1
|
Smadi BM, Shekouhi R, Azizi A, Chim H. Development of Biomaterials for Addressing Upper Extremity Peripheral Nerve Gaps. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:711-717. [PMID: 39381386 PMCID: PMC11456663 DOI: 10.1016/j.jhsg.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral nerve injuries within the upper extremities can lead to impaired function and reduced quality of life. Although autografts have traditionally served as the primary therapeutic approach to bridge nerve gaps, these present challenges related to donor site morbidity. This review delves into the realm of biomaterials tailored for addressing nerve gaps. Biomaterials, whether natural or synthetically derived, offer the potential not only to act as scaffolds for nerve regeneration but also to be enhanced with growth factors and agents that promote nerve recovery. The historical progression of these biomaterials as well as their current applications, advantages, inherent challenges, and future impact in the arena of regenerative medicine are discussed. By providing a comprehensive overview, we aim to shed light on the transformative potential of biomaterials in peripheral nerve repair and the path toward refining their efficacy in clinical settings.
Collapse
Affiliation(s)
- Bassam M. Smadi
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Nanoscience Institute for Medical and Engineering Technology (NIMET), University of Florida, Gainesville, FL
- College of Medicine, University of Florida, Gainesville, FL
| | - Ramin Shekouhi
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Armina Azizi
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Harvey Chim
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
2
|
Liu Y, Yin S, Lu G, Du Y. The intersection of the nervous system and breast cancer. Cancer Lett 2024; 598:217132. [PMID: 39059572 DOI: 10.1016/j.canlet.2024.217132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer (BC) represents a paradigm of heterogeneity, manifesting as a spectrum of molecular subtypes with divergent clinical trajectories. It is fundamentally characterized by the aberrant proliferation of malignant cells within breast tissue, a process modulated by a myriad of factors that govern its progression. Recent endeavors outline the interplay between BC and the nervous system, illuminate the complex symbiosis between neural structures and neoplastic cells, and elucidate nerve dependence as a cornerstone of BC progression. This includes the neural modulations on immune response, neurovascular formation, and multisystem interactions. Such insights have unveiled the critical impact of neural elements on tumor dynamics and patient prognosis. This revelation beckons a deeper exploration into the neuro-oncological interface, potentially unlocking novel therapeutic vistas. This review endeavors to delineate the intricate mechanisms between the nervous system and BC, aiming to accentuate the implications and therapeutic strategies of this intersection for tumor evolution and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China
| | - Guanyu Lu
- Cancer Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
3
|
Kurihara Y, Kawaguchi Y, Ohta Y, Kawasaki N, Fujita Y, Takei K. Nogo Receptor Antagonist LOTUS Promotes Neurite Outgrowth through Its Interaction with Teneurin-4. Cells 2024; 13:1369. [PMID: 39195260 DOI: 10.3390/cells13161369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Neurite outgrowth is a crucial process for organizing neuronal circuits in neuronal development and regeneration after injury. Regenerative failure in the adult mammalian central nervous system (CNS) is attributed to axonal growth inhibitors such as the Nogo protein that commonly binds to Nogo receptor-1 (NgR1). We previously reported that lateral olfactory tract usher substance (LOTUS) functions as an endogenous antagonist for NgR1 in forming neuronal circuits in the developing brain and improving axonal regeneration in the adult injured CNS. However, another molecular and cellular function of LOTUS remains unknown. In this study, we found that cultured retinal explant neurons extend their neurites on the LOTUS-coating substrate. This action was also observed in cultured retinal explant neurons derived from Ngr1-deficient mouse embryos, indicating that the promoting action of LOTUS on neurite outgrowth may be mediated by unidentified LOTUS-binding protein(s). We therefore screened the binding partner(s) of LOTUS by using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). LC-MS/MS analysis and pull-down assay showed that LOTUS interacts with Teneurin-4 (Ten-4), a cell adhesion molecule. RNAi knockdown of Ten-4 inhibited neurite outgrowth on the LOTUS substrate in retinoic acid (RA)-treated Neuro2A cells. Furthermore, a soluble form of Ten-4 attenuates the promoting action on neurite outgrowth in cultured retinal explant neurons on the LOTUS substrate. These results suggest that LOTUS promotes neurite outgrowth by interacting with Ten-4. Our findings may provide a new molecular mechanism of LOTUS to contribute to neuronal circuit formation in development and to enhance axonal regeneration after CNS injury.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
- Department of Anatomy & Developmental Biology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Yuki Kawaguchi
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 230-0045, Japan
| | - Yuki Ohta
- Laboratory of Biopharmaceutical and Regenerative Sciences, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
| | - Nana Kawasaki
- Laboratory of Biopharmaceutical and Regenerative Sciences, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
| | - Yuki Fujita
- Department of Anatomy & Developmental Biology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 230-0045, Japan
| |
Collapse
|
4
|
Wang LW, Hsiung CW, Chang CP, Lin MT, Chen SJ. Neuroserpin normalization by mesenchymal stem cell therapy after encephalopathy of prematurity in neonatal rats. Pediatr Res 2024:10.1038/s41390-024-03412-z. [PMID: 39085403 DOI: 10.1038/s41390-024-03412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Hypoxic-ischemia (HI), infection/inflammation and reperfusion injury are pathogenic factors of encephalopathy of prematurity, which involves maturational/neurotrophic disturbances in oligodendrocyte progenitor cells (OPC) and neurons/axons. Mesenchymal stem cells (MSCs) might facilitate neuroserpin production, which is neurotrophic for OPC/neurons. This study investigated MSC effects on developmental disturbances after lipopolysaccharide (LPS)-sensitized HI/reperfusion (LHIR) injury and the relation to neuroserpin expression. METHODS Postnatal day 2 (P2) rat pups received intraperitoneal LPS (5 µg/kg) injection followed by HI (unilateral common-carotid-artery ligation and 6.5% oxygen exposure for 90 min) and post-HI reperfusion (release of ligation). MSCs (5 × 104 cells) were injected into the left lateral ventricle at 24 h post-LHIR. Neurological tests and brain tissue examinations were performed between P5 and P56. RESULTS After LHIR injury, MSC therapy significantly reduced cell death in subplate neurons, attenuated axonal damage, and facilitated synaptophysin synthesis in the cortex. It also alleviated OPC maturation arrest and preserved the complexity of myelinated axons in the white matter, leading to cognitive, motor and behavioral functional improvements. These beneficial effects were linked to restored neuroserpin expression in subplate neurons. CONCLUSIONS MSC therapy ameliorated developmental disturbances after LHIR injury through protection of neuroserpin expression, serving as a promising approach for treating encephalopathy of prematurity. IMPACT Neuroserpin is secreted by subplate neurons and may regulate the development of neurons and oligodendrocyte-axon contact for myelination in the premature brain. LPS-sensitized hypoxic-ischemia/reperfusion (LHIR) injury caused the developmental disturbances of neurons/axons and oligodendrocytes, and lowered neuroserpin levels in a neonatal rat model simulating encephalopathy of prematurity. Mesenchymal stem cell therapy alleviated the developmental disturbances after LHIR injury through protection of neuroserpin expression in subplate neurons, offering a new perspective on potential treatment for encephalopathy of prematurity.
Collapse
Affiliation(s)
- Lan-Wan Wang
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan, ROC.
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan, ROC.
- School of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC.
| | - Chien-Wei Hsiung
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan, ROC
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | - Shyi-Jou Chen
- Department of Pediatrics, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
5
|
Yang J, Zhan Z, Li X, Hu M, Zhu Y, Xiao Y, Xu X. Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing. Mater Today Bio 2024; 27:101120. [PMID: 38975240 PMCID: PMC11225861 DOI: 10.1016/j.mtbio.2024.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted "FPBS") for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair.
