1
|
Shah SA, Sohail M, Nakielski P, Rinoldi C, Zargarian SS, Kosik-Kozioł A, Ziai Y, Haghighat Bayan MA, Zakrzewska A, Rybak D, Bartolewska M, Pierini F. Integrating Micro- and Nanostructured Platforms and Biological Drugs to Enhance Biomaterial-Based Bone Regeneration Strategies. Biomacromolecules 2025; 26:140-162. [PMID: 39621708 PMCID: PMC11733931 DOI: 10.1021/acs.biomac.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 01/14/2025]
Abstract
Bone defects resulting from congenital anomalies and trauma pose significant clinical challenges for orthopedics surgeries, where bone tissue engineering (BTE) aims to address these challenges by repairing defects that fail to heal spontaneously. Despite numerous advances, BTE still faces several challenges, i.e., difficulties in detecting and tracking implanted cells, high costs, and regulatory approval hurdles. Biomaterials promise to revolutionize bone grafting procedures, heralding a new era of regenerative medicine and advancing patient outcomes worldwide. Specifically, novel bioactive biomaterials have been developed that promote cell adhesion, proliferation, and differentiation and have osteoconductive and osteoinductive characteristics, stimulating tissue regeneration and repair, particularly in complex skeletal defects caused by trauma, degeneration, and neoplasia. A wide array of biological therapeutics for bone regeneration have emerged, drawing from the diverse spectrum of gene therapy, immune cell interactions, and RNA molecules. This review will provide insights into the current state and potential of future strategies for bone regeneration.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
- Faculty
of Pharmacy, The Superior University, Lahore 54000, Punjab, Pakistan
| | - Muhammad Sohail
- Faculty
of Pharmacy, Cyprus International University, Nicosia 99258, North Cyprus
| | - Paweł Nakielski
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Chiara Rinoldi
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Alicja Kosik-Kozioł
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Yasamin Ziai
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Mohammad Ali Haghighat Bayan
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anna Zakrzewska
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Daniel Rybak
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Magdalena Bartolewska
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
2
|
Hou X, Zhang L, Chen Y, Liu Z, Zhao X, Lu B, Luo Y, Qu X, Musskaya O, Glazov I, Kulak AI, Chen F, Zhao J, Zhou Z, Zheng L. Photothermal switch by gallic acid-calcium grafts synthesized by coordination chemistry for sequential treatment of bone tumor and regeneration. Biomaterials 2025; 312:122724. [PMID: 39106818 DOI: 10.1016/j.biomaterials.2024.122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
The residual bone tumor and defects which is caused by surgical therapy of bone tumor is a major and important problem in clinicals. And the sequential treatment for irradiating residual tumor and repairing bone defects has wildly prospects. In this study, we developed a general modification strategy by gallic acid (GA)-assisted coordination chemistry to prepare black calcium-based materials, which combines the sequential photothermal therapy of bone tumor and bone defects. The GA modification endows the materials remarkable photothermal properties. Under the near-infrared (NIR) irradiation with different power densities, the black GA-modified bone matrix (GBM) did not merely display an excellent performance in eliminating bone tumor with high temperature, but showed a facile effect of the mild-heat stimulation to accelerate bone regeneration. GBM can efficiently regulate the microenvironments of bone regeneration in a spatial-temporal manner, including inflammation/immune response, vascularization and osteogenic differentiation. Meanwhile, the integrin/PI3K/Akt signaling pathway of bone marrow mesenchymal stem cells (BMSCs) was revealed to be involved in the effect of osteogenesis induced by the mild-heat stimulation. The outcome of this study not only provides a serial of new multifunctional biomaterials, but also demonstrates a general strategy for designing novel blacked calcium-based biomaterials with great potential for clinical use.
Collapse
Affiliation(s)
- Xiaodong Hou
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Lei Zhang
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yixing Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhiqing Liu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Zhao
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bingqiang Lu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yiping Luo
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Qu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Olga Musskaya
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Ilya Glazov
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Anatoly I Kulak
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Feng Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Zifei Zhou
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Longpo Zheng
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Shanghai Trauma Emergency Center, Orthopedic Intelligent Minimally Invasive Diagnosis & Treatment Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
3
|
Han C, Wu Z, Gao Y, Yang S, Wang Y, Guo M, Li Y, Yin W, Liu L, Song W, Zhang P, Wang L. An Additive-Fabricated Biphasic Scaffold for Procedurally Promoting Bone Regeneration via Antioxidant and Osteogenesis. Biotechnol Bioeng 2024. [PMID: 39682015 DOI: 10.1002/bit.28896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/05/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
The repair process of bone tissue includes the early inflammatory response period and the late tissue repair period. It has been widely approved to be beneficial to the repair of bone injury by procedurally inhibiting the inflammatory response in the early stage and promoting bone regeneration in the late stage. In this study, the nano-hydroxyapatite/Poly(glycolide-co-caprolactone) (n-HA/PGCL) scaffold loaded with icariin was fabricated by fused deposition modeling technique, and the quercetin-loaded GelMA was further filled into the scaffold pores via light-curing methods to form a biphasic scaffold loaded with dual molecules (PHI + GQ scaffold). The releases of icariin and quercetin were sequential due to different degradation rates of GelMA and PGCL. In vitro, the scaffold not only scavenged reactive oxygen species production, but also promoted osteogenic differentiation of the MC-3T3-E1 cells. Furthermore, in vivo bone reconstruction of PHI + GQ scaffold was better than other groups by assessment of micro-CT data. In addition, the immunofluorescence staining of Arg-1 and iNOS indicated that PHI + GQ scaffold created an immune microenvironment conducive to bone repair due to the release of quercetin in the early stage, and HE and Masson staining suggested that PHI + GQ scaffold induced more new bone formation. These results demonstrated that the biphasic scaffold loaded with icariin and quercetin had both antioxidants in the early stage and osteogenesis properties in the late stage, obtaining satisfactory bone repair outcomes. Thus, the biphasic scaffold loaded with icariin and quercetin for sequential release could provide a promising solution for the restoration of bone defects and represent a potential strategy for bone regeneration.
Collapse
Affiliation(s)
- Chunyu Han
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, P.R. China
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Yuqi Gao
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, P.R. China
| | - Shuang Yang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, P.R. China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Yueyue Li
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Wanzhong Yin
- Department of Otorhinolaryngology, First Hospital of Jilin University, Changchun, P.R. China
| | - Ling Liu
- Department of Otorhinolaryngology, First Hospital of Jilin University, Changchun, P.R. China
| | - Wenzhi Song
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, P.R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Liqiang Wang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, P.R. China
| |
Collapse
|
4
|
Sun X, Lin Y, Zhong X, Fan C, Liu Z, Chen X, Luo Z, Wu J, Tima S, Zhang Z, Jiang J, Du X, Zhou X, Zhong Z. Alendronate-functionalized polymeric micelles target icaritin to bone for mitigating osteoporosis in a rat model. J Control Release 2024; 376:37-51. [PMID: 39368708 DOI: 10.1016/j.jconrel.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Formulating drugs into nanoparticles that target sites of disease can lead to strong therapeutic effects with lower doses of drugs and lower rates of off-target adverse effects. Few ways to target drugs to bone have been described, hampering the treatment of osteoporosis. Here we exploit the ability of alendronate to bind tightly to hydroxyapatite in bone as a tactic to target polymeric micelles loaded with the plant flavonoid icaritin to osteoporotic lesions. The traditional Chinese medicine icaritin, from Herba Epimedii, has previously been shown to inhibit adipogenesis and enhance osteogenesis by bone mesenchymal stem cells, but the compound on its own persists only briefly in the bloodstream. Our delivery system led to stronger inhibition of adipogenesis and activation of osteogenesis in a rat model of osteoporosis than when the icaritin-loaded micelles lacked alendronate. These results establish the feasibility of using alendronate to target osteogenic phytomolecules to sites of bone injury, which may guide the development of effective therapies against osteoporosis and, by extension, other bone disorders.
Collapse
Affiliation(s)
- Xiaoduan Sun
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Lin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xingyue Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chao Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhen Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zaiyi Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jili Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Zhirong Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xingjie Du
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiangyu Zhou
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zhirong Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| |
Collapse
|
5
|
Wang X, Wang C, Chu C, Xue F, Li J, Bai J. Structure-function integrated biodegradable Mg/polymer composites: Design, manufacturing, properties, and biomedical applications. Bioact Mater 2024; 39:74-105. [PMID: 38783927 PMCID: PMC11112617 DOI: 10.1016/j.bioactmat.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Mg is a typical biodegradable metal widely used for biomedical applications due to its considerable mechanical properties and bioactivity. Biodegradable polymers have attracted great interest owing to their favorable processability and inclusiveness. However, it is challenging for the degradation rates of Mg or polymers to precisely match tissue repair processes, and the significant changes in local pH during degradation hinder tissue repair. The concept of combining Mg with polymers is proposed to overcome the shortcomings of materials, aiming to meet repair needs from various aspects such as mechanics and biology. Therefore, it is essential to systematically understand the behavior of biodegradable Mg/polymer composite (BMPC) from the design, manufacturing, mechanical properties, degradation, and biological effects. In this review, we elaborate on the design concepts and manufacturing strategies of high-strength BMPC, the "structure-function" relationship between the microstructures and mechanical properties of composites, the variation in the degradation rate due to endogenous and exogenous factors, and the establishment of advanced degradation research platform. Additionally, the interplay among composite components during degradation and the biological function of composites under non-responsive/stimuli-responsive platforms are also discussed. Finally, we hope that this review will benefit future clinical applications of "structure-function" integrated biomaterials.
