1
|
Foster D, Larsen J. Polymeric Metal Contrast Agents for T 1-Weighted Magnetic Resonance Imaging of the Brain. ACS Biomater Sci Eng 2023; 9:1224-1242. [PMID: 36753685 DOI: 10.1021/acsbiomaterials.2c01386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Imaging plays an integral role in diagnostics and treatment monitoring for conditions affecting the brain; enhanced brain imaging capabilities will improve upon both while increasing the general understanding of how the brain works. T1-weighted magnetic resonance imaging is the preferred modality for brain imaging. Commercially available contrast agents, which are often required to render readable brain images, have considerable toxicity concerns. In recent years, much progress has been made in developing new contrast agents based on the magnetic features of gadolinium, iron, or magnesium. Nanotechnological approaches for these systems allow for the protected integration of potentially harmful metals with added benefits like reduced dosage and improved transport. Polymeric enhancement of each design further improves biocompatibility while allowing for specific brain targeting. This review outlines research on polymeric nanomedicine designs for T1-weighted contrast agents that have been evaluated for performance in the brain.
Collapse
|
2
|
Li SY, Tseng HY, Chen BW, Lo YC, Shao HH, Wu YT, Li SJ, Chang CW, Liu TC, Hsieh FY, Yang Y, Lai YB, Chen PC, Chen YY. Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording. BIOSENSORS 2023; 13:280. [PMID: 36832046 PMCID: PMC9953957 DOI: 10.3390/bios13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Increasing requirements for neural implantation are helping to expand our understanding of nervous systems and generate new developmental approaches. It is thanks to advanced semiconductor technologies that we can achieve the high-density complementary metal-oxide-semiconductor electrode array for the improvement of the quantity and quality of neural recordings. Although the microfabricated neural implantable device holds much promise in the biosensing field, there are some significant technological challenges. The most advanced neural implantable device relies on complex semiconductor manufacturing processes, which are required for the use of expensive masks and specific clean room facilities. In addition, these processes based on a conventional photolithography technique are suitable for mass production, which is not applicable for custom-made manufacturing in response to individual experimental requirements. The microfabricated complexity of the implantable neural device is increasing, as is the associated energy consumption, and corresponding emissions of carbon dioxide and other greenhouse gases, resulting in environmental deterioration. Herein, we developed a fabless fabricated process for a neural electrode array that was simple, fast, sustainable, and customizable. An effective strategy to produce conductive patterns as the redistribution layers (RDLs) includes implementing microelectrodes, traces, and bonding pads onto the polyimide (PI) substrate by laser micromachining techniques combined with the drop coating of the silver glue to stack the laser grooving lines. The process of electroplating platinum on the RDLs was performed to increase corresponding conductivity. Sequentially, Parylene C was deposited onto the PI substrate to form the insulation layer for the protection of inner RDLs. Following the deposition of Parylene C, the via holes over microelectrodes and the corresponding probe shape of the neural electrode array was also etched by laser micromachining. To increase the neural recording capability, three-dimensional microelectrodes with a high surface area were formed by electroplating gold. Our eco-electrode array showed reliable electrical characteristics of impedance under harsh cyclic bending conditions of over 90 degrees. For in vivo application, our flexible neural electrode array demonstrated more stable and higher neural recording quality and better biocompatibility as well during the 2-week implantation compared with those of the silicon-based neural electrode array. In this study, our proposed eco-manufacturing process for fabricating the neural electrode array reduced 63 times of carbon emissions compared to the traditional semiconductor manufacturing process and provided freedom in the customized design of the implantable electronic devices as well.
