1
|
Ding Q, Shang J, Yang L, Deng L, Wu S, Chen J, Yang J, Wang K, Li C, Chen J, Zhou M. Enhanced anti-tumor efficacy of berberine-loaded mesoporous polydopamine nanoparticles for synergistic chemotherapy and photothermal therapy. Int J Pharm 2025; 670:125151. [PMID: 39743162 DOI: 10.1016/j.ijpharm.2024.125151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The development of innovative therapeutic strategies that combine multiple treatment modalities is essential for effective cancer therapy. In this study, we engineered berberine (BER)-loaded mesoporous polydopamine (MPDA) nanoparticles (BER-MPDA) to enhance anti-tumor efficacy through synergistic chemotherapy and photothermal therapy (PTT). The mesoporous structure of MPDA allowed for a high loading capacity of BER, a natural isoquinoline alkaloid with known anticancer properties. Upon near-infrared laser irradiation, BER-MPDA exhibited marked photothermal conversion efficiency, leading to effective tumor cell ablation. Both in vitro and in vivo experiments indicated that the combined treatment of BER-MPDA with near-infrared laser irradiation resulted in superior tumor inhibition compared to monotherapy. The synergistic effect was attributed to the enhanced cellular uptake and the simultaneous induction of chemo- and photothermal cytotoxicity. Our findings suggest that BER-MPDA represents a promising platform for multimodal cancer therapy, offering a potent approach to overcoming the limitations of conventional chemotherapy and PTT.
Collapse
Affiliation(s)
- Qian Ding
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, China; Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinlu Shang
- Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, China
| | - Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Deng
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Siqiong Wu
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Chen
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, China
| | - Jing Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ke Wang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Junyan Chen
- Department of Cardiothoracic Surgery, Luzhou People's Hospital, Luzhou 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Yu Y, Zhang L, Jia H, Ji C, Liu Y, Zhao Z, Dai C, Ding D, Tang BZ, Feng G. Dual-Mode Reactive Oxygen Species-Stimulated Carbon Monoxide Release for Synergistic Photodynamic and Gas Tumor Therapy. ACS NANO 2024; 18:31286-31299. [PMID: 39475554 DOI: 10.1021/acsnano.4c10277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Controllable carbon monoxide (CO) release simulated by light-generated reactive oxygen species (ROS) represents a promising approach for cancer therapy but is hampered by low CO release rate and low ROS generation of conventional photosensitizers in hypoxia tumor microenvironments. In this study, we developed a highly efficient nanoplatform (TPyNO2-FeCO NPs) through co-encapsulating organic AIE photosensitizers (PSs) and CO prodrug (Fe3(CO)12), which are capable of light-triggered robust ROS generation and CO release for synergistic photodynamic therapy (PDT) and CO gas therapy. The success of this nanoplatform leverages the design of a PS, TPyNO2, with exceptional type I and type II ROS generation capabilities, achieved through the introduction of the α-photoinduced electron transfer (α-PET) process. With the incorporation of a 4-nitrobenzyl unit as a typical PET donor, the intramolecular α-PET process not only suppresses the radiative decay to redirect the excited-state energy to intersystem crossing for more triplet-state formation but also promotes electron separation and transfer processes for radical-type ROS generation. The resultant TPyNO2 demonstrates superior singlet oxygen, superoxide anion, and hydroxyl radial generation capabilities in the aggregate state. Upon light irradiation, TPyNO2-FeCO NPs release CO via the type I and type II dual-mode ROS-mediated processes in a controlled and targeted manner, overcoming the limitations of conventional CO release systems. TPyNO2-FeCO NPs also demonstrate a self-accelerating ROS-CO-ROS loop as the released CO induces intracellular oxidative stress, depolarizes mitochondria membrane potentials, and inhibits ATP production, leading to further intracellular ROS generation. Both in vitro and in vivo experiments validated the excellent antitumor performance of the combined PDT and CO gas therapy. This study provides valuable insights into the development of advanced PSs and establishes TPyNO2-FeCO NPs as promising nanoplatforms for safe and effective antitumor applications.
Collapse
Affiliation(s)
- Yuewen Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330031, China
| | - Le Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Hanyu Jia
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Chao Ji
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Yucheng Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Zexian Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen City, Guangdong 518172, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Wang D, Yao H, Ye J, Gao Y, Cong H, Yu B. Metal-Organic Frameworks (MOFs): Classification, Synthesis, Modification, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404350. [PMID: 39149999 DOI: 10.1002/smll.202404350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Metal-organic frameworks (MOFs) are a new variety of solid crystalline porous functional materials. As an extension of inorganic porous materials, it has made important progress in preparation and application. MOFs are widely used in various fields such as gas adsorption storage, drug delivery, sensing, and biological imaging due to their high specific surface area, porosity, adjustable pore size, abundant active sites, and functional modification by introducing groups. In this paper, the types of MOFs are classified, and the synthesis methods and functional modification mechanisms of MOFs materials are summarized. Finally, the application prospects and challenges of metal-organic framework materials in the biomedical field are discussed, hoping to promote their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Huanchen Yao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jiashuo Ye
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yan Gao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
4
|
Yu Z, Lepoitevin M, Serre C. Iron-MOFs for Biomedical Applications. Adv Healthc Mater 2024:e2402630. [PMID: 39388416 DOI: 10.1002/adhm.202402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Over the past two decades, iron-based metal-organic frameworks (Fe-MOFs) have attracted significant research interest in biomedicine due to their low toxicity, tunable degradability, substantial drug loading capacity, versatile structures, and multimodal functionalities. Despite their great potential, the transition of Fe-MOFs-based composites from laboratory research to clinical products remains challenging. This review evaluates the key properties that distinguish Fe-MOFs from other MOFs and highlights recent advances in synthesis routes, surface engineering, and shaping technologies. In particular, it focuses on their applications in biosensing, antimicrobial, and anticancer therapies. In addition, the review emphasizes the need to develop scalable, environmentally friendly, and cost-effective production methods for additional Fe-MOFs to meet the specific requirements of various biomedical applications. Despite the ability of Fe-MOFs-based composites to combine therapies, significant hurdles still remain, including the need for a deeper understanding of their therapeutic mechanisms and potential risks of resistance and overdose. Systematically addressing these challenges could significantly enhance the prospects of Fe-MOFs in biomedicine and potentially facilitate their integration into mainstream clinical practice.
Collapse
Affiliation(s)
- Zhihao Yu
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| |
Collapse
|
5
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
6
|
Wang Q, Zhang C, Zhao Y, Jin Y, Zhou S, Qin J, Zhang W, Hu Y, Chen X, Yang K. Polyprodrug nanomedicine for chemiexcitation-triggered self-augmented cancer chemotherapy and gas therapy. Biomaterials 2024; 309:122606. [PMID: 38776593 DOI: 10.1016/j.biomaterials.2024.122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Carbon monoxide (CO) has emerged as a potential antitumor agent by inducing the dysfunction of mitochondria and the apoptosis of cancer cells. However, it remains challenging to deliver appropriate amount of CO into tumor to ensure efficient tumor growth suppression with minimum side effects. Herein we developed a CO prodrug-loaded nanomedicine based on the self-assembly of camptothecin (CPT) polyprodrug amphiphiles. The polyprodrug nanoparticles readily dissociate upon exposure to endogenous H2O2 in the tumor, resulting in rapid release of CPT and generation of high-energy intermediate dioxetanedione. The latter can transfer the energy to neighboring CO prodrugs to activate CO production by chemiexcitation, while CPT promotes the generation of H2O2 in tumors, which in turn facilitates cascade CPT and CO release. As a result, the polyprodrug nanoparticles display remarkable tumor suppression in both subcutaneous and orthotopic breast tumor-bearing mice owing to the self-augmented CPT release and CO generation. In addition, no obvious systemic toxicity was observed in mice treated with the metal-free CO prodrug-loaded nanomedicine, suggesting the good biocompatibility of the polyprodrug nanoparticles. Our work provides new insights into the design and construction of polyprodrug nanomedicines for synergistic chemo/gas therapy.