Collapse
Affiliation(s)
- Xianli Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119276, Singapore
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119276, Singapore
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
| |
Collapse
|
6
|
Gu C, Chen H, Zhao Y, Xi H, Tan X, Xue P, Sun G, Jiang X, Du B, Liu X. Ti 3C 2T x@PLGA/Icaritin microspheres-modified PLGA/ β-TCP scaffolds modulate Icaritin release to enhance bone regeneration through near-infrared response. Biomed Mater 2024; 19:055038. [PMID: 39121886 DOI: 10.1088/1748-605x/ad6dc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Porous poly (lactic-co-glycolic acid)/β-tricalcium phosphate/Icaritin (PLGA/β-TCP/ICT, PTI) scaffold is a tissue engineering scaffold based on PLGA/β-TCP (PT) containing Icaritin, the main active ingredient of the Chinese medicine Epimedium. Due to its excellent mechanical properties and osteogenic effect, PTI scaffold has the potential to promote bone defect repair. However, the release of ICT from the scaffolds is difficult to control. In this study, we constructed Ti3C2Tx@PLGA/ICT microspheres (TIM) and evaluated their characterization as well as ICT release under near-infrared (NIR) irradiation. We utilized TIM to modify the PT scaffold and performed biological experiments. First, we cultured rat bone marrow mesenchymal stem cells on the scaffold to assess biocompatibility and osteogenic potential under on-demand NIR irradiation. Subsequently, to evaluate the osteogenic properties of TIM-modified scaffoldin vivo, the scaffold was implanted into a femoral condyle defect model. TIM have excellent drug-loading capacity and encapsulation efficiency for ICT, and the incorporation of Ti3C2Txendows TIM with photothermal conversion capability. Under 0.90 W cm-2NIR irradiation, the temperature of TIM maintained at 42.0 ± 0.5 °C and the release of ICT was accelerated. Furthermore, while retaining its original properties, the TIM-modified scaffold was biocompatible and could promote cell proliferation, osteogenic differentiation, and biomineralizationin vitro, as well as the osteogenesis and osseointegrationin vivo, and its effect was further enhanced through the modulation of ICT release under NIR irradiation. In summary, TIM-modified scaffold has the potential to be applied in bone defects repairing.
Collapse
Affiliation(s)
- Changyuan Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Hao Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Yiqiao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 Jiangsu, People's Republic of China
| | - Hongzhong Xi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Xiaoxue Tan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 Jiangsu, People's Republic of China
| | - Peng Xue
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Guangquan Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Xiaohong Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 Jiangsu, People's Republic of China
| | - Bin Du
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Xin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Xu J, Bao G, Jia B, Wang M, Wen P, Kan T, Zhang S, Liu A, Tang H, Yang H, Yue B, Dai K, Zheng Y, Qu X. An adaptive biodegradable zinc alloy with bidirectional regulation of bone homeostasis for treating fractures and aged bone defects. Bioact Mater 2024; 38:207-224. [PMID: 38756201 PMCID: PMC11096722 DOI: 10.1016/j.bioactmat.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Healing of fractures or bone defects is significantly hindered by overactivated osteoclasts and inhibited osteogenesis in patients with abnormal bone metabolism. Current clinical approaches using titanium alloys or stainless steel provide mechanical support but have no biological effects on bone regeneration. Therefore, designing and fabricating degradable metal materials with sufficient mechanical strength and bidirectional regulation of both osteoblasts and osteoclasts is a substantial challenge. Here, this study first reported an adaptive biodegradable Zn-0.8 Mg alloy with bidirectional regulation of bone homeostasis, which promotes osteogenic differentiation by activating the Pi3k/Akt pathway and inhibits osteoclast differentiation by inhibiting the GRB2/ERK pathway. The anti-osteolytic ability of the Zn-0.8 Mg alloy was verified in a mouse calvarial osteolysis model and its suitability for internal fracture fixation with high-strength screws was confirmed in the rabbit femoral condyle fracture model. Furthermore, in an aged postmenopausal rat femoral condyle defect model, 3D printed Zn-0.8 Mg scaffolds promoted excellent bone regeneration through adaptive structures with good mechanical properties and bidirectionally regulated bone metabolism, enabling personalized bone defect repair. These findings demonstrate the substantial potential of the Zn-0.8 Mg alloy for treating fractures or bone defects in patients with aberrant bone metabolism.
Collapse
Affiliation(s)
- Jialian Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Guo Bao
- Laboratory Animal centre, National Research Institute for Family Planning, Beijing, 100081, China
| | - Bo Jia
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tianyou Kan
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Aobo Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Kerong Dai
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| |
Collapse
|
8
|
Ilyas S, Lee J, Lee D. Emerging Roles of Natural Compounds in Osteoporosis: Regulation, Molecular Mechanisms and Bone Regeneration. Pharmaceuticals (Basel) 2024; 17:984. [PMID: 39204089 PMCID: PMC11356869 DOI: 10.3390/ph17080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Bone health is a critical aspect of overall well-being, and disorders such as osteoporosis pose significant challenges worldwide. East Asian Herbal Medicine (EAHM), with its rich history and holistic approach, offers promising avenues for enhancing bone regeneration. In this critical review article, we analyze the intricate mechanisms through which EAHM compounds modulate bone health. We explore the interplay between osteogenesis and osteoclastogenesis, dissect signaling pathways crucial for bone remodeling and highlight EAHM anti-inflammatory effects within the bone microenvironment. Additionally, we emphasize the promotion of osteoblast viability and regulation of bone turnover markers by EAHM compounds. Epigenetic modifications emerge as a fascinating frontier where EAHM influences DNA methylation and histone modifications to orchestrate bone regeneration. Furthermore, we highlight EAHM effects on osteocytes, mesenchymal stem cells and immune cells, unraveling the holistic impact in bone tissue. Finally, we discuss future directions, including personalized medicine, combinatorial approaches with modern therapies and the integration of EAHM into evidence-based practice.
Collapse
Affiliation(s)
| | | | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (S.I.); (J.L.)
| |
Collapse
|
9
|
Lai X, Huang J, Huang S, Wang J, Zheng Y, Luo Y, Tang L, Gao B, Tang Y. Antibacterial and Osteogenic Dual-Functional Micronano Composite Scaffold Fabricated via Melt Electrowriting and Solution Electrospinning for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37707-37721. [PMID: 39001812 DOI: 10.1021/acsami.4c07400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
The utilization of micronano composite scaffolds has been extensively demonstrated to confer the superior advantages in bone repair compared to single nano- or micron-sized scaffolds. Nevertheless, the enhancement of bioactivities within these composite scaffolds remains challenging. In this study, we propose a novel approach to combine melt electrowriting (MEW) and solution electrospinning (SES) techniques for the fabrication of a composite scaffold incorporating hydroxyapatite (HAP), an osteogenic component, and roxithromycin (ROX), an antibacterial active component. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) confirmed the hierarchical architecture of the nanofiber-microgrid within the scaffold, as well as the successful loading of HAP and ROX. The incorporation of HAP enhanced the water absorption capacity of the composite scaffold, thus promoting cell adhesion and proliferation, as well as osteogenic differentiation. Furthermore, ROX resulted in effective antibacterial capability without any observable cytotoxicity. Finally, the scaffolds were applied to a rat calvarial defect model, and the results demonstrated that the 20% HAP group exhibited superior new bone formation without causing adverse reactions. Therefore, our findings present a promising strategy for designing and fabricating bioactive scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Xiangjie Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Shunfen Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Jiyuan Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongsheng Zheng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuli Luo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Linjun Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Wang X, Tang P, Yang K, Guo S, Tang Y, Zhang H, Wang Q. Regulation of bone homeostasis by traditional Chinese medicine active scaffolds and enhancement for the osteoporosis bone regeneration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118141. [PMID: 38570149 DOI: 10.1016/j.jep.2024.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.
Collapse
Affiliation(s)
- Xi Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Shuangquan Guo
- Chengdu Holy (Group) Industry Co. Ltd., Chengdu, 610041, China
| | - Youhong Tang
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China; Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
11
|
Wang J, Zhang Y, Tang Q, Zhang Y, Yin Y, Chen L. Application of Antioxidant Compounds in Bone Defect Repair. Antioxidants (Basel) 2024; 13:789. [PMID: 39061858 PMCID: PMC11273992 DOI: 10.3390/antiox13070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Bone defects caused by trauma, tumor resection, and infections are significant clinical challenges. Excessive reactive oxygen species (ROS) usually accumulate in the defect area, which may impair the function of cells involved in bone formation, posing a serious challenge for bone repair. Due to the potent ROS scavenging ability, as well as potential anti-inflammatory and immunomodulatory activities, antioxidants play an indispensable role in the maintenance and protection of bone health and have gained increasing attention in recent years. This narrative review aims to give an overview of the main research directions on the application of antioxidant compounds in bone defect repair over the past decade. In addition, the positive effects of various antioxidants and their biomaterial delivery systems in bone repair are summarized to provide new insights for exploring antioxidant-based strategies for bone defect repair.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yubing Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
12
|
Einabadi M, Izadyari Aghmiuni A, Foroutani L, Ai A, Namini MS, Farzin A, Nahanmoghadam A, Shirian S, Kargar Jahromi H, Ai J. Evaluation of the effect of co-transplantation of collagen-hydroxyapatite bio-scaffold containing nanolycopene and human endometrial mesenchymal stem cell derived exosomes to regenerate bone in rat critical size calvarial defect. Regen Ther 2024; 26:387-400. [PMID: 39045576 PMCID: PMC11263782 DOI: 10.1016/j.reth.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 07/25/2024] Open
Abstract
This study aimed to evaluate the effect of nanoparticles based on the PLGA and biomolecule of lycopene (i.e. NLcp) and exosomes loaded on hydroxyapatite/collagen-based scaffolds (HA/Coll), on human endometrial MSCs (hEnMSCs) differentiation into osteoblast cells. To this end, after synthesizing NLcp and isolating hEnMSC-derived exosomes, and studying their characterizations, HA/Coll scaffold with/without NLcp and exosome was fabricated. In following, the rat skull-defect model was created on 54 male Sprague-Dawley rats (12 weeks old) which were classified into 6 groups [control group (4 healthy rats), negative control group: bone defect without grafting (10 rats), and experimental groups including bone defect grafted with HA/Coll scaffold (10 rats), HA/Coll/NLcp scaffold (10 rats), HA/Coll scaffold + exosome (10 rats), and HA/Coll-NLcp scaffold + exosome (10 rats)]. Finally, the grafted membrane along with its surrounding tissues was removed at 90 days after surgery, to assess the amount of defect repair by Hematoxylin and eosin staining. Moreover, immunohistochemical and X-ray Micro-Computed Tomography (Micro-CT) analyses were performed to assess osteocalcin and mean bone volume fraction (BVF). Based on the results, although, the existence of the exosome in the scaffold network can significantly increase mean BVF compared to HA/Coll scaffold and HA/Coll-NLcp scaffold (2.25-fold and 1.5-fold, respectively). However, the combination of NLcp and exosome indicated more effect on mean BVF; so that the HA/Coll-NLcp scaffold + exosome led to a 15.95 % increase in mean BVF than the HA/Coll scaffold + exosome. Hence, synthesized NLcp in this study can act as a suitable bioactive to stimulate the osteogenic, promotion of cell proliferation and its differentiation when used in the polymer scaffold structure or loaded into polymeric carriers containing the exosome.
