1
|
Moradikhah F, Farahani M, Shafiee A. Towards the development of sensation-enabled skin substitutes. Biomater Sci 2024; 12:4024-4044. [PMID: 38990154 DOI: 10.1039/d4bm00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Recent advances in cell and biofabrication technologies have contributed to the development of complex human organs. In particular, several skin substitutes are being generated using tissue engineering and regenerative medicine (TERM) technologies. However, recent studies mainly focus on the restoration of the dermis and epidermis layers rather than the regeneration of a fully functional innervated skin organ. Innervation is a critical step in functional tissue repair which has been overlooked in the current TERM studies. In the current study, we highlight the importance of sensation in the skin as the largest sensory organ in the human body. In large non-healing skin wounds, the skin sensation is severely diminished or completely lost and ultimately lead to chronic pain and wound healing process interruption. Current therapeutics for restoring skin sensation after trauma are limited. Recent regenerative medicine-based studies could successfully induce neural networks in skin substitutes, but the effectiveness of these technologies in enhancing sensory capability needs further investigation.
Collapse
Affiliation(s)
- Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mojtaba Farahani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Abbas Shafiee
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
2
|
Zhang Y, Yi D, Hong Q, Cao J, Geng X, Liu J, Xu C, Cao M, Chen C, Xu S, Zhang Z, Li M, Zhu Y, Peng N. Platelet-rich plasma-derived exosomes boost mesenchymal stem cells to promote peripheral nerve regeneration. J Control Release 2024; 367:265-282. [PMID: 38253204 DOI: 10.1016/j.jconrel.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Peripheral nerve injury (PNI) remains a severe clinical problem with debilitating consequences. Mesenchymal stem cell (MSC)-based therapy is promising, but the problems of poor engraftment and insufficient neurotrophic effects need to be overcome. Herein, we isolated platelet-rich plasma-derived exosomes (PRP-Exos), which contain abundant bioactive molecules, and investigated their potential to increase the regenerative capacity of MSCs. We observed that PRP-Exos significantly increased MSC proliferation, viability, and mobility, decreased MSC apoptosis under stress, maintained MSC stemness, and attenuated MSC senescence. In vivo, PRP-Exo-treated MSCs (pExo-MSCs) exhibited an increased retention rate and heightened therapeutic efficacy, as indicated by increased axonal regeneration, remyelination, and recovery of neurological function in a PNI model. In vitro, pExo-MSCs coculture promoted Schwann cell proliferation and dorsal root ganglion axon growth. Moreover, the increased neurotrophic behaviour of pExo-MSCs was mediated by trophic factors, particularly glia-derived neurotrophic factor (GDNF), and PRP-Exos activated the PI3K/Akt signalling pathway in MSCs, leading to the observed phenotypes. These findings demonstrate that PRP-Exos may be novel agents for increasing the ability of MSCs to promote neural repair and regeneration in patients with PNI.
Collapse
Affiliation(s)
- Yongyi Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; No.962 Hospital of the PLA Joint Logistic Support Force, Harbin 150080, China
| | - Dan Yi
- Medical School of Chinese PLA, Beijing 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Quan Hong
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiangbei Cao
- Departments of Anaesthesiology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaodong Geng
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinwei Liu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuang Xu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengyu Cao
- Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Chen
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuaixuan Xu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Molin Li
- Medical School of Chinese PLA, Beijing 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaqiong Zhu
- Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China.
| | - Nan Peng
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
3
|
Su X, Teng M, Zhang Y, Ji W. Decellularized extracellular matrix scaffold seeded with adipose-derived stem cells promotes neurorestoration and functional recovery after spinal cord injury through Wnt/ β-catenin signaling pathway regulation. Biomed Mater 2023; 19:015007. [PMID: 38044745 DOI: 10.1088/1748-605x/ad0fa1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Spinal cord injury (SCI) causes tissue destruction and neuronal apoptosis, which impede neural function recovery. Therefore, promoting neuronal regeneration and neural pathway reconstruction is crucial. In this study, a novel and facile decellularized extracellular matrix (dECM) scaffold seeded with adipose-derived stem cells (ADSCs) (dECM scaffolds/ADSCs) was reported. The dECM scaffold maintained the original three-dimensional network structure of spinal cord tissue and contained various small pores.In vitrostudies demonstrated that dECM scaffolds exhibited excellent biocompatibility, facilitated efficient adhesion and proliferation of ADSCs, and promoted the secretion of neurotrophin-3 and neuronal differentiation in the microenvironment after SCI.In vivostudies further showed that dECM scaffolds/ADSCs could alleviate inflammatory and apoptotic reactions, providing a favorable microenvironment for promoting endogenous nerve regeneration rather than glial scars formation, ultimately achieving recovery of hind limb function in rats. Notably, ICG-001 effectively reversed the therapeutic effect of dECM scaffolds/ADSCs, proving that dECM scaffolds/ADSCs promoted functional recovery after SCI by regulating the Wnt/β-catenin signaling pathway. Overall, dECM scaffolds/ADSCs can simulate the physiological characteristics of the spinal cord and exert neurorestorative potential, providing a new therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Xiaochen Su
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Menghao Teng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yingang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Wenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
4
|
Wang Y, Shi G, Huang TCT, Li J, Long Z, Reisdorf R, Shin AY, Amadio P, Behfar A, Zhao C, Moran SL. Enhancing Functional Recovery after Segmental Nerve Defect Using Nerve Allograft Treated with Plasma-Derived Exosome. Plast Reconstr Surg 2023; 152:1247-1258. [PMID: 36912739 DOI: 10.1097/prs.0000000000010389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
BACKGROUND Nerve injuries can result in detrimental functional outcomes. Currently, autologous nerve graft offers the best outcome for segmental peripheral nerve injury. Allografts are alternatives, but do not have comparable results. This study evaluated whether plasma-derived exosome can improve nerve regeneration and functional recovery when combined with decellularized nerve allografts. METHODS The effect of exosomes on Schwann cell proliferation and migration were evaluated. A rat model of sciatic nerve repair was used to evaluate the effect on nerve regeneration and functional recovery. A fibrin sealant was used as the scaffold for exosome. Eighty-four Lewis rats were divided into autograft, allograft, and allograft with exosome groups. Gene expression of nerve regeneration factors was analyzed on postoperative day 7. At 12 and 16 weeks, rats were subjected to maximum isometric tetanic force and compound muscle action potential. Nerve specimens were then analyzed by means of histology and immunohistochemistry. RESULTS Exosomes were readily taken up by Schwann cells that resulted in improved Schwann cell viability and migration. The treated allograft group had functional recovery (compound muscle action potential, isometric tetanic force) comparable to that of the autograft group. Similar results were observed in gene expression analysis of nerve regenerating factors. Histologic analysis showed no statistically significant differences between treated allograft and autograft groups in terms of axonal density, fascicular area, and myelin sheath thickness. CONCLUSIONS Plasma-derived exosome treatment of decellularized nerve allograft may provide comparable clinical outcomes to that of an autograft. This can be a promising strategy in the future as an alternative for segmental peripheral nerve repair. CLINICAL RELEVANCE STATEMENT Off-the-shelf exosomes may improve recovery in nerve allografts.