Collapse
Affiliation(s)
- Szu-Ying Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ta-Chung Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Fu-Yu Hsieh
- Franz Collection Inc., 13F, No. 167, Sec. 5, Ming Sheng E. Rd., Taipei 10589, Taiwan
| | - Yi Yang
- Department of Biomedical Engineering, Johns Hopkins University, No. 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Yan-Bo Lai
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
- Franz Collection Inc., 13F, No. 167, Sec. 5, Ming Sheng E. Rd., Taipei 10589, Taiwan
| |
Collapse
|
3
|
Niederhoffer T, Vanhoestenberghe A, Lancashire HT. Methods of poly(3,4)-ethylenedioxithiophene (PEDOT) electrodeposition on metal electrodes for neural stimulation and recording. J Neural Eng 2023; 20. [PMID: 36603213 DOI: 10.1088/1741-2552/acb084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Conductive polymers are of great interest in the field of neural electrodes because of their potential to improve the interfacial properties of electrodes. In particular, the conductive polymer poly (3,4)-ethylenedioxithiophene (PEDOT) has been widely studied for neural applications.Objective:This review compares methods for electrodeposition of PEDOT on metal neural electrodes, and analyses the effects of deposition methods on morphology and electrochemical performance.Approach:Electrochemical performances were analysed against several deposition method choices, including deposition charge density and co-ion, and correlations were explained to morphological and structural arguments as well as characterisation methods choices.Main results:Coating thickness and charge storage capacity are positively correlated with PEDOT electrodeposition charge density. We also show that PEDOT coated electrode impedance at 1 kHz, the only consistently reported impedance quantity, is strongly dependent upon electrode radius across a wide range of studies, because PEDOT coatings reduces the reactance of the complex impedance, conferring a more resistive behaviour to electrodes (at 1 kHz) dominated by the solution resistance and electrode geometry. This review also summarises how PEDOT co-ion choice affects coating structure and morphology and shows that co-ions notably influence the charge injection limit but have a limited influence on charge storage capacity and impedance. Finally we discuss the possible influence of characterisation methods to assess the robustness of comparisons between published results using different methods of characterisation.Significance:This review aims to serve as a common basis for researchers working with PEDOT by showing the effects of deposition methods on electrochemical performance, and aims to set a standard for accurate and uniform reporting of methods.
Collapse
Affiliation(s)
- Thomas Niederhoffer
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Anne Vanhoestenberghe
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Henry T Lancashire
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
4
|
Abstract
Neuroprosthetic devices that record and modulate neural activities have demonstrated immense potential for bypassing or restoring lost neurological functions due to neural injuries and disorders. However, implantable electrical devices interfacing with brain tissue are susceptible to a series of inflammatory tissue responses along with mechanical or electrical failures which can affect the device performance over time. Several biomaterial strategies have been implemented to improve device-tissue integration for high quality and stable performance. Ranging from developing smaller, softer, and more flexible electrode designs to introducing bioactive coatings and drug-eluting layers on the electrode surface, such strategies have shown different degrees of success but with limitations. With their hydrophilic properties and specific bioactivities, carbohydrates offer a potential solution for addressing some of the limitations of the existing biomolecular approaches. In this review, we summarize the role of polysaccharides in the central nervous system, with a primary focus on glycoproteins and proteoglycans, to shed light on their untapped potential as biomaterials for neural implants. Utilization of glycosaminoglycans for neural interface and tissue regeneration applications is comprehensively reviewed to provide the current state of carbohydrate-based biomaterials for neural implants. Finally, we will discuss the challenges and opportunities of applying carbohydrate-based biomaterials for neural tissue interfaces.
Collapse
Affiliation(s)
- Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Bianchi M, De Salvo A, Asplund M, Carli S, Di Lauro M, Schulze‐Bonhage A, Stieglitz T, Fadiga L, Biscarini F. Poly(3,4-ethylenedioxythiophene)-Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104701. [PMID: 35191224 PMCID: PMC9036021 DOI: 10.1002/advs.202104701] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Indexed: 05/29/2023]
Abstract
Next-generation neural interfaces for bidirectional communication with the central nervous system aim to achieve the intimate integration with the neural tissue with minimal neuroinflammatory response, high spatio-temporal resolution, very high sensitivity, and readout stability. The design and manufacturing of devices for low power/low noise neural recording and safe and energy-efficient stimulation that are, at the same time, conformable to the brain, with matched mechanical properties and biocompatibility, is a convergence area of research where neuroscientists, materials scientists, and nanotechnologists operate synergically. The biotic-abiotic neural interface, however, remains a formidable challenge that prompts for new materials platforms and innovation in device layouts. Conductive polymers (CP) are attractive materials to be interfaced with the neural tissue and to be used as sensing/stimulating electrodes because of their mixed ionic-electronic conductivity, their low contact impedance, high charge storage capacitance, chemical versatility, and biocompatibility. This manuscript reviews the state-of-the-art of poly(3,4-ethylenedioxythiophene)-based neural interfaces for extracellular recording and stimulation, focusing on those technological approaches that are successfully demonstrated in vivo. The aim is to highlight the most reliable and ready-for-clinical-use solutions, in terms of materials technology and recording performance, other than spot major limitations and identify future trends in this field.