Collapse
Affiliation(s)
- Masoumeh Einabadi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Laleh Foroutani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Ai
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Salehi Namini
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farzin
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Nahanmoghadam
- Department of Chemical Engineering, Faculty of Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Pathology, Shahrekord University, Shahrekord, Iran
| | - Hossein Kargar Jahromi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Xu Z, Wang B, Huang R, Guo M, Han D, Yin L, Zhang X, Huang Y, Li X. Efforts to promote osteogenesis-angiogenesis coupling for bone tissue engineering. Biomater Sci 2024; 12:2801-2830. [PMID: 38683241 DOI: 10.1039/d3bm02017g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Repair of bone defects exceeding a critical size has been always a big challenge in clinical practice. Tissue engineering has exhibited great potential to effectively repair the defects with less adverse effect than traditional bone grafts, during which how to induce vascularized bone formation has been recognized as a critical issue. Therefore, recently many studies have been launched to attempt to promote osteogenesis-angiogenesis coupling. This review summarized comprehensively and explored in depth current efforts to ameliorate the coupling of osteogenesis and angiogenesis from four aspects, namely the optimization of scaffold components, modification of scaffold structures, loading strategies for bioactive substances, and employment tricks for appropriate cells. Especially, the advantages and the possible reasons for every strategy, as well as the challenges, were elaborated. Furthermore, some promising research directions were proposed based on an in-depth analysis of the current research. This paper will hopefully spark new ideas and approaches for more efficiently boosting new vascularized bone formations.
Collapse
Affiliation(s)
- Zhiwei Xu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Bingbing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Ruoyu Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Mengyao Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Di Han
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Lan Yin
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaoyun Zhang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| |
Collapse
|
14
|
Mohammadzadeh M, Zarei M, Abbasi H, Webster TJ, Beheshtizadeh N. Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms. J Biol Eng 2024; 18:29. [PMID: 38649969 PMCID: PMC11036660 DOI: 10.1186/s13036-024-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
There is an increasing demand for innovative strategies that effectively promote osteogenesis and enhance bone regeneration. The critical process of bone regeneration involves the transformation of mesenchymal stromal cells into osteoblasts and the subsequent mineralization of the extracellular matrix, making up the complex mechanism of osteogenesis. Icariin's diverse pharmacological properties, such as anti-inflammatory, anti-oxidant, and osteogenic effects, have attracted considerable attention in biomedical research. Icariin, known for its ability to stimulate bone formation, has been found to encourage the transformation of mesenchymal stromal cells into osteoblasts and improve the subsequent process of mineralization. Several studies have demonstrated the osteogenic effects of icariin, which can be attributed to its hormone-like function. It has been found to induce the expression of BMP-2 and BMP-4 mRNAs in osteoblasts and significantly upregulate Osx at low doses. Additionally, icariin promotes bone formation by stimulating the expression of pre-osteoblastic genes like Osx, RUNX2, and collagen type I. However, icariin needs to be effectively delivered to bone to perform such promising functions.Encapsulating icariin within nanoplatforms holds significant promise for promoting osteogenesis and bone regeneration through a range of intricate biological effects. When encapsulated in nanofibers or nanoparticles, icariin exerts its effects directly at the cellular level. Recalling that inflammation is a critical factor influencing bone regeneration, icariin's anti-inflammatory effects can be harnessed and amplified when encapsulated in nanoplatforms. Also, while cell adhesion and cell migration are pivotal stages of tissue regeneration, icariin-loaded nanoplatforms contribute to these processes by providing a supportive matrix for cellular attachment and movement. This review comprehensively discusses icariin-loaded nanoplatforms used for bone regeneration and osteogenesis, further presenting where the field needs to go before icariin can be used clinically.
Collapse
Affiliation(s)
- Mahsa Mohammadzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Zarei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Abbasi
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
15
|
Ge W, Gao Y, He L, Jiang Z, Zeng Y, Yu Y, Xie X, Zhou F. Developing Chinese herbal-based functional biomaterials for tissue engineering. Heliyon 2024; 10:e27451. [PMID: 38496844 PMCID: PMC10944231 DOI: 10.1016/j.heliyon.2024.e27451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
The role of traditional Chinese medicine (TCM) in treating diseases is receiving increasing attention. Chinese herbal medicine is an important part of TCM with various applications and the active ingredients extracted from Chinese herbal medicines have physiological and pathological effects. Tissue engineering combines cell biology and materials science to construct tissues or organs in vitro or in vivo. TCM has been proposed by the World Health Organization as an effective treatment modality. In recent years, the potential use of TCM in tissue engineering has been demonstrated. In this review, the classification and efficacy of TCM active ingredients and delivery systems are discussed based on the TCM theory. We also summarized the current application status and broad prospects of Chinese herbal active ingredients in different specialized biomaterials in the field of tissue engineering. This review provides novel insights into the integration of TCM and modern Western medicine through the application of Chinese medicine in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Liming He
- Changsha Stomatological Hospital, Changsha, PR China
| | | | - Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yi Yu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Fang Zhou
- Xiangtan Maternal and Child Health Hospital, Xiangtan, PR China
| |
Collapse
|
16
|
Amaya-Rivas JL, Perero BS, Helguero CG, Hurel JL, Peralta JM, Flores FA, Alvarado JD. Future trends of additive manufacturing in medical applications: An overview. Heliyon 2024; 10:e26641. [PMID: 38444512 PMCID: PMC10912264 DOI: 10.1016/j.heliyon.2024.e26641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Additive Manufacturing (AM) has recently demonstrated significant medical progress. Due to advancements in materials and methodologies, various processes have been developed to cater to the medical sector's requirements, including bioprinting and 4D, 5D, and 6D printing. However, only a few studies have captured these emerging trends and their medical applications. Therefore, this overview presents an analysis of the advancements and achievements obtained in AM for the medical industry, focusing on the principal trends identified in the annual report of AM3DP.
Collapse
Affiliation(s)
- Jorge L. Amaya-Rivas
- Advanced Manufacturing and Prototyping Laboratory (CAMPRO), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - Bryan S. Perero
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - Carlos G. Helguero
- Advanced Manufacturing and Prototyping Laboratory (CAMPRO), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - Jorge L. Hurel
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - Juan M. Peralta
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - Francisca A. Flores
- Faculty of Natural Sciences and Mathematics (FCNM), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - José D. Alvarado
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
17
|
Qi J, Yang S, Jiang Y, Cheng J, Wang S, Rao Q, Jiang X. Liquid Metal-Polymer Conductor-Based Conformal Cyborg Devices. Chem Rev 2024; 124:2081-2137. [PMID: 38393351 DOI: 10.1021/acs.chemrev.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.
Collapse
Affiliation(s)
- Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P. R. China
| | - Jinhao Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qingyan Rao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
18
|
De Giorgio G, Matera B, Vurro D, Manfredi E, Galstyan V, Tarabella G, Ghezzi B, D'Angelo P. Silk Fibroin Materials: Biomedical Applications and Perspectives. Bioengineering (Basel) 2024; 11:167. [PMID: 38391652 PMCID: PMC10886036 DOI: 10.3390/bioengineering11020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The golden rule in tissue engineering is the creation of a synthetic device that simulates the native tissue, thus leading to the proper restoration of its anatomical and functional integrity, avoiding the limitations related to approaches based on autografts and allografts. The emergence of synthetic biocompatible materials has led to the production of innovative scaffolds that, if combined with cells and/or bioactive molecules, can improve tissue regeneration. In the last decade, silk fibroin (SF) has gained attention as a promising biomaterial in regenerative medicine due to its enhanced bio/cytocompatibility, chemical stability, and mechanical properties. Moreover, the possibility to produce advanced medical tools such as films, fibers, hydrogels, 3D porous scaffolds, non-woven scaffolds, particles or composite materials from a raw aqueous solution emphasizes the versatility of SF. Such devices are capable of meeting the most diverse tissue needs; hence, they represent an innovative clinical solution for the treatment of bone/cartilage, the cardiovascular system, neural, skin, and pancreatic tissue regeneration, as well as for many other biomedical applications. The present narrative review encompasses topics such as (i) the most interesting features of SF-based biomaterials, bare SF's biological nature and structural features, and comprehending the related chemo-physical properties and techniques used to produce the desired formulations of SF; (ii) the different applications of SF-based biomaterials and their related composite structures, discussing their biocompatibility and effectiveness in the medical field. Particularly, applications in regenerative medicine are also analyzed herein to highlight the different therapeutic strategies applied to various body sectors.
Collapse
Affiliation(s)
- Giuseppe De Giorgio
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Biagio Matera
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Davide Vurro
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Edoardo Manfredi
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Vardan Galstyan
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy
| | - Giuseppe Tarabella
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Benedetta Ghezzi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Pasquale D'Angelo
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| |
Collapse
|
19
|
Li J, Yang Y, Sun Z, Peng K, Liu K, Xu P, Li J, Wei X, He X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater Today Bio 2024; 24:100934. [PMID: 38234458 PMCID: PMC10792490 DOI: 10.1016/j.mtbio.2023.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
A porous structure is essential for bone implants because it increases the bone ingrowth space and improves mechanical and biological properties. The biomimetically designed porous Voronoi scaffold can reconstruct the structure and function of cancellous bone; however, its comprehensive properties need to be investigated further. In this study, algorithms based on scaling factors were used to design the Voronoi scaffolds. Classic approaches, such as computer-aided design and the implicit surface method, have been used to design Diamond, Gyroid, and I-WP scaffolds as controls. All scaffolds were prepared by selective laser melting of titanium alloys and three-dimensional printing. Mechanical tests, finite element analysis, and in vitro and in vivo experiments were performed to investigate the biomechanical, cytologic, and osteogenic performance of the scaffolds, while computational fluid dynamics simulations were used to explore the underlying mechanisms. Diamond scaffolds have a better loading capacity, and the mechanical behaviors and fluid flow of Voronoi scaffolds are similar to those of the human trabecular bone. Cells showed more proliferation and distribution on the Diamond and Voronoi scaffolds and exhibited evident differentiation on Gyroid and Voronoi scaffolds. Bone formation was apparent on the inner part of the Gyroid, the outer part of the I-WP, and the entire Diamond and Voronoi scaffolds. The hydrodynamic properties and stimulus response of cells influenced by the porous structure account for the varied biological performance of the scaffolds. The Voronoi scaffolds with bionic mechanical behavior and an appropriate hydrodynamic response exhibit evident cell growth and osteogenesis, making them preferable for porous structural bone implants.