Collapse
Affiliation(s)
- Jielai Yang
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Zihang Zhan
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang Province, PR China
| | - Xingchen Li
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Mu Hu
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yuan Zhu
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yunchao Xiao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang Province, PR China
| | - Xiangyang Xu
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| |
Collapse
|
6
|
Ramasubbu K, Venkatraman G, Ramanathan G, Dhanasekar S, Rajeswari VD. Molecular and cellular signalling pathways for promoting neural tissue growth - A tissue engineering approach. Life Sci 2024; 346:122640. [PMID: 38614302 DOI: 10.1016/j.lfs.2024.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Neural tissue engineering is a sub-field of tissue engineering that develops neural tissue. Damaged central and peripheral nervous tissue can be fabricated with a suitable scaffold printed with biomaterials. These scaffolds promote cell growth, development, and migration, yet they vary according to the biomaterial and scaffold printing technique, which determine the physical and biochemical properties. The physical and biochemical properties of scaffolds stimulate diverse signalling pathways, such as Wnt, NOTCH, Hedgehog, and ion channels- mediated pathways to promote neuron migration, elongation and migration. However, neurotransmitters like dopamine, acetylcholine, gamma amino butyric acid, and other signalling molecules are critical in neural tissue engineering to tissue fabrication. Thus, this review focuses on neural tissue regeneration with a tissue engineering approach highlighting the signalling pathways. Further, it explores the interaction of the scaffolds with the signalling pathways for generating neural tissue.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-, Vellore 632 014, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-, Vellore 632 014, Tamil Nadu, India
| | - Ganasambanthan Ramanathan
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-, Vellore 632 014, Tamil Nadu, India
| | - Sivaraman Dhanasekar
- Department of Biotechnology, Pandit Deendayal Energy University, Gandhinagar 382007, Gujarat, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
7
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Yao H, Shen Y, Song Z, Han A, Chen X, Zhang Y, Hu B. Rab11 promotes single Mauthner cell axon regeneration in vivo through axon guidance molecule Ntng2b. Exp Neurol 2024; 374:114715. [PMID: 38325655 DOI: 10.1016/j.expneurol.2024.114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Effective axon regeneration within the central nervous system (CNS) is pivotal for achieving functional recovery following spinal cord injury (SCI). Numerous extrinsic and intrinsic factors exert influences on the axon regeneration. While prior studies have demonstrated crucial involvement of specific members the Rab protein family in axon regeneration in the peripheral nervous system (PNS), the precise function of Rab11 in CNS axon regeneration in vivo remains elusive. Thus, our study aimed to elucidate the impact of Rab11 on the axon regeneration of Mauthner cells (M-cells) in zebrafish larvae. Our findings demonstrated that overexpression of Rab11bb via single-cell electroporation significantly promoted axon regeneration in individual M-cells. Conversely, knockdown of Rab11bb inhibited the axon regeneration of M-cells. RNA-seq analysis revealed an upregulation of ntng2b following Rab11bb overexpression. As we hypothesized, overexpression of Ntng2b markedly enhanced axon regeneration, while Ntng2b knockdown in the context of Rab11bb pro-regeneration substantially hindered axon regrowth. In conclusion, our study demonstrated that Rab11 promotes axon regeneration of single M-cell in the CNS through the Rab11/axon guidance/Ntng2b pathway.
Collapse
Affiliation(s)
- Huaitong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Yueru Shen
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Zheng Song
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Along Han
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Xinghan Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Yawen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Bing Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
9
|
Kim S, Jeon H, Koo JM, Oh DX, Park J. Practical Applications of Self-Healing Polymers Beyond Mechanical and Electrical Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302463. [PMID: 38361378 DOI: 10.1002/advs.202302463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/15/2023] [Indexed: 02/17/2024]
Abstract
Self-healing polymeric materials, which can repair physical damage, offer promising prospects for protective applications across various industries. Although prolonged durability and resource conservation are key advantages, focusing solely on mechanical recovery may limit the market potential of these materials. The unique physical properties of self-healing polymers, such as interfacial reduction, seamless connection lines, temperature/pressure responses, and phase transitions, enable a multitude of innovative applications. In this perspective, the diverse applications of self-healing polymers beyond their traditional mechanical strength are emphasized and their potential in various sectors such as food packaging, damage-reporting, radiation shielding, acoustic conservation, biomedical monitoring, and tissue regeneration is explored. With regards to the commercialization challenges, including scalability, robustness, and performance degradation under extreme conditions, strategies to overcome these limitations and promote successful industrialization are discussed. Furthermore, the potential impacts of self-healing materials on future research directions, encompassing environmental sustainability, advanced computational techniques, integration with emerging technologies, and tailoring materials for specific applications are examined. This perspective aims to inspire interdisciplinary approaches and foster the adoption of self-healing materials in various real-life settings, ultimately contributing to the development of next-generation materials.
Collapse
Affiliation(s)
- Semin Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
10
|
Kosara S, Singh R, Bhatia D. Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives. NANOSCALE ADVANCES 2024; 6:386-401. [PMID: 38235105 PMCID: PMC10790967 DOI: 10.1039/d3na00692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
DNA nanotechnology has significantly progressed in the last four decades, creating nucleic acid structures widely used in various biological applications. The structural flexibility, programmability, and multiform customization of DNA-based nanostructures make them ideal for creating structures of all sizes and shapes and multivalent drug delivery systems. Since then, DNA nanotechnology has advanced significantly, and numerous DNA nanostructures have been used in biology and other scientific disciplines. Despite the progress made in DNA nanotechnology, challenges still need to be addressed before DNA nanostructures can be widely used in biological interfaces. We can open the door for upcoming uses of DNA nanoparticles by tackling these issues and looking into new avenues. The historical development of various DNA nanomaterials has been thoroughly examined in this review, along with the underlying theoretical underpinnings, a summary of their applications in various fields, and an examination of the current roadblocks and potential future directions.
Collapse
Affiliation(s)
- Sanjay Kosara
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Ramesh Singh
- Department of Mechanical Engineering, Colorado State University Fort Collins CO USA
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| |
Collapse
|
11
|
Aktas B, Ozgun A, Kilickap BD, Garipcan B. Cell adhesion molecule immobilized gold surfaces for enhanced neuron-electrode interfaces. J Biomed Mater Res B Appl Biomater 2024; 112:e35310. [PMID: 37950592 DOI: 10.1002/jbm.b.35310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 11/12/2023]
Abstract
To provide a long-term solution for increasing the biocompatibility of neuroprosthetics, approaches to reduce the side effects of invasive neuro-implantable devices are still in need of improvement. Physical, chemical, and bioactive design aspects of the biomaterials are proven to be important for providing proper cell-to-cell, cell-to-material interactions. Particularly, modification of implant surfaces with bioactive cues, especially cell adhesion molecules (CAMs) that capitalize on native neural adhesion mechanisms, are promising candidates in favor of providing efficient interfaces. Within this concept, this study utilized specific CAMs, namely N-Cadherin (Neural cadherin, N-Cad) and neural cell adhesion molecule (NCAM), to enhance neuron-electrode contact by mimicking the cell-to-ECM interactions for improving the survival of cells and promoting neurite outgrowth. For this purpose, representative gold electrode surfaces were modified with N-Cadherin, NCAM, and the mixture (1:1) of these molecules. Modifications were characterized, and the effect of surface modification on both differentiated and undifferentiated neuroblastoma SH-SY5Y cell lines were compared. The findings demonstrated the successful modification of these molecules which subsequently exhibited biocompatible properties as evidenced by the cell viability results. In cell culture experiments, the CAMs displayed promising results in promoting neurite outgrowth compared to conventional poly-l-lysine coated surfaces, especially NCAM and N-Cad/NCAM modified surfaces clearly showed significant improvement. Overall, this optimized approach is expected to provide an insight into the action mechanisms of cells against the local environment and advance processes for the fabrication of alternative neural interfaces.
Collapse
Affiliation(s)
- Bengu Aktas
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
12
|
Lin PH, Huang C, Hu Y, Ramanujam VS, Lee ES, Singh R, Milbreta U, Cheung C, Ying JY, Chew SY. Neural cell membrane-coated DNA nanogels as a potential target-specific drug delivery tool for the central nervous system. Biomaterials 2023; 302:122325. [PMID: 37751670 DOI: 10.1016/j.biomaterials.2023.122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023]
Abstract
A major bottleneck in drug/gene delivery to enhance tissue regeneration after injuries is to achieve targeted delivery to the cells of interest. Unfortunately, we have not been able to attain effective targeted drug delivery in tissues due to the lack of efficient delivery platforms. Since specific cell-cell interactions exist to impart the unique structure and functionality of tissues and organs, we hypothesize that such specific cellular interactions may also be harnessed for drug delivery applications in the form of cell membrane coatings. Here, we employed neural cell-derived membrane coating technique on DNA nanogels to improve target specificity. The efficacy of neural cell membrane-coated DNA nanogels (NCM-nanogels) was demonstrated by using four types of cell membranes derived from the central nervous system (CNS), namely, astrocytes, microglia, cortical neurons, and oligodendrocyte progenitor cells (OPCs). A successful coating of NCMs over DNA nanogels was confirmed by dynamic light scattering, zeta potential measurements and transmission electron microscopy. Subsequently, an overall improvement in cellular uptake of NCM-nanogels over uncoated DNA nanogels (p < 0.005) was seen. Additionally, we observed a selective uptake of OPC membrane-coated DNA nanogels (NCM-O mem) by oligodendrocytes over other cell types both in vitro and in vivo. Our quantitative polymerase chain reaction (qPCR) results also showed selective and effective gene knockdown capacity of NCM-O mem for OPC transfection. The findings in this work may be beneficial for future drug delivery applications targeted at the CNS.