Collapse
Affiliation(s)
- Qingfu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China
| | - Chen Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China
| | - Ya Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China
| | - Yifan Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China
| | - Shen Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China
| | - Junde Qin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China
| | - Wenxin Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore,117597, Singapore; Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China.
| |
Collapse
|
7
|
Liu H, Xing F, Yu P, Shakya S, Peng K, Liu M, Xiang Z, Ritz U. Integrated design and application of stimuli-responsive metal-organic frameworks in biomedicine: current status and future perspectives. J Mater Chem B 2024; 12:8235-8266. [PMID: 39058314 DOI: 10.1039/d4tb00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In recent years, metal-organic frameworks (MOFs) have garnered widespread attention due to their distinctive attributes, such as high surface area, tunable properties, biodegradability, extremely low density, high loading capacity, diverse chemical functionalities, thermal stability, well-defined pore sizes, and molecular dimensions. Increasingly, biomedical researchers have turned their focus towards their multifaceted development. Among these, stimuli-responsive MOFs, with their unique advantages, have captured greater interest from researchers. This review will delve into the merits and drawbacks of both endogenous and exogenous stimuli-responsive MOFs, along with their application directions. Furthermore, it will outline the characteristics of different synthesis routes of MOFs, exploring various design schemes and modification strategies and their impacts on the properties of MOF products, as well as how to control them. Additionally, we will survey different types of stimuli-responsive MOFs, discussing the significance of various MOF products reported in biomedical applications. We will categorically summarize different strategies such as anticancer therapy, antibacterial treatment, tissue repair, and biomedical imaging, as well as insights into the development of novel MOFs nanomaterials in the future. Finally, this review will conclude by summarizing the challenges in the development of stimuli-responsive MOFs in the field of biomedicine and providing prospects for future research endeavors.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Fei Xing
- Department of Pediatric Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Sujan Shakya
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Kun Peng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiang Xi, China
| | - Ming Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
- Department of Orthopedics, Sanya People's Hospital, 572000 Sanya, Hainan, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
8
|
Wang Y, Zhao X, Tang H, Wang Z, Ge X, Hu S, Li X, Guo S, Liu R. The size-dependent effects of nanoplastics in mouse primary hepatocytes from cells to molecules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124239. [PMID: 38810687 DOI: 10.1016/j.envpol.2024.124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) are easily ingested by organisms and their major accumulation organ was determined to be liver. To date, the size-dependent cytotoxicity of NPs on mammalian hepatocytes remains unclear. This study utilized mouse primary hepatocytes and catalase (CAT) as specific receptors to investigate the toxicity of NPs from cells to molecules, focusing on size-dependent effects. Results showed that the larger the particle size of NP at low doses (≤50 mg/L), the most pronounced inhibitory effect on hepatocyte viability. 20 nm NPs significantly inhibit cell viability only at high doses (100 mg/L). Larger NP particles (500 nm and 1000 nm) resulted in a massive release of lactate dehydrogenase (LDH) from the cell (cell membrane damage). Reactive oxygen species (ROS), superoxide dismutase (SOD) and CAT tests suggest that NPs disturbed the cellular antioxidant system. 20 nm NPs show great strength in oxidizing lipids and disrupting mitochondrial function compared to NPs of other particle sizes. The degree of inhibition of CAT activity by different sized NPs was coherent at the cellular and molecular levels, and NP-500 had the most impact. This suggests that the structure and microenvironment of the polypeptide chain in the vicinity of the CAT active site is more susceptible to proximity and alteration by NP-500. In addition, the smaller NPs are capable of inducing relaxation of CAT backbone, disruption of H-bonding and reduction of α-helix content, whereas the larger NPs cause contraction of CAT backbone and increase in α-helix content. All NPs induce CAT fluorescence sensitization and make the chromophore microenvironment hydrophobic. This study provides new insights for NP risk assessment and applications.
Collapse
Affiliation(s)
- Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Houquan Tang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Zaifeng Wang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Xuan Ge
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
9
|
Guo Z, Zheng H, Ma J, Xu G, Jia Q. Design of pH-responsive molecularly imprinted polymer as a carrier for controlled and sustainable capecitabine release. Anal Chim Acta 2024; 1317:342881. [PMID: 39029999 DOI: 10.1016/j.aca.2024.342881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 06/16/2024] [Indexed: 07/21/2024]
Abstract
A molecularly imprinting polymer (MIP) carrier with pH-responsivity was designed to construct a drug delivery system (DDS) focusing on controlled and sustainable capecitabine (CAPE) release. The pH-responsive characteristic was achieved by the functionalization of SiO2 substrate with 4-formylphenylboronic acid, accompanied by the introduction of fluorescein isothiocyanate for the visualization of the intracellular localization of the nanocarrier. Experimental results indicated that CAPE was adsorbed onto the drug carrier with satisfactory encapsulation efficiency. The controlled release of CAPE was realized based on the break of borate ester bonds between -B(OH)2 and cis-diols in the weakly acidic environment. Density functional theory computations were conducted to investigate the adsorption/release mechanism. Moreover, in vitro experiments confirmed the good biocompatibility and ideal inhibition efficiency of the developed DDS. The MIP can act as an eligible carrier and exhibits the great potential in practical applications for tumor treatment.
Collapse
Affiliation(s)
- Zimeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Haijiao Zheng
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guoxing Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
10
|
Zhou Y, Zhang R, Lu Y, Fu X, Lv K, Gong J, Wang D, Feng J, Zhang H, Guo Y. Acid‐Unlocked Switch Controlled the Enzyme and CO In Situ Release to Induce Mitochondrial Damage via Synergy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202312416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/15/2024]
Abstract
AbstractCO gas therapy has attracted enormous attention in tumor therapy due to the abilities of mitochondrial damage and inhibition of cellular respiration. However, the inefficient and random release of CO greatly limit its application. Taking this into account, the study constructs an acid‐unlocked nanostructure based on MPDA‐MnCO‐GOx@DSNPs, designated as MMGD. The nanostructure enables tumor microenvironment (TME) specific enzyme and CO prodrug (manganese carbonyl, MnCO) cascade reaction, thus facilitating CO release in situ. Mesoporous polydopamine (MPDA) can provide the space for MnCO and glucose oxidase (GOx) loading. Especially, lanthanide (Ln3+)‐doped down‐shifting luminescent nanoparticles (DSNPs) can not only serve as the near‐infrared II (NIR‐II) fluorescence imaging probe, but also act as the acid‐unlocked gating switch. The slightly acidic TME can render the dissociation of DSNPs, thus exposing GOx and releasing MnCO. The catalytic reaction of GOx can produce H2O2 and create a more acidic environment, which facilitates the CO generation in situ, leading to mitochondrial damage by reducing cytochrome c oxidase activity and adenosine triphosphate (ATP) levels. Meanwhile, MPDA has the NIR light absorption capability for photothermal therapy (PTT). This study provides an ingenious strategy for efficient and controllable CO gas, starvation, and PTT of tumor guided by NIR‐II fluorescence imaging.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Ruohao Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Yu Lu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Xinyu Fu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Kehong Lv
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jitong Gong
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Daguang Wang
- Department of Gastrocolorectal Surgery General Surgery Center The First Hospital of Jilin University Changchun 130021 China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuchen Guo
- Department of Gastrocolorectal Surgery General Surgery Center The First Hospital of Jilin University Changchun 130021 China
| |
Collapse
|
11
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Chang K, Sun X, Fu M, Han B, Jiang X, Qi Q, Zhang Y, Ni T, Ge C, Yang Z. H 2O 2-triggered controllable carbon monoxide delivery for photothermally augmented gas therapy. J Mater Chem B 2024; 12:2737-2745. [PMID: 38379390 DOI: 10.1039/d3tb02399k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Carbon monoxide (CO) gas therapy has shown great potential as a very promising approach in the ongoing fight against tumors. However, delivering unstable CO to the tumor site and safely releasing it for maximum efficacy still have unsatisfactory outcomes. In this study, we've developed nanotheranostics (IN-DPPCO NPs) based on conjugated polymer IN-DPP and carbon monoxide (CO) carrier polymer mPEG(CO) for photothermal augmented gas therapy. The IN-DPPCO NPs can release CO with the hydrogen peroxide (H2O2) overexpressed in the tumor microenvironment. Meanwhile, IN-DPPCO NPs exhibit strong absorption in the near-infrared window, showing a high photothermal conversion efficiency of up to 41.5% under 808 nm laser irradiation. In vitro and in vivo experiments demonstrate that these nanotheranostics exhibit good biocompatibility. Furthermore, the synergistic CO/photothermal therapy shows enhanced therapeutic efficacy compared to gas therapy alone. This work highlights the great promise of conjugated polymer nanoparticles as versatile nanocarriers for spatiotemporally controlled and on-demand delivery of gaseous messengers to achieve precision cancer theranostics.
Collapse
Affiliation(s)
- Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Xiaolin Sun
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
- Department of Scientific Research, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Mingying Fu
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Bing Han
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Xiaopeng Jiang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Qiaofang Qi
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Yang Zhang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Tianjun Ni
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Chunpo Ge
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| | - Zhijun Yang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. China.
| |
Collapse
|
13
|
Yan Z, Liu Z, Zhang H, Guan X, Xu H, Zhang J, Zhao Q, Wang S. Current trends in gas-synergized phototherapy for improved antitumor theranostics. Acta Biomater 2024; 174:1-25. [PMID: 38092250 DOI: 10.1016/j.actbio.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
14
|
Diao C, Yang Z, Hu Q, Yao P, Qu X, Li C, Zhang S, Zhou J. Celastrol Alleviates Mitochondrial Oxidative Stress and Brain Injury After Intracerebral Hemorrhage by Promoting OPA1-Dependent Mitochondrial Fusion. Neuroscience 2024; 536:79-91. [PMID: 37996053 DOI: 10.1016/j.neuroscience.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/01/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Mitochondrial oxidative stress is one of the characteristics of secondary brain injury (SBI) after intracerebral hemorrhage (ICH), contributing largely to the apoptosis of neurons. Celastrol, a quinone methide triterpene that possesses antioxidant and mitochondrial protective properties, has emerged as a neuroprotective agent. However, the activity of celastrol has not been tested in ICH-induced SBI. In this study, we found that celastrol could effectively alleviate neurological function deficits and reduce brain oedema and neuronal apoptosis caused by ICH. Through electron microscopy, we found that celastrol could significantly attenuate mitochondrial morphology impairment. Therefore, we tested the regulatory proteins of mitochondrial dynamics and found that celastrol could reverse the downwards trend of OPA1 expression after ICH. In view of this, by culturing OPA1-deficient primary neurons and constructing neuron-specific OPA1 conditional knockout mice, we found that the protective effects of celastrol on mitochondrial morphology and function after ICH were counteracted in the absence of OPA1. Further experiments also showed that OPA1 is indispensable for the protective effects of celastrol on ICH-induced secondary brain injury. In summary, we have demonstrated that celastrol is a potential drug for the treatment of ICH and have revealed a novel mechanism by which celastrol exerts its antioxidant effects by promoting OPA1-mediated mitochondrial fusion.
