1
|
Sivaselvam S, Anjana RS, Dhujana NS, Victor M, Jayasree RS. Nitrogen-doped carbon dots: a novel biosensing platform for selective norfloxacin detection and bioimaging. J Mater Chem B 2024; 12:7635-7645. [PMID: 39007591 DOI: 10.1039/d4tb01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Incomplete metabolism and non-biodegradable nature of norfloxacin (NORx) lead to its persistent residues in the environment and food, potentially fostering the emergence of antibiotic resistance and posing a significant threat to public health. Hence, we developed a norfloxacin sensor employing hydrothermally synthesized N-doped carbon dots (N-Ch-CQDs) from chitosan and PEI demonstrated high sensitivity and specificity towards the antibiotic detection. The quantum yield of excitation-dependent emission of N-Ch-CQDs was effectively tuned from 4.6 to 21.5% by varying the concentration of PEI (5-15%). With the enhanced fluorescence in the presence of norfloxacin, N-Ch-CQDs exhibited a linear detection range of 20-1400 nM with a limit of detection (LoD) of 9.3 nM. The high biocompatibility of N-Ch-CQDs was confirmed in the in vitro and in vivo model and showed the environment-friendly nature of the sensor. Detailed study elucidated the formation of strong hydrogen bonds between N-Ch-CQDs and NORx, leading to fluorescence enhancement. The developed sensor's capability to detect NORx was evaluated in water and milk samples. The recovery rate ranged from 98.5% to 103.5%, demonstrating the sensor's practical applicability. Further, the bioimaging potential of N-Ch-CQDs was demonstrated in both the in vitro (L929 cells) and in vivo model (C. elegans). The synergistic influence of the defecation pattern and functioning of intestinal barrier mitigates the translocation of N-Ch-CQDs into the reproductive organ of nematodes. This study revealed the bioimaging and fluorescent sensing ability of N-Ch-CQDs, which holds significant promise for extensive application in the biomedical field.
Collapse
Affiliation(s)
- S Sivaselvam
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - R S Anjana
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - N S Dhujana
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - Marina Victor
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| |
Collapse
|
2
|
Lee S, Byun A, Jo J, Suh JM, Yoo J, Lim MH, Kim JW, Shin TH, Choi JS. Ultrasmall Mn-doped iron oxide nanoparticles with dual hepatobiliary and renal clearances for T1 MR liver imaging. NANOSCALE ADVANCES 2024; 6:2177-2184. [PMID: 38633040 PMCID: PMC11019488 DOI: 10.1039/d3na00933e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Although magnetic nanoparticles demonstrate significant potential as magnetic resonance imaging (MRI) contrast agents, their negative contrasts, liver accumulation, and limited excretion hinder their application. Herein, we developed ultrasmall Mn-doped iron oxide nanoparticles (UMIOs) with distinct advantages as T1 MRI contrast agents. Exceptionally small particle sizes (ca. 2 nm) and magnetization values (5 emu gMn+Fe-1) of UMIOs provided optimal T1 contrast effects with an ideally low r2/r1 value of ∼1. Furthermore, the use of Mn as a dopant facilitated hepatocyte uptake of the particles, allowing liver imaging. In animal studies, UMIOs exhibited significantly enhanced contrasts for sequential T1 imaging of blood vessels and the liver, distinguishing them from conventional magnetic nanoparticles. UMIOs were systematically cleared via dual hepatobiliary and renal excretion pathways, highlighting their safety profile. These characteristics imply substantial potential of UMIOs as T1 contrast agents for the accurate diagnosis of liver diseases.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Arim Byun
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Juhee Jo
- Inventera Inc. Seoul 06588 Republic of Korea
| | - Jong-Min Suh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Ji-Wook Kim
- Inventera Inc. Seoul 06588 Republic of Korea
| | | | - Jin-Sil Choi
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| |
Collapse
|
3
|
Zhang M, Wu T, Zhang H, Chen Z, Yang Y, Ling Y, Zhou Y. Mesoporous carbon hemispheres integrated with Fe-Gd nanoparticles for potential MR/PA imaging-guided photothermal therapy. J Mater Chem B 2024; 12:658-666. [PMID: 37934458 DOI: 10.1039/d3tb02073h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Asymmetric carbon has emerged as an important material to enrich morphologies as well as enhance functions for bioapplications. Here, asymmetric mesoporous carbon hemispheres (CHS) integrated with γ-Fe2O3 and GdPO4 (Fe-Gd) nanoparticles are proposed and prepared for potential imaging-guided photothermal therapy (PTT). Interestingly, Fe-Gd/CHS contributes to an almost 1.5 times enhancement in light harvesting and photothermal conversion efficiency as compared with its corresponding spherical analogue. The possible underlying mechanism is discussed in view of the unique asymmetric structure-featured carbon. Further identification of the inherited photoacoustic (PA) and magnetic resonance (MR) imaging properties leads to the consequent in vivo evaluation of its imaging and PTT performances, which demonstrates its capability as a function-integrated system for potential theranostics.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Tianze Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Hui Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Zhenxia Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Nazeer SS, Saraswathy A, Nimi N, Santhakumar H, Radhakrishnapillai Suma P, Shenoy SJ, Jayasree RS. Near infrared-emitting multimodal nanosystem for in vitro magnetic hyperthermia of hepatocellular carcinoma and dual imaging of in vivo liver fibrosis. Sci Rep 2023; 13:12947. [PMID: 37558889 PMCID: PMC10412632 DOI: 10.1038/s41598-023-40143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 08/05/2023] [Indexed: 08/11/2023] Open
Abstract
Prolonged usage of traditional nanomaterials in the biological field has posed several short- and long-term toxicity issues. Over the past few years, smart nanomaterials (SNs) with controlled physical, chemical, and biological features have been synthesized in an effort to allay these challenges. The current study seeks to develop theranostic SNs based on iron oxide to enable simultaneous magnetic hyperthermia and magnetic resonance imaging (MRI), for chronic liver damage like liver fibrosis which is a major risk factor for hepatocellular carcinoma. To accomplish this, superparamagnetic iron oxide nanoparticles (SPIONs) were prepared, coated with a biocompatible and naturally occurring polysaccharide, alginate. The resultant material, ASPIONs were evaluated in terms of physicochemical, magnetic and biological properties. A hydrodynamic diameter of 40 nm and a transverse proton relaxation rate of 117.84 mM-1 s-1 pronounces the use of ASPIONs as an efficient MRI contrast agent. In the presence of alternating current of 300 A, ASPIONs could elevate the temperature to 45 °C or more, with the possibility of hyperthermia based therapeutic approach. Magnetic therapeutic and imaging potential of ASPIONs were further evaluated respectively in vitro and in vivo in HepG2 carcinoma cells and animal models of liver fibrosis, respectively. Finally, to introduce dual imaging capability along with magnetic properties, ASPIONs were conjugated with near infrared (NIR) dye Atto 700 and evaluated its optical imaging efficiency in animal model of liver fibrosis. Histological analysis further confirmed the liver targeting efficacy of the developed SNs for Magnetic theranostics and optical imaging as well as proved its short-term safety, in vivo.