Collapse
Affiliation(s)
- Jialiang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Yubing Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Kan Peng
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Kaixin Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Jun Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
20
|
Yuan Y, Xu Y, Mao Y, Liu H, Ou M, Lin Z, Zhao R, Long H, Cheng L, Sun B, Zhao S, Zeng M, Lu B, Lu H, Zhu Y, Chen C. Three Birds, One Stone: An Osteo-Microenvironment Stage-Regulative Scaffold for Bone Defect Repair through Modulating Early Osteo-Immunomodulation, Middle Neovascularization, and Later Osteogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306428. [PMID: 38060833 PMCID: PMC10853759 DOI: 10.1002/advs.202306428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/28/2023] [Indexed: 02/10/2024]
Abstract
In order to repair critical-sized bone defects, various polylactic acid-glycolic acid (PLGA)-based hybrid scaffolds are successfully developed as bone substitutes. However, the byproducts of these PLGA-based scaffolds are known to acidify the implanted site, inducing tiresome acidic inflammation. Moreover, these degradation productions cannot offer an osteo-friendly microenvironment at the implanted site, matching natural bone healing. Herein, inspired by bone microenvironment atlas of natural bone-healing process, an osteo-microenvironment stage-regulative scaffold (P80/D10/M10) is fabricated by incorporating self-developed decellularized bone matrix microparticles (DBM-MPs) and multifunctional magnesium hydroxide nanoparticles (MH-NPs) into PLGA with an optimized proportion using low-temperature rapid prototyping (LT-RP) 3D-printing technology. The cell experiments show that this P80/D10/M10 exhibits excellent properties in mechanics, biocompatibility, and biodegradability, meanwhile superior stimulations in osteo-immunomodulation, angiogenesis, and osteogenesis. Additionally, the animal experiments determined that this P80/D10/M10 can offer an osteo-friendly microenvironment in a stage-matched pattern for enhanced bone regeneration, namely, optimization of early inflammation, middle neovascularization, and later bone formation. Furthermore, transcriptomic analysis suggested that the in vivo performance of P80/D10/M10 on bone defect repair is mostly attributed to regulating artery development, bone development, and bone remodeling. Overall, this study reveals that the osteo-microenvironment stage-regulative scaffold provides a promising treatment for bone defect repair.
Collapse
Affiliation(s)
- Yuhao Yuan
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yan Xu
- Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangshaHunan410008China
- Department of Sports MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yiyang Mao
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangshaHunan410008China
| | - Hongbin Liu
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Minning Ou
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Zhangyuan Lin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Ruibo Zhao
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Haitao Long
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Liang Cheng
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Buhua Sun
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Shushan Zhao
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Ming Zeng
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Bangbao Lu
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Hongbin Lu
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangshaHunan410008China
- Department of Sports MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yong Zhu
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Can Chen
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangshaHunan410008China
| |
Collapse
|
21
|
Luo Y, Peng X, Cheng C, Deng Y, Lei N, Feng S, Yu X. 3D Molybdenum Disulfide Nanospheres Loaded with Metformin to Enhance SCPP Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:201-216. [PMID: 38127723 DOI: 10.1021/acsami.3c14229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Conventional strontium-doped calcium polyphosphate (SCPP) ceramics have attracted a lot of attention due to good cytocompatibility and controlled degradation. However, their poor mechanical strength, brittleness, and difficulty in eliminating unavoidable postoperative inflammation and bacterial infections in practical applications limit their further clinical application. In this study, carboxylated molybdenum disulfide nanospheres (MoS2-COOH) were first prepared via a one-step hydrothermal method. The optimal doping concentration of MoS2-COOH was then incorporated into SCPP to overcome its poor mechanical strength. To further enhance the anti-inflammatory properties of scaffolds, metformin (MET) was loaded onto MoS2-COOH through covalent bond cross-linking (MoS2-MET). Then MoS2-MET was doped into SCPP (SCPP/MoS2-MET) according to the previously obtained concentration, resulting in the controlled and sustained release of MET from the SCPP/MoS2-MET scaffolds for 21 days in vitro. The SCPP/MoS2-MET scaffolds were shown to have good biological activity in vitro to promote stem cell proliferation and the potential to promote mineralization in vitro. It also showed good osteoimmunomodulatory activity could reduce the expression of proinflammatory factors and effectively induce the differentiation of BMSCs under inflammatory conditions, upregulating the expression of relevant osteoblastic cytokines. In addition, SCPP/MoS2-MET scaffolds could effectively inhibit Staphylococcus aureus and Escherichia coli. In vivo experiments also demonstrated better osteogenic potential of SCPP/MoS2-MET scaffolds compared with the other scaffold-samples. Thus, the introduction of carboxylated molybdenum disulfide nanospheres is a promising approach to improve the properties of SCPP and may provide a new modification strategy for inert ceramic scaffolds and the construction of multifunctional composite scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Chan Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yiqing Deng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
22
|
Saurav S, Sharma P, Kumar A, Tabassum Z, Girdhar M, Mamidi N, Mohan A. Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment. Curr Issues Mol Biol 2024; 46:585-611. [PMID: 38248340 PMCID: PMC10814241 DOI: 10.3390/cimb46010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair.
Collapse
Affiliation(s)
- Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, Delhi, India;
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University, Phagwara 144401, Punjab, India;
| | - Narsimha Mamidi
- Wisconsin Centre for Nano Biosystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| |
Collapse
|
23
|
Elhakim A, Kim S, Shin SJ, Jung HS, Kim E. Effect of icariin surface treatment on the resorption of denuded roots after replantation in rat. Int Endod J 2023; 56:1550-1558. [PMID: 37787769 DOI: 10.1111/iej.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
AIM Limiting the incidence of resorption associated with delayed replantation of avulsed teeth is critical for long-term tooth survival. In this study, we assessed whether icariin, a natural product with anti-osteoclastic properties, could reduce root resorption in a rat model of tooth replantation. METHODOLOGY Cytocompatibility of icariin (10, 20, 40 and 80 μM) was evaluated by CCK-8 proliferation assay in vitro, and an osteoclastogenesis assay was performed to evaluate the effect of icariin on the differentiation of rat bone marrow macrophages and human peripheral blood monocytes into tartrate-resistant acid phosphatase-stained (TRAP+ ) multinucleated giant cells (MNGCs). Differentiation of human periodontal ligament stem cells (hPDLSCs) treated with icariin (10 μM) was also evaluated at 5, 10 and 21 days of osteogenic induction. The first maxillary molars of five-week-old male Sprague-Dawley rats were extracted, denuded of PDL, then treated either with neutralized collagen solution (Carrier control) or icariin in collagen (3 μg/μL) before replantation into their sockets. The animals were euthanized 2 weeks post-surgery for micro-computed tomography (micro-CT) imaging and histological analyses. RESULTS Icariin was cytocompatible and significantly reduced the differentiation of TRAP+ MNGCs in a dose-dependent manner compared to the control. Moreover, icariin enhanced alkaline phosphatase activity, expression of osteogenic marker genes and proteins, and calcium deposition in hPDLSCs. Micro-CT imaging of the replanted samples demonstrated a significantly higher volume of remaining roots in the icariin-treated group than in the control group. Histological analysis revealed a marked number of resorptive lacunae with TRAP activity in the control group, whereas icariin-treated samples showed signs of functional healing and reduced osteoclastic activity. CONCLUSIONS Icariin was biocompatible and demonstrated potent anti-osteoclastic and pro-osteogenic properties that reduced resorption and promoted functional healing of denuded roots in a rat maxillary first molar model of replantation. These findings indicate that root surface treatment with icariin may be a clinically relevant and practical method for improving the retention and survival of teeth with compromised PDL after delayed replantation following traumatic avulsion.
Collapse
Affiliation(s)
- Ahmed Elhakim
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Sunil Kim
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - Su-Jung Shin
- Department of Conservative Dentistry, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry, Seoul, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research center, Oral Science Research Center, BK21 FOUR project, Yonsei University College of Dentistry, Seoul, Korea
| | - Euiseong Kim
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
24
|
Ren Y, Zheng Z, Yu Y, Hu R, Xu S. Three-Dimensional Printed Poly (Lactic-co-Glycolic Acid)-Magnesium Composite Scaffolds for the Promotion of Osteogenesis Through Immunoregulation. J Craniofac Surg 2023; 34:2563-2568. [PMID: 37782137 PMCID: PMC10597428 DOI: 10.1097/scs.0000000000009750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/04/2023] [Indexed: 10/03/2023] Open
Abstract
Scaffolds play an important role in bone tissue engineering. The ideal engineered scaffold needs to be biocompatible, bioactive, and able to regulate immune cells to enhance bone regeneration. In this study, magnesium (Mg)-contained poly(lactic-co-glycolic acid) (PLGA) scaffolds (hereinafter, referred to as PLGA-2Mg) were fabricated by 3-dimensional printing using a mixture of PLGA and MgSO 4 powder. Poly(lactic-co-glycolic acid) scaffolds (hereinafter, referred to as PLGA) were also fabricated by 3-dimensional printing and were used as control. The biocompatibility, immunoregulatory ability, and osteogenic properties of PLGA-2Mg were analyzed and compared with those of PLGA. The results indicate that the incorporation of Mg increased the Young modulus and surface roughness of the scaffold, but did not affect its degradation. The PLGA-2Mg further promoted the adhesion and proliferation of MC3T3-E1 cells compared with PLGA, which indicates its improved biocompatibility and bioactivity. In addition, PLGA-2Mg inhibited the polarization of RAW 264.7 cells toward the M1 phenotype by down-regulating the IL-1β , IL-6 , and iNOs gene expression when challenged with lipopolysaccharide stimulation. In contrast, it promoted the polarization of RAW 264.7 cells toward the M2 phenotype by up-regulating the TGF-β , IL-10 , and Arg-1 gene expression without lipopolysaccharide stimulation. Finally, MC3T3-E1 cells were cocultured with RAW 264.7 cells and scaffolds using a transwell system. It was found that the expression level of osteogenic-related genes ( ALP , COL-1 , BMP2 , and BSP ) was significantly upregulated in the PLGA-2Mg group compared with that in the PLGA group. Consequently, PLGA-2Mg with increased biocompatibility and bioactivity can promote osteogenesis through immunoregulation and has the potential to be used as a novel scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Orthodontics, Qingdao Stomatological Hospital, Qingdao, Shandong
| | - Zheng Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu
| | - Yanjun Yu
- Department of Stomatology, Nanjing Tongren Hospital, Nanjing, Jiangsu
| | - Rongrong Hu
- Department of Stomatology, The Second People’s Hospital of Tibet Autonomous Region, Lasa, Tibet
| | - Shanshan Xu
- Department of Orthodontics, Qingdao Stomatological Hospital, Qingdao, Shandong
| |
Collapse
|
25
|
Zhou J, See CW, Sreenivasamurthy S, Zhu D. Customized Additive Manufacturing in Bone Scaffolds-The Gateway to Precise Bone Defect Treatment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0239. [PMID: 37818034 PMCID: PMC10561823 DOI: 10.34133/research.0239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
In the advancing landscape of technology and novel material development, additive manufacturing (AM) is steadily making strides within the biomedical sector. Moving away from traditional, one-size-fits-all implant solutions, the advent of AM technology allows for patient-specific scaffolds that could improve integration and enhance wound healing. These scaffolds, meticulously designed with a myriad of geometries, mechanical properties, and biological responses, are made possible through the vast selection of materials and fabrication methods at our disposal. Recognizing the importance of precision in the treatment of bone defects, which display variability from macroscopic to microscopic scales in each case, a tailored treatment strategy is required. A patient-specific AM bone scaffold perfectly addresses this necessity. This review elucidates the pivotal role that customized AM bone scaffolds play in bone defect treatment, while offering comprehensive guidelines for their customization. This includes aspects such as bone defect imaging, material selection, topography design, and fabrication methodology. Additionally, we propose a cooperative model involving the patient, clinician, and engineer, thereby underscoring the interdisciplinary approach necessary for the effective design and clinical application of these customized AM bone scaffolds. This collaboration promises to usher in a new era of bioactive medical materials, responsive to individualized needs and capable of pushing boundaries in personalized medicine beyond those set by traditional medical materials.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Carmine Wang See
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Sai Sreenivasamurthy
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
26
|
Yang J, Zhang L, Ding Q, Zhang S, Sun S, Liu W, Liu J, Han X, Ding C. Flavonoid-Loaded Biomaterials in Bone Defect Repair. Molecules 2023; 28:6888. [PMID: 37836731 PMCID: PMC10574214 DOI: 10.3390/molecules28196888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Skeletons play an important role in the human body, and can form gaps of varying sizes once damaged. Bone defect healing involves a series of complex physiological processes and requires ideal bone defect implants to accelerate bone defect healing. Traditional grafts are often accompanied by issues such as insufficient donors and disease transmission, while some bone defect implants are made of natural and synthetic polymers, which have characteristics such as good porosity, mechanical properties, high drug loading efficiency, biocompatibility and biodegradability. However, their antibacterial, antioxidant, anti-inflammatory and bone repair promoting abilities are limited. Flavonoids are natural compounds with various biological activities, such as antitumor, anti-inflammatory and analgesic. Their good anti-inflammatory, antibacterial and antioxidant activities make them beneficial for the treatment of bone defects. Several researchers have designed different types of flavonoid-loaded polymer implants for bone defects. These implants have good biocompatibility, and they can effectively promote the expression of angiogenesis factors such as VEGF and CD31, promote angiogenesis, regulate signaling pathways such as Wnt, p38, AKT, Erk and increase the levels of osteogenesis-related factors such as Runx-2, OCN, OPN significantly to accelerate the process of bone defect healing. This article reviews the effectiveness and mechanism of biomaterials loaded with flavonoids in the treatment of bone defects. Flavonoid-loaded biomaterials can effectively promote bone defect repair, but we still need to improve the overall performance of flavonoid-loaded bone repair biomaterials to improve the bioavailability of flavonoids and provide more possibilities for bone defect repair.