Collapse
Affiliation(s)
- Yicun Wang
- From the Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University
- Division of Plastic Surgery, Department of Surgery
- Department of Orthopedic Surgery
| | - Guidong Shi
- Department of Orthopedic Surgery
- Tianjin Medical University
| | | | - Jialun Li
- Division of Plastic Surgery, Department of Surgery
- Department of Plastic Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology
| | | | | | | | | | - Atta Behfar
- Center for Regenerative Medicine
- Department of Cardiovascular Medicine, Mayo Clinic
| | | | | |
Collapse
|
5
|
Wu S, Shen W, Ge X, Ao F, Zheng Y, Wang Y, Jia X, Mao Y, Luo Y. Advances in Large Gap Peripheral Nerve Injury Repair and Regeneration with Bridging Nerve Guidance Conduits. Macromol Biosci 2023; 23:e2300078. [PMID: 37235853 DOI: 10.1002/mabi.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Peripheral nerve injury is a common complication of accidents and diseases. The traditional autologous nerve graft approach remains the gold standard for the treatment of nerve injuries. While sources of autologous nerve grafts are very limited and difficult to obtain. Nerve guidance conduits are widely used in the treatment of peripheral nerve injuries as an alternative to nerve autografts and allografts. However, the development of nerve conduits does not meet the needs of large gap peripheral nerve injury. Functional nerve conduits can provide a good microenvironment for axon elongation and myelin regeneration. Herein, the manufacturing methods and different design types of functional bridging nerve conduits for nerve conduits combined with electrical or magnetic stimulation and loaded with Schwann cells, etc., are summarized. It summarizes the literature and finds that the technical solutions of functional nerve conduits with electrical stimulation, magnetic stimulation and nerve conduits combined with Schwann cells can be used as effective strategies for bridging large gap nerve injury and provide an effective way for the study of large gap nerve injury repair. In addition, functional nerve conduits provide a new way to construct delivery systems for drugs and growth factors in vivo.
Collapse
Affiliation(s)
- Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yan Zheng
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yigang Wang
- Department of Pharmacy, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, P. R. China
| | - Xiaoni Jia
- Central Laboratory, Xi'an Mental Health Center, Xi'an, 710061, P. R. China
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yali Luo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
6
|
Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater 2023; 19:50-74. [PMID: 35441116 PMCID: PMC8987319 DOI: 10.1016/j.bioactmat.2022.03.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) stem cell culture systems have attracted considerable attention as a way to better mimic the complex interactions between individual cells and the extracellular matrix (ECM) that occur in vivo. Moreover, 3D cell culture systems have unique properties that help guide specific functions, growth, and processes of stem cells (e.g., embryogenesis, morphogenesis, and organogenesis). Thus, 3D stem cell culture systems that mimic in vivo environments enable basic research about various tissues and organs. In this review, we focus on the advanced therapeutic applications of stem cell-based 3D culture systems generated using different engineering techniques. Specifically, we summarize the historical advancements of 3D cell culture systems and discuss the therapeutic applications of stem cell-based spheroids and organoids, including engineering techniques for tissue repair and regeneration.
Collapse
Affiliation(s)
- Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
7
|
Chen SH, Kao HK, Wun JR, Chou PY, Chen ZY, Chen SH, Hsieh ST, Fang HW, Lin FH. Thermosensitive hydrogel carrying extracellular vesicles from adipose-derived stem cells promotes peripheral nerve regeneration after microsurgical repair. APL Bioeng 2022; 6:046103. [PMID: 36345317 PMCID: PMC9637024 DOI: 10.1063/5.0118862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Peripheral nerve injuries are commonly occurring traumas of the extremities; functional recovery is hindered by slow nerve regeneration (<1 mm/day) following microsurgical repair and subsequent muscle atrophy. Functional recovery after peripheral nerve repair is highly dependent on local Schwann cell activity and axon regeneration speed. Herein, to promote nerve regeneration, paracrine signals of adipose-derived stem cells were applied in the form of extracellular vesicles (EVs) loaded in a thermosensitive hydrogel (PALDE) that could solidify rapidly and sustain high EV concentration around a repaired nerve during surgery. Cell experiments revealed that PALDE hydrogel markedly promotes Schwann-cell migration and proliferation and axon outgrowth. In a rat sciatic nerve repair model, the PALDE hydrogel increased repaired-nerve conduction efficacy; contraction force of leg muscles innervated by the repaired nerve also recovered. Electromicroscopic examination of downstream nerves indicated that fascicle diameter and myeline thickness in the PALDE group (1.91 ± 0.61 and 1.06 ± 0.40 μm, respectively) were significantly higher than those in PALD and control groups. Thus, this EV-loaded thermosensitive hydrogel is a potential cell-free therapeutic modality to improve peripheral-nerve regeneration, offering sustained and focused EV release around the nerve-injury site to overcome rapid clearance and maintain EV bioactivity in vivo.
Collapse
Affiliation(s)
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | - Jing-Ru Wun
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Pang-Yun Chou
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | | | | | | | - Hsu-Wei Fang
- Authors to whom correspondence should be addressed: and
| | - Feng-Huei Lin
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
8
|
Liang Y, Yang C, Ye F, Cheng Z, Li W, Hu Y, Hu J, Zou L, Jiang H. Repair of the Urethral Mucosa Defect Model Using Adipose-Derived Stem Cell Sheets and Monitoring the Fate of Indocyanine Green-Labeled Sheets by Near Infrared-II. ACS Biomater Sci Eng 2022; 8:4909-4920. [PMID: 36201040 DOI: 10.1021/acsbiomaterials.2c00695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of urethral mucosa defects is a major challenge in urology. Synthetic materials or autologous mucosa does not provide satisfactory treatment options for long-term or large urethral mucosa defects. In response to this problem, we used autologous adipose-derived stem cells (ADSCs) to synthesize cell sheets in vitro for repairing urethral mucosa defect models. In order to monitor the localization and distribution of cell sheets in vivo, cells and sheets were labeled with indocyanine green (ICG) and the second near-infrared (NIR-II) fluorescence imaging was performed. ICG-based NIR-II imaging can successfully track ADSCs and sheets in vivo up to 8 W. Then, rabbit urethral mucosa defect models were repaired with ICG-ADSCs sheets. At 3 months after operation, retrograde urethrography showed that ADSC sheets could effectively repair urethral mucosa defect and restore urethral patency. Histological analysis showed that in ADSC sheet groups, continuous epithelial cells covered the urethra at the transplantation site, and a large number of vascular endothelial cells could also be seen. In the cell-free sheet group, there was no continuous epithelial cell coverage at the repair site of the urethra, and the expression of pro-inflammatory factor TNF-α was increased. It shows that the extracellular matrix alone without cells is not suitable for repairing urethral defects. Surviving ADSCs in the sheets may play a key role in the repair process. This study provides a new tracing method for tissue engineering to dynamically track grafts using an NIR-II imaging system. The ADSC sheets can effectively restore the structure and function of the urethra. It provides a new option for the repair of urethral mucosa defects.
Collapse
Affiliation(s)
- Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Jimeng Hu
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, 200040 Shanghai, China
| |
Collapse
|
9
|
Peripheral Nerve Regeneration–Adipose-Tissue-Derived Stem Cells Differentiated by a Three-Step Protocol Promote Neurite Elongation via NGF Secretion. Cells 2022; 11:cells11182887. [PMID: 36139462 PMCID: PMC9496771 DOI: 10.3390/cells11182887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The lack of supportive Schwann cells in segmental nerve lesions seems to be one cornerstone for the problem of insufficient nerve regeneration. Lately, adipose-tissue-derived stem cells (ASCs) differentiated towards SC (Schwann cell)-like cells seem to fulfill some of the needs for ameliorated nerve recovery. In this study, three differentiation protocols were investigated for their ability to differentiate ASCs from rats into specialized SC phenotypes. The differentiated ASCs (dASCs) were compared for their expressions of neurotrophins (NGF, GDNF, BDNF), myelin markers (MBP, P0), as well as glial-marker proteins (S100, GFAP) by RT-PCR, ELISA, and Western blot. Additionally, the influence of the medium conditioned by dASCs on a neuron-like cell line was evaluated. The dASCs were highly diverse in their expression profiles. One protocol yielded relatively high expression rates of neurotrophins, whereas another protocol induced myelin-marker expression. These results were reproducible when the ASCs were differentiated on surfaces potentially used for nerve guidance conduits. The NGF secretion affected the neurite outgrowth significantly. It remains uncertain what features of these SC-like cells contribute the most to adequate functional recovery during the different phases of nerve recovery. Nevertheless, therapeutic applications should consider these diverse phenotypes as a potential approach for stem-cell-based nerve-injury treatment.