Collapse
Affiliation(s)
- Chunyan Diao
- School of Pharmacy, The Fourth Military Medical University, No. 169 West Changle Road, Xi'an 710032, PR China
| | - Zhengxuan Yang
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Qing Hu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Pengfei Yao
- Department of Neurosurgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, PR China
| | - Xiaodong Qu
- Department of Neurosurgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, PR China
| | - Changdong Li
- Department of Neurosurgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, PR China
| | - Shenghao Zhang
- Department of Neurosurgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, PR China.
| | - Jie Zhou
- Department of Neurosurgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, PR China.
| |
Collapse
|
15
|
Ma D, Wang G, Lu J, Zeng X, Cheng Y, Zhang Z, Lin N, Chen Q. Multifunctional nano MOF drug delivery platform in combination therapy. Eur J Med Chem 2023; 261:115884. [PMID: 37862817 DOI: 10.1016/j.ejmech.2023.115884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Recent preclinical and clinical studies have demonstrated that for cancer treatment, combination therapies are more effective than monotherapies in reducing drug-related toxicity, decreasing drug resistance, and improving therapeutic efficacy. With the rapid development of nanotechnology, the combination of metal-organic frameworks (MOFs) and multi-mode therapy offers a realistic possibility to further improve the shortcomings of cancer treatment. This article focuses on the latest developments, achievements, and treatment strategies of representative multifunctional MOF combination therapies for cancer treatment in recent years, which include not only bimodal combination therapies, but also multi-modal synergistic therapies, further demonstrating the effectiveness and superiority of the MOF drug delivery systems in cancer treatment.
Collapse
Affiliation(s)
- Dongwei Ma
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Gang Wang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Jingsheng Lu
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Xiaoxuan Zeng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Yanwei Cheng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Zhenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Ning Lin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China.
| | - Qing Chen
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China.
| |
Collapse
|
16
|
Ding H, Xia Q, Shen J, Zhu C, Zhang Y, Feng N. Advances and prospects of tumor immunotherapy mediated by immune cell-derived biomimetic metal-organic frameworks. Colloids Surf B Biointerfaces 2023; 232:113607. [PMID: 39491916 DOI: 10.1016/j.colsurfb.2023.113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The clinical translational success of nanomedicine and immunotherapy has already proved the immense potential in the field of nanotechnology and immunization. However, the development of nanomedicine is confronted with challenges such as potential toxicity and unclear nano-bio interactions. The efficacy of immunotherapy is limited to only a few groups. Combining immunotherapy with nanomedicine for multi-modal treatment effectively compensates for the limitations of the above single therapy. Immune cell membrane camouflaged metal-organic frameworks (ICM-MOFs) have emerged as a simple yet promising multimodal treatment strategy that possess multifunctional nanoscale properties and exhibit immune cell-like behaviors of stealth, targeting and immunomodulation. Here, we comprehensively discuss the latest advancements in ICM-MOFs, with a focus on the challenges of mono-immunotherapy, the superiority of biomimetic coating for MOF functionalization, preparation methods, related action mechanisms and biomedical applications. Finally, we address the challenges and prospects for clinical translation.
Collapse
Affiliation(s)
- Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
17
|
Peng X, Xu L, Zeng M, Dang H. Application and Development Prospect of Nanoscale Iron Based Metal-Organic Frameworks in Biomedicine. Int J Nanomedicine 2023; 18:4907-4931. [PMID: 37675409 PMCID: PMC10479543 DOI: 10.2147/ijn.s417543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Metal-organic frameworks (MOFs) are coordination polymers that comprise metal ions/clusters and organic ligands. MOFs have been extensively employed in different fields (eg, gas adsorption, energy storage, chemical separation, catalysis, and sensing) for their versatility, high porosity, and adjustable geometry. To be specific, Fe2+/Fe3+ exhibits unique redox chemistry, photochemical and electrical properties, as well as catalytic activity. Fe-based MOFs have been widely investigated in numerous biomedical fields over the past few years. In this study, the key index requirements of Fe-MOF materials in the biomedical field are summarized, and a conclusion is drawn in terms of the latest application progress, development prospects, and future challenges of Fe-based MOFs as drug delivery systems, antibacterial therapeutics, biocatalysts, imaging agents, and biosensors in the biomedical field.
Collapse
Affiliation(s)
- Xiujuan Peng
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Li Xu
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Min Zeng
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People’s Republic of China
| | - Hao Dang
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| |
Collapse
|
18
|
Zhu R, Cai M, Fu T, Yin D, Peng H, Liao S, Du Y, Kong J, Ni J, Yin X. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications. Pharmaceutics 2023; 15:1599. [PMID: 37376050 DOI: 10.3390/pharmaceutics15061599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are porous materials composed of metal ions and organic ligands. Due to their large surface area, easy modification, and good biocompatibility, MOFs are often used in bio-related fields. Fe-based metal-organic frameworks (Fe-MOFs), as important types of MOF, are favored by biomedical researchers for their advantages, such as low toxicity, good stability, high drug-loading capacity, and flexible structure. Fe-MOFs are diverse and widely used. Many new Fe-MOFs have appeared in recent years, with new modification methods and innovative design ideas, leading to the transformation of Fe-MOFs from single-mode therapy to multi-mode therapy. In this paper, the therapeutic principles, classification, characteristics, preparation methods, surface modification, and applications of Fe-MOFs in recent years are reviewed to understand the development trends and existing problems in Fe-MOFs, with the view to provide new ideas and directions for future research.
Collapse
Affiliation(s)
- Rongyue Zhu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengru Cai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongge Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hulinyue Peng
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shilang Liao
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuji Du
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
19
|
Allegra A, Murdaca G, Mirabile G, Gangemi S. Redox Signaling Modulates Activity of Immune Checkpoint Inhibitors in Cancer Patients. Biomedicines 2023; 11:biomedicines11051325. [PMID: 37238995 DOI: 10.3390/biomedicines11051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although immunotherapy is already a staple of cancer care, many patients may not benefit from these cutting-edge treatments. A crucial field of research now focuses on figuring out how to improve treatment efficacy and assess the resistance mechanisms underlying this uneven response. For a good response, immune-based treatments, in particular immune checkpoint inhibitors, rely on a strong infiltration of T cells into the tumour microenvironment. The severe metabolic environment that immune cells must endure can drastically reduce effector activity. These immune dysregulation-related tumour-mediated perturbations include oxidative stress, which can encourage lipid peroxidation, ER stress, and T regulatory cells dysfunction. In this review, we have made an effort to characterize the status of immunological checkpoints, the degree of oxidative stress, and the part that latter plays in determining the therapeutic impact of immunological check point inhibitors in different neoplastic diseases. In the second section of the review, we will make an effort to assess new therapeutic possibilities that, by affecting redox signalling, may modify the effectiveness of immunological treatment.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino IRCCS, University of Genova, Viale Benedetto XV, n. 6, 16132 Genova, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
20
|
Moharramnejad M, Malekshah RE, Ehsani A, Gharanli S, Shahi M, Alvan SA, Salariyeh Z, Azadani MN, Haribabu J, Basmenj ZS, Khaleghian A, Saremi H, Hassani Z, Momeni E. A review of recent developments of metal-organic frameworks as combined biomedical platforms over the past decade. Adv Colloid Interface Sci 2023; 316:102908. [PMID: 37148581 DOI: 10.1016/j.cis.2023.102908] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Metal-organic frameworks (MOFs), also called porous coordination polymers, represent a class of crystalline porous materials made up of organic ligands and metal ions/metal clusters. Herein, an overview of the preparation of different metal-organic frameworks and the recent advances in MOF-based stimuli-responsive drug delivery systems (DDSs) with the drug release mechanisms including pH-, temperature-, ion-, magnetic-, pressure-, adenosine-triphosphate (ATP)-, H2S-, redox-, responsive, and photoresponsive MOF were rarely introduced. The combination therapy containing of two or more treatments can be enhanced treatment effectiveness through overcoming limitations of monotherapy. Photothermal therapy (PTT) combined with chemotherapy (CT), chemotherapy in combination with PTT or other combinations were explained to overcome drug resistance and side effects in normal cells as well as enhancing the therapeutic response. Integrated platforms containing of photothermal/drug-delivering functions with magnetic resonance imaging (MRI) properties exhibited great advantages in cancer therapy.