Collapse
Affiliation(s)
- Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lifeng Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
| | - Shuwen Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
| | - Wencong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Jinhui Liu
- Huashikang (Shenyang) Health Industrial Group Corporation, Shenyang 110031, China;
| | - Xiao Han
- Looking Up Starry Sky Medical Research Center, Siping 136001, China;
| | - Chuanbo Ding
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| |
Collapse
|
27
|
Mishchenko O, Yanovska A, Kosinov O, Maksymov D, Moskalenko R, Ramanavicius A, Pogorielov M. Synthetic Calcium-Phosphate Materials for Bone Grafting. Polymers (Basel) 2023; 15:3822. [PMID: 37765676 PMCID: PMC10536599 DOI: 10.3390/polym15183822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Synthetic bone grafting materials play a significant role in various medical applications involving bone regeneration and repair. Their ability to mimic the properties of natural bone and promote the healing process has contributed to their growing relevance. While calcium-phosphates and their composites with various polymers and biopolymers are widely used in clinical and experimental research, the diverse range of available polymer-based materials poses challenges in selecting the most suitable grafts for successful bone repair. This review aims to address the fundamental issues of bone biology and regeneration while providing a clear perspective on the principles guiding the development of synthetic materials. In this study, we delve into the basic principles underlying the creation of synthetic bone composites and explore the mechanisms of formation for biologically important complexes and structures associated with the various constituent parts of these materials. Additionally, we offer comprehensive information on the application of biologically active substances to enhance the properties and bioactivity of synthetic bone grafting materials. By presenting these insights, our review enables a deeper understanding of the regeneration processes facilitated by the application of synthetic bone composites.
Collapse
Affiliation(s)
- Oleg Mishchenko
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Anna Yanovska
- Theoretical and Applied Chemistry Department, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
| | - Oleksii Kosinov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Denys Maksymov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Roman Moskalenko
- Department of Pathology, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Iela 3, LV-1004 Riga, Latvia
| |
Collapse
|
28
|
Sun T, Wang J, Huang H, Liu X, Zhang J, Zhang W, Wang H, Li Z. Low-temperature deposition manufacturing technology: a novel 3D printing method for bone scaffolds. Front Bioeng Biotechnol 2023; 11:1222102. [PMID: 37622000 PMCID: PMC10445654 DOI: 10.3389/fbioe.2023.1222102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The application of three-dimensional printing technology in the medical field has great potential for bone defect repair, especially personalized and biological repair. As a green manufacturing process that does not involve liquefication through heating, low-temperature deposition manufacturing (LDM) is a promising type of rapid prototyping manufacturing and has been widely used to fabricate scaffolds in bone tissue engineering. The scaffolds fabricated by LDM have a multi-scale controllable pore structure and interconnected micropores, which are beneficial for the repair of bone defects. At the same time, different types of cells or bioactive factor can be integrated into three-dimensional structural scaffolds through LDM. Herein, we introduced LDM technology and summarize its applications in bone tissue engineering. We divide the scaffolds into four categories according to the skeleton materials and discuss the performance and limitations of the scaffolds. The ideas presented in this review have prospects in the development and application of LDM scaffolds.
Collapse
Affiliation(s)
- Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| |
Collapse
|
29
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
30
|
Zhang Y, Sun B, Zhao L, Yang G. Design and Manufacturing of a Novel Trabecular Tibial Implant. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4720. [PMID: 37445036 DOI: 10.3390/ma16134720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The elastic modulus of traditional solid titanium alloy tibial implants is much higher than that of human bones, which can cause stress shielding. Designing them as a porous structure to form a bone-like trabecular structure effectively reduces stress shielding. However, the actual loading conditions of bones in different parts of the human body have not been considered for some trabecular structures, and their mechanical properties have not been considered concerning the personalized differences of other patients. Therefore, based on the elastic modulus of the tibial stem obtained from Quantitative Computed Tomography (QCT) imaging between 3.031 and10.528 GPa, and the load-bearing state of the tibia at the knee joint, a porous structure was designed under compressive and shear loading modes using topology optimization. Through comprehensive analysis of the mechanical and permeability properties of the porous structure, the results show that the Topology Optimization-Shear-2 (TO-S2) structure has the best compressive, shear mechanical properties and permeability and is suitable as a trabecular structure for tibial implants. The Gibson-Ashby model was established to control the mechanical properties of porous titanium alloy. A gradient filling of porous titanium alloy with a strut diameter of 0.106-0.202 mm was performed on the tibial stem based on the elastic modulus range, achieving precise matching of the mechanical properties of tibial implants and closer to the natural structure than uniformly distributed porous structures in human bones. Finally, the new tibial implant was printed by selective laser melting (SLM), and the molding effect was excellent.
Collapse
Affiliation(s)
- Yongdi Zhang
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Baoyu Sun
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Lisong Zhao
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Guang Yang
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
31
|
Słota D, Piętak K, Jampilek J, Sobczak-Kupiec A. Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2235. [PMID: 36984115 PMCID: PMC10059071 DOI: 10.3390/ma16062235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Conventional intake of drugs and active substances is most often based on oral intake of an appropriate dose to achieve the desired effect in the affected area or source of pain. In this case, controlling their distribution in the body is difficult, as the substance also reaches other tissues. This phenomenon results in the occurrence of side effects and the need to increase the concentration of the therapeutic substance to ensure it has the desired effect. The scientific field of tissue engineering proposes a solution to this problem, which creates the possibility of designing intelligent systems for delivering active substances precisely to the site of disease conversion. The following review discusses significant current research strategies as well as examples of polymeric and composite carriers for protein and non-protein biomolecules designed for bone tissue regeneration.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
32
|
Polymeric Systems for the Controlled Release of Flavonoids. Pharmaceutics 2023; 15:pharmaceutics15020628. [PMID: 36839955 PMCID: PMC9964149 DOI: 10.3390/pharmaceutics15020628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Flavonoids are natural compounds that are attracting great interest in the biomedical field thanks to the wide spectrum of their biological properties. Their employment as anticancer, anti-inflammatory, and antidiabetic drugs, as well as for many other pharmacological applications, is extensively investigated. One of the most successful ways to increase their therapeutic efficacy is to encapsulate them into a polymeric matrix in order to control their concentration in the physiological fluids for a prolonged time. The aim of this article is to provide an updated overview of scientific literature on the polymeric systems developed so far for the controlled release of flavonoids. The different classes of flavonoids are described together with the polymers most commonly employed for drug delivery applications. Representative drug delivery systems are discussed, highlighting the most common techniques for their preparation. The flavonoids investigated for polymer system encapsulation are then presented with their main source of extraction and biological properties. Relevant literature on their employment in this context is reviewed in relationship to the targeted pharmacological and biomedical applications.