Collapse
|
10
|
Lu X, Lv C, Zhao Y, Wang Y, Li Y, Ji C, Wang Z, Ye W, Yu S, Bai J, Cai W. TSG-6 released from adipose stem cells-derived small extracellular vesicle protects against spinal cord ischemia reperfusion injury by inhibiting endoplasmic reticulum stress. Stem Cell Res Ther 2022; 13:291. [PMID: 35831906 PMCID: PMC9281104 DOI: 10.1186/s13287-022-02963-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Spinal cord ischemia reperfusion injury (SCIRI) is a complication of aortic aneurysm repair or spinal cord surgery that is associated with permanent neurological deficits. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have been shown to be potential therapeutic options for improving motor functions after SCIRI. Due to their easy access and multi-directional differentiation potential, adipose‐derived stem cells (ADSCs) are preferable for this application. However, the effects of ADSC-derived sEVs (ADSC-sEVs) on SCIRI have not been reported. Results We found that ADSC-sEVs inhibited SCIRI-induced neuronal apoptosis, degradation of tight junction proteins and suppressed endoplasmic reticulum (ER) stress. However, in the presence of the ER stress inducer, tunicamycin, its anti-apoptotic and blood–spinal cord barrier (BSCB) protective effects were significantly reversed. We found that ADSC-sEVs contain tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) whose overexpression inhibited ER stress in vivo by modulating the PI3K/AKT pathway. Conclusions ADSC-sEVs inhibit neuronal apoptosis and BSCB disruption in SCIRI by transmitting TSG-6, which suppresses ER stress by modulating the PI3K/AKT pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02963-4.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.,Department of Orthopaedics, Dongtai Hospital Affiliated to Nantong University, Dongtai City, Jiangsu, China
| | - Chengtang Lv
- Department of Orthopaedics, Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Yuechao Zhao
- Department of Orthopedic Oncology, Changzheng Hospital, Secondary Military Medical University, Shanghai, China.,Department of Orthopedic, PLA Navy No.905 Hospital, Secondary Military Medical University, Shanghai, China
| | - Yufei Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Haining, Zhejiang, China
| | - Yao Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, China
| | - Chengyue Ji
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Shunzhi Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, China.
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Jiangsu Province, Nanjing, 211166, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
11
|
Sun Y, Chi X, Meng H, Ma M, Wang J, Feng Z, Quan Q, Liu G, Wang Y, Xie Y, Zheng Y, Peng J. Polylysine-decorated macroporous microcarriers laden with adipose-derived stem cells promote nerve regeneration in vivo. Bioact Mater 2021; 6:3987-3998. [PMID: 33997488 PMCID: PMC8082165 DOI: 10.1016/j.bioactmat.2021.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Cell transplantation is an effective strategy to improve the repair effect of nerve guide conduits (NGCs). However, problems such as low loading efficiency and cell anoikis undermine the outcomes. Microcarriers are efficient 3D cell culture scaffolds, which can also prevent cell anoikis by providing substrate for adhesion during transplantation. Here, we demonstrate for the first time microcarrier-based cell transplantation in peripheral nerve repair. We first prepared macroporous chitosan microcarriers (CSMCs) by the emulsion-phase separation method, and then decorated the CSMCs with polylysine (pl-CSMCs) to improve cell affinity. We then loaded the pl-CSMCs with adipose-derived stem cells (ADSCs) and injected them into electrospun polycaprolactone/chitosan NGCs to repair rat sciatic nerve defects. The ADSCs-laden pl-CSMCs effectively improved nerve regeneration as demonstrated by evaluation of histology, motor function recovery, electrophysiology, and gastrocnemius recovery. With efficient cell transplantation, convenient operation, and the multiple merits of ADSCs, the ADSCs-laden pl-CSMCs hold good potential in peripheral nerve repair.
Collapse
Affiliation(s)
- Yi Sun
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Xiaoqi Chi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Haoye Meng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
| | - Mengjiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jing Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
| | - Zhaoxuan Feng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Qi Quan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
| | - Guodong Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yansen Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226007, PR China
| |
Collapse
|
12
|
Bahlakeh G, Rahbarghazi R, Mohammadnejad D, Abedelahi A, Karimipour M. Current knowledge and challenges associated with targeted delivery of neurotrophic factors into the central nervous system: focus on available approaches. Cell Biosci 2021; 11:181. [PMID: 34641969 PMCID: PMC8507154 DOI: 10.1186/s13578-021-00694-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
During the last decades, numerous basic and clinical studies have been conducted to assess the delivery efficiency of therapeutic agents into the brain and spinal cord parenchyma using several administration routes. Among conventional and in-progress administrative routes, the eligibility of stem cells, viral vectors, and biomaterial systems have been shown in the delivery of NTFs. Despite these manifold advances, the close association between the delivery system and regeneration outcome remains unclear. Herein, we aimed to discuss recent progress in the delivery of these factors and the pros and cons related to each modality.
Collapse
Affiliation(s)
- Gozal Bahlakeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daruosh Mohammadnejad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Ahmed MN, Shi D, Dailey MT, Rothermund K, Drewry MD, Calabrese TC, Cui XT, Syed-Picard FN. Dental Pulp Cell Sheets Enhance Facial Nerve Regeneration via Local Neurotrophic Factor Delivery. Tissue Eng Part A 2021; 27:1128-1139. [PMID: 33164704 PMCID: PMC8616747 DOI: 10.1089/ten.tea.2020.0265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An effective strategy for sustained neurotrophic factor (NTF) delivery to sites of peripheral nerve injury (PNI) would accelerate healing and enhance functional recovery, addressing the major clinical challenges associated with the current standard of care. In this study, scaffold-free cell sheets were generated using human dental pulp stem/progenitor cells, that endogenously express high levels of NTFs, for use as bioactive NTF delivery systems. Additionally, the effect of fibroblast growth factor 2 (FGF2) on NTF expression by dental pulp cell (DPC) sheets was evaluated. In vitro analysis confirmed that DPC sheets express high levels of NTF messenger RNA (mRNA) and proteins, and the addition of FGF2 to DPC sheet culture increased total NTF production by significantly increasing the cellularity of sheets. Furthermore, the DPC sheet secretome stimulated neurite formation and extension in cultured neuronal cells, and these functional effects were further enhanced when DPC sheets were cultured with FGF2. These neuritogenic results were reversed by NTF inhibition substantiating that DPC sheets have a positive effect on neuronal cell activity through the production of NTFs. Further evaluation of DPC sheets in a rat facial nerve crush injury model in vivo established that in comparison with untreated controls, nerves treated with DPC sheets had greater axon regeneration through the injury site and superior functional recovery as quantitatively assessed by compound muscle action potential measurements. This study demonstrates the use of DPC sheets as vehicles for NTF delivery that could augment the current methods for treating PNIs to accelerate regeneration and enhance the functional outcome. Impact statement The major challenges associated with current treatments of peripheral nerve injuries (PNIs) are prolonged repair times and insufficient functional recovery. Dental pulp stem/progenitor cells (DPCs) are known to endogenously express high levels of neurotrophic factors (NTFs), growth factors that enhance axon regeneration. In this study, we demonstrate that scaffold-free DPC sheets can act as effective carrier systems to facilitate the delivery and retention of NTF-producing DPCs to sites of PNIs and improve functional nerve regeneration. DPC sheets have high translational feasibility and could augment the current standard of care to enhance the quality of life for patients dealing with PNIs.
