targeting activated glia, we explored if conjugation of targeting ligands would enhance and modify brain and organ uptake. Since mannose receptors [cluster of differentiation (CD) 206] are typically over-expressed on injured microglia, we conjugated mannose to the surface of multifunctional D4-OH using highly efficient, atom-economical, and orthogonal Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry and evaluated the effect of mannose conjugation on the specific cell uptake of targeted and non-targeted dendrimers both in vitro and in vivo. In vitro results indicate that the conjugation of mannose as a targeting ligand significantly changes the mechanism of dendrimer internalization, giving mannosylated dendrimer a preference for mannose receptor-mediated endocytosis as opposed to non-specific fluid phase endocytosis. We further investigated the brain uptake and biodistribution of targeted and non-targeted fluorescently labeled dendrimers in a maternal intrauterine inflammation-induced cerebral palsy (CP) rabbit model using quantification methods based on fluorescence spectroscopy and confocal microscopy. We found that the conjugation of mannose modified the distribution of D4-OH throughout the body in this neonatal rabbit CP model without lowering the amount of dendrimer delivered to injured glia in the brain, even though significantly higher glial uptake was not observed in this model. Mannose conjugation to the dendrimer modifies the dendrimer's interaction with cells, but does not minimize its inherent inflammation-targeting abilities.
Collapse
Affiliation(s)
- Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Joshua E Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth Smith
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA; Kennedy Krieger Institute - Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA; Kennedy Krieger Institute - Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA.
| |
Collapse
|
40
|
Bros M, Nuhn L, Simon J, Moll L, Mailänder V, Landfester K, Grabbe S. The Protein Corona as a Confounding Variable of Nanoparticle-Mediated Targeted Vaccine Delivery. Front Immunol 2018; 9:1760. [PMID: 30116246 PMCID: PMC6082927 DOI: 10.3389/fimmu.2018.01760] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023] Open
Abstract
Nanocarriers (NC) are very promising tools for cancer immunotherapy. Whereas conventional vaccines are based on the administration of an antigen and an adjuvant in an independent fashion, nanovaccines can facilitate cell-specific co-delivery of antigen and adjuvant. Furthermore, nanovaccines can be decorated on their surface with molecules that facilitate target-specific antigen delivery to certain antigen-presenting cell types or tumor cells. However, the target cell-specific uptake of nanovaccines is highly dependent on the modifications of the nanocarrier itself. One of these is the formation of a protein corona around NC after in vivo administration, which may potently affect cell-specific targeting and uptake of the NC. Understanding the formation and composition of the protein corona is, therefore, of major importance for the use of nanocarriers in vaccine approaches. This Mini Review will give a short overview of potential non-specific interactions of NC with body fluids or cell surfaces that need to be considered for the design of NC vaccines for immunotherapy of cancer.
Collapse
Affiliation(s)
- Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Johanna Simon
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Lorna Moll
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
41
|
Chen L, Liu J, Zhang Y, Zhang G, Kang Y, Chen A, Feng X, Shao L. The toxicity of silica nanoparticles to the immune system. Nanomedicine (Lond) 2018; 13:1939-1962. [PMID: 30152253 DOI: 10.2217/nnm-2018-0076] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Silicon-based materials and their oxides are widely used in drug delivery, dietary supplements, implants and dental fillers. Silica nanoparticles (SiNPs) interact with immunocompetent cells and induce immunotoxicity. However, the toxic effects of SiNPs on the immune system have been inadequately reviewed. The toxicity of SiNPs to the immune system depends on their physicochemical properties and the cell type. Assessments of immunotoxicity include determining cell dysfunctions, cytotoxicity and genotoxicity. This review focuses on the immunotoxicity of SiNPs and investigates the underlying mechanisms. The main mechanisms were proinflammatory responses, oxidative stress and autophagy. Considering the toxicity of SiNPs, surface and shape modifications may mitigate the toxic effects of SiNPs, providing a new way to produce these nanomaterials with less toxic impaction.