Collapse
Affiliation(s)
- Michele Bianchi
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Anna De Salvo
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Maria Asplund
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleå971 87Sweden
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Stefano Carli
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Present address:
Department of Environmental and Prevention SciencesUniversità di FerraraFerrara44121Italy
| | - Michele Di Lauro
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Andreas Schulze‐Bonhage
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
- Epilepsy CenterFaculty of MedicineUniversity of FreiburgFreiburg79110Germany
| | - Thomas Stieglitz
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Fabio Biscarini
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Life Science DepartmentUniversità di Modena e Reggio EmiliaVia Campi 103Modena41125Italy
| |
Collapse
|
6
|
Kleber C, Lienkamp K, Rühe J, Asplund M. Electrochemically Controlled Drug Release from a Conducting Polymer Hydrogel (PDMAAp/PEDOT) for Local Therapy and Bioelectronics. Adv Healthc Mater 2019; 8:e1801488. [PMID: 30835957 DOI: 10.1002/adhm.201801488] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/05/2019] [Indexed: 12/27/2022]
Abstract
In this study, the release of fluorescein from a photo-crosslinked conducting polymer hydrogel made from a hydrogel precursor poly(dimethylacrylamide-co-4-methacryloyloxy benzophenone (5%)-co-4-styrenesulfonate (2.5%)) (PDMAAp) and the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is investigated. Fluorescein, here used as a model for a drug, is actively released through application of an electrical trigger signal. The detected quantity is more than six times higher in comparison to that released from a conventional PEDOT/polysterene sulfonate (PSS) system. Release profiles, drug dose, and timing can be tailored by the application of different trigger signals and pretreatments. To demonstrate that the novel drug release system can be used for a drug relevant for local delivery to a neural interface, experiments are furthermore performed with the anti-inflammatory drug dexamethasone (Dex). The conducting polymer hydrogel facilitates the active release of Dex, in comparison to the previously used PEDOT/Dex. It is suggested that PEDOT/PDMAAp is an interesting alternative for conducting polymer based drug release systems, with the potential to offer more volume for storage, yet retaining the excellent electrochemical properties known for PEDOT electrodes.
Collapse
Affiliation(s)
- Carolin Kleber
- Department of Microsystems Engineering, Albert-Ludwigs University, Freiburg, Germany
- Brainlinks-Braintools, Albert-Ludwigs University, Freiburg, 79110, Germany
| | - Karen Lienkamp
- Department of Microsystems Engineering, Albert-Ludwigs University, Freiburg, Germany
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs University, Freiburg, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering, Albert-Ludwigs University, Freiburg, Germany
- Brainlinks-Braintools, Albert-Ludwigs University, Freiburg, 79110, Germany
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs University, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering, Albert-Ludwigs University, Freiburg, Germany
- Brainlinks-Braintools, Albert-Ludwigs University, Freiburg, 79110, Germany
| |
Collapse
|
7
|
Huang WC, Chi HS, Lee YC, Lo YC, Liu TC, Chiang MY, Chen HY, Li SJ, Chen YY, Chen SY. Gene-Embedded Nanostructural Biotic-Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11270-11282. [PMID: 30844235 DOI: 10.1021/acsami.9b03264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Optogenetics is a recently established neuromodulation technique in which photostimulation is used to manipulate neurons with high temporal and spatial precision. However, sequential genetic and optical insertion with double brain implantation tends to cause excessive tissue damage. In addition, the incorporation of light-sensitive genes requires the utilization of viral vectors, which remains a safety concern. Here, by combining device fabrication design, nanotechnology, and cell targeting technology, we developed a new gene-embedded optoelectrode array for neural implantation to enable spatiotemporal electroporation (EP) for gene delivery/transfection, photomodulation, and synchronous electrical monitoring of neural signals in the brain via one-time implantation. A biotic-abiotic neural interface (called PG) composed of reduced graphene oxide and conductive polyelectrolyte 3,4-ethylenedioxythiophene-modified amphiphilic chitosan was developed to form a nanostructural hydrogel with assembled nanodomains for encapsulating nonviral gene vectors (called PEI-NT-pDNA) formulated by neurotensin (NT) and polyethylenimine (PEI)-coupled plasmid DNA (pDNA). The PG can maintain high charge storage ability to respond to a minimal current of 125 μA for controllable gene delivery. The in vitro analysis of PG-PEI-NT-pDNA on the microelectrode array chip showed that the microelectrodes provided electrically inductive electropermeabilization, which permitted gene transfection into localized rat adrenal pheochromocytoma cells with a strong green fluorescent protein expression that was up to 8-fold higher than that in nontreated cells. Furthermore, the in vivo implantation enabled on-demand spatiotemporal gene transfection to neurons with 10-fold enhancement of targeting ability compared with astrocytes. Finally, using the real optogenetic opsin channelrhodopsin-2, the flexible neural probe incorporated with an optical waveguide fiber displayed photoevoked extracellular spikes in the thalamic ventrobasal region after focal EP for only 7 days, which provided a proof of concept for the use of photomodulation to facilitate neural therapies.