Collapse
Affiliation(s)
- Meer N. Ahmed
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Delin Shi
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew T. Dailey
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristi Rothermund
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michelle D. Drewry
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tia C. Calabrese
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xinyan T. Cui
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fatima N. Syed-Picard
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania USA
- Address correspondence to: Fatima N. Syed-Picard, MSE, PhD, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, 413 Salk Pavilion, 355 Sutherland Drive, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Nguyen NTK, Chang YH, Truong VA, Hsu MN, Pham NN, Chang CW, Wu YH, Chang YH, Li H, Hu YC. CRISPR activation of long non-coding RNA DANCR promotes bone regeneration. Biomaterials 2021; 275:120965. [PMID: 34147719 DOI: 10.1016/j.biomaterials.2021.120965] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/06/2021] [Indexed: 01/20/2023]
Abstract
Healing of large calvarial bone defects in adults adopts intramembranous pathway and is difficult. Implantation of adipose-derived stem cells (ASC) that differentiate towards chondrogenic lineage can switch the bone repair pathway and improve calvarial bone healing. Long non-coding RNA DANCR was recently uncovered to promote chondrogenesis, but its roles in rat ASC (rASC) chondrogenesis and bone healing stimulation have yet to be explored. Here we first verified that DANCR expression promoted rASC chondrogenesis, thus we harnessed CRISPR activation (CRISPRa) technology to upregulate endogenous DANCR, stimulate rASC chondrogenesis and improve calvarial bone healing in rats. We generated 4 different dCas9-VPR orthologues by fusing a tripartite transcription activator domain VPR to catalytically dead Cas9 (dCas9) derived from 4 different bacteria, and compared the degree of activation using the 4 different dCas9-VPR. We unveiled surprisingly that the most commonly used dCas9-VPR derived from Streptococcus pyogenes barely activated DANCR. Nonetheless dCas9-VPR from Staphylococcus aureus (SadCas9-VPR) triggered efficient activation of DANCR in rASC. Delivery of SadCas9-VPR and the associated guide RNA into rASC substantially enhanced chondrogenic differentiation of rASC and augmented cartilage formation in vitro. Implantation of the engineered rASC remarkably potentiated the calvarial bone healing in rats. Furthermore, we identified that DANCR improved the rASC chondrogenesis through inhibition of miR-203a and miR-214. These results collectively proved that DANCR activation by SadCas9-VPR-based CRISPRa provides a novel therapeutic approach to improving calvarial bone healing.
Collapse
Affiliation(s)
- Nuong Thi Kieu Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, 333, Taiwan; College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Hsiu Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
15
|
Jiang Z, Li N, Zhu D, Ren L, Shao Q, Yu K, Yang G. Genetically modified cell sheets in regenerative medicine and tissue engineering. Biomaterials 2021; 275:120908. [PMID: 34119885 DOI: 10.1016/j.biomaterials.2021.120908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Genetically modified cell sheet technology is emerging as a promising biomedical tool to deliver therapeutic genes for regenerative medicine and tissue engineering. Virus-based gene transfection and non-viral gene transfection have been used to fabricate genetically modified cell sheets. Preclinical and clinical studies have shown various beneficial effects of genetically modified cell sheets in the regeneration of bone, periodontal tissue, cartilage and nerves, as well as the amelioration of dental implant osseointegration, myocardial infarction, skeletal muscle ischemia and kidney injury. Furthermore, this technology provides a potential treatment option for various hereditary diseases. However, the method has several limitations, such as safety concerns and difficulties in controlling transgene expression. Therefore, recent studies explored efficient and safe gene transfection methods, prolonged and controllable transgene expression and their potential application in personalized and precision medicine. This review summarizes various types of genetically modified cell sheets, preparation procedures, therapeutic applications and possible improvements.
Collapse
Affiliation(s)
- Zhiwei Jiang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Na Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Danji Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Lingfei Ren
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Qin Shao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Ke Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Guoli Yang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
16
|
Wang YH, Wang DR, Guo YC, Liu JY, Pan J. The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration. Regen Ther 2020; 15:285-294. [PMID: 33426231 PMCID: PMC7770413 DOI: 10.1016/j.reth.2020.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
Skeletal muscle injuries have bothered doctors and caused great burdens to the public medical insurance system for a long time. Once injured, skeletal muscles usually go through the processes of inflammation, repairing and remodeling. If repairing and remodeling stages are out of balance, scars will be formed to replace injured skeletal muscles. At present, clinicians usually use conventional methods to restore the injured skeletal muscles, such as flap transplantation. However, flap transplantation sometimes needs to sacrifice healthy autologous tissues and will bring extra harm to patients. In recent years, stem cells-based tissue engineering provides us new treatment ideas for skeletal muscle injuries. Stem cells are cells with multiple differentiation potential and have ability to differentiate into adult cells under special condition. Skeletal muscle tissues also have stem cells, called satellite cells, but they are in small amount and new muscle fibers that derived from them may not be enough to replace injured fibers. Bone marrow mesenchymal stem cells (BM-MSCs) could promote musculoskeletal tissue regeneration and activate the myogenic differentiation of satellite cells. Biomaterial is another important factor to promote tissue regeneration and greatly enhance physiological activities of stem cells in vivo. The combined use of stem cells and biomaterials will gradually become a mainstream to restore injured skeletal muscles in the future. This review article mainly focuses on the review of research about the application of BM-MSCs and several major biomaterials in skeletal muscle regeneration over the past decades.
Collapse
Key Words
- 3D-ECM, three dimensional extracellular matrix
- ASCs, adipose stem cells
- BDNF, brain derived neurotrophic factor
- BM-MSCs
- BM-MSCs, bone marrow mesenchymal stem cells
- Biomaterial
- CREB, cAMP- response element binding protein
- DPSCs, dental pulp stem cells
- Differentiation
- ECM, extracellular matrix
- ECs, endothelial cells
- EGF, epidermal growth factor
- FGF, fibroblast growth factor
- FGF-2, fibroblast growth factor-2
- GCSF, granulocyte colony-stimulating factor
- GDNF, glial derived neurotrophic factor
- GPT, gelatin-poly(ethylene glycol)- tyramine
- HGF, hepatocyte growth factor
- IGF-1, insulin-like growth factor-1
- IL, interleukin
- LIF, leukemia inhibitory factor
- MRF, myogenic muscle factor
- NSAIDs, non-steroidal drugs
- PDGF-BB, platelet derived growth factor-BB
- PGE2, prostaglandin E2
- PRP, platelet rich plasma
- S1P, sphingosine 1-phosphate
- SDF-1, stromal cell derived factor-1
- Skeletal muscle injury
- TGF-β, transforming growth factor-β
- Tissue regeneration
- TrkB, tyrosine kinaseB
- VEGF, vascular endothelial growth factor
- VML, volumetric muscle loss
Collapse
Affiliation(s)
- Yu-Hao Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| | - Dian-Ri Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| | - Yu-Chen Guo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ji-Yuan Liu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jian Pan
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| |
Collapse
|
17
|
Use of bioactive extracellular matrix fragments as a urethral bulking agent to treat stress urinary incontinence. Acta Biomater 2020; 117:156-166. [PMID: 33035698 DOI: 10.1016/j.actbio.2020.09.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022]
Abstract
Injection of urethral bulking agents is a low-risk, minimally invasive surgical procedure to treat stress urinary incontinence (SUI). In this study, we developed a promising injectable bulking agent comprising extracellular matrix fragments of adipose-derived stem cell sheets (ADSC ECM) and investigated its effectiveness in urethral bulking therapy. The structural integrity and proteins of ADSC sheet ECM were well retained in decellularized ADSC ECM fragments. To locate transplanted ADSC ECM fragments, they were labeled with ultrasmall super-paramagnetic iron oxide nanoparticles, which enabled in vivo monitoring after implantation in a SUI rat model for up to 4 weeks. When ADSC ECM fragments were injected into the rat urethra, they became fully integrated with the surrounding tissue within 1 week. Four weeks after transplantation, host cells had regenerated within the ADSC ECM fragment injection area. Moreover, new smooth muscle tissue had formed around the ADSC ECM fragments, as confirmed by positive staining of myosin. These results indicate that injection of ECM fragments may be a promising minimally invasive approach for treating SUI.