Collapse
Affiliation(s)
- Shaiju S Nazeer
- Department of Chemistry, Indian Institute of Space Sciences and Technology, Thiruvananthapuram, 695547, Kerala, India
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
| | - Ariya Saraswathy
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
- Department of Physics, HHMSPBNSS College, Thiruvananthapuram, 695 040, Kerala, India
| | - Nirmala Nimi
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
| | - Hema Santhakumar
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
| | - Parvathy Radhakrishnapillai Suma
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
| | - Sachin J Shenoy
- Division of In Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India.
| |
Collapse
|
5
|
Nazeer SS, Saraswathy A, Nimi N, Sarathkumar E, Resmi AN, Shenoy SJ, Jayasree RS. Fluorescent carbon dots tailored iron oxide nano hybrid system for in vivooptical imaging of liver fibrosis. Methods Appl Fluoresc 2023; 11. [PMID: 36854197 DOI: 10.1088/2050-6120/acc009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
Hybrid nanoparticles are innovative invention of last decade designed to overcome limitations of single-component nanoparticles by introducing multiple functionalities through combining two or more different nanoparticles. In this study, we are reporting development of magneto-fluorescent hybrid nanoparticles by combining iron oxide and carbon nanoparticles to enablein vivofluorescence imaging which also has all the required characteristic properties to use as Magnetic Resonance Imaging (MRI) contrast agent. In order to achieve dual-functional imaging, alginate and pullulan coated super paramagnetic iron oxide nanoparticles (ASPION and PSPION) and Carbon dots (Cdts) were synthesised separately. ASPIONs and PSPIONs were further chemically conjugated with Cdts and developed dual-functional nanohybrid particles ASPION-Cdts and PSPION-Cdts. Subsequently, evaluation of the materials for its size, functionalisation efficiency, fluorescence and magnetic properties, biocompatibility and cellular uptake efficiency has been carried out. Fluorescence imaging of liver fibrosis was performedin vivoin rodent model of liver fibrosis using the two nanohybrids, which is further confirmed by high fluorescence signal from the harvested liver.
Collapse
Affiliation(s)
- Shaiju S Nazeer
- Department of Chemistry, Indian Institute of Space Sciences and Technology, Thiruvananthapuram-695547, Kerala, India
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Ariya Saraswathy
- Department of Physics, HHMSPBNSS College, Thiruvananthapuram-695040, Kerala, India
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Nirmala Nimi
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Elangovan Sarathkumar
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - A N Resmi
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Sachin J Shenoy
- Division of In Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| |
Collapse
|
6
|
Tu L, Li Q, Qiu S, Li M, Shin J, Wu P, Singh N, Li J, Ding Q, Hu C, Xiong X, Sun Y, Kim JS. Recent developments in carbon dots: a biomedical application perspective. J Mater Chem B 2023; 11:3038-3053. [PMID: 36919487 DOI: 10.1039/d2tb02794a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Recently, newly developed carbon-based nanomaterials known as carbon dots (CDs) have generated significant interest in nanomedicine. However, current knowledge regarding CD research in the biomedical field is still lacking. An overview of the most recent development of CDs in biomedical research is given in this review article. Several crucial CD applications, such as biosensing, bioimaging, cancer therapy, and antibacterial applications, are highlighted. Finally, CD-based biomedicine's challenges and future potential are also highlighted to enrich biomedical researchers' knowledge about the potential of CDs and the need for overcoming various technical obstacles.
Collapse
Affiliation(s)
- Le Tu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China.,Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China
| | - Meiqin Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Nem Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Junrong Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Cong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P. R. China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
7
|
Sengar P, Chauhan K, Hirata GA. Progress on carbon dots and hydroxyapatite based biocompatible luminescent nanomaterials for cancer theranostics. Transl Oncol 2022; 24:101482. [PMID: 35841822 PMCID: PMC9293661 DOI: 10.1016/j.tranon.2022.101482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Biocompatible carbon dots (CDs) and nanohydroxyapatite (nHA) have attracted much attention for the development of optical imaging probes. This review discusses the development of CD and nHA based nanomaterials as multifunctional agents for cancer theranostics. The effect of synthesis strategies and doping on photoluminescent properties along with tuning of emission in biological window has been briefly reviewed. The cancer targeting strategies, biocompatibility and biodistribution of CDs and nHA based luminescent probes is discussed. A summary of current challenges and future perspectives is provided.