Collapse
|
33
|
Seyedi Z, Amiri MS, Mohammadzadeh V, Hashemzadeh A, Haddad-Mashadrizeh A, Mashreghi M, Qayoomian M, Hashemzadeh MR, Simal-Gandara J, Taghavizadeh Yazdi ME. Icariin: A Promising Natural Product in Biomedicine and Tissue Engineering. J Funct Biomater 2023; 14:44. [PMID: 36662090 PMCID: PMC9862744 DOI: 10.3390/jfb14010044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
Among scaffolds used in tissue engineering, natural biomaterials such as plant-based materials show a crucial role in cellular function due to their biocompatibility and chemical indicators. Because of environmentally friendly behavior and safety, green methods are so important in designing scaffolds. A key bioactive flavonoid of the Epimedium plant, Icariin (ICRN), has a broad range of applications in improving scaffolds as a constant and non-immunogenic material, and in stimulating the cell growth, differentiation of chondrocytes as well as differentiation of embryonic stem cells towards cardiomyocytes. Moreover, fusion of ICRN into the hydrogel scaffolds or chemical crosslinking can enhance the secretion of the collagen matrix and proteoglycan in bone and cartilage tissue engineering. To scrutinize, in various types of cancer cells, ICRN plays a decisive role through increasing cytochrome c secretion, Bax/Bcl2 ratio, poly (ADP-ribose) polymerase as well as caspase stimulations. Surprisingly, ICRN can induce apoptosis, reduce viability and inhibit proliferation of cancer cells, and repress tumorigenesis as well as metastasis. Moreover, cancer cells no longer grow by halting the cell cycle at two checkpoints, G0/G1 and G2/M, through the inhibition of NF-κB by ICRN. Besides, improving nephrotoxicity occurring due to cisplatin and inhibiting multidrug resistance are the other applications of this biomaterial.
Collapse
Affiliation(s)
- Zahra Seyedi
- Department of Stem Cells and Regenerative Medicine, Royesh Stem Cell Biotechnology Institute, Mashhad 9188758156, Iran
- Department of Cancer and Oncology, Royesh Stem Cell Biotechnology Institute, Mashhad 9188758156, Iran
| | | | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Alireza Hashemzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mohammad Mashreghi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Mohammad Reza Hashemzadeh
- Department of Stem Cells and Regenerative Medicine, Royesh Stem Cell Biotechnology Institute, Mashhad 9188758156, Iran
- Department of Cancer and Oncology, Royesh Stem Cell Biotechnology Institute, Mashhad 9188758156, Iran
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| | | |
Collapse
|
34
|
Zhang X, Lin X, Wang M, Deng L, Wei L, Liu Y. Icariin Has a Synergistic Effect on the Osteoinductivity of Bone Morphogenetic Protein 2 at Ectopic Sites. Orthop Surg 2023; 15:540-548. [PMID: 36628510 PMCID: PMC9891965 DOI: 10.1111/os.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/22/2022] [Accepted: 08/07/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Establishing biocompatible, biodegradable, osteoconductive, and osteoinductive bone materials remains a challenging subject in the research of bone healing and bone regeneration. Previously, we demonstrated the osteogenic and osteoconductive effects of biomimetic calcium phosphate (BioCaP) incorporating with Icariin and/or bone morphogenetic protein 2 (BMP-2) at orthotopic sites. METHODS By implanting the BioCaP granules incorporated Icariin and/or BMP-2 into the dorsal subcutaneous pockets of adult male Sprague-Dawley (S-D) rats (6-7 weeks old), we investigated the osteoinductive efficacy of the samples. Micro-computed tomography(micro-CT) observations and histological slices were used to verify the osteoinduction of this system on the 2nd and 5th week. Statistical significances was evaluated using Turkey's post hoc test of one-way analysis of variance. RESULTS The osteoinduction of the BioCaP incorporated with BMP-2 or both agents was confirmed as expected. BioCaP with Icariin alone could not generate bone formation at an ectopic sites. Nevertheless, co-administration of Icariin increased bone mineral density (BMD; p < 0.01) (628mg HA/cm3 vs 570mg HA/cm3 ) and completely changed the distribution of newly formed bone when compared with the granules with BMP-2 alone, even though there was no significant difference in the volume of newly formed bone. In contrast, the BioCaP with both agents (37.86%) had significantly fewer remaining materials than the other groups by the end of the fifth week (53.22%, 53.62% and 48.22%) (p < 0.01). CONCLUSION The co-administration of Icariin and BMP-2 increased BMD changed the distribution of newly formed bone, and reduced the amount of remaining materials. Therefore, Icariin can stimulate BMP-2 when incorporated into BioCaP granules at ectopic sites, which makes it useful for bone tissue engineering.
Collapse
Affiliation(s)
- Xin Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouChina
| | - Xingnan Lin
- School of DentistryZhejiang Chinese Medical UniversityHangzhouChina
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Center of Dentistry (ACTA)University of Amsterdam and VU UniversityAmsterdamThe Netherlands
| | - Liquan Deng
- School of StomatologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Lingfei Wei
- Department of Oral Cell Biology, Academic Center of Dentistry (ACTA)University of Amsterdam and VU UniversityAmsterdamThe Netherlands,Department of Dental ImplantologyYantai Stomatological HospitalYantaiChina
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Center of Dentistry (ACTA)University of Amsterdam and VU UniversityAmsterdamThe Netherlands
| |
Collapse
|
35
|
LL-37-Coupled Porous Composite Scaffold for the Treatment of Infected Segmental Bone Defect. Pharmaceutics 2022; 15:pharmaceutics15010088. [PMID: 36678716 PMCID: PMC9864206 DOI: 10.3390/pharmaceutics15010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Increased multiantibiotic-resistant bacteria means that infected bone defects remain a significant challenge to clinics. Great interest has emerged in the use of non-antibiotic antimicrobials to reduce the rate of multiantibiotic-resistant bacterial infection and facilitate bone regeneration. The cationic antimicrobial peptide LL-37 is the sole human cathelicidin and has shown nonspecific activity against a broad spectrum of microorganisms. In this study, we fabricated the poly(lactic-co-glycolic acid)/β-calcium phosphate/peptide LL-37 (PLGA/TCP/LL-37, PTL) scaffold with low-temperature 3D-printing technology for the treatment of infected segmental bone defects. The prepared scaffolds were divided into three groups: a high LL-37 concentration group (PTHL), low LL-37 concentration group (PTLL) and blank control group (PT). The cytocompatibility and antimicrobial activity of the engineered scaffolds were tested in vitro, and their osteogenesis properties were assessed in vivo in a rat infected bone defect model. We found the fabricated PTL scaffold had a well-designed porous structure that could support a steady and prolonged LL-37 release. Furthermore, the PTHL group showed strong antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) without any inhibition of the proliferation or alkaline phosphatase activity of rat bone marrow mesenchymal stem cells (BMSCs) in vitro. In addition, the infected femoral defects implanted with PTHL group displayed new bone formation in four weeks without any evidence of residual bacteria, which showed similar antibacterial outcomes to the vancomycin and cancellous bone mixture group. In conclusion, the PTHL composite scaffold is a promising non-antibiotic antimicrobial graft with good biodegradability, biocompatibility, and osteogenic capability for infected bone defects.
Collapse
|
36
|
Liu N, Huang S, Guo F, Zhai S, Wang D, Li F, Liu C. Calcium phosphate cement with icariin-loaded gelatin microspheres as a local drug delivery system for bone regeneration. Biomed Eng Online 2022; 21:89. [PMID: 36550581 PMCID: PMC9773482 DOI: 10.1186/s12938-022-01052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Icariin (ICA), a main active ingredient of Herba Epimedium, could promote bone formation, inhibit bone resorption and alleviate inflammatory responses. The aim of this study was to investigate the effect of ICA on the inhibition of bacteria associated with peri-implantitis, and fabricate a calcium phosphate cement (CPC) with ICA-loaded gelatin microspheres (GMs) as a local drug delivery system efficiently promoting bone formation and alleviating inflammation. RESULTS In this study, ICA exhibited antibacterial activity against P. gingivalis with a MIC value of 1 × 10-4 mol/L. When the concentration of ICA was 0.5 mM, the encapsulation efficiency of GMs reached the maximum value of 76.26 ± 3.97%. GMs with ICA revealed a controlled release profile, 0.5 mM ICA exhibited a higher ICA release profile than the other groups during a 21 d monitoring span. The results of SEM and XRD demonstrated successful fabrication of a calcium phosphate cement with ICA-loaded GMs. ICA released from CPC/GMs (ICA) was slower than ICA released from GMs within 10 days. CPC/GMs (ICA) exhibited antibacterial activity against P. gingivalis, but the antibacterial rate of CPC/GMs (ICA) was only 17.15 ± 6.06%. In addition, CPC/GMs (ICA) promoted the proliferation of BMSCs and significantly stimulated the differentiation and maturation of BMSCs. In vivo, H&E and Masson staining experiments demonstrated that CPC/GMs (ICA) exhibited better capacity for bone regeneration than CPC/GMs and CPC, and the expression of TNF-α and IL-1β in the tissue around CPC/GMs (ICA) was significantly lower than CPC/GMs and CPC in IHC staining (P < 0.05). CONCLUSION In this study, ICA exhibited limited antibacterial activity against bacteria associated with peri-implantitis. A composite material of calcium phosphate cement with ICA-loaded gelatin microspheres was developed, which not only promoting osteoinductivity and bone formation, but also alleviating inflammation, demonstrating its potential as a promising bone substitute material for treatment of peri-implantitis.
Collapse
Affiliation(s)
- Ning Liu
- grid.508540.c0000 0004 4914 235XDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Shuo Huang
- grid.508540.c0000 0004 4914 235XDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Fang Guo
- grid.508540.c0000 0004 4914 235XDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Shafei Zhai
- grid.508540.c0000 0004 4914 235XDepartment of Oral Histopathology, School of Stomatology, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Danyang Wang
- grid.508540.c0000 0004 4914 235XDepartment of Prosthodontics, School of Stomatology, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Fang Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, Air Force Military Medical University, Xi’an, 710032 Shaanxi China
| | - Changkui Liu
- grid.508540.c0000 0004 4914 235XDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| |
Collapse
|
37
|
Elyaderani AK, De Lama-Odría MDC, del Valle LJ, Puiggalí J. Multifunctional Scaffolds Based on Emulsion and Coaxial Electrospinning Incorporation of Hydroxyapatite for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms232315016. [PMID: 36499342 PMCID: PMC9738225 DOI: 10.3390/ijms232315016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue engineering is nowadays a powerful tool to restore damaged tissues and recover their normal functionality. Advantages over other current methods are well established, although a continuous evolution is still necessary to improve the final performance and the range of applications. Trends are nowadays focused on the development of multifunctional scaffolds with hierarchical structures and the capability to render a sustained delivery of bioactive molecules under an appropriate stimulus. Nanocomposites incorporating hydroxyapatite nanoparticles (HAp NPs) have a predominant role in bone tissue regeneration due to their high capacity to enhance osteoinduction, osteoconduction, and osteointegration, as well as their encapsulation efficiency and protection capability of bioactive agents. Selection of appropriated polymeric matrices is fundamental and consequently great efforts have been invested to increase the range of properties of available materials through copolymerization, blending, or combining structures constituted by different materials. Scaffolds can be obtained from different processes that differ in characteristics, such as texture or porosity. Probably, electrospinning has the greater relevance, since the obtained nanofiber membranes have a great similarity with the extracellular matrix and, in addition, they can easily incorporate functional and bioactive compounds. Coaxial and emulsion electrospinning processes appear ideal to generate complex systems able to incorporate highly different agents. The present review is mainly focused on the recent works performed with Hap-loaded scaffolds having at least one structural layer composed of core/shell nanofibers.