Collapse
Affiliation(s)
- Liangjiao Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, PR China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Guilan Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
42
|
Abstract
Airborne fungal pathogens, predominantly Aspergillus fumigatus, can cause severe respiratory tract diseases. Here we show that in environments, fungal spores can already be decorated with nanoparticles. Using representative controlled nanoparticle models, we demonstrate that various nanoparticles, but not microparticles, rapidly and stably associate with spores, without specific functionalization. Nanoparticle-spore complex formation was enhanced by small nanoparticle size rather than by material, charge, or "stealth" modifications and was concentration-dependently reduced by the formation of environmental or physiological biomolecule coronas. Assembly of nanoparticle-spore surface hybrid structures affected their pathobiology, including reduced sensitivity against defensins, uptake into phagocytes, lung cell toxicity, and TLR/cytokine-mediated inflammatory responses. Following infection of mice, nanoparticle-spore complexes were detectable in the lung and less efficiently eliminated by the pulmonary immune defense, thereby enhancing A. fumigatus infections in immunocompromised animals. Collectively, self-assembly of nanoparticle-fungal complexes affects their (patho)biological identity, which may impact human health and ecology.
Collapse
|
43
|
Fritsch-Decker S, Marquardt C, Stoeger T, Diabaté S, Weiss C. Revisiting the stress paradigm for silica nanoparticles: decoupling of the anti-oxidative defense, pro-inflammatory response and cytotoxicity. Arch Toxicol 2018; 92:2163-2174. [DOI: 10.1007/s00204-018-2223-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
|
44
|
Zhang P, Xia J, Luo S. Generation of Well-Defined Micro/Nanoparticles via Advanced Manufacturing Techniques for Therapeutic Delivery. MATERIALS 2018; 11:ma11040623. [PMID: 29670013 PMCID: PMC5951507 DOI: 10.3390/ma11040623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Micro/nanoparticles have great potentials in biomedical applications, especially for drug delivery. Existing studies identified that major micro/nanoparticle features including size, shape, surface property and component materials play vital roles in their in vitro and in vivo applications. However, a demanding challenge is that most conventional particle synthesis techniques such as emulsion can only generate micro/nanoparticles with a very limited number of shapes (i.e., spherical or rod shapes) and have very loose control in terms of particle sizes. We reviewed the advanced manufacturing techniques for producing micro/nanoparticles with precisely defined characteristics, emphasizing the use of these well-controlled micro/nanoparticles for drug delivery applications. Additionally, to illustrate the vital roles of particle features in therapeutic delivery, we also discussed how the above-mentioned micro/nanoparticle features impact in vitro and in vivo applications. Through this review, we highlighted the unique opportunities in generating controllable particles via advanced manufacturing techniques and the great potential of using these micro/nanoparticles for therapeutic delivery.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| | - Junfei Xia
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Sida Luo
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| |
Collapse
|
45
|
Saroj S, Rajput SJ. Composite smart mesoporous silica nanoparticles as promising therapeutic and diagnostic candidates: Recent trends and applications. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Mukherjee SP, Kostarelos K, Fadeel B. Cytokine Profiling of Primary Human Macrophages Exposed to Endotoxin-Free Graphene Oxide: Size-Independent NLRP3 Inflammasome Activation. Adv Healthc Mater 2018; 7. [PMID: 29266859 DOI: 10.1002/adhm.201700815] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/16/2017] [Indexed: 12/12/2022]
Abstract
Graphene-based materials including graphene oxide (GO) are envisioned for a variety of biomedical applications. However, there are conflicting results concerning the biocompatibility of these materials. Here, a question is raised whether GO with small or large lateral dimensions triggers cytotoxicity and/or cytokine responses in primary human monocyte-derived macrophages. GO sheets produced under sterile conditions by a modified Hummers' method are found to be taken up by macrophages without signs of cytotoxicity. Then, multiplex arrays are used for profiling of proinflammatory and anti-inflammatory responses. Notably, GO suppresses the lipopolysaccharide (LPS)-triggered induction of several chemokines and cytokines, including the anti-inflammatory cytokine, interleukin-10 (IL-10). No production of proinflammatory TNF-α is observed. However, GO elicits caspase-dependent IL-1 β expression, a hallmark of inflammasome activation, in LPS-primed macrophages. Furthermore, GO-triggered IL-1 β production requires NADPH oxidase-generated reactive oxygen species and cellular uptake of GO and is accompanied by cathepsin B release and K+ efflux. Using THP-1 knockdown cells, a role for the inflammasome sensor, NLRP3, the adaptor protein, ASC, and caspase-1 for GO-induced IL-1β secretion is demonstrated. Finally, these studies show that inflammasome activation is independent of the lateral dimensions of the GO sheets. These studies provide novel insights regarding the immunomodulatory properties of endotoxin-free GO.