Collapse
Affiliation(s)
- Po Hen Lin
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Chongquan Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore; Neuroscience@ NTU, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore
| | - Yuwei Hu
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore
| | - Vaibavi Srirangam Ramanujam
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Ee-Soo Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Ruby Singh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Ulla Milbreta
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore; NanoBio Lab, A*STAR Infectious Diseases Labs, A*STAR, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore.
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
13
|
Zhu YD, Ma XY, Li LP, Yang QJ, Jin F, Chen ZN, Wu CP, Shi HB, Feng ZQ, Yin SK, Li CY. Surface Functional Modification by Ti 3 C 2 T x MXene on PLLA Nanofibers for Optimizing Neural Stem Cell Engineering. Adv Healthc Mater 2023; 12:e2300731. [PMID: 37341969 DOI: 10.1002/adhm.202300731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Indexed: 06/22/2023]
Abstract
Optimizing cell substrates by surface modification of neural stem cells (NSCs), for efficient and oriented neurogenesis, represents a promising strategy for treating neurological diseases. However, developing substrates with the advanced surface functionality, conductivity, and biocompatibility required for practical application is still challenging. Here, Ti3 C2 Tx MXene is introduced as a coating nanomaterial for aligned poly(l-lactide) (PLLA) nanofibers (M-ANF) to enhance NSC neurogenesis and simultaneously tailor the cell growth direction. Ti3 C2 Tx MXene treatment provides a superior conductivity substrate with a surface rich in functional groups, hydrophilicity, and roughness, which can provide biochemical and physical cues to support NSC adhesion and proliferation. Moreover, Ti3 C2 Tx MXene coating significantly promotes NSC differentiation into both neurons and astrocytes. Interestingly, Ti3 C2 Tx MXene acts synergistically with the alignment of nanofibers to promote the growth of neurites, indicating enhanced maturation of these neurons. RNA sequencing analysis further reveals the molecular mechanism by which Ti3 C2 Tx MXene modulates the fate of NSCs. Notably, surface modification by Ti3 C2 Tx MXene mitigates the in vivo foreign body response to implanted PLLA nanofibers. This study confirms that Ti3 C2 Tx MXene provides multiple advantages for decorating the aligned PLLA nanofibers to cooperatively improve neural regeneration.
Collapse
Affiliation(s)
- Yi-Dan Zhu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xi-Ying Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lin-Peng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Quan-Jun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zheng-Nong Chen
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cui-Ping Wu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hai-Bo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shan-Kai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chun-Yan Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
14
|
Kim S, An S, Lee J, Jeong Y, You C, Kim H, Bae J, Yun C, Ryu D, Bae G, Kang J. Cdon ablation in motor neurons causes age-related motor neuron degeneration and impaired sciatic nerve repair. J Cachexia Sarcopenia Muscle 2023; 14:2239-2252. [PMID: 37559423 PMCID: PMC10570074 DOI: 10.1002/jcsm.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The functional deterioration and loss of motor neurons are tightly associated with degenerative motor neuron diseases and aging-related muscle wasting. Motor neuron diseases or aging-related muscle wasting in turn contribute to increased risk of adverse health outcomes in the elderly. Cdon (cell adhesion molecule-downregulated oncogene) belongs to the immunoglobulin superfamily of cell adhesion molecule and plays essential roles in multiple signalling pathways, including sonic hedgehog (Shh), netrin, and cadherin-mediated signalling. Cdon as a Shh coreceptor plays a critical role in motor neuron specification during embryonic development. However, its role in adult motor neuron function is unknown. METHODS Hb9-Cre recombinase-driven motor neuron-specific Cdon deficient mice (mnKO) and a compound mutant mice (mnKO::SOD1G93A ) were generated to investigate the role of Cdon in motor neuron degeneration. Motor neuron regeneration was examined by using a sciatic nerve crush injury model. To investigate the phenotype, physical activity, compound muscle action potential, immunostaining, and transmission electron microscopy were carried out. In the mechanism study, RNA sequencing and RNA/protein analyses were employed. RESULTS Mice lacking Cdon in motor neurons exhibited middle age onset lethality and aging-related decline in motor function. In the sciatic nerve crush injury model, mnKO mice exhibited an impairment in motor function recovery evident by prolonged compound muscle action potential duration (4.63 ± 0.35 vs. 3.93 ± 0.22 s for f/f, P < 0.01) and physical activity. Consistently, neuromuscular junctions of mnKO muscles were incompletely occupied (49.79 ± 5.74 vs. 79.39 ± 3.77% fully occupied neuromuscular junctions for f/f, P < 0.0001), suggesting an impaired reinnervation. The transmission electron microscopy analysis revealed that mnKO sciatic nerves had smaller axon diameter (0.88 ± 0.13 vs. 1.43 ± 0.48 μm for f/f, P < 0.0001) and myelination defects. RNA sequencing of mnKO lumbar spinal cords showed alteration in genes related to neurogenesis, inflammation and cell death. Among the altered genes, ErbB4 and FgfR expressions were significantly altered in mnKO as well as in Cdon-depleted NSC34 motor neuron cells. Consistently, Cdon-depleted NSC34 cells exhibited elevated levels of cleaved Caspase3 and γH2AX proteins, as well as Bax transcription. Cdon-depleted NSC34 cells also exhibited impaired activation of Akt in response to neuregulin-1 (NRG1) treatment. CONCLUSIONS Our current data demonstrate the functional importance of Cdon in motor neuron function and nerve repair. Cdon ablation causes alterations in neurotrophin signalling that leads to motor neuron degeneration.
Collapse
Affiliation(s)
- Sunghee Kim
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Subin An
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Jinwoo Lee
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Research Institute of Animuscure INCSuwonSouth Korea
| | - Yideul Jeong
- Research Institute of Animuscure INCSuwonSouth Korea
| | - Chang‐Lim You
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Hyebeen Kim
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Ju‐Hyeon Bae
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Chae‐Eun Yun
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Dongryul Ryu
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
| | - Gyu‐Un Bae
- College of PharmacySookmyung Women's UniversitySeoulSouth Korea
| | - Jong‐Sun Kang
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| |
Collapse
|
15
|
Kwokdinata C, Ramanujam V, Chen J, de Oliveira PN, Nai MH, Chooi WH, Lim CT, Ng SY, David L, Chew SY. Encapsulation of Human Spinal Cord Progenitor Cells in Hyaluronan-Gelatin Hydrogel for Spinal Cord Injury Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50679-50692. [PMID: 37751213 DOI: 10.1021/acsami.3c07419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Transplanting human induced pluripotent stem cells (iPSCs)-derived spinal cord progenitor cells (SCPCs) is a promising approach to treat spinal cord injuries. However, stem cell therapies face challenges in cell survival, cell localization to the targeted site, and the control of cell differentiation. Here, we encapsulated SCPCs in thiol-modified hyaluronan-gelatin hydrogels and optimized scaffold mechanical properties and cell encapsulation density to promote cell viability and neuronal differentiation in vitro and in vivo. Different compositions of hyaluronan-gelatin hydrogels formulated by varying concentrations of poly(ethylene glycol) diacrylate were mechanically characterized by using atomic force microscopy. In vitro SCPC encapsulation study showed higher cell viability and proliferation with lower substrate Young's modulus (200 Pa vs 580 Pa) and cell density. Moreover, the soft hydrogels facilitated a higher degree of neuronal differentiation with extended filament structures in contrast to clumped cellular morphologies obtained in stiff hydrogels (p < 0.01). When transplanted in vivo, the optimized SCPC-encapsulated hydrogels resulted in higher cell survival and localization at the transplanted region as compared to cell delivery without hydrogel encapsulation at 2 weeks postimplantation within the rat spinal cord (p < 0.01). Notably, immunostaining demonstrated that the hydrogel-encapsulated SCPCs differentiated along the neuronal and oligodendroglial lineages in vivo. The lack of pluripotency and proliferation also supported the safety of the SCPC transplantation approach. Overall, the injectable hyaluronan-gelatin hydrogel shows promise in supporting the survival and neural differentiation of human SCPCs after transplantation into the spinal cord.