Collapse
Affiliation(s)
- Mojtaba Moharramnejad
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran; Young Researcher and Elite Group, University of Qom, Qom, Iran
| | - Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran; Department of Chemistry, Semnan University, Semnan, Iran.
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Sajjad Gharanli
- Department of Chemical Engineering, Faculty of Engineering, Qom University, Qom, Iran
| | - Mehrnaz Shahi
- Department of Chemistry, Semnan University, Semnan, Iran
| | - Saeed Alvani Alvan
- Bachelor of Chemical Engineering, Azad Varamin University, Peshwa branch, Iran
| | | | | | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | | | - Ali Khaleghian
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Saremi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Zahra Hassani
- Department of New Materials, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Elham Momeni
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
21
|
Cui L, Wang X, Liu Z, Li Z, Bai Z, Lin K, Yang J, Cui Y, Tian F. Metal-organic framework decorated with glycyrrhetinic acid conjugated chitosan as a pH-responsive nanocarrier for targeted drug delivery. Int J Biol Macromol 2023; 240:124370. [PMID: 37044320 DOI: 10.1016/j.ijbiomac.2023.124370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Stimulus-responsive nanomaterials have become a hot spot in controllable drug delivery systems researches owing to their spatiotemporal controllable properties based on the differences between tumor microenvironment and normal tissue. Herein, iron (III) carboxylate metal-organic framework nanoparticles coated with glycyrrhetinic acid-chitosan conjugate (MIL-101/GA-CS) were successfully fabricated and acted as the pH-responsive and target-selective system to deliver doxorubicin (DOX) for hepatocellular carcinoma (HCC) therapy. The prepared nanocarrier possess the advantages of uniform size, comparable drug loading efficiency (28.89 %), and superior pH-dependent controlled drug release (DOX release of 2.74 % and 89.18 % within 72 h at pH 7.4 and 5.5, respectively). In vitro cytotoxicity assays showed that the drug-loaded nanocarriers exhibited excellent inhibitory effects on HepG2 cells due to the sustained release of DOX, while the nanocarriers showed no significant toxicity. Furthermore, cell uptake experiments demonstrated that MIL-101-DOX/GA-CS could target HepG2 cells based on receptor-dependent internalization of glycyrrhetinic acid-receptors-mediated (GA-receptors). In vitro 3D hepatoma cell microspheres experiments showed that MIL-101-DOX/GA-CS had excellent penetration and tumor killing ability. Therefore, MIL-101-DOX/GA-CS nanoparticles have a prospective application in cancer therapy as a pH-responsive controlled drug delivery system.
Collapse
Affiliation(s)
- Liu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Zhaoyun Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziqi Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziwei Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Kui Lin
- Analytical Instrumentation Centre, Tianjin University, Tianjin 300072, PR China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Yuanlu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Fei Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
22
|
Tang Y, Bisoyi HK, Chen XM, Liu Z, Chen X, Zhang S, Li Q. Pyroptosis-Mediated Synergistic Photodynamic and Photothermal Immunotherapy Enabled by a Tumor-Membrane-Targeted Photosensitive Dimer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300232. [PMID: 36921347 DOI: 10.1002/adma.202300232] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Overcoming the resistance to apoptosis and immunosuppression of tumor cells is a significant challenge in augmenting the effect of cancer immunotherapy. Pyroptosis, a lytic programmed cell-death pathway unlike apoptosis, is considered a type of immunogenic cell death (ICD) that can intensify the ICD process in tumor cells, releasing dramatically increased tumor-associated antigens and damage-associated molecular patterns to promote cancer immunotherapy. Herein, a tumor cell membrane-targeted aggregation-induced emission photosensitive dimer is found to be able to achieve highly efficient ICD under the synergistic effect of photodynamic and photothermal therapy. The photosensitive dimer can efficiently produce type-I reactive oxygen species (ROS) by photodynamic therapy in hypoxic tumor tissue, leading to pyroptosis by direct cell membrane damage, which is further reinforced by its photothermal effect. Furthermore, the enhanced ICD effect based on the dimer can completely eliminate the primary tumor on the seventh day of treatment and can also boost systemic antitumor immunity by generating immune memory, which is demonstrated by the superior antitumor therapeutic effects on both solid tumors and metastatic tumors when healing 4T1 tumor mouse models with poor immunogenicity.
Collapse
Affiliation(s)
- Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhiyang Liu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
23
|
Xie D, Deng T, Zhai Z, Qin T, Song C, Xu Y, Sun T. Moschus exerted protective activity against H 2O 2-induced cell injury in PC12 cells through regulating Nrf-2/ARE signaling pathways. Biomed Pharmacother 2023; 159:114290. [PMID: 36708701 DOI: 10.1016/j.biopha.2023.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The pivotal characteristics of Alzheimer's disease (AD) are irreversible memory loss and progressive cognitive decline, eventually causing death from brain failure. In the various proposed hypotheses of AD, oxidative stress is also regarded as a symbolic pathophysiologic cascade contributing to brain diseases. Using Chinese herbal medicine may be beneficial for treating and preventing AD. As a rare and valuable animal medicine, Moschus possesses antioxidant and antiapoptotic efficacy and is extensively applied for treating unconsciousness, stroke, coma, and cerebrovascular diseases. We aim to evaluate whether Moschus protects PC12 cells from hydrogen peroxide (H2O2)-induced cellular injury. The chemical constituents of Moschus are analyzed by GC-MS assay. The cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP) levels, oxidative stress-related indicators, and apoptotic proteins are determined. Through GC-MS analysis, nineteen active contents were identified. The cell viability loss, lactate dehydrogenase releases, MMP levels, ROS productions, and Malondialdehyde (MDA) activities decreased, and BAX, Caspase-3, and Kelch-like ECH-associated protein 1 expression also significantly down-regulated and heme oxygenase 1, nuclear factor erythroid-2-related factor 2 (Nrf-2), and quinine oxidoreductase 1 expression upregulated after pretreatment of Moschus. The result indicated Moschus has neuroprotective activity in relieving H2O2-induced cellular damage, and the potential mechanism might be associated with regulating the Nrf-2/ARE signaling pathway. A more in-depth and comprehensive understanding of Moschus in the pathogenesis of AD will provide a fundamental basis for in vivo AD animal model research, which may be able to provide further insights and new targets for AD therapy.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting Deng
- Jintang Second People' s Hospital, Chengdu 610404, China.
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Caiyou Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
24
|
Chai J, Zhu J, Tian Y, Yang K, Luan J, Wang Y. Carbon monoxide therapy: a promising strategy for cancer. J Mater Chem B 2023; 11:1849-1865. [PMID: 36786000 DOI: 10.1039/d2tb02599j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer is one of the acute life-threatening diseases endangering the whole of humanity. The treatment modalities for cancer are various. However, in most cases, a single treatment choice provides multiple side effects, poor targeting, and ineffective treatment. In recent years, the physiological regulatory function of carbon monoxide (CO) in the cancer process has been reported gradually, and CO-related nano-drugs have been explored. It shows better application prospects in cancer treatment and provides new ideas for treatment. The present review introduces the pathophysiological role of CO. The recent advances in cancer therapy, such as CO-mediated gas therapy, combined application of CO chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy, are described. Current challenges and future developments in CO-based treatment are also discussed. This review provides comprehensive information on recent advances in CO therapy and also some valuable guidance for promoting the progress of gas therapy nanomedicine.
Collapse
Affiliation(s)
- Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Yu Tian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
25
|
Ge J, Zuo M, Wang Q, Li Z. Near-infrared light triggered in situ release of CO for enhanced therapy of glioblastoma. J Nanobiotechnology 2023; 21:48. [PMID: 36759881 PMCID: PMC9912522 DOI: 10.1186/s12951-023-01802-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) features high biocompatibility and high spatiotemporal selectivity, showing a great potential in glioblastoma (GBM) treatment. However, its application was restricted by the poor therapeutic efficacy and side effect. RESULTS In this study, a therapeutic nanoplatform (UCNPs@Ce6/3HBQ@CM) with combination of PDT and CO therapy was constructed, in which a photoCORM and a photosensitizer were loaded onto the surface of upconversion nanoparticles (UCNPs) functioning as photon transducer. Benefitting from NIR excitation and multicolor emission of UCNPs, the penetration depth of excitation light is enhanced and meanwhile simultaneous generation of CO and ROS in tumor site can be achieved. The as-prepared nanocomposite possessed an elevated therapeutic efficiency with the assistance of CO through influencing mitochondrial respiration and depleting ATP, accompanying with the reduced inflammatory responses. By wrapping a homologous cell membrane, the nanocomposite can target GBM and accumulate in the tumor site, affording a powerful tool for precise and efficient treatment of GBM. CONCLUSION This therapeutic nanoplatform UCNPs@Ce6/3HBQ@CM, which combines PDT and CO therapy enables precise and efficient treatment of refractory glioblastoma.