Despite the significant advancement in cancer diagnosis and therapy, a huge burden remains. Consequently, much research has been diverted on the development of multifunctional nanomaterials for improvement in conventional diagnosis and therapy. Luminescent nanomaterials offer a versatile platform for the development of such materials as their intrinsic photoluminescence (PL) property offers convergence of diagnosis as well as therapy at the same time. However, the clinical translation of nanomaterials faces various challenges, including biocompatibility and cost-effective scale up production. Thus, luminescent materials with facile synthesis approach along with intrinsic biocompatibility and anticancerous activity hold significant importance. As a result, carbon dots (CDs) and nanohydroxyapatite (nHA) have attracted much attention for the development of optical imaging probes. CDs are the newest members of the carbonaceous nanomaterials family that possess intrinsic luminescent and therapeutic properties, making them a promising candidate for cancer theranostic. Additionally, nHA is an excellent bioactive material due to its compositional similarity to the human bone matrix. The nHA crystal can efficiently host rare-earth elements to attain luminescent property, which can further be implemented for cancer theranostic applications. Herein, the development of CDs and nHA based nanomaterials as multifunctional agents for cancer has been briefly discussed. The emphasis has been given to different synthesis strategies leading to different morphologies and tunable PL spectra, followed by their diverse applications as biocompatible theranostic agents. Finally, the review has been summarized with the current challenges and future perspectives.
Collapse
Affiliation(s)
- Prakhar Sengar
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Ensenada, Baja California C.P. 22860, México
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Ensenada, Baja California C.P. 22860, México
| | - Gustavo A Hirata
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México Ensenada, Baja California C.P. 22860, México.
| |
Collapse
|
8
|
Zhou W, Tang X, Huang J, Wang J, Zhao J, Zhang L, Wang Z, Li P, Li R. Dual-imaging magnetic nanocatalysis based on Fenton-like reaction for tumor therapy. J Mater Chem B 2022; 10:3462-3473. [PMID: 35403639 DOI: 10.1039/d1tb02308j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential nano-catalytic therapy has emerged as a novel therapeutic modality for cancer treatment as it utilizes the unique tumor microenvironment for selective tumor treatment. This study reports a magnetic nanoparticle to achieve Fenton-like reaction and dual-imaging guidance/monitoring. Natural glucose oxidase (GOx) and superparamagnetic Fe3O4 nanoparticles have been integrated into poly(lactic-co-glycolic acid) (PLGA) to fabricate a sequential nanocatalyst (designated as GOx@PLGA-Fe3O4). This nanocatalyst can functionally deplete glucose in tumor tissues, producing a considerable amount of highly cytotoxic hydroxyl radicals via the sequential Fenton-like reaction, and meanwhile maximizing the potential imaging capability as a contrast agent for magnetic resonance imaging and photoacoustic imaging. By ribonucleic acid sequencing (RNA-seq) technology, GOx@PLGA-Fe3O4 nanoparticles are demonstrated to induce tumor cell death by inhibiting multiple gene regulation pathways involving tumor growth and recurrence. Therefore, this finding provides a novel strategy to achieve promising therapeutic efficacy by the rational design of multifunctional nanoparticles with various features, including magnetic targeting, sequential nano-catalytic therapy, and dual-imaging guidance/monitoring.
Collapse
Affiliation(s)
- Weicheng Zhou
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xinyi Tang
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Ju Huang
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jingxue Wang
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jiawen Zhao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| | - Rui Li
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
9
|
Jiang Z, Xia B, Ren F, Bao B, Xing W, He T, Li Z. Boosting Vascular Imaging-Performance and Systemic Biosafety of Ultra-Small NaGdF 4 Nanoparticles via Surface Engineering with Rationally Designed Novel Hydrophilic Block Co-Polymer. SMALL METHODS 2022; 6:e2101145. [PMID: 35107219 DOI: 10.1002/smtd.202101145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Revealing the anatomical structures, functions, and distribution of vasculature via contrast agent (CA) enhanced magnetic resonance imaging (MRI) is crucial for precise medical diagnosis and therapy. The clinically used MRI CAs strongly rely on Gd-chelates, which exhibit low T1 relaxivities and high risks of nephrogenic systemic fibrosis (NSF) for patients with renal dysfunction. It is extremely important to develop high-performance and safe CAs for MRI. Herein, it is reported that ultra-small NaGdF4 nanoparticles (UGNs) can serve as an excellent safe MRI CA via surface engineering with rationally designed novel hydrophilic block co-polymer (BPn ). By optimizing the polymer molecular weights, the polymer-functionalized UGNs (i.e., UGNs-BP14 ) are obtained to exhibit remarkably higher relaxivity (11.8 mm-1 s-1 at 3.0 T) than Gd-DTPA (3.6 mm-1 s-1 ) due to their ultracompact and abundant hydrophilic surface coating. The high performance of UGNs-BP14 enables us to sensitively visualize microvasculature with a small diameter of ≈0.17 mm for up to 2 h, which is the thinnest blood vessel and the longest time window for low field (1.0 T) MR angiography ever reported, and cannot be achieved by using the clinically used Gd-DTPA under the same conditions. More importantly, renal clearable UGNs-BP14 show lower risks of inducing NSF in comparison with Gd-DTPA due to their negligible release of Gd3+ ions after modification with the novel hydrophilic block copolymer. The study presents a novel avenue for boosting imaging-performance and systemic biosafety of UGNs as a robust MRI CA with great potential in precise diagnosis of vasculature-related diseases.