Collapse
Affiliation(s)
- Sourav P. Mukherjee
- Nanosafety & Nanomedicine Laboratory; Institute of Environmental Medicine; Karolinska Institutet; 171 77 Stockholm Sweden
| | - Kostas Kostarelos
- Nanomedicine Laboratory; Faculty of Medical & Human Sciences and National Graphene Institute; University of Manchester; Manchester M13 9PL UK
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory; Institute of Environmental Medicine; Karolinska Institutet; 171 77 Stockholm Sweden
| |
Collapse
|
47
|
Li C, Zhang X, Chen Q, Zhang J, Li W, Hu H, Zhao X, Qiao M, Chen D. Synthetic Polymeric Mixed Micelles Targeting Lymph Nodes Trigger Enhanced Cellular and Humoral Immune Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2874-2889. [PMID: 29285934 DOI: 10.1021/acsami.7b14004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It has been widely accepted that lymph nodes (LNs) are critical targets of cancer vaccines because antigen presentation and initiation of T-cell-mediated immune responses occur primarily at these locations. In this study, amphiphilic diblock copolymer poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) (PEOz-PLA) combined with carboxylterminated-Pluronic F127 was used to construct mixed micelles [carboxylated-nanoparticles (NPs)] for codelivery of antigen ovalbumin (OVA) and Toll-like receptor-7 agonist CL264 (carboxylated-NPs/OVA/CL264) to the LN-resident dendritic cells (DCs). The results showed that the small, sub-60 nm size of the self-assembled mixed micelles enables them to rapidly penetrate into lymphatic vessels and reach draining lymph nodes after subcutaneous injection. Furthermore, the surface modification with carboxylic groups imparted the carboxylated-NPs with endocytic receptor-targeting ability, allowing for DC internalization of carboxylated-NPs/OVA/CL264 via the scavenger receptor-mediated pathway. Because stimulation of CL264 in early endosomes will lead to a more effective immune response than that in late endo/lysosomes, the mass ratio of PEOz-PLA to carboxylated-Pluronic F127 in the mixed micelles was adjusted to release the encapsulated CL264 to the early endosome, resulting in increased expression of costimulatory molecules and secretion of stimulated cytokines by DCs. Moreover, the incorporation of PEOz outside the micellar shell effectively augmented MHC I antigen presentation through facilitating endosome escape and cytosolic release of antigens. This in turn evoked potent immune responses in vivo, including activation of antigen-specific T-cell responses, production of antigen-specific IgG antibodies, and generation of cytotoxic T-lymphocyte responses. Finally, immunization with the codelivery system in E.G7-OVA tumor-bearing mice could not only significantly inhibit tumor growth but also markedly prolong the survival of tumor-bearing mice. Taken together, carboxylated-NPs/OVA/CL264 have demonstrated great potential for clinical applications as an effective antitumor vaccine for further immunotherapy.