Collapse
Affiliation(s)
- Juan Ge
- grid.34418.3a0000 0001 0727 9022College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 China
| | - Miaomiao Zuo
- grid.34418.3a0000 0001 0727 9022College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 China
| | - Qirong Wang
- grid.34418.3a0000 0001 0727 9022College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062 China
| | - Zhen Li
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
26
|
Near-infrared light switching nitric oxide nanogenerator with “linkage mechanism” for tumor targeting multimodal synergistic therapy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Yao S, Zheng M, Wang Z, Zhao Y, Wang S, Liu Z, Li Z, Guan Y, Wang ZL, Li L. Self-Powered, Implantable, and Wirelessly Controlled NO Generation System for Intracranial Neuroglioma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205881. [PMID: 36189858 DOI: 10.1002/adma.202205881] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Gas therapy is an emerging technology for improving cancer therapy with high efficiency and low side effects. However, due to the existence of the gatekeeper of the blood-brain barrier (BBB) and the limited availability of current drug delivery systems, there still have been no reports on gas therapy for intracranial neuroglioma. Herein, an integrated, self-powered, and wirelessly controlled gas-therapy system is reported, which is composed of a self-powered triboelectric nanogenerator (TENG) and an implantable nitric oxide (NO) releasing device for intracranial neuroglioma therapy. In the system, the patient self-driven TENG converts the mechanical energy of body movements into electricity as a sustainable and self-controlled power source. When delivering energy to light a light-emitting diode in the implantable NO releasing device via wireless control, the encapsulated NO donor s-nitrosoglutathione (GSNO) can generate NO gas to locally kill the glioma cells. The efficacy of the proof-of-concept system in subcutaneous 4T1 breast cancer model in mice and intracranial glioblastoma multiforme in rats is verified. This self-powered gas-therapy system has great potential to be an effective adjuvant treatment modality to inhibit tumor growth, relapse, and invasion via teletherapy.
Collapse
Affiliation(s)
- Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Minjia Zheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Yunchao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| | - Shaobo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| | - Yunqian Guan
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
28
|
Cai X, Bao X, Wu Y. Metal-Organic Frameworks as Intelligent Drug Nanocarriers for Cancer Therapy. Pharmaceutics 2022; 14:2641. [PMID: 36559134 PMCID: PMC9781098 DOI: 10.3390/pharmaceutics14122641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials with periodic network structures formed by self-assembly of metal ions and organic ligands. Attributed to their tunable composition and pore size, ultrahigh surface area (1000-7000 m2/g) and pore volume (1.04-4.40 cm3/g), easy surface modification, appropriate physiological stability, etc., MOFs have been widely used in biomedical applications in the last two decades, especially for the delivery of bioactive agents. In the initial stage, MOFs were widely used to load small molecule drugs with ultra-high doses. Whereafter, more recent work has focused on the load of biomacromolecules, such as nucleic acids and proteins. Over the past years, we have devoted extensive effort to investigate the function of MOF materials for bioactive agent delivery. MOFs can be used not only as an intelligent nanocarrier to deliver or protect bioactive agents but also as an activator for their release or activation in response to the different microenvironments. Altogether, this review details the current progress of MOF materials for bioactive agent delivery and looks into their future development.
Collapse
Affiliation(s)
- Xuechao Cai
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yelin Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
29
|
Martínez Gil J, Reyes RV, Bastidas-Barranco M, Giraldo L, Moreno-Piraján JC. Biodiesel Production from Transesterification with Lipase from Pseudomonas cepacia Immobilized on Modified Structured Metal Organic Materials. ACS OMEGA 2022; 7:41882-41904. [PMID: 36440125 PMCID: PMC9685751 DOI: 10.1021/acsomega.2c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
This research presents the modification of MOF-199 and ZIF-8 using furfuryl alcohol (FA) as a carbon source to subsequently fix lipase from Pseudomonas cepacia and use these biocatalysts in the transesterification of African palm oil (APO). The need to overcome the disadvantages of free lipases in the biodiesel production process led to the use of metal organic framework (MOF)-type supports because they provide greater thermal stability and separation of the catalytic phase, thus improving the activity and efficiency in relation to the use of free lipase, disadvantages that could not be overcome with the use of other types of catalysts used in transesterification/esterification reactions for the production of biodiesel. The modification of MOFs ZIF-8 and MOF-199 with FA increases the pore volume which allows better immobilization of Pseudomonas cepacia lipase (PCL). The results show that these biocatalysts undergo transesterification with biodiesel yields above 90%. Additionally, studies were carried out on the effect of (1) enzyme loading, 2) enzyme immobilization time, (3) enzyme immobilization temperature, and (4) pH on the % immobilization of the enzyme and the specific activity. The results show that the highest immobilization efficiency for the FA@ZIF-8 support has a value of 91.2% when the load of this support was 3.5 mg/mg and has a specific activity of 142.5 U/g protein. The FA@MOF-199 support presented 80.3% enzyme immobilization and 125% U/g specific activity protein. We established that the specific activity increases in the period from 0.5 to 5.0 h for the systems under investigation. After this time, both the specific activity and the % efficiency of enzyme immobilization decrease. Therefore, 5.0 h (immobilization efficiency of 95 and 85% for FA@MOF-199, respectively) was chosen as the most appropriate time for PCL immobilization. Methods of adding methanol, with three and four steps, were tested, where biodiesel yields greater than 90% were obtained for the biocatalysts synthesized in this work (FA@ZIF-8-PCL and FA@MOF-199-PCL) and above 70% for free PCL, and the maximum yield was reached at a molar ratio between methanol and APO of 4:1 when using the one-step method under the same reaction conditions (as mentioned above). Only the results of FA@ZIF-8-PCL are presented here; however, it should be noted that the results for biocatalyst FA@MOF-199-PCL and lipase-free PCL presented the same behavior. The order of biocatalyst performance was FA@ZIF-8-PCL > FA@MOF-199-PCL > PCL-Free, which demonstrates that the use of FA as a modifier is a novel aspect in the conversion of palm oil into biodiesel components.
Collapse
Affiliation(s)
- José
Manuel Martínez Gil
- Grupo
de Investigación Catálisis y Materiales. Facultad de
Ciencias Básicas y Aplicadas, Universidad
de La Guajira, Km 5 vía a Maicao., Riohacha440007, Colombia
- Grupo
de Investigación Química Cuántica y Teórica,
Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Campus de Zaragocilla, Cartagena130005, Colombia
- Grupo
de Investigación Desarrollo de Estudios y Tecnologías
Ambientales del Carbono (DESTACAR). Facultad de Ingenierías, Universidad de La Guajira, Km 5 vía a Maicao., Riohacha440007, Colombia
- Facultad
de Ciencias, Departamento de Química, Grupo de Investigación
en Sólidos Porosos y Calorimetría, Universidad de los Andes, Bogotá01, Colombia
| | - Ricardo Vivas Reyes
- Grupo
de Investigación Química Cuántica y Teórica,
Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Campus de Zaragocilla, Cartagena130005, Colombia
| | - Marlon Bastidas-Barranco
- Grupo
de Investigación Desarrollo de Estudios y Tecnologías
Ambientales del Carbono (DESTACAR). Facultad de Ingenierías, Universidad de La Guajira, Km 5 vía a Maicao., Riohacha440007, Colombia
| | - Liliana Giraldo
- Facultad
de Ciencias, Departamento de Química, Grupo de Calorimetría, Universidad Nacional de Colombia, Sede Bogotá01, Colombia
| | - Juan Carlos Moreno-Piraján
- Facultad
de Ciencias, Departamento de Química, Grupo de Investigación
en Sólidos Porosos y Calorimetría, Universidad de los Andes, Bogotá01, Colombia
| |
Collapse
|
30
|
Elhassan E, Devnarain N, Mohammed M, Govender T, Omolo CA. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. J Control Release 2022; 351:598-622. [DOI: 10.1016/j.jconrel.2022.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022]
|
31
|
Ding M, Liu W, Gref R. Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Adv Drug Deliv Rev 2022; 190:114496. [PMID: 35970275 DOI: 10.1016/j.addr.2022.114496] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023]
Abstract
Since the first report in 1989, Metal-Organic Frameworks (MOFs) self-assembled from metal ions or clusters, as well as organic linkers, have attracted extensive attention. Due to their flexible composition, large surface areas, modifiable surface properties, and their degradability, there has been an exponential increase in the study of MOFs materials, specifically in drug delivery system areas such as infection, diabetes, pulmonary disease, ocular disease, imaging, tumor therapy, and especially cancer theranostics. In this review, we discuss the trends in MOFs biosafety, from "green" synthesis to applications in drug delivery systems. Firstly, we present the different "green" synthesis approaches used to prepare MOFs materials. Secondly, we detail the methods for the functional coating, either through grafting targeting units, poly(ethylene glycol) (PEG) chains or by using cell membranes. Then, we discuss drug encapsulation strategies, host-guest interactions, as well as drug release mechanisms. Lastly, we report on the drug delivery applications of nanoscale MOFs. In particular, we discuss MOFs-based imaging techniques, including magnetic resonance imaging (MRI), photoacoustic imaging (PAI), positron emission tomography (PET), and fluorescence imaging. MOFs-based cancer therapy methods are also presented, such as photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy (RT), chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Mengli Ding
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Wenbo Liu
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
32
|
Zhang Y, Li P, Su R, Wen F, Jia Z, Lv Y, Cai J, Su W. Curcumin-loaded multifunctional chitosan gold nanoparticles: An enhanced PDT/PTT dual-modal phototherapeutic and pH-responsive antimicrobial agent. Photodiagnosis Photodyn Ther 2022; 39:103011. [PMID: 35820632 DOI: 10.1016/j.pdpdt.2022.103011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Overuse of antibiotics has led to the emergence of multidrug resistant (MDR) bacteria.. Photothermal (PTT) and photodynamic therapy (PDT) have may be effective alternatives for antibiotics in the treatment of bacterial infections. In this study, based on chitosan (CS)-coated gold nanoparticles, a pH stimulus-responsive drug delivery system was developed, which can anchor to the cell membrane for photodynamic therapy and photothermal therapy, and enhance the therapeutic potential of curcumin (Cur). Release experiments showed that AuNPs/CS-Cur nanocomposites released curcumin in a pH-dependent manner, which may facilitate the drug to be delivered to the acidic bacterial infection environment. CS as the outer layer covered on gold nanoparticles could improve the dispersibility of Cur in aqueous solution, gold nanoparticles prevent rapid photobleaching of curcumin, thus ensuring the yield of singlet oxygen under irradiation, and enhance the electrostatic binding with bacteria cell membrane. Under light conditions, AuNPs/CS-Cur can produce a large amount of reactive oxygen species and heat to kill S. aureus and E. coli. Compared with free Cur-mediated PDT, the complex significantly improved the synergistic PTT/PDT photoinactivation ability against S. aureus and E. coli. In addition, AuNPs/CS-Cur had good biocompatibility. Therefore, AuNPs/CS-Cur possessed the characteristics of electrostatic targeting, photodynamic and photothermal antibacterial therapy, which would become an efficient and safe antibacterial nano-platform and provide new ideas for the treatment of bacterial infection.