Collapse
Affiliation(s)
| | - Hui-Shang Chi
- Department of Materials Science and Engineering , National Chiao Tung University , No. 1001, Ta-Hsueh Road , Hsinchu 30010 , Taiwan , R.O.C
| | | | | | - Ta-Chung Liu
- Department of Materials Science and Engineering , National Chiao Tung University , No. 1001, Ta-Hsueh Road , Hsinchu 30010 , Taiwan , R.O.C
| | - Min-Yu Chiang
- Department of Materials Science and Engineering , National Chiao Tung University , No. 1001, Ta-Hsueh Road , Hsinchu 30010 , Taiwan , R.O.C
| | - Hsu-Yan Chen
- Department of Biomedical Engineering , National Yang Ming University , No. 155, Section 2, Linong Street , Taipei 11221 , Taiwan , R.O.C
| | - Ssu-Ju Li
- Department of Biomedical Engineering , National Yang Ming University , No. 155, Section 2, Linong Street , Taipei 11221 , Taiwan , R.O.C
| | - You-Yin Chen
- Department of Biomedical Engineering , National Yang Ming University , No. 155, Section 2, Linong Street , Taipei 11221 , Taiwan , R.O.C
| | - San-Yuan Chen
- Department of Materials Science and Engineering , National Chiao Tung University , No. 1001, Ta-Hsueh Road , Hsinchu 30010 , Taiwan , R.O.C
- Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan , R.O.C
| |
Collapse
|
8
|
Hu S, Zhou L, Tu L, Dai C, Fan L, Zhang K, Yao T, Chen J, Wang Z, Xing J, Fu R, Yu P, Tan G, Du J, Ning C. Elastomeric conductive hybrid hydrogels with continuous conductive networks. J Mater Chem B 2019; 7:2389-2397. [DOI: 10.1039/c9tb00173e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The DA–PPy–GP ECHs with continuous conductive networks show high force and strain sensitivity.
Collapse
|
9
|
Goding J, Vallejo-Giraldo C, Syed O, Green R. Considerations for hydrogel applications to neural bioelectronics. J Mater Chem B 2019; 7:1625-1636. [DOI: 10.1039/c8tb02763c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogels have garnered interest as materials in bioelectronics due to the capacity to tailor their properties. Appropriate selection and design of hydrogel systems for this application requires an understanding of the physical, chemical and biological properties as well as their structure–property relationships.