Collapse
Affiliation(s)
- Chenxi Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, PR China
| | - Xiaoxu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, PR China
| | - Qing Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, PR China
| | - Jiulong Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, PR China
| | - Wenpan Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, PR China
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, PR China
| | - Xiuli Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, PR China
| | - Mingxi Qiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, PR China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, PR China
| |
Collapse
|
48
|
Mukherjee SP, Bondarenko O, Kohonen P, Andón FT, Brzicová T, Gessner I, Mathur S, Bottini M, Calligari P, Stella L, Kisin E, Shvedova A, Autio R, Salminen-Mankonen H, Lahesmaa R, Fadeel B. Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Sci Rep 2018; 8:1115. [PMID: 29348435 PMCID: PMC5773626 DOI: 10.1038/s41598-018-19521-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Carbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger inflammation. However, how these materials are 'sensed' by immune cells is not known. Here we compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene oxide (GO), on primary human monocyte-derived macrophages. Genome-wide transcriptomics assessment was performed at sub-cytotoxic doses. Pathway analysis of the microarray data revealed pronounced effects on chemokine-encoding genes in macrophages exposed to SWCNTs, but not in response to GO, and these results were validated by multiplex array-based cytokine and chemokine profiling. Conditioned medium from SWCNT-exposed cells acted as a chemoattractant for dendritic cells. Chemokine secretion was reduced upon inhibition of NF-κB, as predicted by upstream regulator analysis of the transcriptomics data, and Toll-like receptors (TLRs) and their adaptor molecule, MyD88 were shown to be important for CCL5 secretion. Moreover, a specific role for TLR2/4 was confirmed by using reporter cell lines. Computational studies to elucidate how SWCNTs may interact with TLR4 in the absence of a protein corona suggested that binding is guided mainly by hydrophobic interactions. Taken together, these results imply that CNTs may be 'sensed' as pathogens by immune cells.
Collapse
Affiliation(s)
- Sourav P Mukherjee
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Olesja Bondarenko
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, 12618, Estonia
| | - Pekka Kohonen
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Fernando T Andón
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Laboratory of Cellular Immunology, Humanitas Clinical and Research Institute, 20089, Rozzano-Milano, Italy
| | - Táňa Brzicová
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine AS CR, 14220, Prague, Czech Republic
| | - Isabel Gessner
- Inorganic and Materials Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Sanjay Mathur
- Inorganic and Materials Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, 00173, Italy.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Paolo Calligari
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Elena Kisin
- Exposure Assessment Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Anna Shvedova
- Exposure Assessment Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.,Department Pharmacology & Physiology, West Virginia University, Morgantown, WV, 26505, USA
| | - Reija Autio
- Faculty of Social Sciences, University of Tampere, 33014, Tampere, Finland
| | - Heli Salminen-Mankonen
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, and Åbo Akademi University, 20500, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, and Åbo Akademi University, 20500, Turku, Finland
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
49
|
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 2017; 34:33-51. [DOI: 10.1016/j.smim.2017.08.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
50
|
Lunova M, Prokhorov A, Jirsa M, Hof M, Olżyńska A, Jurkiewicz P, Kubinová Š, Lunov O, Dejneka A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci Rep 2017; 7:16049. [PMID: 29167516 PMCID: PMC5700114 DOI: 10.1038/s41598-017-16447-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
Specifically designed and functionalized nanoparticles hold great promise for biomedical applications. Yet, the applicability of nanoparticles is critically predetermined by their surface functionalization and biodegradability. Here we demonstrate that amino-functionalized polystyrene nanoparticles (PS-NH2), but not amino- or hydroxyl-functionalized silica particles, trigger cell death in hepatocellular carcinoma Huh7 cells. Importantly, biodegradability of nanoparticles plays a crucial role in regulation of essential cellular processes. Thus, biodegradable silica nanoparticles having the same shape, size and surface functionalization showed opposite cellular effects in comparison with similar polystyrene nanoparticles. At the molecular level, PS-NH2 obstruct and amino-functionalized silica nanoparticles (Si-NH2) activate the mTOR signalling in Huh7 and HepG2 cells. PS-NH2 induced time-dependent lysosomal destabilization associated with damage of the mitochondrial membrane. Solely in PS-NH2-treated cells, permeabilization of lysosomes preceded cell death. Contrary, Si-NH2 nanoparticles enhanced proliferation of HuH7 and HepG2 cells. Our findings demonstrate complex cellular responses to functionalized nanoparticles and suggest that nanoparticles can be used to control activation of mTOR signaling with subsequent influence on proliferation and viability of HuH7 cells. The data provide fundamental knowledge which could help in developing safe and efficient nano-therapeutics.
Collapse
Affiliation(s)
- Mariia Lunova
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrey Prokhorov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|