Collapse
Affiliation(s)
- Ying Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Fangzhou Wen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhiruo Jia
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Yingbin Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| |
Collapse
|
33
|
Han D, Liu X, Wu S. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem Soc Rev 2022; 51:7138-7169. [PMID: 35866702 DOI: 10.1039/d2cs00460g] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacteria, as the most abundant living organisms, have always been a threat to human life until the development of antibiotics. However, with the wide use of antibiotics over a long time, bacteria have gradually gained tolerance to antibiotics, further aggravating threat to human beings and environmental safety significantly. In recent decades, new bacteria-killing methods based on metal ions, hyperthermia, free radicals, physical pricks, and the coordination of several multi-mechanisms have attracted increasing attention. Consequently, multiple types of new antibacterial agents have been developed. Among them, metal organic frameworks (MOFs) appear to play an increasingly important role. The unique characteristics of MOFs make them suitable multiple-functional platforms. By selecting the appropriate metastable coordination bonds, MOFs can act as reservoirs and release antibacterial metal ions or organic linkers; by constructing a porous structure, MOFs can act as carriers for multiple types of agents and achieve slow and sustained release; and by designing their composition and the pore structure precisely, MOFs can be endowed with properties to produce heat and free radicals under stimulation. Importantly, in combination with other materials, MOFs can act as a platform to kill bacteria effectively through the synergistic effect of multiple types of mechanisms. In this review, we focus on the recent development of MOF-based antibacterial agents, which are classified according to their antibacterial mechanisms.
Collapse
Affiliation(s)
- Donglin Han
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Tang Q, Liu J, Wang CB, An L, Zhang HL, Wang Y, Ren B, Yang SP, Liu JG. A multifunctional nanoplatform delivering carbon monoxide and a cysteine protease inhibitor to mitochondria under NIR light shows enhanced synergistic anticancer efficacy. NANOSCALE 2022; 14:9097-9103. [PMID: 35713601 DOI: 10.1039/d2nr01122k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photoactivated chemotherapy has attracted widespread attention due to its ability to circumvent the shortcomings of hypoxia in tumor tissues compared with traditional photodynamic therapy. In this work, novel multifunctional nanoplatform (1), Ru-inhibitor@TPPMnCO@N-GQDs, was designed and prepared, which was capable of mitochondria-targeted co-delivery of the cysteine protease inhibitor and carbon monoxide (CO) stimulated with an 808 nm near infrared (NIR) laser. Nanoplatform (1) was prepared by covalent attachment of a mitochondria-targeted CO donor (TPPMnCO) and a Ru(II)-caged cysteine protease inhibitor (Ru-inhibitor) on the surface of fluorescent N-doped graphene quantum dots (N-GQDs). Nanoplatform (1) preferentially accumulated in the mitochondria of cancer cells and instantly delivered CO and the cysteine protease inhibitor upon 808 nm NIR light irradiation, thus damaging mitochondria and leading to significant in vitro and in vivo anticancer efficacy. In addition, nanoplatform (1) has good biocompatibility and did not exert any toxic side effects on mice during the period of treatment. The targeted subcellular mitochondrial co-delivery of CO and the cysteine protease inhibitor may provide new insights into CO and enzyme inhibitor combined therapies for cancer treatment.
Collapse
Affiliation(s)
- Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Jing Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Cheng-Bin Wang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.
| | - Lu An
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.
| | - Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Bing Ren
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Shi-Ping Yang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
35
|
Li R, Hu X, Shang F, Wu W, Zhang H, Wang Y, Pan J, Shi S, Dong C. Treatment of triple negative breast cancer by near infrared light triggered mild temperature photothermal therapy combined with oxygen-independent cytotoxic free radicals. Acta Biomater 2022; 148:218-229. [DOI: 10.1016/j.actbio.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 11/01/2022]
|
36
|
He F, Wan J, Chu S, Li X, Zong W, Liu R. Toxic mechanism on phenanthrene-triggered cell apoptosis, genotoxicity, immunotoxicity and activity changes of immunity protein in Eisenia fetida: Combined analysis at cellular and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153167. [PMID: 35051481 DOI: 10.1016/j.scitotenv.2022.153167] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Phenanthrene (PHE) is a harmful organic contaminant and exists extensively in the soil environment. The accumulation of PHE would potentially threaten soil invertebrates, including earthworms, and the toxicity is also high. Currently, the possible mechanisms underlying apoptotic pathways induced by PHE and its immunotoxicity and genotoxicity in earthworms remain unclear. Thus, Eisenia fetida coelomocytes and immunity protein lysozyme (LYZ) were chosen as targeted receptors to reveal the apoptotic pathways, genotoxicity, and immunotoxicity triggered by PHE and its binding mechanism with LYZ, using cellular, biochemical, and molecular methods. Results indicated that PHE exposure can cause cell membrane damage, increase cell membrane permeability, and ultimately trigger mitochondria-mediated apoptosis. Increased 8-hydroxy-2-deoxyguanosine (8-OHdG) levels indicated PHE had triggered DNA oxidative damage in cells after PHE exposure. Occurrence of detrimental effects on the immune system in E. fetida coelomocytes due to decreased phagocytic efficacy and destroyed the lysosomal membrane. The LYZ activity in coelomocytes after PHE exposure was consistent with the molecular results, in which the LYZ activity was inhibited. After PHE binding, the protein structure (secondary structure and protein skeleton) and protein environment (the micro-environment of aromatic amino acids) of LYZ were destroyed, forming a larger particle size of the PHE-LYZ complex, and causing a significant sensitization effect on LYZ fluorescence. Molecular simulation indicated the key residues Glu 35, Asp 52, and Trp 62 for protein function located in the binding pocket, suggesting PHE preferentially binds to the active center of LYZ. Additionally, the primary driving forces for the binding interaction between PHE and LYZ molecule are hydrophobicity forces and hydrogen bonds. Taken together, PHE exposure can induce apoptosis by mitochondria-mediated pathway, destroy the normal immune system, and trigger DNA oxidative damage in earthworms. Besides, this study provides a comprehensive evaluation of phenanthrene toxicity to earthworms on molecular and cellular level.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
37
|
Falahati M, Sharifi M, Hagen TLMT. Explaining chemical clues of metal organic framework-nanozyme nano-/micro-motors in targeted treatment of cancers: benchmarks and challenges. J Nanobiotechnology 2022; 20:153. [PMID: 35331244 PMCID: PMC8943504 DOI: 10.1186/s12951-022-01375-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Nowadays, nano-/micro-motors are considered as powerful tools in different areas ranging from cleaning all types of contaminants, to development of Targeted drug delivery systems and diagnostic activities. Therefore, the development and application of nano-/micro-motors based on metal-organic frameworks with nanozyme activity (abbreviated as: MOF-NZs) in biomedical activities have received much interest recently. Therefore, after investigating the catalytic properties and applications of MOF-NZs in the treatment of cancer, this study intends to point out their key role in the production of biocompatible nano-/micro-motors. Since reducing the toxicity of MOF-NZ nano-/micro-motors can pave the way for medical activities, this article examines the methods of making biocompatible nanomotors to address the benefits and drawbacks of the required propellants. In the following, an analysis of the amplified directional motion of MOF-NZ nano-/micro-motors under physiological conditions is presented, which can improve the motor behaviors in the propulsion function, conductivity, targeting, drug release, and possible elimination. Meanwhile, by explaining the use of MOF-NZ nano-/micro-motors in the treatment of cancer through the possible synergy of nanomotors with different therapies, it was revealed that MOF-NZ nano-/micro-motors can be effective in the treatment of cancer. Ultimately, by analyzing the potential challenges of MOF-NZ nano-/micro-motors in the treatment of cancers, we hope to encourage researchers to develop MOF-NZs-based nanomotors, in addition to opening up new ideas to address ongoing problems.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD, Rotterdam, The Netherlands.