Collapse
Affiliation(s)
- Amirmajid Kadkhodaie Elyaderani
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - María del Carmen De Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| |
Collapse
|
38
|
Zhang Y, Li C, Zhang W, Deng J, Nie Y, Du X, Qin L, Lai Y. 3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration. Bioact Mater 2022; 16:218-231. [PMID: 35415289 PMCID: PMC8965852 DOI: 10.1016/j.bioactmat.2021.12.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 01/01/2023] Open
Abstract
Patients with bone defects suffer from a high rate of disability and deformity. Poor contact of grafts with defective bones and insufficient osteogenic activities lead to increased loose risks and unsatisfied repair efficacy. Although self-expanding scaffolds were developed to enhance bone integration, the limitations on the high transition temperature and the unsatisfied bioactivity hindered greatly their clinical application. Herein, we report a near-infrared-responsive and tight-contacting scaffold that comprises of shape memory polyurethane (SMPU) as the thermal-responsive matrix and magnesium (Mg) as the photothermal and bioactive component, which fabricated by the low temperature rapid prototyping (LT-RP) 3D printing technology. As designed, due to synergistic effects of the components and the fabrication approach, the composite scaffold possesses a homogeneously porous structure, significantly improved mechanical properties and stable photothermal effects. The programmed scaffold can be heated to recover under near infrared irradiation in 60s. With 4 wt% Mg, the scaffold has the balanced shape fixity ratio of 93.6% and shape recovery ratio of 95.4%. The compressed composite scaffold could lift a 100 g weight under NIR light, which was more than 1700 times of its own weight. The results of the push-out tests and the finite element analysis (FEA) confirmed the tight-contacting ability of the SMPU/4 wt%Mg scaffold, which had a signficant enhancement compared to the scaffold without shape memory effects. Furthermore, The osteopromotive function of the scaffold has been demonstrated through a series of in vitro and in vivo studies. We envision this scaffold can be a clinically effective strategy for robust bone regeneration.
Collapse
Affiliation(s)
- Yuanchi Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cairong Li
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junjie Deng
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yangyi Nie
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiangfu Du
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen, China
| |
Collapse
|
39
|
Liu Y, Zhang Y, Zheng Z, Zhong W, Wang H, Lin Z, Li L, Wu G. Incorporation of NGR1 promotes bone regeneration of injectable HA/nHAp hydrogels by anti-inflammation regulation via a MAPK/ERK signaling pathway. Front Bioeng Biotechnol 2022; 10:992961. [PMID: 36213055 PMCID: PMC9537692 DOI: 10.3389/fbioe.2022.992961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Suitable bone grafts are commonly required to achieve successful bone regeneration, wherein much effort has been spent to optimize their osteogenesis. Increasing evidence has demonstrated that reducing the levels of TNF-α can enhance bone regeneration at the injury site. Notoginsenoside R1 (NGR1) has been extensively studied in the field of anti-inflammation and regenerative medicine. Nanosized hydroxyapatite (nHAp) possesses excellent biocompatibility and osteoconductivity. In this study, we fabricated a thermoresponsive, injectable hyaluronic acid/nHAp (HA/nHAp) composite hydrogel incorporated with NGR1 to promote bone regeneration. Furthermore, NGR1-HA/nHAp hydrogel could enhance bone regeneration than those of HA and HA/nHAp hydrogels, profited by the underlying osteoblastic mechanism that NGR1 could facilitate activation of the MAPK/ERK signaling pathway and down-regulate the expression of TNF-α, ultimately upregulated expression of osteogenic genes. In summary, the NGR1-HA/nHAp composite hydrogel with controlled inflammation, and excellent osteogenic effect, will have great potential for use in bone regeneration applications.
Collapse
Affiliation(s)
- Yi Liu
- Department of Oral Implantology, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yifan Zhang
- Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Zexiang Zheng
- Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Wenchao Zhong
- Department of Oral Implantology, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Haiyang Wang
- Department of Oral Implantology, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Zhen Lin
- Department of Orthopedics, Jinan University First Affiliated Hospital, Guangzhou, China
- *Correspondence: Zhen Lin, ; Lihua Li,
| | - Lihua Li
- Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
- *Correspondence: Zhen Lin, ; Lihua Li,
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
40
|
Wan C, Hu M, Peng X, Lei N, Ding H, Luo Y, Yu X. Novel multifunctional dexamethasone carbon dots synthesized using the one-pot green method for anti-inflammatory, osteogenesis, and osteoimmunomodulatory in bone regeneration. Biomater Sci 2022; 10:6291-6306. [PMID: 36135326 DOI: 10.1039/d2bm01153k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone tissue regeneration is still a major orthopedic challenge. The process of bone regeneration is often disrupted by inflammation. Elevated levels of reactive oxygen species (ROS) can lead to aggravated inflammation and even hinder tissue repairs. Therefore, inhibiting the inflammatory response during the process of bone regeneration and promoting bone tissue regeneration under inflammatory conditions are the goals that need to be achieved urgently. In this work, dexamethasone carbon dots (DCDs) were developed by a one-pot facile hydrothermal method using citric acid, ammonium fluoride, and a trace amount of dexamethasone. The obtained DCDs exhibited good biocompatibility and could promote the differentiation of rBMSCs under both normal and inflammatory conditions. Owing to the abundant-reducing groups, DCDs could also scavenge ROS (˙OH) and retain the pharmacological activity of dexamethasone, thereby reducing the inflammatory response. Moreover, DCDs presented a good osteoimmunomodulatory activity to induce a bone immune microenvironment and further promote the differentiation of BMSCs. DCDs could promote macrophage phenotype switching (from M1-type macrophages to M2-type macrophages) under inflammatory conditions, which was beneficial to the anti-inflammatory response. All in all, DCDs could reduce the inflammatory response of bone tissue and accelerate bone regeneration in combination with the regulation of the bone immune. Undoubtedly, it also provided a new idea for developing a novel carbon nanomaterial for repairing bone tissue defects.
Collapse
Affiliation(s)
- Chang Wan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China. .,Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Hongmei Ding
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| |
Collapse
|
41
|
Wang C, Sun B, Zhang Y, Wang C, Yang G. Design of a Novel Trabecular Acetabular Cup and Selective Laser Melting Fabrication. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15176142. [PMID: 36079522 PMCID: PMC9457748 DOI: 10.3390/ma15176142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 06/01/2023]
Abstract
The acetabular cups used in total hip arthroplasty are mostly made of dense metal materials with an elastic moduli much higher than that of human bone. This leads to stress shielding after implantation, which may cause aseptic loosening of the implant. Selective laser melting (SLM) technology allows us to produce tiny and complex porous structures and to reduce the elastic moduli of dense metals, thereby avoiding stress shielding. In the present study, rhombic dodecahedron porous structures with cell sizes of 1 mm, 1.5 mm, and 2 mm were designed. The strut diameter was changed to ensure that the porosity and pore size would meet the bone ingrowth requirements. Then, porous Ti6Al4V alloy specimens were printed using SLM, and compressive tests were carried out. The results showed that the compressive strength and elastic modulus values of the specimens with a cell size of 1.5 mm were in the range of 78.16-242.94 MPa and 1.74-4.17 GPa, respectively, which are in line with the mechanical properties of human cortical bone. Finite element analysis of a total hip joint model was carried out to simulate gait, and the surface of the trabecular acetabular cup was divided into 10 regions according to the stress distribution, with the stress interval in the range of 37.44-219.24 MPa. According to the compression test results, the gradient structure of Ti6Al4V alloy with different porosity was designed for trabecular coating. The gradient porous structure meets the mechanical requirements and is closer to the natural structure of human bone than the uniformly distributed porous structure.
Collapse
Affiliation(s)
| | | | - Yongdi Zhang
- Correspondence: (Y.Z.); (G.Y.); Tel.: +86-0311-81668663 (Y.Z.); +86-0311-81668632 (G.Y.)
| | | | - Guang Yang
- Correspondence: (Y.Z.); (G.Y.); Tel.: +86-0311-81668663 (Y.Z.); +86-0311-81668632 (G.Y.)
| |
Collapse
|
42
|
Cao H, Li L, Li L, Meng X, Liu Y, Cheng W, Zhang P, Gao Y, Qin L, Wang X. New use for old drug: Local delivery of puerarin facilitates critical-size defect repair in rats by promoting angiogenesis and osteogenesis. J Orthop Translat 2022; 36:52-63. [PMID: 35979175 PMCID: PMC9352809 DOI: 10.1016/j.jot.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022] Open
Abstract
Objectives Methods Results Conclusion The Translational Potential of this Article
Collapse
|
43
|
Wang Y, Lin C. Study on properties of 3D-printed GelMA hydrogel scaffolds with different nHA contents. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221119211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biological 3D printing is a reliable technology for 3D printing bone repair scaffolds with simple operation, high efficiency, and relatively low cost. Gelatin methacryloyl (GelMA) hydrogels have attracted much attention due to their good biocompatibility, but the poor mechanical properties limit their application in bone reconstruction engineering. In this study, nano-hydroxyapatite (nHA) particles were added to GelMA hydrogels, and the performances of composite hydrogel scaffolds with different nHA contents were investigated in terms of rheological properties, light transmission properties, surface morphology, mechanical properties, and biocompatibility. The experimental results showed that the incorporation of nHA particles could effectively improve the printability and mechanical properties of the scaffolds, the scaffold fibers had better resistance to deformation, improved degradation rate, and biological experiments confirmed that nHA particles had no significant cytotoxicity. However, the addition of HA particles also reduced the light transmission properties of the slurry, and when its content exceeds a certain value, the hydrogel scaffolds show incomplete curing and eventually affect their test performance. The results can offer guidance and reference for the selection of ink and function for 3D printing bone repair scaffold.