Collapse
Affiliation(s)
- Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Bolin Bao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
- Department of Radiology, Affiliated Hospital 3, Soochow University, Changzhou, 213003, P. R. China
| | - Wei Xing
- Department of Radiology, Affiliated Hospital 3, Soochow University, Changzhou, 213003, P. R. China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
10
|
Peng X, Xie Z, Wang X, Zhao Y, Yang C, Zhang Z, Li M, Zheng J, Wang Y. Multi-omics analyses revealed key factors involved in fluorescent carbon-dots-regulated secondary metabolism in Tetrastigma hemsleyanum. J Nanobiotechnology 2022; 20:63. [PMID: 35109871 PMCID: PMC8812181 DOI: 10.1186/s12951-022-01271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Luminescent nanomaterials (LNMs), especially newly-exploited fluorescent carbon-dots (CDs), have demonstrated promising candidates for sunlight harvesting and enhanced photosynthesis efficiency of crops. However, most of the studies focus on the design and synthesis of LNMs and primary metabolism in biomass acceleration, secondary metabolism that closely associated with the quality ingredients of plants is rarely mentioned. RESULTS UV-absorptive and water-soluble NIR-CDs were harvested via a facile microwave-assisted carbonization method. The effect and regulatory mechanism of NIR-CDs on the secondary metabolism and bioactive ingredients accumulation in Tetrastigma hemsleyanum were explored. A total of 191 differential secondary metabolites and 6874 differentially expressed genes were identified when the NIR-CDs were adopted for enhancing growth of T. hemsleyanum. The phenolic acids were generally improved, but the flavonoids were more likely to decrease. The pivotal differentially expressed genes were involved in biosynthesis of secondary metabolites, flavonoid biosynthesis, porphyrin and chlorophyll metabolism, etc. The gene-metabolite association was constructed and 44 hub genes highly related to quality ingredients accumulation and growth were identified, among which and the top 5 genes of the PPI network might be the key regulators. CONCLUSION This research provided key regulatory genes and differentially accumulating quality ingredients under NIR-CDs-treatment, which could provide a theoretical basis for expanding the applications of nanomaterial in industrial crop agriculture.
Collapse
Affiliation(s)
- Xin Peng
- Ningbo Research Institute of Zhejiang University, Ningbo, 315100 People’s Republic of China
| | - Zhuomi Xie
- Fujian Agriculture and Forestry University, Fuzhou, 350028 People’s Republic of China
| | - Xiuhua Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300 People’s Republic of China
| | - Yuxiang Zhao
- Ningbo Research Institute of Zhejiang University, Ningbo, 315100 People’s Republic of China
| | - Chuyun Yang
- Fujian Agriculture and Forestry University, Fuzhou, 350028 People’s Republic of China
| | - Zhongyi Zhang
- Fujian Agriculture and Forestry University, Fuzhou, 350028 People’s Republic of China
| | - Mingjie Li
- Fujian Agriculture and Forestry University, Fuzhou, 350028 People’s Republic of China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300 People’s Republic of China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300 People’s Republic of China
| |
Collapse
|
11
|
Sun M, Zhang L, Xu S, Yu B, Wang Y, Zhang L, Zhang W. Carbon dots-decorated hydroxyapatite nanowires–lanthanide metal–organic framework composites as fluorescent sensors for the detection of dopamine. Analyst 2022; 147:947-955. [DOI: 10.1039/d2an00049k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A ratiometric composite fluorescent probe (HAPNWs-CDs-Tb/MOF) with hydroxyapatite carrier and the fluorescence ratio of carbon dots and lanthanide metal organic framework as the response signal was prepared for the detection of dopamine.
Collapse
Affiliation(s)
- Mengyao Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Sen Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Bohao Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yajie Wang
- Department of Pharmacy, Anhui Medical College, Hefei 230601, P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
12
|
Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B 2022; 10:843-869. [DOI: 10.1039/d1tb02446a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advancements in the synthesis of carbon dot composites and their applications in biomedical fields (bioimaging, drug delivery and biosensing) have been carefully summarized. The current challenges and future trends of CD composites in this field have also been discussed.
Collapse
Affiliation(s)
- Jiajia Wu
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Gonglin Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chunyu Ji
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yuting Wang
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
13
|
Insights into the synthesis optimization of Fe@SiO2 Core-Shell nanostructure as a highly efficient nano-heater for magnetic hyperthermia treatment. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Sarathkumar E, Victor M, Menon JA, Jibin K, Padmini S, Jayasree RS. Nanotechnology in cardiac stem cell therapy: cell modulation, imaging and gene delivery. RSC Adv 2021; 11:34572-34588. [PMID: 35494731 PMCID: PMC9043027 DOI: 10.1039/d1ra06404e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
The wide arena of applications opened by nanotechnology is multidimensional. It is already been proven that its prominence can continuously influence human life. The role of stem cells in curing degenerative diseases is another major area of research. Cardiovascular diseases are one of the major causes of death globally. Nanotechnology-assisted stem cell therapy could be used to tackle the challenges faced in the management of cardiovascular diseases. In spite of the positive indications and proven potential of stem cells to differentiate into cardiomyocytes for cardiac repair and regeneration during myocardial infarction, this therapeutic approach still remains in its infancy due to several factors such as non-specificity of injected cells, insignificant survival rate, and low cell retention. Attempts to improve stem cell therapy using nanoparticles have shown some interest among researchers. This review focuses on the major hurdles associated with cardiac stem cell therapy and the role of nanoparticles to overcome the major challenges in this field, including cell modulation, imaging, tracking and gene delivery. This review summarizes the potential challenges present in cardiac stem cell therapy and the major role of nanotechnology to overcome these challenges including cell modulation, tracking and imaging of stem cells.![]()
Collapse
Affiliation(s)
- Elangovan Sarathkumar
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | - Marina Victor
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | | | - Kunnumpurathu Jibin
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | - Suresh Padmini
- Sree Narayana Institute of Medical Sciences Kochi Kerala India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| |
Collapse
|
15
|
Zhou Y, Zhu Y, Li J. Advantages of CT nano-contrast agent in tumor diagnosis: A retrospective study. Medicine (Baltimore) 2021; 100:e27044. [PMID: 34664829 PMCID: PMC8448064 DOI: 10.1097/md.0000000000027044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/11/2021] [Indexed: 12/02/2022] Open
Abstract
The purpose of this retrospective study was to explore the advantages of computed tomography (CT) nano-contrast agent in tumor diagnosis.A total of 100 patients with malignant tumor who were diagnosed in Shaanxi Province Public Hospital between January 2018 and January 2019 were included in this retrospective study. They were randomly divided into observation and control groups with 50 patients in each group. The patients in the observation group used new type of nano-contrast agent for examination, and the patients in the control group used traditional iohexol contrast agent for examination. The detection rate, misdiagnosis rate, and incidence of adverse reactions were observed. In addition, single photon emission computed tomography or CT scan was performed on patients to observe the radioactive concentration.The detection rate was 100% in the observation group and 84% in the control group, and the difference between the 2 groups was statistically significant (χ2 = 8.763, P = .001). The incidence of adverse reactions was 2% in the observation group and 30% in the control group, and the difference between the 2 groups was significantly different (χ2 = 12.683, P = .000). The radioactive concentration in the observation group was markedly higher than that in the control group (t = 19.692, P = .001).The use of CT nano-contrast agent in tumor diagnosis had higher detection rate of tumor and radioactive concentration, and it had lower misdiagnosis rate and adverse reaction rate than traditional iohexol contrast agent.