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
38
|
Liu Y, Lu Y, Ning B, Su X, Yang B, Dong H, Yin B, Pang Z, Shen S. Intravenous Delivery of Living Listeria monocytogenes Elicits Gasdmermin-Dependent Tumor Pyroptosis and Motivates Anti-Tumor Immune Response. ACS NANO 2022; 16:4102-4115. [PMID: 35262333 DOI: 10.1021/acsnano.1c09818] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The facultative intracellular bacterium Listeria monocytogenes (Lmo) has great potential for development as a cancer vaccine platform given its properties. However, the clinical application of Lmo has been severely restricted due to its rapid clearance, compromised immune response in tumors, and inevitable side effects such as severe systemic inflammation after intravenous administration. Herein, an immunotherapy system was developed on the basis of natural red blood cell (RBC) membranes encapsulated Lmo with selective deletion of virulence factors (Lmo@RBC). The biomimetic Lmo@RBC not only generated a low systemic inflammatory response but also enhanced the accumulation in tumors due to the long blood circulation and tumor hypoxic microenvironment favoring anaerobic Lmo colonization. After genome screening of tumors treated with intravenous PBS, Lmo, or Lmo@RBC, it was first found that Lmo@RBC induced extensive pore-forming protein gasdermin C (GSDMC)-dependent pyroptosis, which reversed immunosuppressive tumor microenvironment and promoted a systemic strong and durable anti-tumor immune response, resulting in an excellent therapeutic effect on solid tumors and tumor metastasis. Overall, Lmo@RBC, as an intravenous living bacterial therapy for the selective initiation of tumor pyrolysis, provided a proof-of-concept of live bacteria vaccine potentiating tumor immune therapy.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair, and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital. The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
- Pharmacy Department & Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yiping Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bo Ning
- Central laboratory, First Affiliated Hospital, Institute (college) of Integrative Medicine, Dalian Medical University, Dalian 116021, China
| | - Xiaomin Su
- Central laboratory, First Affiliated Hospital, Institute (college) of Integrative Medicine, Dalian Medical University, Dalian 116021, China
| | - Binru Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair, and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital. The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhiqing Pang
- School of Pharmacy & Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China
| | - Shun Shen
- Pharmacy Department & Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
39
|
Zheng R, Guo J, Cai X, Bin L, Lu C, Singh A, Trivedi M, Kumar A, Liu J. Manganese complexes and manganese-based metal-organic frameworks as contrast agents in MRI and chemotherapeutics agents: Applications and prospects. Colloids Surf B Biointerfaces 2022; 213:112432. [PMID: 35259704 DOI: 10.1016/j.colsurfb.2022.112432] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
Abstract
Manganese-based Metal-organic Frameworks (Mn-MOFs) represents a unique sub-class of MOFs with low toxicity, oxidative ability, and biocompatibility, which plays vital role in the application of this class of MOFs in medical field. Mn-MOFs show great potential in biomedical applications, and has been extensively studied as compared to other MOFs in transition metal series. They are important in medical applications because Mn(II) possess large electron spin number and longer electron relaxation time. They display fast water exchange rate and could be employed as a potential MRI contrast agent because of their strong targeting ability. Manganese complexes with different ligands also display prospective applications in area such as carrier for drug targeting in anti-tumor and antimicrobial therapy. In the review presented herewith, the application of Mn-based complexes and Mn-MOFs have been emphasized in the area such as imaging viz. MRI, multimodal imaging, antitumor activities such as chemodynamic therapy, photodynamic therapy, sonodynamic therapy and antimicrobial applications. Also, how rational designing and syntheses of targeted Mn-based complexes and Mn-MOFs can engender desired applications.
Collapse
Affiliation(s)
- Rouqiao Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Junru Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xinyi Cai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Lianjie Bin
- Department of General Surgery, Dongguan People's Hospital, Wanjiang District, Dongguan 523000, China.
| | - Chengyu Lu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Amita Singh
- Department of Chemistry, Dr. Ram Manohar Lohiya Awadh University, Ayodhya, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
40
|
Wei Q, Wu Y, Liu F, Cao J, Liu J. Advances in antitumor nanomedicine based on functional metal-organic frameworks beyond drug carriers. J Mater Chem B 2022; 10:676-699. [PMID: 35043825 DOI: 10.1039/d1tb02518j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanoscale metal-organic frameworks (MOFs) have attracted widespread interest due to their unique properties including a tunable porous structure, high drug loading capacity, structural diversity, and outstanding biocompatibility. MOFs have been extensively explored as drug nanocarriers in biotherapeutics. However, by harnessing the functionality of ligands and metal ions or clusters in MOFs, the applications of MOFs can be extended beyond drug delivery vehicles. Based on the intrinsic properties of the components of MOFs (e.g. magnetic moments of metal ions and fluorescence of ligands), different imaging modes can be achieved with varied MOFs. With careful design of the composition of MOFs (e.g. modification of organic linkers), they can respond to tumor microenvironments to realize on-demand treatment. By incorporating porphyrin-based ligands (photosensitizers for photodynamic therapy) or high-Z metal ions (radiosensitizers for radiotherapy) into the scaffold of MOFs, MOFs themselves can act as anticancer therapeutic agents. In this review, we highlight the application of MOFs from the above-mentioned aspects and discuss the prospects and challenges for using MOFs in stimuli-responsive imaging-guided antitumor therapy.
Collapse
Affiliation(s)
- Qin Wei
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Fangfang Liu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong, China.
| | - Jiao Cao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
41
|
Liu Y, Jiang T, Liu Z. Metal-Organic Frameworks for Bioimaging: Strategies and Challenges. Nanotheranostics 2022; 6:143-160. [PMID: 34976590 PMCID: PMC8671950 DOI: 10.7150/ntno.63458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022] Open
Abstract
Metal-organic frameworks (MOFs), composited with metal ions and organic linkers, have become promising candidates in the biomedical field own to their unique properties, such as high surface area, pore-volume, tunable pore size, and versatile functionalities. In this review, we introduce and summarize the synthesis and characterization methods of MOFs, and their bioimaging applications, including optical bioimaging, magnetic resonance imaging (MRI), computed tomography (CT), and multi-mode. Furthermore, their bioimaging strategies, remaining challenges and future directions are discussed and proposed. This review provides valuable references for the designing of molecular bioimaging probes based on MOFs.
Collapse
Affiliation(s)
- Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China
- Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
42
|
Ren X, Wang Y, Jia L, Guo X, He X, Zhao Z, Gao D, Yang Z. Intelligent Nanomedicine Approaches Using Medical Gas-Mediated Multi-Therapeutic Modalities Against Cancer. J Biomed Nanotechnol 2022; 18:24-49. [PMID: 35180898 DOI: 10.1166/jbn.2022.3224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The emerging area of gas-mediated cancer treatment has received widespread attention in the medical community. Featuring unique physical, chemical, and biological properties, nanomaterials can facilitate the delivery and controllable release of medicinal gases at tumor sites, and also serve as ideal platforms for the integration of other therapeutic modalities with gas therapy to augment cancer therapeutic efficacy. This review presents an overview of anti-cancer mechanisms of several therapeutic gases: nitric oxide (NO), hydrogen sulfide (H₂S), carbon monoxide (CO), oxygen (O₂), and hydrogen (H₂). Controlled release behaviors of gases under different endogenous and exogenous stimuli are also briefly discussed, followed by their synergistic effects with different therapeutic modes. Moreover, the potential challenges and future prospects regarding gas therapy based on nanomaterials are also described, aiming to facilitate the advancement of gas therapeutic nanomedicine in new frontiers for highly efficient cancer treatment.
Collapse
Affiliation(s)
- Xuechun Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoqing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyu He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhipeng Zhao
- School of Physical Education, Xizang Minzu University, Xianyang, 712000, Shaanxi, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
43
|
Liu R, Peng Y, Lu L, Peng S, Chen T, Zhan M. Near-infrared light-triggered nano-prodrug for cancer gas therapy. J Nanobiotechnology 2021; 19:443. [PMID: 34949202 PMCID: PMC8697457 DOI: 10.1186/s12951-021-01078-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Gas therapy (GT) has attracted increasing attention in recent years as a new cancer treatment method with favorable therapeutic efficacy and reduced side effects. Several gas molecules, such as nitric oxide (NO), carbon monoxide (CO), hydrogen (H2), hydrogen sulfide (H2S) and sulfur dioxide (SO2), have been employed to treat cancers by directly killing tumor cells, enhancing drug accumulation in tumors or sensitizing tumor cells to chemotherapy, photodynamic therapy or radiotherapy. Despite the great progress of gas therapy, most gas molecules are prone to nonspecific distribution when administered systemically, resulting in strong toxicity to normal tissues. Therefore, how to deliver and release gas molecules to targeted tissues on demand is the main issue to be considered before clinical applications of gas therapy. As a specific and noninvasive stimulus with deep penetration, near-infrared (NIR) light has been widely used to trigger the cleavage and release of gas from nano-prodrugs via photothermal or photodynamic effects, achieving the on-demand release of gas molecules with high controllability. In this review, we will summarize the recent progress in cancer gas therapy triggered by NIR light. Furthermore, the prospects and challenges in this field are presented, with the hope for ongoing development.