Collapse
Affiliation(s)
- Christy Kwokdinata
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Vaibavi Ramanujam
- CNRS@CREATE, Create Tower #08-01, 1 Create Way, Singapore 138602, Singapore
| | - Jiahui Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | | | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117576, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Laurent David
- CNRS@CREATE, Create Tower #08-01, 1 Create Way, Singapore 138602, Singapore
- Ingénierie des Matériaux Polymères IMP UMR 5223, CNRS, Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, Université de Lyon, Villeurbanne F69622, France
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
16
|
Tsai CY, Ko HJ, Chiou SJ, Lin XY, Chuang TH, Cheng JT, Su YF, Loh JK, Hong YR. GSKIP modulates cell aggregation through EMT/MET signaling rather than differentiation in SH-SY5Y human neuroblastoma cells. J Cell Commun Signal 2023; 17:1039-1054. [PMID: 37133713 PMCID: PMC10409706 DOI: 10.1007/s12079-023-00752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
GSK3β interacting protein (GSKIP) is a small A-kinase anchor protein previously reported to mediate the N-cadherin/β-catenin pool for differentiation in SH-SY5Y cells through overexpression of GSKIP to present the neuron outgrowth phenotype. To further investigate how GSKIP functions in neurons, CRISPR/Cas9 technology was utilized to knock out GSKIP (GSKIP-KO) in SH-SY5Y. Several GSKIP-KO clones resulted in an aggregation phenotype and reduced cell growth without retinoic acid (RA) treatment. However, neuron outgrowth was still observed in GSKIP-KO clones treated with RA. The GSKIP-KO clones exhibited an aggregation phenotype through suppression of GSK3β/β-catenin pathways and cell cycle progression rather than cell differentiation. Gene set enrichment analysis indicated that GSKIP-KO was related to epithelial mesenchymal transition/mesenchymal epithelial transition (EMT/MET) and Wnt/β-catenin/cadherin signaling pathways, suppressing cell migration and tumorigenesis through the inhibition of Wnt/β-catenin mediated EMT/MET. Conversely, reintroduction of GSKIP into GSKIP-KO clones restored cell migration and tumorigenesis. Notably, phosphor-β-catenin (S675) and β-catenin (S552) but not phosphor-β-catenin (S33/S37/T41) translocated into the nucleus for further gene activation. Collectively, these results suggested that GSKIP may function as an oncogene to form an aggregation phenotype for cell survival in harsh environments through EMT/MET rather than differentiation in the GSKIP-KO of SH-SY5Y cells. GSKIP Implication in Signaling Pathways with Potential Impact on SHSY-5Y Cell Aggregation.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huey-Jiun Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shean-Jaw Chiou
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Xin-Yi Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yu-Feng Su
- Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joon-Khim Loh
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
17
|
Gao H, Sun C, Shang S, Sun B, Sun M, Hu S, Yang H, Hu Y, Feng Z, Zhou W, Liu C, Wang J, Liu H. Wireless Electrical Signals Induce Functional Neuronal Differentiation of BMSCs on 3D Graphene Framework Driven by Magnetic Field. ACS NANO 2023; 17:16204-16220. [PMID: 37531596 DOI: 10.1021/acsnano.3c05725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are suggested as candidates for neurodegeneration therapy by autologous stem cells to overcome the lack of neural stem cells in adults. However, the differentiation of BMSCs into functional neurons is a major challenge for neurotherapy. Herein, a methodology has been proposed to induce functional neuronal differentiation of BMSCs on a conductive three-dimensional graphene framework (GFs) combined with a rotating magnetic field. A wireless electrical signal of about 10 μA can be generated on the surface of GFs by cutting the magnetic field lines based on the well-known electromagnetic induction effect, which has been proven to be suitable for inducing neuronal differentiation of BMSCs. The enhanced expressions of the specific genes/proteins and apparent Ca2+ intracellular flow indicate that BMSCs cultured on GFs with 15 min/day rotating magnetic field stimulation for 15 days can differentiate functional neurons without any neural inducing factor. The animal experiments confirm the neural differentiation of BMSCs on GFs after transplantation in vivo, accompanied by stimulation of an external rotating magnetic field. This study overcomes the lack of autologous neural stem cells for adult neurodegeneration patients and provides a facile and safe strategy to induce the neural differentiation of BMSCs, which has potential for clinical applications of neural tissue engineering.
Collapse
Affiliation(s)
- Haoyang Gao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Shuo Shang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Baojun Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Mingyuan Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Shuang Hu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, People's Republic of China
| | - Ying Hu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Chao Liu
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, People's Republic of China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, People's Republic of China
| |
Collapse
|
18
|
Patel T, Skorupa M, Skonieczna M, Turczyn R, Krukiewicz K. Surface grafting of poly-L-lysine via diazonium chemistry to enhance cell adhesion to biomedical electrodes. Bioelectrochemistry 2023; 152:108465. [PMID: 37207477 DOI: 10.1016/j.bioelechem.2023.108465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
The ability to study and regulate cell behavior at a biomaterial interface requires a strict control over its surface chemistry. Significance of studying cell adhesion in vitro and in vivo has become increasingly important, particularly in the field of tissue engineering and regenerative medicine. A promising surface modification route assumes using organic layers prepared by the method of electrografting of diazonium salts and their further functionalization with biologically active molecules as cell adhesion promoters. This work reports the modification of platinum electrodes with selected diazonium salts and poly-L-lysine to increase the number of sites available for cell adhesion. As-modified electrodes were characterized in terms of their chemical and morphological properties, as well as wettability. In order to monitor the process of cell attachment, biofunctionalized electrodes were used as substrates for culturing human neuroblastoma SH-SY5Y cells. The experiments revealed that cell adhesion is favored on the surface of diazonium-modified and poly-L-lysine coated electrodes, indicating proposed modification route as a valuable strategy enhancing the integration between bioelectronic devices and neural cells.
Collapse
Affiliation(s)
- Taral Patel
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Małgorzata Skorupa
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
19
|
Metabolic Glycoengineering: A Promising Strategy to Remodel Microenvironments for Regenerative Therapy. Stem Cells Int 2023; 2023:1655750. [PMID: 36814525 PMCID: PMC9940976 DOI: 10.1155/2023/1655750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/27/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cell-based regenerative therapy utilizes the differentiation potential of stem cells to rejuvenate tissues. But the dynamic fate of stem cells is calling for precise control to optimize their therapeutic efficiency. Stem cell fate is regulated by specific conditions called "microenvironments." Among the various factors in the microenvironment, the cell-surface glycan acts as a mediator of cell-matrix and cell-cell interactions and manipulates the behavior of cells. Herein, metabolic glycoengineering (MGE) is an easy but powerful technology for remodeling the structure of glycan. By presenting unnatural glycans on the surface, MGE provides us an opportunity to reshape the microenvironment and evoke desired cellular responses. In this review, we firstly focused on the determining role of glycans on cellular activity; then, we introduced how MGE influences glycosylation and subsequently affects cell fate; at last, we outlined the application of MGE in regenerative therapy, especially in the musculoskeletal system, and the future direction of MGE is discussed.