Collapse
|
18
|
Xiao S, Zhang F, Zheng Y, Liu Z, Wang D, Wei Z, Deng C. Synergistic effect of nanofat and mouse nerve-growth factor for promotion of sensory recovery in anterolateral thigh free flaps. Stem Cells Transl Med 2020; 10:181-189. [PMID: 33043628 PMCID: PMC7848322 DOI: 10.1002/sctm.20-0226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/18/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Anterolateral thigh (ALT) free flaps are widely used for reconstruction, but poor sensory recovery of the flap tissue can cause unsatisfactory outcomes and poor function. Adipose‐derived mesenchymal stem cells (ADSCs) promote neural regeneration, but the clinical use of stem‐cell therapy has been limited by lack of regulatory approval. Nanofat is an autologous product that is prepared mechanically from harvested fat. It is enriched in ADSCs and does not contain any exogenous substances. The developmental and adult neurobiology of nerve‐growth factor (NGF) are well investigated, and mouse (m)NGF has been used to promote recovery following peripheral nerve injury. We investigated the promotion of nanofat and mNGF as either mono‐ or combined therapy on the sensory recovery of ALT free flaps. We found that nanofat and mNGF had a synergistic effect on sensory recovery that was associated with stimulation of angiogenesis and neurogenesis. Nanofat combined with mNGF was better at promoting neural regeneration and improving sensory recovery than treatment with either agent alone. The results provide a theoretical rationale for further study of the clinical use of nanofat combined with mNGF to promote the sensory recovery of ALT free flaps.
Collapse
Affiliation(s)
- Shune Xiao
- Department of Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiPeople's Republic of China
| | - Fengling Zhang
- Department of Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiPeople's Republic of China
| | - Yongjian Zheng
- Department of Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiPeople's Republic of China
| | - Zhiyuan Liu
- Department of Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiPeople's Republic of China
| | - Dali Wang
- Department of Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiPeople's Republic of China
| | - Zairong Wei
- Department of Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiPeople's Republic of China
| | - Chengliang Deng
- Department of Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiPeople's Republic of China
| |
Collapse
|
19
|
张 凤, 邓 呈, 肖 顺, 魏 在. [Research progress of adipose-derived stem cells in promoting the repair of peripheral nerve injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1059-1064. [PMID: 32794679 PMCID: PMC8171896 DOI: 10.7507/1002-1892.201910009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/16/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To summarize the research progress of adipose-derived stem cells (ADSCs) in promoting the repair of peripheral nerve injury. METHODS The related literature at home and abroad in recent years was widely reviewed, the mechanism of ADSCs promoting the repair of peripheral nerve injury was introduced, and its basic research progress was analyzed and summarized. Finally, the clinical transformation application of ADSCs in the treatment of peripheral nerve injury was introduced, the existing problems were pointed out, and the new treatment regimen was prospected. RESULTS ADSCs have the function of differentiation and paracrine, and their secreted neurotrophic factors, antiapoptosis, and antioxidant factors can promote the repair of peripheral nerve injury. CONCLUSION ADSCs are rich in content and easy to obtain, which has a definite effectiveness on the repair of peripheral nerve injury with potential clinical prospect.
Collapse
Affiliation(s)
- 凤玲 张
- 遵义医科大学附属医院烧伤整形外科(贵州遵义 563003)Department of Burn Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, P.R.China
| | - 呈亮 邓
- 遵义医科大学附属医院烧伤整形外科(贵州遵义 563003)Department of Burn Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, P.R.China
| | - 顺娥 肖
- 遵义医科大学附属医院烧伤整形外科(贵州遵义 563003)Department of Burn Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, P.R.China
| | - 在荣 魏
- 遵义医科大学附属医院烧伤整形外科(贵州遵义 563003)Department of Burn Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, P.R.China
| |
Collapse
|
20
|
Alexandrushkina N, Nimiritsky P, Eremichev R, Popov V, Arbatskiy M, Danilova N, Malkov P, Akopyan Z, Tkachuk V, Makarevich P. Cell Sheets from Adipose Tissue MSC Induce Healing of Pressure Ulcer and Prevent Fibrosis via Trigger Effects on Granulation Tissue Growth and Vascularization. Int J Mol Sci 2020; 21:E5567. [PMID: 32759725 PMCID: PMC7432086 DOI: 10.3390/ijms21155567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
We report a comparative study of multipotent mesenchymal stromal cells (MSC) delivered by injection, MSC-based cell sheets (CS) or MSC secretome to induce healing of cutaneous pressure ulcer in C57Bl/6 mice. We found that transplantation of CS from adipose-derived MSC resulted in reduction of fibrosis and recovery of skin structure with its appendages (hair and cutaneous glands). Despite short retention of CS on ulcer surface (3-7 days) it induced profound changes in granulation tissue (GT) structure, increasing its thickness and altering vascularization pattern with reduced blood vessel density and increased maturation of blood vessels. Comparable effects on GT vascularization were induced by MSC secretome, yet this treatment has failed to induce repair of skin with its appendages we observed in the CS group. Study of secretome components produced by MSC in monolayer or sheets revealed that CS produce more factors involved in pericyte chemotaxis and blood vessel maturation (PDGF-BB, HGF, G-CSF) but not sprouting inducer (VEGF165). Analysis of transcriptome using RNA sequencing and Gene Ontology mapping found in CS upregulation of proteins responsible for collagen binding and GT maturation as well as fatty acid metabolism enzymes known to be negative regulators of blood vessel sprouting. At the same time, downregulated transcripts were enriched by factors activating capillary growth, suggesting that in MSC sheets paracrine activity may shift towards matrix remodeling and maturation of vasculature, but not activation of blood vessel sprouting. We proposed a putative paracrine trigger mechanism potentially rendering an impact on GT vascularization and remodeling. Our results suggest that within sheets, MSC may change their functional state and spectrum of soluble factors that influence tissue repair and induce more effective skin healing inclining towards regeneration and reduced scarring.