Collapse
Affiliation(s)
- Yong Zhou
- Medical Imaging Center – CT Room, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, Xinjiang, China
| | - Yufen Zhu
- Department of Radiology, Bethune International Peace Hospital of PLA, Shijiazhuang, Hebei Province, China
| | - Jian Li
- Deparpment of Radiology, Shaanxi Province Public Hospital, Xi’an, Shaanxi Province, China
| |
Collapse
|
16
|
Asialoglycoprotein receptor targeted optical and magnetic resonance imaging and therapy of liver fibrosis using pullulan stabilized multi-functional iron oxide nanoprobe. Sci Rep 2021; 11:18324. [PMID: 34526590 PMCID: PMC8443657 DOI: 10.1038/s41598-021-97808-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022] Open
Abstract
Early diagnosis and therapy of liver fibrosis is of utmost importance, especially considering the increased incidence of alcoholic and non-alcoholic liver syndromes. In this work, a systematic study is reported to develop a dual function and biocompatible nanoprobe for liver specific diagnostic and therapeutic applications. A polysaccharide polymer, pullulan stabilized iron oxide nanoparticle (P-SPIONs) enabled high liver specificity via asialogycoprotein receptor mediation. Longitudinal and transverse magnetic relaxation rates of 2.15 and 146.91 mM−1 s−1 respectively and a size of 12 nm, confirmed the T2 weighted magnetic resonance imaging (MRI) efficacy of P-SPIONs. A current of 400A on 5 mg/ml of P-SPIONs raised the temperature above 50 °C, to facilitate effective hyperthermia. Finally, a NIR dye conjugation facilitated targeted dual imaging in liver fibrosis models, in vivo, with favourable histopathological results and recommends its use in early stage diagnosis using MRI and optical imaging, and subsequent therapy using hyperthermia.
Collapse
|
17
|
Wang Y, Xie Z, Wang X, Peng X, Zheng J. Fluorescent carbon-dots enhance light harvesting and photosynthesis by overexpressing PsbP and PsiK genes. J Nanobiotechnology 2021; 19:260. [PMID: 34454524 PMCID: PMC8403421 DOI: 10.1186/s12951-021-01005-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Fluorescent carbon-dots (CDs) with multifaceted advantages have provided hope for improvement of crop growth. Near infrared (NIR) CDs would be more competitive and promising than short-wavelength emissive CDs, which are not directly utilized by chloroplast. The molecular targets and underlying mechanism of these stimulative effects are rarely mentioned. RESULTS NIR-CDs with good mono-dispersity and hydrophily were easily prepared by a one-step microwave-assisted carbonization manner, which showed obvious UV absorptive and far-red emissive properties. The chloroplast-CDs complexes could accelerate the electron transfer from photosystem II (PS II) to photosystem I (PS I). NIR-CDs exhibited a concentration-dependent promotion effect on N. benthamiana growth by strengthening photosynthesis. We firstly demonstrated that potential mechanisms behind the photosynthesis-stimulating activity might be related to up-regulated expression of the photosynthesis and chloroplast synthesis related genes, among which PsbP and PsiK genes are the key regulators. CONCLUSION These results illustrated that NIR-CDs showed great potential in the applications to increase crop yields through ultraviolet light harvesting and elevated photosynthesis efficiency. This work would provide a theoretical basis for the understanding and applications of the luminescent nanomaterials (not limited to CDs) in the sunlight conversion-related sustainable agriculture.
Collapse
Affiliation(s)
- Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, People's Republic of China
| | - Zhuomi Xie
- Ningbo Research Institute of Zhejiang University, Ningbo, 315100, People's Republic of China
- Fujian Agriculture and Forestry University, Fuzhou, 350028, People's Republic of China
| | - Xiuhua Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, People's Republic of China
| | - Xin Peng
- Ningbo Research Institute of Zhejiang University, Ningbo, 315100, People's Republic of China.