Collapse
|
20
|
Yu P, Zhang G, Hou B, Song E, Wen J, Ba Y, Zhu D, Wang G, Qin F. Effects of ECM proteins (laminin, fibronectin, and type IV collagen) on the biological behavior of Schwann cells and their roles in the process of remyelination after peripheral nerve injury. Front Bioeng Biotechnol 2023; 11:1133718. [PMID: 37034260 PMCID: PMC10080002 DOI: 10.3389/fbioe.2023.1133718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: It is important to note that complete myelination and formation of myelinated fibers are essential for functional nerve regeneration after peripheral nerve injury (PNI). However, suboptimal myelin regeneration is common and can hinder ideal nerve regeneration. Therefore, it is important to closely monitor and support myelin regeneration in patients with PNI to achieve optimal outcomes. Methods: This study analyzed the effects of three extracellular matrix (ECM) proteins on Schwann cells (SCs) in the nerve regeneration environment, including their adhesion, proliferation, and migration. The study also explored the use of composite sodium alginate hydrogel neural scaffolds with ECM components and investigated the effects of ECM proteins on remyelination following peripheral nerve injury. Results: The results showed that laminin (LN), fibronectin (FN), and collagen Ⅳ (type IV Col) promoted the early adhesion of SCs in 2-dimensional culture but the ratios of early cell adhesion were quite different and the maintenance of cells' morphology by different ECM proteins were significantly different. In transwell experiment, the ability of LN and FN to induce the migration of SCs was obviously higher than that of type IV Col. An vitro co-culture model of SCs and dorsal root ganglia (DRG) neurons showed that LN promoted the transition of SCs to a myelinated state and the maturation of the myelin sheath, and increased the thickness of neurofilaments. Animal experiments showed that LN had superior effects in promoting myelin sheath formation, axon repair, and reaching an ideal G-ratio after injury compared to FN and Col IV. The situation of gastrocnemius atrophy was significantly better in the LN group. Notably, the thickness of the regenerated myelin sheaths in the type IV Col group was the thickest. Conclusion: In this experiment, we analyzed and compared the effects of LN, FN, and type IV Col on the biological behavior of SCs and their effects on remyelination after PNI and further clarified their unique roles in the process of remyelination. Further research is necessary to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Peng Yu
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guanhua Zhang
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Hou
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Enpeng Song
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiaming Wen
- Department of Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yueyang Ba
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Donglin Zhu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Donglin Zhu, ; Gangwei Wang, ; Feng Qin,
| | - Gangwei Wang
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- *Correspondence: Donglin Zhu, ; Gangwei Wang, ; Feng Qin,
| | - Feng Qin
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Donglin Zhu, ; Gangwei Wang, ; Feng Qin,
| |
Collapse
|
21
|
Dursun Usal T, Yesiltepe M, Yucel D, Sara Y, Hasirci V. Fabrication of a 3D Printed PCL Nerve Guide: In Vitro and In Vivo Testing. Macromol Biosci 2021; 22:e2100389. [PMID: 34939303 DOI: 10.1002/mabi.202100389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Indexed: 12/27/2022]
Abstract
Nerve guides are medical devices designed to guide proximal and distal ends of injured peripheral nerves in order to assist regeneration of the damaged nerves. A 3D-printed polycaprolactone (PCL) nerve guide using an aligned gelatin-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) electrospun mat, seeded with PC12 and Schwann cells (SCs) is produced. During characterization with microCT and SEM porosity (55%), pore sizes (675 ± 40 µm), and fiber diameters (382 ± 25 µm) are determined. Electrospun fibers have degree of alignment of 7°, indicating high potential for guidance. On Day 14, PC12 cells migrated from proximal to distal end of nerve guide when SCs are seeded on the guide. After 28 days, over 95% of PC12 are alive and aligned. PC12 cells express early differentiation marker beta-tubulin 10 times more than late marker NeuN. In a 10 mm rat sciatic nerve injury, functional recovery evaluated by using static sciatic index (SSI) is observed in mat-free guides and guides containing mat and SCs. Nerve conduction velocities are also improved in these groups. Histological stainings showed tissue growth around nerve guides with highest new tissue organization being observed with mat and cell-free guides. These suggest 3D-printed PCL nerve guides have significant potential for treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Tugba Dursun Usal
- Middle East Technical University (METU), BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.,Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey.,Department of Biological Sciences, Middle East Technical University (METU), Ankara, 06800, Turkey
| | - Metin Yesiltepe
- Hacettepe University, Faculty of Medicine, Medical Pharmacology, Ankara, 06100, Turkey
| | - Deniz Yucel
- Middle East Technical University (METU), BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.,Department of Histology and Embryology, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey.,ACU Biomaterials Center, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey
| | - Yıldırım Sara
- Hacettepe University, Faculty of Medicine, Medical Pharmacology, Ankara, 06100, Turkey
| | - Vasif Hasirci
- Middle East Technical University (METU), BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.,Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey.,Department of Biological Sciences, Middle East Technical University (METU), Ankara, 06800, Turkey.,ACU Biomaterials Center, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey.,Department of Medical Engineering, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey
| |
Collapse
|
22
|
Zhang N, Lin J, Chew SY. Neural Cell Membrane-Coated Nanoparticles for Targeted and Enhanced Uptake by Central Nervous System Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55840-55850. [PMID: 34792341 DOI: 10.1021/acsami.1c16543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeted drug delivery to specific neural cells within the central nervous system (CNS) plays important roles in treating neurological disorders, such as neurodegenerative (e.g., targeting neurons) and demyelinating diseases [e.g., targeting oligodendrocytes (OLs)]. However, the presence of many other cell types within the CNS, such as microglial and astrocytes, may lead to nonspecific uptake and subsequent side effects. As such, exploring an effective and targeted drug delivery system is of great necessity. Synthetic micro-/nanoparticles that have been coated with biologically derived cellular membranes have emerged as a new class of drug delivery vehicles. However, the use of neural cell-derived membrane coatings remains unexplored. Here, we utilized this technique and demonstrated the efficacy of targeted delivery by using four types of cell membranes that were derived from the CNS, namely, microglial, astrocytes, oligodendrocyte progenitor cells (OPCs), and cortical neurons. A successful cell membrane coating over poly(ε-caprolactone) nanoparticles (NPs) was confirmed using dynamic light scattering, zeta potential measurements, and transmission electron microscopy. Subsequently, an extensive screening of these cell membrane-coated NPs was carried out on various CNS cells. Results suggested that microglial and OLs were the most sensitive cell types toward cell membrane-coated NPs. Specifically, cell membrane-coated NPs significantly enhanced the uptake efficiency of OLs (p < 0.001). Additionally, a temporal uptake study indicated that the OLs took up microglial membrane-coated NPs (DPP-PCL-M Mem) most efficiently. Besides that, coating the NPs with four types of the CNS cell membrane did not result in obvious specific uptake in microglial but reduced the activation of microglial, especially for DPP-PCL-M Mem (p < 0.01). Taken together, DPP-PCL-M Mem were uptaken most efficiently in OLs and did not induce significant microglial activation and may be most suitable for CNS drug delivery applications.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
23
|
Lu P, Wang G, Qian T, Cai X, Zhang P, Li M, Shen Y, Xue C, Wang H. The balanced microenvironment regulated by the degradants of appropriate PLGA scaffolds and chitosan conduit promotes peripheral nerve regeneration. Mater Today Bio 2021; 12:100158. [PMID: 34841240 PMCID: PMC8605345 DOI: 10.1016/j.mtbio.2021.100158] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/19/2022] Open
Abstract
Tissue-engineered nerve grafts (TENGs) are the most promising way for repairing long-distance peripheral nerve defects. Chitosan and poly (lactic-co-glycolic acid) (PLGA) scaffolds are considered as the promising materials in the pharmaceutical and biomedical fields especially in the field of tissue engineering. To further clarify the effects of a chitosan conduit inserted with various quantity of poly (lactic-co-glycolic acid) (PLGA) scaffolds, and their degrades on the peripheral nerve regeneration, the chitosan nerve conduit inserted with different amounts of PLGA scaffolds were used to repair rat sciatic nerve defects. The peripheral nerve regeneration at the different time points was dynamically and comprehensively evaluated. Moreover, the influence of different amounts of PLGA scaffolds on the regeneration microenvironment including inflammatory response and cell state were also revealed. The modest abundance of PLGA is more instrumental to the success of nerve regeneration, which is demonstrated in terms of the structure of the regenerated nerve, reinnervation of the target muscle, nerve impulse conduction, and overall function. The PLGA scaffolds aid the migration and maturation of Schwann cells. Furthermore, the PLGA and chitosan degradation products in a correct ratio neutralize, reducing the inflammatory response and enhancing the regeneration microenvironment. The balanced microenvironment regulated by the degradants of appropriate PLGA scaffolds and chitosan conduit promotes peripheral nerve regeneration. The findings represent a further step towards programming TENGs construction, applying polyester materials in regenerative medicine, and understanding the neural regeneration microenvironment. Guide scaffolds are necessary for construction of TENGs to benefeat Schwann cell migration and maturation. A large number of acid degradation products of PLGA scaffolds adversely affect cell proliferation, migration and apoptosis. Appropriate amount of PLGA scaffolds balance positive cell guidance and negative degradation inflammation. Dosage of PLGA and its combination with complementary biomaterials are key factors that affect regeneration effects.