Collapse
Affiliation(s)
- Natalya Alexandrushkina
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Peter Nimiritsky
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Roman Eremichev
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Mikhail Arbatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Natalia Danilova
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
| | - Pavel Malkov
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Zhanna Akopyan
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Vsevolod Tkachuk
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Pavel Makarevich
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| |
Collapse
|
21
|
Zhang Q, Wu P, Chen F, Zhao Y, Li Y, He X, Huselstein C, Ye Q, Tong Z, Chen Y. Brain Derived Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor-Transfected Bone Mesenchymal Stem Cells for the Repair of Periphery Nerve Injury. Front Bioeng Biotechnol 2020; 8:874. [PMID: 32850732 PMCID: PMC7406647 DOI: 10.3389/fbioe.2020.00874] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury is a common clinical neurological disease. In our previous study, highly oriented poly (L-lactic acid) (PLLA)/soy protein isolate (SPI) nanofiber nerve conduits were constructed and exhibited a certain repair capacity for peripheral nerve injury. In order to further improve their nerve repairing efficiency, the bone mesenchymal stem cells (BMSCs) overexpressing brain derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) were introduced into the conduits as seed cells and then were used to repair the 10-mm sciatic nerve defects in rats. The nerve repair efficiency of the functional nerve conduits was evaluated by gait experiment, electrophysiological test, and a series of assays such as hemotoxylin-eosin (HE) staining, immunofluorescence staining, toluidine blue (TB) staining, transmission electron microscopy (TEM) observation of regenerated nerve and Masson's trichrome staining of gastrocnemius muscle. The results showed that the conduits containing BMSCs overexpressing BDNF and GDNF double-factors group had better nerve repairing efficiency than blank BMSCs and single BDNF or GDNF factor groups, and superior to autografts group in some aspects. These data demonstrated that BDNF and GDNF produced by BMSCs could synergistically promote peripheral nerve repair. This study shed a new light on the conduits and stem cells-based peripheral nerve repair.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Ping Wu
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yanan Zhao
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yinping Li
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaohua He
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Céline Huselstein
- CNRS UMR 7561 and FR CNRS-INSERM 32.09, Nancy University, Vandæuvre-lès-Nancy, France
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Wuhan University, Wuhan, China
| | - Zan Tong
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Lu GM, Rong YX, Liang ZJ, Hunag DL, Wu FX, Ma YF, Luo ZZ, Liu XH, Mo S, Li HM. FGF2-induced PI3K/Akt signaling evokes greater proliferation and adipogenic differentiation of human adipose stem cells from breast than from abdomen or thigh. Aging (Albany NY) 2020; 12:14830-14848. [PMID: 32706337 PMCID: PMC7425436 DOI: 10.18632/aging.103547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
In this study, human adipose stem cells were isolated from subcutaneous fat in the thigh (htASCs), abdomen (haASCs) and breast (hbASCs). Flow cytometry was used to detect cell surface markers, and an enzyme-linked immunosorbent assay was used to detect paracrine activity. Paracrine gene expression in the three cell types was examined using real-time qPCR, and adipogenic ability was assessed using Oil Red O staining. RNA from third-passage haASCs and hbASCs was sequenced. The results showed that the differentiation potential marker markers CD49d and CD54 were similar across hbASCs from 10 subjects. The hbASCs showed higher colony forming ability and expression of fibroblast growth factor-2, tissue inhibitor of metalloproteinase-1 and stromal cell derived factor-1 than htASCs and haASCs. Stimulating hbASCs with FGF2 promoted adipogenic differentiation, while treating the cells with the PI3K inhibitor LY294002 inhibited differentiation. These results suggest that the PI3K/Akt signaling pathway can promote proliferation and adipogenic differentiation of adipose stem cells, and that activation of this pathway by FGF2 may explain why hbASCs show greater proliferation and adipogenic differentiation than haASCs and htASCs.
Collapse
Affiliation(s)
- Guan-Ming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Yong-Xian Rong
- Department of Burn and Plastic Surgery, Guiping People's Hospital, Guigping 537200, Guangxi, China
| | - Zhi-Jie Liang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Dong-Lin Hunag
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Fang-Xiao Wu
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Yan-Fei Ma
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Zhi-Zhai Luo
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Xin-Heng Liu
- Department of Burn and Plastic Surgery, Guiping People's Hospital, Guigping 537200, Guangxi, China
| | - Steven Mo
- Nanning Life-Ontology Biotechnology Co., Ltd., Nanning 530229, Guangxi, China
| | - Hong-Mian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| |
Collapse
|
23
|
CRISPR interference-mediated noggin knockdown promotes BMP2-induced osteogenesis and calvarial bone healing. Biomaterials 2020; 252:120094. [PMID: 32422495 DOI: 10.1016/j.biomaterials.2020.120094] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/18/2022]
Abstract
Healing of large calvarial bone defects remains a challenging task in the clinical setting. Although BMP2 (bone morphogenetic protein 2) is a potent growth factor that can induce bone repair, BMP2 provokes the expression of antagonist Noggin that self-restricts its bioactivity. CRISPR interference (CRISPRi) is a technology for programmable gene suppression but its application in regenerative medicine is still in its infancy. We reasoned that Nog inhibition, concurrent with BMP2 overexpression, can promote the osteogenesis of adipose-derived stem cells (ASC) and improve calvarial bone healing. We designed and exploited a hybrid baculovirus (BV) system for the delivery of BMP2 gene and CRISPRi system targeting Nog. After BV-mediated co-delivery into ASC, the system conferred prolonged BMP2 expression and stimulated Nog expression while the CRISPRi system effectively repressed Nog upregulation for at least 14 days. The CRISPRi-mediated Nog knockdown, along with BMP2 overexpression, additively stimulated the osteogenic differentiation of ASC. Implantation of the CRISPRi-engineered ASC into the critical size defects at the calvaria significantly enhanced the calvarial bone healing and matrix mineralization. These data altogether implicate the potentials of CRISPRi-mediated gene knockdown for cell fate regulation and tissue regeneration.
Collapse
|
24
|
Ravenkamp M, Tchoukalova YD, Myers CE, Madsen CS, Shah MK, Zhang N, Lal D, Lott DG. The neurotrophic potential of human platelet lysate substitution for fetal bovine serum in glial induction culture medium. Neurosci Lett 2020; 730:135025. [PMID: 32387720 DOI: 10.1016/j.neulet.2020.135025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Maile Ravenkamp
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Yourka D Tchoukalova
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Cheryl E Myers
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Cathy S Madsen
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Manisha K Shah
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Nan Zhang
- Department of Health Science Research, Section of Biostatistics, Mayo Clinic, Scottsdale, AZ 85059, USA.
| | - Devyani Lal
- Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - David G Lott
- Head and Neck Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic, Phoenix, AZ 85054, USA.
| |
Collapse
|
25
|
Hsu MN, Huang KL, Yu FJ, Lai PL, Truong AV, Lin MW, Nguyen NTK, Shen CC, Hwang SM, Chang YH, Hu YC. Coactivation of Endogenous Wnt10b and Foxc2 by CRISPR Activation Enhances BMSC Osteogenesis and Promotes Calvarial Bone Regeneration. Mol Ther 2019; 28:441-451. [PMID: 31882321 DOI: 10.1016/j.ymthe.2019.11.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
CRISPR activation (CRISPRa) is a burgeoning technology for programmable gene activation, but its potential for tissue regeneration has yet to be fully explored. Bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into osteogenic or adipogenic pathways, which are governed by the Wnt (Wingless-related integration site) signaling cascade. To promote BMSC differentiation toward osteogenesis and improve calvarial bone healing by BMSCs, we harnessed a highly efficient hybrid baculovirus vector for gene delivery and exploited a synergistic activation mediator (SAM)-based CRISPRa system to activate Wnt10b (that triggers the canonical Wnt pathway) and forkhead c2 (Foxc2) (that elicits the noncanonical Wnt pathway) in BMSCs. We constructed a Bac-CRISPRa vector to deliver the SAM-based CRISPRa system into rat BMSCs. We showed that Bac-CRISPRa enabled CRISPRa delivery and potently activated endogenous Wnt10b and Foxc2 expression in BMSCs for >14 days. Activation of Wnt10b or Foxc2 alone was sufficient to promote osteogenesis and repress adipogenesis in vitro. Furthermore, the robust and prolonged coactivation of both Wnt10b and Foxc2 additively enhanced osteogenic differentiation while inhibiting adipogenic differentiation of BMSCs. The CRISPRa-engineered BMSCs with activated Wnt10b and Foxc2 remarkably improved the calvarial bone healing after implantation into the critical-sized calvarial defects in rats. These data implicate the potentials of CRISPRa technology for bone tissue regeneration.