Collapse
Affiliation(s)
- Yaocheng Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- School of Railway Tracks and Transportation, Wuyi University, Jiangmen, China
| | - Chengxiong Lin
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
44
|
Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Ou-Yang ZY, Dusenge MA, Guo Y. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med 2022; 17:86. [PMID: 35858928 PMCID: PMC9297608 DOI: 10.1186/s13020-022-00640-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising method for the repair of difficult-to-heal bone tissue damage by providing three-dimensional structures for cell attachment, proliferation, and differentiation. Traditional Chinese medicine (TCM) has been introduced as an effective global medical program by the World Health Organization, comprising intricate components, and promoting bone regeneration by regulating multiple mechanisms and targets. This study outlines the potential therapeutic capabilities of TCM combined with BTE in bone regeneration. The effective active components promoting bone regeneration can be generally divided into flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. The chemical structures of the monomers, their sources, efficacy, and mechanisms are described. We summarize the use of compounds and medicinal parts of TCM to stimulate bone regeneration. Finally, the limitations and prospects of applying TCM in BTE are introduced, providing a direction for further development of novel and potential TCM.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
45
|
Bai S, Lan Y, Fu S, Cheng H, Lu Z, Liu G. Connecting Calcium-Based Nanomaterials and Cancer: From Diagnosis to Therapy. NANO-MICRO LETTERS 2022; 14:145. [PMID: 35849180 PMCID: PMC9294135 DOI: 10.1007/s40820-022-00894-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 05/07/2023]
Abstract
As the indispensable second cellular messenger, calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins. The importance of calcium ions (Ca2+) makes its "Janus nature" strictly regulated by its concentration. Abnormal regulation of calcium signals may cause some diseases; however, artificial regulation of calcium homeostasis in local lesions may also play a therapeutic role. "Calcium overload," for example, is characterized by excessive enrichment of intracellular Ca2+, which irreversibly switches calcium signaling from "positive regulation" to "reverse destruction," leading to cell death. However, this undesirable death could be defined as "calcicoptosis" to offer a novel approach for cancer treatment. Indeed, Ca2+ is involved in various cancer diagnostic and therapeutic events, including calcium overload-induced calcium homeostasis disorder, calcium channels dysregulation, mitochondrial dysfunction, calcium-associated immunoregulation, cell/vascular/tumor calcification, and calcification-mediated CT imaging. In parallel, the development of multifunctional calcium-based nanomaterials (e.g., calcium phosphate, calcium carbonate, calcium peroxide, and hydroxyapatite) is becoming abundantly available. This review will highlight the latest insights of the calcium-based nanomaterials, explain their application, and provide novel perspective. Identifying and characterizing new patterns of calcium-dependent signaling and exploiting the disease element linkage offer additional translational opportunities for cancer theranostics.
Collapse
Affiliation(s)
- Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yulu Lan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Shiying Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
46
|
Xu Z, Sun Y, Dai H, Ma Y, Bing H. Engineered 3D-Printed Polyvinyl Alcohol Scaffolds Incorporating β-Tricalcium Phosphate and Icariin Induce Bone Regeneration in Rat Skull Defect Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144535. [PMID: 35889410 PMCID: PMC9318678 DOI: 10.3390/molecules27144535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
The skull defects are challenging to self-heal, and autologous bone graft repair has numerous drawbacks. The scaffolds for the rapid and effective repair of skull defects have become an important research topic. In this study, polyvinyl alcohol (PVA)/β-tricalcium phosphate(β-TCP) composite scaffolds containing icariin (ICA) were prepared through direct-ink three-dimensional (3D) printing technology. β-TCP in the composite scaffold had osteoconductive capability, and the ICA molecule had osteoinductive capacity. The β-TCP and ICA components in the composite scaffold can enhance the capability to repair skull defects. We show that ICA exhibited a slow-release behaviour within 80 days. This behaviour helped the scaffold to continuously stimulate the formation of new bone. The results of in vitro cell compatibility experiments showed that the addition of ICA molecules contributed to the adhesion and proliferation of MC-3T3-E1 cells. The level of alkaline phosphatase secretion demonstrated that the slow release of ICA can promote the osteogenic differentiation of MC-3T3-E1 cells. The introduction of ICA molecules accelerated the in situ bone regeneration in in vivo. It is concluded that the 3D-printed PVA scaffold with β-TCP and ICA has a wide range of potential applications in the field of skull defect treatment.
Collapse
|
47
|
Gu P, Xu Y, Liu Q, Wang Y, Li Z, Chen M, Mao R, Liang J, Zhang X, Fan Y, Sun Y. Tailorable 3DP Flexible Scaffolds with Porosification of Filaments Facilitate Cell Ingrowth and Biomineralized Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32914-32926. [PMID: 35829709 DOI: 10.1021/acsami.2c07649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Facilitating cell ingrowth and biomineralized deposition inside filaments of 3DP scaffolds are an ideal bone repair strategy. Here, 3D printed PLGA/HA scaffolds with hydroxyapatite content of 50% (P5H5) and 70% (P3H7) were prepared by optimizing 3D printing inks, which exhibited good tailorability and foldability to meet clinical maneuverability. The supercritical CO2 foaming technology further endowed the filaments of P5H5 with a richer interconnected pore structure (P5H5-C). The finite element and computational fluid dynamics simulation analysis indicated that the porosification could effectively reduce the stress concentration at the filament junction and improved the overall permeability of the scaffold. The results of in vitro experiments confirmed that P5H5-C promoted the adsorption of proteins on the surface and inside of filaments, accelerated the release of Ca and P ions, and significantly upregulated osteogenesis (Col I, ALP, and OPN)- and angiogenesis (VEGF)-related gene expression. Subcutaneous ectopic osteogenesis experiments in nude mice further verified that P5H5-C facilitated cell growth inside filaments and biomineralized deposition, as well as significantly upregulated the expression of osteogenesis- and angiogenesis-related genes (Col I, ALP, OCN, and VEGF) and protein secretion (ALP, RUNX2, and VEGF). The porosification of filaments by supercritical CO2 foaming provided a new strategy for accelerating osteogenesis of 3DP implants.
Collapse
Affiliation(s)
- Peiyang Gu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Quanying Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Zhulian Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Manyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Ruiqi Mao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
48
|
Hong IS. Enhancing Stem Cell-Based Therapeutic Potential by Combining Various Bioengineering Technologies. Front Cell Dev Biol 2022; 10:901661. [PMID: 35865629 PMCID: PMC9294278 DOI: 10.3389/fcell.2022.901661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Stem cell-based therapeutics have gained tremendous attention in recent years due to their wide range of applications in various degenerative diseases, injuries, and other health-related conditions. Therapeutically effective bone marrow stem cells, cord blood- or adipose tissue-derived mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and more recently, induced pluripotent stem cells (iPSCs) have been widely reported in many preclinical and clinical studies with some promising results. However, these stem cell-only transplantation strategies are hindered by the harsh microenvironment, limited cell viability, and poor retention of transplanted cells at the sites of injury. In fact, a number of studies have reported that less than 5% of the transplanted cells are retained at the site of injury on the first day after transplantation, suggesting extremely low (<1%) viability of transplanted cells. In this context, 3D porous or fibrous national polymers (collagen, fibrin, hyaluronic acid, and chitosan)-based scaffold with appropriate mechanical features and biocompatibility can be used to overcome various limitations of stem cell-only transplantation by supporting their adhesion, survival, proliferation, and differentiation as well as providing elegant 3-dimensional (3D) tissue microenvironment. Therefore, stem cell-based tissue engineering using natural or synthetic biomimetics provides novel clinical and therapeutic opportunities for a number of degenerative diseases or tissue injury. Here, we summarized recent studies involving various types of stem cell-based tissue-engineering strategies for different degenerative diseases. We also reviewed recent studies for preclinical and clinical use of stem cell-based scaffolds and various optimization strategies.
Collapse
Affiliation(s)
- In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Seongnam, South Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Seongnam, South Korea
- *Correspondence: In-Sun Hong,
| |
Collapse
|
49
|
Checinska K, Checinski M, Cholewa-Kowalska K, Sikora M, Chlubek D. Polyphenol-Enriched Composite Bone Regeneration Materials: A Systematic Review of In Vitro Studies. Int J Mol Sci 2022; 23:ijms23137473. [PMID: 35806482 PMCID: PMC9267334 DOI: 10.3390/ijms23137473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
One of the possible alternatives for creating materials for the regeneration of bone tissue supporting comprehensive reconstruction is the incorporation of active substances whose controlled release will improve this process. This systematic review aimed to identify and synthesize in vitro studies that assess the suitability of polyphenolics as additives to polymer-ceramic composite bone regeneration materials. Data on experimental studies in terms of the difference in mechanical, wettability, cytocompatibility, antioxidant and anti-inflammatory properties of materials were synthesized. The obtained numerical data were compiled and analyzed in search of percentage changes of these parameters. The results of the systematic review were based on data from forty-six studies presented in nineteen articles. The addition of polyphenolic compounds to composite materials for bone regeneration improved the cytocompatibility and increased the activity of early markers of osteoblast differentiation, indicating a high osteoinductive potential of the materials. Polyphenolic compounds incorporated into the materials presumably give them high antioxidant properties and reduce the production of reactive oxygen species in macrophage cells, implying anti-inflammatory activity. The evidence was limited by the number of missing data and the heterogeneity of the data.
Collapse
Affiliation(s)
- Kamila Checinska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland;
- Correspondence: (K.C.); (D.C.)
| | - Maciej Checinski
- Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Cracow, Poland;
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland;
| | - Maciej Sikora
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
- Correspondence: (K.C.); (D.C.)
| |
Collapse
|
50
|
Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060903. [PMID: 35743934 PMCID: PMC9225502 DOI: 10.3390/life12060903] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/11/2022]
Abstract
Trauma and bone loss from infections, tumors, and congenital diseases make bone repair and regeneration the greatest challenges in orthopedic, craniofacial, and plastic surgeries. The shortage of donors, intrinsic limitations, and complications in transplantation have led to more focus and interest in regenerative medicine. Structures that closely mimic bone tissue can be produced by this unique technology. The steady development of three-dimensional (3D)-printed bone tissue engineering scaffold therapy has played an important role in achieving the desired goal. Bioceramic scaffolds are widely studied and appear to be the most promising solution. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures to match their functional properties. Inkjet, extrusion, and light-based 3D printing are among the rapidly advancing bone bioprinting technologies. Furthermore, stem cell therapy has recently shown an important role in this field, although large tissue defects are difficult to fill by injection alone. The combination of 3D-printed bone tissue engineering scaffolds with stem cells has shown very promising results. Therefore, biocompatible artificial tissue engineering with living cells is the key element required for clinical applications where there is a high demand for bone defect repair. Furthermore, the emergence of various advanced manufacturing technologies has made the form of biomaterials and their functions, composition, and structure more diversified, and manifold. The importance of this article lies in that it aims to briefly review the main principles and characteristics of the currently available methods in orthopedic bioprinting technology to prepare bioceramic scaffolds, and finally discuss the challenges and prospects for applications in this promising and vital field.
Collapse
|