Collapse
Key Words
- ANOVA, one-way analysis of variance
- CCK8, Cell Counting Kit-8
- CMAPs, compound muscle action potentials
- DAPI, 4’ 6-diamidino-2-phenylindole
- DMEM, Dulbecco’s modified eagle medium
- FBS, fetal bovine serum
- HE, hematoxylin-eosin
- Inflammation
- NC, negative control
- NS, normal saline
- OD, optical density
- PGA, poly (glycolic acid)
- PLA, poly (lactic acid)
- PLGA
- PLGA, poly (lactic-co-glycolic acid)
- Regeneration microenvironment
- SCs, Schwann cells
- SD, Sprague-Dawley
- SD, standard deviation
- SFI, sciatic nerve function index
- Schwann cells
- TENG, tissue-engineered nerve graft
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling
- α-BGT, α-bungarotoxin
Collapse
Affiliation(s)
- Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Gang Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Tianmei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiaodong Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Chengbin Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
24
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
25
|
Sun JH, Huang M, Fang Z, Li TX, Wu TT, Chen Y, Quan DP, Xu YY, Wang YM, Yang Y, Zou JL. Nerve bundle formation during the promotion of peripheral nerve regeneration: collagen VI-neural cell adhesion molecule 1 interaction. Neural Regen Res 2021; 17:1023-1033. [PMID: 34558529 PMCID: PMC8552870 DOI: 10.4103/1673-5374.324861] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The formation of nerve bundles, which is partially regulated by neural cell adhesion molecule 1 (NCAM1), is important for neural network organization during peripheral nerve regeneration. However, little is known about how the extracellular matrix (ECM) microenvironment affects this process. Here, we seeded dorsal root ganglion tissue blocks on different ECM substrates of peripheral nerve ECM-derived matrix-gel, Matrigel, laminin 521, collagen I, and collagen IV, and observed well-aligned axon bundles growing in the peripheral nerve ECM-derived environment. We confirmed that NCAM1 is necessary but not sufficient to trigger this phenomenon. A protein interaction assay identified collagen VI as an extracellular partner of NCAM1 in the regulation of axonal fasciculation. Collagen VI interacted with NCAM1 by directly binding to the FNIII domain, thereby increasing the stability of NCAM1 at the axolemma. Our in vivo experiments on a rat sciatic nerve defect model also demonstrated orderly nerve bundle regeneration with improved projection accuracy and functional recovery after treatment with 10 mg/mL Matrigel and 20 μg/mL collagen VI. These findings suggest that the collagen VI-NCAM1 pathway plays a regulatory role in nerve bundle formation. This study was approved by the Animal Ethics Committee of Guangzhou Medical University (approval No. GY2019048) on April 30, 2019.
Collapse
Affiliation(s)
- Jia-Hui Sun
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ming Huang
- Zhongshan School of Medicine, Sun Yatsen University, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Zhou Fang
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Tian-Xiao Li
- Department of Pharmacy, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ting-Ting Wu
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yi Chen
- Zhongshan School of Medicine, Sun Yatsen University, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Da-Ping Quan
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Ying-Ying Xu
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yu-Ming Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yi Yang
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jian-Long Zou
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
26
|
The Influence of the Surface Topographical Cues of Biomaterials on Nerve Cells in Peripheral Nerve Regeneration: A Review. Stem Cells Int 2021; 2021:8124444. [PMID: 34349803 PMCID: PMC8328695 DOI: 10.1155/2021/8124444] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
The surface topographies of artificial implants including surface roughness, surface groove size and orientation, and surface pore size and distribution have a great influence on the adhesion, migration, proliferation, and differentiation of nerve cells in the nerve regeneration process. Optimizing the surface topographies of biomaterials can be a key strategy for achieving excellent cell performance in various applications such as nerve tissue engineering. In this review, we offer a comprehensive summary of the surface topographies of nerve implants and their effects on nerve cell behavior. This review also emphasizes the latest work progress of the layered structure of the natural extracellular matrix that can be imitated by the material surface topology. Finally, the future development of surface topographies on nerve regeneration was prospectively remarked.
Collapse
|
27
|
Kaur H, Roy S. Designing aromatic N-cadherin mimetic short-peptide-based bioactive scaffolds for controlling cellular behaviour. J Mater Chem B 2021; 9:5898-5913. [PMID: 34263278 DOI: 10.1039/d1tb00598g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of suitable biomaterials is one of the key factors responsible for the success of the tissue-engineering field. Recently, significant effort has been devoted to the design of biomimetic materials that can elicit specific cellular responses and direct new tissue formation mediated by bioactive peptides. The success of the design principle of such biomimetic scaffolds is mainly related to the cell-extracellular matrix (ECM) interactions, whereas cell-cell interactions also play a vital role in cell survival, neurite outgrowth, attachment, migration, differentiation, and proliferation. Hence, an ideal strategy to improve cell-cell interactions would rely on the judicious incorporation of a bioactive motif in the designer scaffold. In this way, we explored for the first time the primary functional pentapeptide sequence of the N-cadherin protein, HAVDI, which is known to be involved in cell-cell interactions. We have formulated the shortest N-cadherin mimetic peptide sequence utilizing a minimalistic approach. Furthermore, we employed a classical molecular self-assembly strategy through rational modification of the basic pentapeptide motif of N-cadherin, i.e. HAVDI, using Fmoc and Nap aromatic moieties to modify the N-terminal end. The designed N-cadherin mimetic peptides, Fmoc-HAVDI and Nap-HAVDI, self-assembled to form a nanofibrous network resulting in a bioactive peptide hydrogel at physiological pH. The nanofibrous network of the pentapeptide hydrogels resembles the topology of the natural ECM. Furthermore, the mechanical strength of the gels also matches that of the native ECM of neural cells. Interestingly, both the N-cadherin mimetic peptide hydrogels supported cell adhesion and proliferation of the neural and non-neural cell lines, highlighting the diversity of these peptidic scaffolds. Further, the cultured neural and non-neural cells on the bioactive scaffolds showed normal expression of β-III tubulin and actin, respectively. The cellular response was compromised in control peptides, which further establishes the significance of the bioactive motifs towards controlling the cellular behaviour. Our study indicated that our designer N-cadherin-based peptidic hydrogels mimic the structural as well as the physical properties of the native ECM, which has been further reflected in the functional attributes offered by these scaffolds, and thus offer a suitable bioactive domain for further use as a next-generation material in tissue-engineering applications.
Collapse
Affiliation(s)
- Harsimran Kaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin-140306, India.
| | | |
Collapse
|
28
|
Sharma P, Pal VK, Roy S. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomater Sci 2021; 9:3911-3938. [PMID: 33973582 DOI: 10.1039/d0bm02049d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural tissue engineering holds great potential in addressing current challenges faced by medical therapies employed for the functional recovery of the brain. In this context, self-assembling peptides have gained considerable interest owing to their diverse physicochemical properties, which enable them to closely mimic the biophysical characteristics of the native ECM. Additionally, in contrast to synthetic polymers, which lack inherent biological signaling, peptide-based nanomaterials could be easily designed to present essential biological cues to the cells to promote cellular adhesion. Moreover, injectability of these biomaterials further widens their scope in biomedicine. In this context, hydrogels obtained from short bioactive peptide sequences are of particular interest owing to their facile synthesis and highly tunable properties. In spite of their well-known advantages, the exploration of short peptides for neural tissue engineering is still in its infancy and thus detailed discussion is required to evoke interest in this direction. This review provides a general overview of various bioactive hydrogels derived from short peptide sequences explored for neural tissue engineering. The review also discusses the current challenges in translating the benefits of these hydrogels to clinical practices and presents future perspectives regarding the utilization of these hydrogels for advanced biomedical applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| |
Collapse
|
29
|
Chooi WH, Dong Q, Low JZY, Yuen C, Chin JS, Lin J, Ong W, Liu Q, Chew SY. Cell Membrane-Coated Electrospun Fibers Enhance Keratinocyte Growth through Cell-Type Specific Interactions. ACS APPLIED BIO MATERIALS 2021; 4:4079-4083. [DOI: 10.1021/acsabm.1c00303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wai Hon Chooi
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore
| | - Quanbin Dong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jeremy Zhi Yan Low
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Clement Yuen
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore
| | - Jiah Shin Chin
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- NTU Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, 637533 Singapore
| | - Junquan Lin
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore
| | - William Ong
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- NTU Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, 637533 Singapore
| | - Quan Liu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore
| | - Sing Yian Chew
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| |
Collapse
|
30
|
Recent Advances on Surface-modified Biomaterials Promoting Selective Adhesion and Directional Migration of Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2564-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Karimi-Soflou R, Nejati S, Karkhaneh A. Electroactive and antioxidant injectable in-situ forming hydrogels with tunable properties by polyethylenimine and polyaniline for nerve tissue engineering. Colloids Surf B Biointerfaces 2021; 199:111565. [DOI: 10.1016/j.colsurfb.2021.111565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
|
32
|
Mohseni M, S A AR, H Shirazi F, Nemati NH. Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies. Int J Biol Macromol 2020; 167:881-893. [PMID: 33186646 DOI: 10.1016/j.ijbiomac.2020.11.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 01/20/2023]
Abstract
Conductive self -electrical stimuli bioactive scaffolds could be used the potential for peripheral nerve regeneration with the maximum efficiency. To produce such conductive self-electrical stimuli bioactive scaffolds, chopped spun piezoelectric nanofibers of polyvinylidene fluoride/mesoporous silica nanoparticle (PVDF/MCM41) are prepared and incorporated in gellan/polyaniline/graphene (gellan/PAG) nanocomposites which have been previously prepared by incorporation of polyaniline/graphene (PAG) nanoparticles in gellan gel at 80 °C. Highly conductive binary doped polyaniline/graphene nanoparticles are prepared by chemical oxidative polymerization of aniline monomer using in-suite precipitation polymerization method in presence of graphene nanoparticles and sodium dodecyl sulfate. All intermediate and final products including spun PVDF/MCM41 nanofibers, PAG nanoparticles, and gellan-gelatin gel scaffolds containing PVDF/MCM41 nano spun fibers and PAG nanoparticles are characterized using different analysis methods. Chemical and structural analyses of PAG nanoparticles and PVDF/MCM41 nanofibers have been done using FTIR and XRD methods. The morphological structure of different samples is investigated using SEM. Morphological investigation and DLS results confirm fabrication of MCM41 nanoparticle with a completely spherical shape and the average size of 50 nm of which have been dispersed in electrospun PVDF nanofibers very well. Also, the preparation of PAG nanoparticle with high conductivity is verified with morphological and conductivity tests. MTT easy and biocompatibility test results indicate potential applicability of the prepared conductive self -stimuli nano-scaffold for nerve regeneration applications.