Collapse
Affiliation(s)
- Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Lun Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Fu-Jen Yu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou 333, Taiwan; Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Anh Vu Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | | | - Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou 333, Taiwan; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
26
|
Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol 2019; 7:337. [PMID: 31824934 PMCID: PMC6882937 DOI: 10.3389/fbioe.2019.00337] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every day. As a basic concept, a NGC should act as a physical barrier from the external environment, concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal subsistence is subjected to the existence of an ideal environment of growth factors, hormones, cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs fabricated through combinatorial approaches are needed to improve the functional and clinical outcomes after PNIs. The present work overviews the current reports dealing with the several features that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the molecular and gene therapies as well as cell-based therapies.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| |
Collapse
|
27
|
CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol Adv 2019; 37:107447. [PMID: 31513841 DOI: 10.1016/j.biotechadv.2019.107447] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
CRISPR/Cas9 system exploits the concerted action of Cas9 nuclease and programmable single guide RNA (sgRNA), and has been widely used for genome editing. The Cas9 nuclease activity can be abolished by mutation to yield the catalytically deactivated Cas9 (dCas9). Coupling with the customizable sgRNA for targeting, dCas9 can be fused with transcription repressors to inhibit specific gene expression (CRISPR interference, CRISPRi) or fused with transcription activators to activate the expression of gene of interest (CRISPR activation, CRISPRa). Here we introduce the principles and recent advances of these CRISPR technologies, their delivery vectors and review their applications in stem cell engineering and regenerative medicine. In particular, we focus on in vitro stem cell fate manipulation and in vivo applications such as prevention of retinal and muscular degeneration, neural regeneration, bone regeneration, cartilage tissue engineering, as well as treatment of diseases in blood, skin and liver. Finally, the challenges to translate CRISPR to regenerative medicine and future perspectives are discussed and proposed.
Collapse
|
28
|
Hsu MN, Liao HT, Truong VA, Huang KL, Yu FJ, Chen HH, Nguyen TKN, Makarevich P, Parfyonova Y, Hu YC. CRISPR-based Activation of Endogenous Neurotrophic Genes in Adipose Stem Cell Sheets to Stimulate Peripheral Nerve Regeneration. Theranostics 2019; 9:6099-6111. [PMID: 31534539 PMCID: PMC6735509 DOI: 10.7150/thno.36790] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Peripheral nerve regeneration requires coordinated functions of neurotrophic factors and neuronal cells. CRISPR activation (CRISPRa) is a powerful tool that exploits inactive Cas9 (dCas9), single guide RNA (sgRNA) and transcription activator for gene activation, but has yet to be harnessed for tissue regeneration. Methods: We developed a hybrid baculovirus (BV) vector to harbor and deliver the CRISPRa system for multiplexed activation of 3 neurotrophic factor genes (BDNF, GDNF and NGF). The hybrid BV was used to transduce rat adipose-derived stem cells (ASC) and functionalize the ASC sheets. We further implanted the ASC sheets into sciatic nerve injury sites in rats. Results: Transduction of rat ASC with the hybrid BV vector enabled robust, simultaneous and prolonged activation of the 3 neurotrophic factors for at least 21 days. The CRISPRa-engineered ASC sheets were able to promote Schwann cell (SC) migration, neuron proliferation and neurite outgrowth in vitro. The CRISPRa-engineered ASC sheets further enhanced in vivo functional recovery, nerve reinnervation, axon regeneration and remyelination. Conclusion: These data collectively implicated the potentials of the hybrid BV-delivered CRISPRa system for multiplexed activation of endogenous neurotrophic factor genes in ASC sheets to promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
| | - Han-Tsung Liao
- Department of Plastic and Reconstructive Surgery, Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan, 333
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, 333
- Department of Plastic surgery, Xiamen Chang Gung hospital, China 361028
| | - Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
| | - Kai-Lun Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
| | - Fu-Jen Yu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, 350
| | - Thi Kieu Nuong Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
| | - Pavel Makarevich
- Laboratory of Gene and Cell Therapy, Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia 119192
| | - Yelena Parfyonova
- Laboratory of Angiogenesis, National Medical Research Center for Cardiology, Moscow, Russia 121152
- Laboratory of Postgenomic Technologies in Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia 119192
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan 300
| |
Collapse
|
29
|
Truong VA, Hsu MN, Kieu Nguyen NT, Lin MW, Shen CC, Lin CY, Hu YC. CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic Acids Res 2019; 47:e74. [PMID: 30997496 PMCID: PMC6648329 DOI: 10.1093/nar/gkz267] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Calvarial bone healing remains difficult but may be improved by stimulating chondrogenesis of implanted stem cells. To simultaneously promote chondrogenesis and repress adipogenesis of stem cells, we built a CRISPRai system that comprised inactive Cas9 (dCas9), two fusion proteins as activation/repression complexes and two single guide RNA (sgRNA) as scaffolds for recruiting activator (sgRNAa) or inhibitor (sgRNAi). By plasmid transfection and co-expression in CHO cells, we validated that dCas9 coordinated with sgRNAa to recruit the activator for mCherry activation and also orchestrated with sgRNAi to recruit the repressor for d2EGFP inhibition, without cross interference. After changing the sgRNA sequence to target endogenous Sox9/PPAR-γ, we packaged the entire CRISPRai system into an all-in-one baculovirus for efficient delivery into rat bone marrow-derived mesenchymal stem cells (rBMSC) and verified simultaneous Sox9 activation and PPAR-γ repression. The activation/inhibition effects were further enhanced/prolonged by using the Cre/loxP-based hybrid baculovirus. The CRISPRai system delivered by the hybrid baculovirus stimulated chondrogenesis and repressed adipogenesis of rBMSC in 2D culture and promoted the formation of engineered cartilage in 3D culture. Importantly, implantation of the rBMSC engineered by the CRISPRai improved calvarial bone healing. This study paves a new avenue to translate the CRISPRai technology to regenerative medicine.
Collapse
Affiliation(s)
- Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Nuong Thi Kieu Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chin-Yu Lin
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
30
|
Boldyreva MA, Shevchenko EK, Molokotina YD, Makarevich PI, Beloglazova IB, Zubkova ES, Dergilev KV, Tsokolaeva ZI, Penkov D, Hsu MN, Hu YC, Parfyonova YV. Transplantation of Adipose Stromal Cell Sheet Producing Hepatocyte Growth Factor Induces Pleiotropic Effect in Ischemic Skeletal Muscle. Int J Mol Sci 2019; 20:E3088. [PMID: 31238604 PMCID: PMC6627773 DOI: 10.3390/ijms20123088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023] Open
Abstract
Cell therapy remains a promising approach for the treatment of cardiovascular diseases. In this regard, the contemporary trend is the development of methods to overcome low cell viability and enhance their regenerative potential. In the present study, we evaluated the therapeutic potential of gene-modified adipose-derived stromal cells (ADSC) that overexpress hepatocyte growth factor (HGF) in a mice hind limb ischemia model. Angiogenic and neuroprotective effects were assessed following ADSC transplantation in suspension or in the form of cell sheet. We found superior blood flow restoration, tissue vascularization and innervation, and fibrosis reduction after transplantation of HGF-producing ADSC sheet compared to other groups. We suggest that the observed effects are determined by pleiotropic effects of HGF, along with the multifactorial paracrine action of ADSC which remain viable and functionally active within the engineered cell construct. Thus, we demonstrated the high therapeutic potential of the utilized approach for skeletal muscle recovery after ischemic damage associated with complex tissue degenerative effects.