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, People's Republic of China.
| |
Collapse
|
18
|
Liu L, Yu K, Ming L, Sheng Y, Zheng S, Song L, Shi J, Zhang Y. A novel Gd-based phosphor NaGdGeO4:Bi3+,Li+ with super-long ultraviolet-A persistent luminescence. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Suma PR, Padmanabhan RA, Telukutla SR, Ravindran R, Velikkakath AKG, Dekiwadia CD, Paul W, Laloraya M, Srinivasula SM, Bhosale SV, Jayasree RS. Vanadium pentoxide nanoparticle mediated perturbations in cellular redox balance and the paradigm of autophagy to apoptosis. Free Radic Biol Med 2020; 161:198-211. [PMID: 33065180 DOI: 10.1016/j.freeradbiomed.2020.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022]
Abstract
The redox-active transition metals such as copper, iron, chromium, vanadium, and silica are known for its ROS generation via mechanisms such as Haber-Weiss and Fenton-type reactions. Nanoparticles of these metals induce oxidative stress due to acellular factors owing to their small size and more reactive surface area, leading to various cellular responses. The intrinsic enzyme-like activity of nano vanadium has fascinated the scientific community. However, information concerning their cellular uptake and time-dependent induced effects on their cellular organelles and biological activity is lacking. This comprehensive study focuses on understanding the precise molecular interactions of vanadium pentoxide nanoparticles (VnNp) and evaluate their specific "nano" induced effects on MDA-MB-231 cancer cells. Understanding the mechanism behind NP-induced ROS generation could help design a model for selective NP induced toxicity, useful for cancer management. The study demonstrated the intracellular persistence of VnNp and insights into its molecular interactions with various organelles and its overall effects at the cellular level. Where triple-negative breast cancer MDA-MB-231 cells resulted in 59.6% cell death towards 48 h of treatment and the normal fibroblast cells showed only 15.4% cell death, indicating an inherent anticancer property of VnNp. It acts as an initial reactive oxygen species quencher, by serving itself as an antioxidant, while; it was also found to alter the cellular antioxidant system with prolonged incubation. The VnNp accumulated explicitly in the lysosomes and mitochondria and modulated various cellular processes including impaired lysosomal function, mitochondrial damage, and autophagy. At more extended time points, VnNp influenced cell cycle arrest, inhibited cell migration, and potentiated the onset of apoptosis. Results are indicative of the fact that VnNp selectively induced breast cancer cell death and hence could be developed as a future drug molecule for breast cancer management. This could override the most crucial challenge of chemo-resistance that still remain as the main hurdle to cancer therapy.
Collapse
Affiliation(s)
- Parvathy R Suma
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, Kerala, India
| | - Renjini A Padmanabhan
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, 695014, Kerala, India
| | - Srinivasa Reddy Telukutla
- Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, G.P.O Box 2476, Melbourne, VIC, 3001, Australia
| | - Rishith Ravindran
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala, Vithura, 695551, Kerala, India
| | - Anoop Kumar G Velikkakath
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala, Vithura, 695551, Kerala, India
| | - Chaitali D Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Willi Paul
- Central Analytical Facility, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, 695012, Kerala, India
| | - Malini Laloraya
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, 695014, Kerala, India
| | - Srinivasa M Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala, Vithura, 695551, Kerala, India
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, Kerala, India.
| |
Collapse
|
20
|
Raychaudhuri R, Naik S, Shreya AB, Kandpal N, Pandey A, Kalthur G, Mutalik S. Pullulan based stimuli responsive and sub cellular targeted nanoplatforms for biomedical application: Synthesis, nanoformulations and toxicological perspective. Int J Biol Macromol 2020; 161:1189-1205. [PMID: 32504712 DOI: 10.1016/j.ijbiomac.2020.05.262] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 01/27/2023]
Abstract
With growing interest in polymers of natural origin, innumerable polysaccharides have gained attention for their biomedical application. Pullulan, one of the FDA approved nutraceuticals, possesses multiple unique properties which make them highly advantageous for biomedical applications. This present review encompasses the sources, production, properties and applications of pullulan. It highlights various pullulan based stimuli-responsive systems (temperature, pH, ultrasound, magnetic), subcellular targeted systems (mitochondria, Golgi apparatus/endoplasmic reticulum, lysosome, endosome), lipid-vesicular systems (solid-lipid nanoparticles, liposomes), polymeric nanofibres, micelles, inorganic (SPIONs, gold and silver nanoparticles), carbon-based nanoplatforms (carbon nanotubes, fullerenes, nanodiamonds) and quantum dots. This article also gives insight into different biomedical, therapeutic and diagnostic applications of pullulan viz., imaging, tumor targeting, stem cell therapy, gene therapy, vaccine delivery, cosmetic applications, protein delivery, tissue engineering, photodynamic therapy and chaperone-like activities. The review also includes the toxicological profile of pullulan which is helpful for the development of suitable delivery systems for clinical applications.
Collapse
Affiliation(s)
- Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla B Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Neha Kandpal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
21
|
Bai X, Su G, Zhai S. Recent Advances in Nanomedicine for the Diagnosis and Therapy of Liver Fibrosis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1945. [PMID: 33003520 PMCID: PMC7599596 DOI: 10.3390/nano10101945] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis, a reversible pathological process of inflammation and fiber deposition caused by chronic liver injury and can cause severe health complications, including liver failure, liver cirrhosis, and liver cancer. Traditional diagnostic methods and drug-based therapy have several limitations, such as lack of precision and inadequate therapeutic efficiency. As a medical application of nanotechnology, nanomedicine exhibits great potential for liver fibrosis diagnosis and therapy. Nanomedicine enhances imaging contrast and improves tissue penetration and cellular internalization; it simultaneously achieves targeted drug delivery, combined therapy, as well as diagnosis and therapy (i.e., theranostics). In this review, recent designs and development efforts of nanomedicine systems for the diagnosis, therapy, and theranostics of liver fibrosis are introduced. Relative to traditional methods, these nanomedicine systems generally demonstrate significant improvement in liver fibrosis treatment. Perspectives and challenges related to these nanomedicine systems translated from laboratory to clinical use are also discussed.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| |
Collapse
|
22
|
Avasthi A, Caro C, Pozo-Torres E, Leal MP, García-Martín ML. Magnetic Nanoparticles as MRI Contrast Agents. Top Curr Chem (Cham) 2020; 378:40. [PMID: 32382832 PMCID: PMC8203530 DOI: 10.1007/s41061-020-00302-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to conventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have been extensively investigated as CAs due to their high biocompatibility and excellent magnetic properties. Furthermore, the ease of functionalization of their surfaces with different types of ligands (antibodies, peptides, sugars, etc.) opens up the possibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial growth factor receptor antibodies, short peptides, like RGD, or aptamers, among others, have been proposed for the diagnosis of various types of cancer, including breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, different types of IONPs have been developed for other applications, such as the detection of brain inflammation or the early diagnosis of thrombosis. This review addresses key aspects in the development of IONPs for MRI applications, namely, synthesis of the inorganic core, functionalization processes to make IONPs biocompatible and also to target them to specific tissues or cells, and finally in vivo studies in animal models, with special emphasis on tumor models.