Collapse
Affiliation(s)
- Mojdeh Mohseni
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Ramazani S A
- Chemical & Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| | - Farshad H Shirazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
33
|
Lu Y, Yang J, Sun J, Lu W, Wang JH. mRNA and miRNA profiles in the nucleus accumbens are associated with psychological stress-induced susceptible and resilient mice. Pharmacol Biochem Behav 2020; 199:173062. [PMID: 33098854 DOI: 10.1016/j.pbb.2020.173062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Stress may be one of the main causes of fear and anxiety. Previous studies have shown that the nucleus accumbens is involved in emotional responses. However, in the nucleus accumbens, the mRNA and miRNA profiles of stress susceptibility and resilience of psychological stress still need to be studied. MATERIALS AND METHODS In this study, by observing the conspecific being attacked, the witness group experienced psychological stress. After five days of psychological stress, the fear memory of mice was measured by social interaction test, and the degree of anxiety was measured by elevated plus maze. mRNA and miRNA profiles in the nucleus accumbens tissue of control, susceptible and resilient mice were established by high-throughput sequencing. RESULTS In susceptible mice versus resilient mice, the Differentially expressed genes (DEGs) may be related to psychological stress-induced susceptibility. DEGs enriched in Cell adhesion molecules, Neuroactive ligand-receptor interaction, Gap junction, PI3K-Akt, VEGF, Jak-STAT, Ras, and Chemokine pathways were up-regulated. DEGs enriched in cGMP-PKG, B cell receptor, and NOD-like receptor pathways were down- regulated. The sequencing results of mRNAs and miRNAs were verified by qRT-PCR and dual luciferase reporter assay. CONCLUSION The imbalance of different synapses and pathways in the nucleus accumbens may be related to susceptibility and resilience caused by psychological stress.
Collapse
Affiliation(s)
- Yanjun Lu
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Jiuyong Yang
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Jinyan Sun
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China
| | - Wei Lu
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China.
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, Qingdao, Shandong 266021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
34
|
Devereaux J, Dargahi N, Fraser S, Nurgali K, Kiatos D, Apostolopoulos V. Leucocyte-Rich Platelet-Rich Plasma Enhances Fibroblast and Extracellular Matrix Activity: Implications in Wound Healing. Int J Mol Sci 2020; 21:ijms21186519. [PMID: 32900003 PMCID: PMC7556022 DOI: 10.3390/ijms21186519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Platelet-rich plasma (PRP) is an autologous blood product that contains a high concentration of platelets and leucocytes, which are fundamental fibroblast proliferation agents. Literature has emerged that offers contradictory findings about leucocytes within PRP. Herein, we elucidated the effects of highly concentrated leucocytes and platelets on human fibroblasts. Methods: Leucocyte-rich, PRP (LR-PRP) and leucocyte-poor, platelet-poor plasma (LP-PPP) were compared to identify their effects on human fibroblasts, including cell proliferation, wound healing and extracellular matrix and adhesion molecule gene expressions. Results: The LR-PRP exhibited 1422.00 ± 317.21 × 103 platelets/µL and 16.36 ± 2.08 × 103 white blood cells/µL whilst the LP-PPP demonstrated lower concentrations of 55.33 ± 10.13 × 103 platelets/µL and 0.8 ± 0.02 × 103 white blood cells/µL. LR-PRP enhanced fibroblast cell proliferation and cell migration, and demonstrated either upregulation or down-regulation gene expression profile of the extracellular matrix and adhesion molecules. Conclusion: LR-PRP has a continuous stimulatory anabolic and ergogenic effect on human fibroblast cells.
Collapse
Affiliation(s)
- Jeannie Devereaux
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
- Correspondence: (J.D.); (V.A.); Tel.: +613-83958218 (J.D.); +613-99192025 (V.A.)
| | - Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
| | - Dimitrios Kiatos
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
- Correspondence: (J.D.); (V.A.); Tel.: +613-83958218 (J.D.); +613-99192025 (V.A.)
| |
Collapse
|
35
|
Arzaghi H, Adel B, Jafari H, Askarian-Amiri S, Shiralizadeh Dezfuli A, Akbarzadeh A, Pazoki-Toroudi H. Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0008/revneuro-2020-0008.xml. [PMID: 32776904 DOI: 10.1515/revneuro-2020-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
The nervous system, which consists of a complex network of millions of neurons, is one of the most highly intricate systems in the body. This complex network is responsible for the physiological and cognitive functions of the human body. Following injuries or degenerative diseases, damage to the nervous system is overwhelming because of its complexity and its limited regeneration capacity. However, neural tissue engineering currently has some capacities for repairing nerve deficits and promoting neural regeneration, with more developments in the future. Nevertheless, controlling the guidance of stem cell proliferation and differentiation is a challenging step towards this goal. Nanomaterials have the potential for the guidance of the stem cells towards the neural lineage which can overcome the pitfalls of the classical methods since they provide a unique microenvironment that facilitates cell-matrix and cell-cell interaction, and they can manipulate the cell signaling mechanisms to control stem cells' fate. In this article, the suitable cell sources and microenvironment cues for neuronal tissue engineering were examined. Afterward, the nanomaterials that impact stem cell proliferation and differentiation towards neuronal lineage were reviewed.
Collapse
Affiliation(s)
- Hamidreza Arzaghi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, The University of Guilan, Rasht 4199613776, Islamic Republic of Iran
| | - Hossein Jafari
- Institute for Research in Fundamental Sciences (IPM), Artesh Highway, Tehran 1956836681, Islamic Reitutionpublic of Iran
| | - Shaghayegh Askarian-Amiri
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Amin Shiralizadeh Dezfuli
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| | - Abolfazl Akbarzadeh
- Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5165665811, Islamic Republic of Iran
- Iran Universal Scientific and Education Network (USERN), Tabriz 5165665811, Islamic Republic of Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Hemat Highway Next to Milad Tower, Tehran 1449614535, Islamic Republic of Iran
| |
Collapse
|
36
|
Rigby MJ, Gomez TM, Puglielli L. Glial Cell-Axonal Growth Cone Interactions in Neurodevelopment and Regeneration. Front Neurosci 2020; 14:203. [PMID: 32210757 PMCID: PMC7076157 DOI: 10.3389/fnins.2020.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
The developing nervous system is a complex yet organized system of neurons, glial support cells, and extracellular matrix that arranges into an elegant, highly structured network. The extracellular and intracellular events that guide axons to their target locations have been well characterized in many regions of the developing nervous system. However, despite extensive work, we have a poor understanding of how axonal growth cones interact with surrounding glial cells to regulate network assembly. Glia-to-growth cone communication is either direct through cellular contacts or indirect through modulation of the local microenvironment via the secretion of factors or signaling molecules. Microglia, oligodendrocytes, astrocytes, Schwann cells, neural progenitor cells, and olfactory ensheathing cells have all been demonstrated to directly impact axon growth and guidance. Expanding our understanding of how different glial cell types directly interact with growing axons throughout neurodevelopment will inform basic and clinical neuroscientists. For example, identifying the key cellular players beyond the axonal growth cone itself may provide translational clues to develop therapeutic interventions to modulate neuron growth during development or regeneration following injury. This review will provide an overview of the current knowledge about glial involvement in development of the nervous system, specifically focusing on how glia directly interact with growing and maturing axons to influence neuronal connectivity. This focus will be applied to the clinically-relevant field of regeneration following spinal cord injury, highlighting how a better understanding of the roles of glia in neurodevelopment can inform strategies to improve axon regeneration after injury.