Collapse
Affiliation(s)
- Josef Goding
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | | | - Omaer Syed
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | - Rylie Green
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| |
Collapse
|
10
|
Lee HJ, Choi N, Yoon ES, Cho IJ. MEMS devices for drug delivery. Adv Drug Deliv Rev 2018; 128:132-147. [PMID: 29117510 DOI: 10.1016/j.addr.2017.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/06/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
Novel drug delivery systems based on microtechnology have advanced tremendously, but yet face some technological and societal hurdles to fully achieve their potential. The novel drug delivery systems aim to deliver drugs in a spatiotemporal- and dosage-controlled manner with a goal to address the unmet medical needs from oral delivery and hypodermic injection. The unmet needs include effective delivery of new types of drug candidates that are otherwise insoluble and unstable, targeted delivery to areas protected by barriers (e.g. brain and posterior eye segment), localized delivery of potent drugs, and improved patient compliance. After scrutinizing the design considerations and challenges associated with delivery to areas that cannot be efficiently targeted through standard drug delivery (e.g. brain, posterior eye segment, and gastrointestinal tract), this review provides a summary of recent advances that addressed these challenges and summarizes yet unresolved problems in each target area. The opportunities for innovation in devising the novel drug delivery systems are still high; with integration of advanced microtechnology, advanced fabrication of biomaterials, and biotechnology, the novel drug delivery is poised to be a promising alternative to the oral administration and hypodermic injection for a large spectrum of drug candidates.
Collapse
Affiliation(s)
- Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eui-Sung Yoon
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
11
|
Ghosal A, Tiwari S, Mishra A, Vashist A, Rawat NK, Ahmad S, Bhattacharya J. Design and Engineering of Nanogels. NANOGELS FOR BIOMEDICAL APPLICATIONS 2017. [DOI: 10.1039/9781788010481-00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogels in the nano regime are termed as nanogels (NGs). The formulation in the nano range renders the synthesis process easy as well as scalable with better control over designing/cross-linking between the NGs. Nanogels have shown controllable swelling, viscoelasticity, and high biocompatibility leading to their use in targeted and stimuli-responsive drug delivery purposes. The designing and engineering of materials plays a pivotal role in accounting for the improvement in the basic properties of the materials and hence, is very important for material scientists. The study of the design and functional characteristics of NGs is the only way to understand their chemical and biological responses in biological models and in turn helps to generate a rationale for development of smart NGs and therapeutic inventions.
Collapse
Affiliation(s)
- Anujit Ghosal
- Department of Chemistry, School of Basic and Applied Sciences, Galgotias University Greater Noida, Gautam Buddh Nagar Uttar Pradesh India
- School of Biotechnology, Jawaharlal Nehru University New Delhi-110067 India
- Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Shivani Tiwari
- Department of Chemistry, School of Basic and Applied Sciences, Galgotias University Greater Noida, Gautam Buddh Nagar Uttar Pradesh India
| | - Abhijeet Mishra
- Cancer Biology Lab, School of Life Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Arti Vashist
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| | - Neha Kanwar Rawat
- Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Sharif Ahmad
- Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | | |
Collapse
|
12
|
Xu C, Guan S, Wang S, Gong W, Liu T, Ma X, Sun C. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 29519441 DOI: 10.1016/j.msec.2017.11.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electroconductive hydrogels with excellent electromechanical properties have become crucial for biomedical applications. In this study, we developed a conductive composite hydrogel via in-situ chemical polymerization based on carboxymethyl chitosan (CMCS), as a biodegradable base macromolecular network, and poly(3,4-ethylenedioxythiophene) (PEDOT), as a conductive polymer layer. The physicochemical and electrochemical properties of conductive hydrogels (PEDOT/CMCS) with different contents of PEDOT polymer were analyzed. Cell viability and proliferation of neuron-like rat phaeochromocytoma (PC12) cells on these three-dimensional conductive hydrogels were evaluated in vitro. As results, the prepared semi-interpenetrating network hydrogels were shown to consist of up to 1825±135wt% of water with a compressive modulus of 9.59±0.49kPa, a porosity of 93.95±1.03% and an electrical conductivity of (4.68±0.28)×10-3S·cm-1. Cell experiments confirmed that PEDOT/CMCS hydrogels not only had no cytotoxicity, but also supported cell adhesion, viability and proliferation. These results demonstrated that the incorporation of conductive PEDOT component into CMCS hydrogels endowed the hydrogels with enhanced mechanical strength, conductivity and kept the biocompatibility. Thus, the attractive performances of these composite hydrogels would make them suitable for further neural tissue engineering application, such as nerve regeneration scaffold materials.
Collapse
Affiliation(s)
- Chao Xu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Shui Guan
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Shuping Wang
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Xuehu Ma
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Changkai Sun
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|