Collapse
Affiliation(s)
- Ashish Avasthi
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Carlos Caro
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Esther Pozo-Torres
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain.
| | - María Luisa García-Martín
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Málaga, Spain.
| |
Collapse
|
23
|
Shan X, Chen Q, Yin X, Jiang C, Li T, Wei S, Zhang X, Sun G, Liu J, Lu L. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B 2020; 8:426-437. [DOI: 10.1039/c9tb02254f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A polypyrrole-based theranostic agent containing double rare-earth elements was constructed and demonstrated promising application for T1/T2-weighted MRI/CT tri-modal imaging guided photothermal cancer therapy.
Collapse
|
24
|
Koushika EM, Balasubramanian C, Saravanan P, Shanmugavelayutham G. Influence of He and N 2 plasma on in situ surface passivated Fe nanopowders by plasma arc discharge. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:475302. [PMID: 31344694 DOI: 10.1088/1361-648x/ab35aa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DC transferred arc plasma method was employed for the synthesis of core (Fe)-shell (Fe oxide) nanopowders under N2 and He atmospheres. The phase and elemental compositions were studied by x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS) techniques. The structural and magnetic properties were investigated by high-resolution transmission electron microscopy (HRTEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy. XRD and EDS results confirmed the presence of iron and iron oxide. From HRTEM, the average particle sizes of 32, 47 and 71 nm and 20, 26 and 37 nm were obtained against processing currents of 50, 100 and 150 A under N2 and He atmospheres respectively. The average particle size values were found to increase with increases in processing current. Spherical and hollow hexagonal nano-structures were obtained under N2 atmosphere whereas spherical and distorted cubes were formed under He atmosphere. The elemental mapping revealed the presence of oxygen on the surface and Fe in the core of the nanoparticles.
Collapse
Affiliation(s)
- E M Koushika
- Plasma Physics Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, India
| | | | | | | |
Collapse
|
25
|
Strategy to prevent cardiac toxicity induced by polyacrylic acid decorated iron MRI contrast agent and investigation of its mechanism. Biomaterials 2019; 222:119442. [DOI: 10.1016/j.biomaterials.2019.119442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
|
26
|
Huang S, Yang E, Yao J, Chu X, Liu Y, Zhang Y, Xiao Q. Nitrogen, Cobalt Co-doped Fluorescent Magnetic Carbon Dots as Ratiometric Fluorescent Probes for Cholesterol and Uric Acid in Human Blood Serum. ACS OMEGA 2019; 4:9333-9342. [PMID: 31460022 PMCID: PMC6649034 DOI: 10.1021/acsomega.9b00874] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/14/2019] [Indexed: 05/23/2023]
Abstract
Detection of cholesterol and uric acid biomarkers is of great importance for clinical diagnosis of several serious diseases correlated with their variations in human blood serum. In this study, a new kind of well selective and highly sensitive ratiometric fluorescent probe for cholesterol and uric acid determination in human blood serum was innovatively developed on the basis of the inner filter effect (IFE) process of nitrogen, cobalt co-doped carbon dots (N,Co-CDs) with 2,3-diaminophenazine (DAP). DAP was the oxidative product during the oxidation reaction between o-phenylenediamine and H2O2. Fluorescent magnetic N,Co-CDs possessing blue emission and magnetic property were prepared through a facile one-pot hydrothermal strategy by using citric acid, diethylenetriamine, and cobalt(II) chloride hexahydrate as precursors. N,Co-CDs exhibited good ferromagnetic property and excellent optical properties even in extremely harsh environmental conditions, implying the huge potential applications of such N,Co-CDs in biological areas. On the basis of the IFE process between N,Co-CDs and DAP, N,Co-CDs were applied to establish ratiometric fluorescent probes for the indirect detection of cholesterol and uric acid that participated in enzyme-catalyzed H2O2-generation reactions. The established IFE-based fluorescent probes exhibited relatively low detection limits of 3.6 nM for cholesterol and 3.4 nM for uric acid, respectively. The fluorescent probe was successfully utilized for the determination of cholesterol and uric acid in human blood serum with satisfying results, which provided an informed perspective on the applications of such doped CDs to explore the specific and sensitive nanoprobe in disease diagnoses and clinical therapy.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory
of Natural Polymer Chemistry and Physics, College of Chemistry and
Materials, Nanning Normal University, 175 Mingxiu East Road, Nanning 530001, P. R. China
- Department of Food Science and Technology, University of Nebraska-Lincoln, 270 Food Innovation Center, Lincoln, Nebraska 68588, United States
| | - Erli Yang
- Guangxi Key Laboratory
of Natural Polymer Chemistry and Physics, College of Chemistry and
Materials, Nanning Normal University, 175 Mingxiu East Road, Nanning 530001, P. R. China
| | - Jiandong Yao
- Guangxi Key Laboratory
of Natural Polymer Chemistry and Physics, College of Chemistry and
Materials, Nanning Normal University, 175 Mingxiu East Road, Nanning 530001, P. R. China
| | - Xu Chu
- Guangxi Key Laboratory
of Natural Polymer Chemistry and Physics, College of Chemistry and
Materials, Nanning Normal University, 175 Mingxiu East Road, Nanning 530001, P. R. China
| | - Yi Liu
- Guangxi Key Laboratory
of Natural Polymer Chemistry and Physics, College of Chemistry and
Materials, Nanning Normal University, 175 Mingxiu East Road, Nanning 530001, P. R. China
| | - Yue Zhang
- Department of Food Science and Technology, University of Nebraska-Lincoln, 270 Food Innovation Center, Lincoln, Nebraska 68588, United States
| | - Qi Xiao
- Guangxi Key Laboratory
of Natural Polymer Chemistry and Physics, College of Chemistry and
Materials, Nanning Normal University, 175 Mingxiu East Road, Nanning 530001, P. R. China
| |
Collapse
|
27
|