Collapse
Affiliation(s)
- Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy M Gomez
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, United States
| |
Collapse
|
37
|
Yao S, He F, Cao Z, Sun Z, Chen Y, Zhao H, Yu X, Wang X, Yang Y, Rosei F, Wang LN. Mesenchymal Stem Cell-Laden Hydrogel Microfibers for Promoting Nerve Fiber Regeneration in Long-Distance Spinal Cord Transection Injury. ACS Biomater Sci Eng 2020; 6:1165-1175. [PMID: 33464837 DOI: 10.1021/acsbiomaterials.9b01557] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cell (MSC)-based regenerative medicine is widely considered as a promising approach for repairing tissue and re-establishing function in spinal cord injury (SCI). However, low survival rate, uncontrollable migration, and differentiation of stem cells after implantation represent major challenges toward the clinical deployment of this approach. In this study, we fabricated three-dimensional MSC-laden microfibers via electrospinning in a rotating cell culture to mimic nerve tissue, control stem cell behavior, and promote integration with the host tissue. The hierarchically aligned fibrin hydrogel was used as the MSC carrier though a rotating method and the aligned fiber structure induced the MSC-aligned adhesion on the surface of the hydrogel to form microscale cell fibers. The MSC-laden microfiber implantation enhanced the donor MSC neural differentiation, encouraged the migration of host neurons into the injury gap and significantly promoted nerve fiber regeneration across the injury site. Abundant GAP-43- and NF-positive nerve fibers were observed to regenerate in the caudal, rostral, and middle sites of the injury position 8 weeks after the surgery. The NF fiber density reached to 29 ± 6 per 0.25 mm2 at the middle site, 82 ± 13 per 0.25 mm2 at the adjacent caudal site, and 70 ± 23 at the adjacent rostral site. Similarly, motor axons labeled with 5-hydroxytryptamine were significantly regenerated in the injury gap, which was 122 ± 22 at the middle injury site that was beneficial for motor function recovery. Most remarkably, the transplantation of MSC-laden microfibers significantly improved electrophysiological expression and re-established limb motor function. These findings highlight the combination of MSCs with microhydrogel fibers, the use of which may become a promising method for MSC implantation and SCI repair.
Collapse
Affiliation(s)
- Shenglian Yao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.,Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Feng He
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zheng Cao
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenxing Sun
- Department of Neurosurgery, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yingzhi Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - He Zhao
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.,Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xing Yu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yongdong Yang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Federico Rosei
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.,INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel Boulet, Varennes J3X 1S2, Canada
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
38
|
Yan H, Wang Y, Li L, Zhou X, Shi X, Wei Y, Zhang P. A micropatterned conductive electrospun nanofiber mesh combined with electrical stimulation for synergistically enhancing differentiation of rat neural stem cells. J Mater Chem B 2020; 8:2673-2688. [DOI: 10.1039/c9tb02864a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The micropatterned conductive nanofiber mesh combined with ES effectively facilitates the differentiation of NSCs into neuron and suppresses the formation of astrocytes.
Collapse
Affiliation(s)
- Huanhuan Yan
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiaosong Zhou
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xincui Shi
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yen Wei
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
39
|
Yang S, Cao Z, Zhu J, Zhang Z, Zhao H, Zhao L, Sun X, Wang X. In Vitro Monolayer Culture of Dispersed Neural Stem Cells on the E-Cadherin-Based Substrate with Long-Term Stemness Maintenance. ACS OMEGA 2019; 4:18136-18146. [PMID: 31720516 PMCID: PMC6843705 DOI: 10.1021/acsomega.9b02053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/13/2019] [Indexed: 05/08/2023]
Abstract
Neural stem cells (NSCs) play an important role in neural tissue engineering because of their capacity of self-renewal and differentiation to multiple cell lineages. The in vitro conventional neurosphere culture protocol has some limitations such as limited nutrition and oxygen penetration and distribution causing the heterogeneity of cells inside, inaccessibility of internal cells, and inhomogeneous cellular morphology and properties. As a result, cultivation as a monolayer is a better way to study NSCs and obtain a homogeneous cell population. The cadherins are a classical family of homophilic cell adhesion molecules mediating cell-cell adhesion. Here, we used a recombinant human E-cadherin mouse IgG Fc chimera protein that self-assembles on a hydrophobic polystyrene surface via hydrophobic interaction to obtain an E-cadherin-coated culture plate (ECP). The rat fetal NSCs were cultured on the ECP and routine tissue culture plate (TCP) from passage 2 to passage 5. NSCs on TCP formed uniform floating neurospheres and grew up over time, while cells on the ECP adhered on the bottom of the plate and exhibited individual cells with scattering morphology, forming intercellular connections between cells. The cell proliferation and differentiation behaviors that were evaluated by Cell Counting Kit-8 assay (CCK-8), immunofluorescence staining, and real-time quantitative polymerase chain reaction showed NSCs could maintain the capacity for self-renewal and ability to differentiate into neurons, oligodendrocytes, and astrocytes after the long-term in vitro cell culture and passaging. Therefore, our study indicated that hE-cad-Fc could provide a homogeneous environment for individual cells in monolayer conditions to maintain the capacity of self-renewal and differentiation by mimicking the cell-cell interaction.
Collapse
Affiliation(s)
- Shuhui Yang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng Cao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jinjin Zhu
- Department
of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College
of Zhejiang University, Sir Run Run Shaw
Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Zhe Zhang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - He Zhao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Abstract
The cornea is a transparent outermost structure of the eye anterior segment comprising the highest density of innervated tissue. In the process of corneal innervation, trigeminal ganglion originated corneal nerves diligently traverse different corneal cell types in different corneal layers including the corneal stroma and epithelium. While crossing the stromal and epithelial cell layers during innervation, due to the existing physical contacts, close interactions occur between stromal keratocytes, epithelial cells, resident immune cells and corneal nerves. Furthermore, by producing various trophic and growth factors corneal cells assist in maintaining the growth and function of corneal nerves. Similarly, corneal nerve generated growth factors critically modify the corneal cell function in all the corneal layers. Due to their close association and contacts, on-going cross-communication between these cell types and corneal nerves play a vital role in the modulation of corneal nerve function, regeneration during wound healing. The present review highlights the influence of different corneal cell types and growth factors released from these cells on corneal nerve regeneration and function.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| |
Collapse
|
41
|
Guo L, Li L, Zhang Y, Fu S, Zhang J, Wang X, Zhu H, Qiao M, Wu L, Liu Y. Long non-coding RNA profiling in LPS-induced intestinal inflammation model: New insight into pathogenesis. Innate Immun 2019; 25:491-502. [PMID: 31474162 PMCID: PMC6900666 DOI: 10.1177/1753425919872812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
LPS can induce an inflammatory immune response in the intestine, and long
non-coding RNA (lncRNA) is involved in the process of inflammatory disease.
However, the biological role of lncRNA in the intestinal inflammation of piglets
remains unclear. In this study, the lncRNA expression profile of the ileal
mucosa of piglets challenged by LPS was analysed using lncRNA sequencing. In
total, 112 novel lncRNAs were predicted, of which 58 were up-regulated and 54
down-regulated following LPS challenge. Expression of 15 selected lncRNAs was
validated by quantitative PCR. We further investigated the target genes of
lncRNA that were enriched in the signalling pathways involved in the
inflammatory immune response by utilising Gene Ontology and Kyoto Encyclopaedia
of Genes and Genomes analysis, with cell adhesion molecules and mTOR signalling
pathway identified. In addition, the co-expression networks between the
differentially expressed lncRNAs and the target mRNAs were constructed, with
seven core lncRNAs identified, which also demonstrated that the relationship
between lncRNAs and the target genes was highly correlated. Our study offers
important information about the lncRNAs of the mucosal immune system in piglets
and provides new insights into the inflammatory mechanism of LPS challenge,
which might serve as a novel target to control intestinal inflammation.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Linna Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
| | - Yang Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Mu Qiao
- Key Laboratory of Animal Embryo Engineering and Molecular
Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei
Academy of Agricultural Sciences, PR China
| | - Lingying Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
- Yulan Liu, Hubei Key Laboratory of Animal
Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR
China.
| |
Collapse
|