Collapse
MESH Headings
- Adipose Tissue/cytology
- Animals
- Cell Culture Techniques
- Cell Differentiation/genetics
- Cell Movement/drug effects
- Culture Media, Conditioned/pharmacology
- Disease Models, Animal
- Gene Expression
- Hepatocyte Growth Factor/biosynthesis
- Hepatocyte Growth Factor/genetics
- Humans
- Ischemia
- Mice
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/genetics
- Neuroglia/cytology
- Neuroglia/drug effects
- Neuroglia/metabolism
- Neuronal Outgrowth/drug effects
- Stromal Cells/metabolism
- Stromal Cells/transplantation
Collapse
Affiliation(s)
- Maria A Boldyreva
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Evgeny K Shevchenko
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Yuliya D Molokotina
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
| | - Pavel I Makarevich
- Institute for Regenerative Medicine, Lomonosov Moscow State University, 119191 Moscow, Russia.
| | - Irina B Beloglazova
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Ekaterina S Zubkova
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Konstantin V Dergilev
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
| | - Zoya I Tsokolaeva
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Dmitry Penkov
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
| | - Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yelena V Parfyonova
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
31
|
Chen J, Ren S, Duscher D, Kang Y, Liu Y, Wang C, Yuan M, Guo G, Xiong H, Zhan P, Wang Y, Machens HG, Chen Z. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function. J Cell Physiol 2019; 234:23097-23110. [PMID: 31124125 DOI: 10.1002/jcp.28873] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022]
Abstract
Human adipose-derived stem cells (ASCs) have a potential for the treatment of peripheral nerve injury. Recent studies demonstrated that stem cells can mediate therapeutic effect by secreting exosomes. We aimed to investigate the effect of human ASCs derived exosomes (ASC-Exos) on peripheral nerve regeneration in vitro and in vivo. Our results showed after being internalized by Schwann cells (SCs), ASC-Exos significantly promoted SC proliferation, migration, myelination, and secretion of neurotrophic factors by upregulating corresponding genes in vitro. We next evaluated the efficacy of ASC-Exo therapy in a rat sciatic nerve transection model with a 10-mm gap. Axon regeneration, myelination, and restoration of denervation muscle atrophy in ASC-Exos treated group was significantly improved compared to vehicle control. This study demonstrates that ASC-Exos effectively promote peripheral nerve regeneration via optimizing SC function and thereby represent a novel therapeutic strategy for regenerative medicine and nerve tissue engineering.
Collapse
Affiliation(s)
- Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Unveiling Mesenchymal Stromal Cells' Organizing Function in Regeneration. Int J Mol Sci 2019; 20:ijms20040823. [PMID: 30769851 PMCID: PMC6413004 DOI: 10.3390/ijms20040823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/03/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
Regeneration is a fundamental process attributed to the functions of adult stem cells. In the last decades, delivery of suspended adult stem cells is widely adopted in regenerative medicine as a leading means of cell therapy. However, adult stem cells cannot complete the task of human body regeneration effectively by themselves as far as they need a receptive microenvironment (the niche) to engraft and perform properly. Understanding the mechanisms underlying mammalian regeneration leads us to an assumption that improved outcomes of cell therapy require a specific microenvironment that is generated in damaged areas prior to stem cell delivery. To a certain extent, it may be achieved by the delivery of mesenchymal stromal cells (MSCs), not in dispersed form, but rather in self-organized cell sheets (CS) ⁻ tissue-like structures comprised of viable cells and microenvironment components: extracellular matrix and soluble factors deposited in the matrix. In this review, we highlight the potential role of MSCs as regeneration organizers and speculate that this function emerges in CS. This concept shifts our understanding of the therapeutic mechanism underlying a widely known CS-based delivery method for regenerative medicine.
Collapse
|
33
|
Yousefi F, Lavi Arab F, Nikkhah K, Amiri H, Mahmoudi M. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci 2019; 221:99-108. [PMID: 30735735 DOI: 10.1016/j.lfs.2019.01.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/23/2022]
Abstract
Peripheral nerve injury (PNI) is a common life-changing disability of peripheral nervous system with significant socioeconomic consequences. Conventional therapeutic approaches for PNI have several drawbacks such as need to autologous nerve scarifying, surplus surgery, and difficult accessibility to donor nerve; therefore, other therapeutic strategies such as mesenchymal stem cells (MSCs) therapy are getting more interesting. MSCs have been proved to be safe and efficient in numerous degenerative diseases of central and peripheral nervous systems. In this paper, we review novel biotechnological advancements in treating PNI using MSCs.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Nikkhah
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation. Colloids Surf B Biointerfaces 2019; 173:689-697. [DOI: 10.1016/j.colsurfb.2018.10.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 12/15/2022]
|
35
|
Lin MW, Tseng YW, Shen CC, Hsu MN, Hwu JR, Chang CW, Yeh CJ, Chou MY, Wu JC, Hu YC. Synthetic switch-based baculovirus for transgene expression control and selective killing of hepatocellular carcinoma cells. Nucleic Acids Res 2018; 46:e93. [PMID: 29905834 PMCID: PMC6125686 DOI: 10.1093/nar/gky447] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/04/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
Baculovirus (BV) holds promise as a vector for anticancer gene delivery to combat the most common liver cancer-hepatocellular carcinoma (HCC). However, in vivo BV administration inevitably results in BV entry into non-HCC normal cells, leaky anticancer gene expression and possible toxicity. To improve the safety, we employed synthetic biology to engineer BV for transgene expression regulation. We first uncovered that miR-196a and miR-126 are exclusively expressed in HCC and normal cells, respectively, which allowed us to engineer a sensor based on distinct miRNA expression signature. We next assembled a synthetic switch by coupling the miRNA sensor and RNA binding protein L7Ae for translational repression, and incorporated the entire device into a single BV. The recombinant BV efficiently entered HCC and normal cells and enabled cis-acting transgene expression control, by turning OFF transgene expression in normal cells while switching ON transgene expression in HCC cells. Using pro-apoptotic hBax as the transgene, the switch-based BV selectively killed HCC cells in separate culture and mixed culture of HCC and normal cells. These data demonstrate the potential of synthetic switch-based BV to distinguish HCC and non-HCC normal cells for selective transgene expression control and killing of HCC cells.
Collapse
Affiliation(s)
- Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yen-Wen Tseng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jih-Ru Hwu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Ju Yeh
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Yuan Chou
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Jaw-Ching Wu
- Medical Research Department, Taipei Veterans General Hospital, Taipei Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
36
|
Stem cell-based approaches to enhance nerve regeneration and improve functional outcomes in vascularized composite allotransplantation. Curr Opin Organ Transplant 2018; 23:577-581. [PMID: 30138147 DOI: 10.1097/mot.0000000000000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The current review will discuss the current understanding of nerve regeneration in vascularized composite allotransplantation (VCA). The success of proximal arm and leg transplants has been hampered by the limitations of nerve regrowth across long distances resulting in poor regeneration and functional recovery. Relevant research in stem-cell therapies to overcome these issues will be reviewed. RECENT FINDINGS The effect of rejection on nerve regeneration in the VCA may be unpredictable and may be quite different for the nerve allograft. The issues that limit functional outcome are likely common to both VCA and proximal nerve injuries or replantation. Stem-cell therapies have focused on augmenting Schwann cell function and appear promising. SUMMARY A better understanding of the effects of transplant rejection on nerve regeneration and function, as well as the factors that affect regeneration over long distances may inform further therapeutic approaches for improvement.
Collapse
|