Yin J, Yin G, Pu X, Huang Z, Yao D. Preparation and characterization of peptide modified ultrasmall superparamagnetic iron oxides used as tumor targeting MRI contrast agent. RSC Adv 2019; 9:19397-19407. [PMID: 35519366 PMCID: PMC9065400 DOI: 10.1039/c9ra02636c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
As desirable contrast agents for magnetic resonance imaging (MRI), ultrasmall superparamagnetic iron oxides (USPIOs) are required to exhibit both low cytotoxicity and specific targetability besides superparamagnetism to achieve better imaging contrast at lower dose, and cladding with biocompatible polymers and modification with targeting ligands are considered to be the most effective strategies. In this study, novel dextran wrapped and peptide WSGPGVWGASVK (peptide-WSG) grafted USPIOs were meticulously prepared and systematically characterized. Firstly, dextran (Dex) cladded USPIOs (USPIOs@Dex) were synthesized with a well-designed co-precipitation procedure in which the biocompatible dextran played dual roles of grain inhibitor and cladding agent. After that, sodium citrate was applied to carboxylize the hydroxyls of the dextran molecules via an esterification reaction, and then tumor targeting peptide-WSG was grafted to the carboxyl groups by the EDC method. The XRD, TEM, and FTIR results showed that inverse spinel structure Fe3O4 crystallites were nucleated and grown in aqueous solution, and the catenulate dextran molecules gradually bound on their surface, meanwhile the growth of grains was inhibited. The size of original crystallite grains was about 7 nm, but the mean size of USPIOs@Dex aggregates was 165.20 nm. After surface modification by sodium citrate and peptide-WSG with ultrasonic agitation, the size of the USPIOs@Dex-WSG aggregates was smaller (66.06 nm) because the hydrophilicity was improved, so USPIOs@Dex-WSG could evade being eliminated by RES more easily, and prolong residence time in blood circulation. The VSM and T2-weighted MRI results showed that USPIOs@Dex-WSG were superparamagnetic with a saturation magnetization of 44.65 emu g−1, and with high transverse relaxivity as the R2 relaxivity coefficient value was 229.70 mM−1 s−1. The results of MTT assays and the Prussian blue staining in vitro revealed that USPIOs@Dex-WSG exhibited nontoxicity for normal cells such as L929 and HUVECs, and were specifically targeted to the SKOV-3 cells. Thus, the novel dextran wrapped and WSG-peptide grafted USPIOs have potential to be applied as tumor active targeting contrast agents for MRI. As desirable contrast agents for magnetic resonance imaging (MRI), ultrasmall superparamagnetic iron oxides (USPIOs) modified with targeting ligands are considered to be the most effective strategies to achieve better imaging contrast at lower dose.![]()
Collapse
Affiliation(s)
- Jie Yin
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- PR China
- School of Automation and Information Engineering
| | - Guangfu Yin
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- PR China
| | - Ximing Pu
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- PR China
| | - Zhongbing Huang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- PR China
| | - Dajin Yao
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- PR China
| |
Collapse
|
28
|
Yin J, Xu F, Qu H, Li C, Liu S, Liu L, Shao Y. Dysprosium-doped iron oxide nanoparticles boosting spin–spin relaxation: a computational and experimental study. Phys Chem Chem Phys 2019; 21:11883-11891. [DOI: 10.1039/c9cp00463g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study combines the first-principle calculation and experimental investigation to unveil the physical mechanism of T2-MRI relaxation enhancement of Dy-doped iron oxide nanoparticles.
Collapse
Affiliation(s)
- Jinchang Yin
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Feihong Xu
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Hongbin Qu
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Chaorui Li
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Shiyi Liu
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Lizhi Liu
- Center of Medical Imaging and Image-guided Therapy
- Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Guangzhou 510060
| | - Yuanzhi Shao
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
29
|
Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJ. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2018; 119:1666-1762. [DOI: 10.1021/acs.chemrev.8b00401] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liemei Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aihua Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Laboratory of Fiber Materials and Modern Textiles, Growing Base for State Key Laboratory, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Di Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
30
|
Nimi N, Saraswathy A, Nazeer SS, Francis N, Shenoy SJ, Jayasree RS. Biosafety of citrate coated zerovalent iron nanoparticles for Magnetic Resonance Angiography. Data Brief 2018; 20:1829-1835. [PMID: 30294631 PMCID: PMC6169371 DOI: 10.1016/j.dib.2018.08.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/24/2018] [Indexed: 11/25/2022] Open
Abstract
Though nanoparticles are being used for several biomedical applications, the safety of the same is still a concern. It is very routine procedure to check the preliminary safety aspects of the particles intended for in vivo applications. The major tests include how the material reacts to a normal cell, how it behaves with the blood cells and also whether any lysis take place in the presence of these materials. Here we present these test data of two novel nanomaterials designed for its use as contrast agent for magnetic resonance imaging and a multimodal contrast agent for targeted liver imaging. On proving the biosafety, the materials were tested for Magnetic Resonance Angiography using normal rats as model. The data of the same were clear identification of the prominent vascular structures and is included as the colour coded MRI image. Lateral and oblique view data are also presented for visualizing other major blood vessels.
Collapse
Affiliation(s)
- Nimi N
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Ariya Saraswathy
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Shaiju S Nazeer
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Nimmi Francis
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Sachin J Shenoy
- Division of in vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| |
Collapse
|