Collapse
Affiliation(s)
- Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Yongjun Peng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Shaojun Peng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| |
Collapse
|
44
|
Ge X, Wong R, Anisa A, Ma S. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials 2021; 281:121322. [PMID: 34959029 DOI: 10.1016/j.biomaterials.2021.121322] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
Albeit metal-organic framework (MOF) composites have been extensively explored, reducing the size and dimensions of various contents within the composition, to the nanoscale regime, has recently presented unique opportunities for enhanced properties with the formation of MOF-based nanocomposites. Many distinctive strategies have been used to fabricate these nanocomposites such as through the introduction of nanoparticles (NPs) into a MOF precursor solution or vice versa to achieve a core-shell or heterostructure configuration. As such, MOF-based nanocomposites offer seemingly limitless possibilities and promising solutions for the vast range of applications across biomedical disciplines especially for improving in vivo implementation. In this review, we focus on the recent development of MOF-based nanocomposites, outline their classification according to the type of integrations (NPs, coating materials, and different MOF-derived nanocomposites), and direct special attention towards the various approaches and strategies employed to construct these nanocomposites for their prospective utilization in biomedical applications including biomimetic enzymes and photo, chemo, sonodynamic, starvation and hyperthermia therapies. Lastly, our work aims to highlight the exciting potential as well as the challenges of MOF-based nanocomposites to help guide future research as well as to contribute to the progress of MOF-based nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Raymond Wong
- Department of Cell and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, United States
| | - Anee Anisa
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States.
| |
Collapse
|
45
|
Zheng X, Jin Y, Liu X, Liu T, Wang W, Yu H. Photoactivatable nanogenerators of reactive species for cancer therapy. Bioact Mater 2021; 6:4301-4318. [PMID: 33997507 PMCID: PMC8105601 DOI: 10.1016/j.bioactmat.2021.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, reactive species-based cancer therapies have attracted tremendous attention due to their simplicity, controllability, and effectiveness. Herein, we overviewed the state-of-art advance for photo-controlled generation of highly reactive radical species with nanomaterials for cancer therapy. First, we summarized the most widely explored reactive species, such as singlet oxygen, superoxide radical anion (O2 ●-), nitric oxide (●NO), carbon monoxide, alkyl radicals, and their corresponding secondary reactive species generated by interaction with other biological molecules. Then, we discussed the generating mechanisms of these highly reactive species stimulated by light irradiation, followed by their anticancer effect, and the synergetic principles with other therapeutic modalities. This review might unveil the advantages of reactive species-based therapeutic methodology and encourage the pre-clinical exploration of reactive species-mediated cancer treatments.
Collapse
Affiliation(s)
- Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
46
|
Saeb MR, Rabiee N, Mozafari M, Verpoort F, Voskressensky LG, Luque R. Metal-Organic Frameworks (MOFs) for Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7277. [PMID: 34885431 PMCID: PMC8658485 DOI: 10.3390/ma14237277] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
MOFs exhibit inherent extraordinary features for diverse applications ranging from catalysis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via "post-synthetic modification" mainly by changing linkers (by altering the type, length, functionality, and charge of the linkers) or node components within the MOF framework. Additionally, efforts are aimed towards manipulating the size and morphology of crystallite domains in the MOFs, which are aimed at enlarging their applications window. Today's knowledge of artificial intelligence and machine learning has opened new pathways to elaborate multiple nanoporous complex MOFs and nano-MOFs (NMOFs) for advanced theranostic, clinical, imaging, and diagnostic purposes. Successful accumulation of a photosensitizer in cancerous cells was a significant step in cancer therapy. The application of MOFs as advanced materials and systems for cancer therapy is the main scope beyond this perspective. Some challenging aspects and promising features in MOF-based cancer diagnosis and cancer therapy have also been discussed.
Collapse
Affiliation(s)
- Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233 Gdánsk, Poland;
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran P.O. Box 11155-9161, Iran
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada;
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
- National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia
- Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Ywonsu-Gu, Incheon 21985, Korea
| | - Leonid G. Voskressensky
- Department of Chemistry, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia;
| | - Rafael Luque
- Department of Chemistry, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia;
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
| |
Collapse
|
47
|
Tang Q, Yu YT, Zhang HL, Wang Y, Liu J, Yang SP, Liu JG. NIR light-controlled mitochondria-targeted delivery of carbon monoxide combined with histone deacetylase inhibition for synergistic anticancer therapy. J Inorg Biochem 2021; 226:111656. [PMID: 34798307 DOI: 10.1016/j.jinorgbio.2021.111656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 12/30/2022]
Abstract
A multifunctional nanoplatform APIPB-MnCO@TPP@N,P-GQDs (APIPB = N-(2-aminophen-yl)-4-(1H-imidazo[4,5-f] [1, 10] phenanthrolin-2-yl) benzamide, TPP = triphenylphosphine, Mn = manganese, CO = carbon monoxide, and GQDs = graphene quantum dots), nanoplatform (1), was synthesized, which consists of a fluorescent N, P-doped GQDs carrier with its surface covalently functionalized by an CO donor APIPB-MnCO with histone deacetylases (HDAC) inhibitory property and a TPP derivative directing group. Nanoplatform (1) selectively localized in the mitochondria of HeLa cells to inhibit HDAC activity, and released CO upon 808 nm near-infrared light irradiation, destroying the mitochondria and thus inducing cancer cells apoptosis. The targeted subcellular mitochondrial CO delivery combined with inhibitory HDAC activity maximized the cytotoxicity of the nanoplatform which may provide new insights for CO-mediated multimodal therapies for cancer treatment.
Collapse
Affiliation(s)
- Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ya-Ting Yu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jing Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shi-Ping Yang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
48
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
49
|
Ullah S, Khan SS, Ren Y, Zhang X, Qin M, Xiong X, Krastev R, Jan AU, Liu L, Yuan Q. Near‐infrared laser 808‐nm excitable palladium nano‐dots loaded on graphene oxide hybrid for the antibacterial activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sadeeq Ullah
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Shahin S. Khan
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Yanru Ren
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Xu Zhang
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Meng Qin
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute University of Tübingen Reutlingen Germany
| | - Rumen Krastev
- Faculty of Applied Chemistry Reutlingen University Reutlingen Germany
| | - Amin U. Jan
- Department of Biotechnology Shaheed Benazir Bhutto University Sheringal Upper Dir, KPK 18300 Pakistan
| | - Luo Liu
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Qipeng Yuan
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| |
Collapse
|
50
|
Fu J, Wu Q, Dang Y, Lei X, Feng G, Chen M, Yu XY. Synergistic Therapy Using Doxorubicin-Loading and Nitric Oxide-Generating Hollow Prussian Blue Nanoparticles with Photoacoustic Imaging Potential Against Breast Cancer. Int J Nanomedicine 2021; 16:6003-6016. [PMID: 34511902 PMCID: PMC8418369 DOI: 10.2147/ijn.s327598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Traditional antitumor chemotherapy faces great challenges, such as multi-drug resistance (MDR) and poor penetration into tumor tissues. The newly emerging nitric oxide (NO)-based gas therapy has been recognized to reduce MDR and has improved permeation into tumor tissue. Methods In this study, NO-generating prodrug sodium nitroprusside (SNP) was doped to hollow mesoporous Prussian blue (PB) nanoparticles to fabricate NO-generating nanoparticles (NO-PB), which was further loaded with doxorubicin (DOX). Results DOX loaded NO-PB (DOX-NO-PB) was released quicker at pH 6 compared with neutral pH, suggesting NO-PB may facilitate the release of loaded drug in acidic tumor tissue. The capacity of NO production by NO-PB was measured, and the results showed the presence of NO in the culture medium from 4T1 cells incubated with NO-PB and inside the cells. NP-PB could be detected by photoacoustic imaging (PAI) in tumor tissue in 4T1 tumor bearing mice, suggesting this nanoparticle may serve as contrast agent for the noninvasive diagnosis of tumor tissues. NO-PB suppressed the growth of tissues in 4T1 tumor bearing mice. DOX-NO-PB showed more potent anti-tumor effects in 4T1 cells and tumor bearing mice compared with free DOX and NO-PB alone, indicating that the combination of DOX and NO-PB exhibited synergistic effects on tumor suppression. Conclusion This study provides a novel nanocarrier for gas therapy with additional PAI imaging capacity. This nanocarrier can be utilized for combination therapy of NO and chemotherapeutics which may serve as theranostic agents.
Collapse
Affiliation(s)
- Jijun Fu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qianni Wu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yuanye Dang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Xueping Lei
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Guining Feng
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Mingyue Chen
- Foshan Nanhai Vocational School of Health, Foshan, 528211, People's Republic of China
| | - Xi-Yong Yu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| |
Collapse
|