1
|
Zhang S, Liu C, Su M, Zhou D, Tao Z, Wu S, Xiao L, Li Y. Development of citric acid-based biomaterials for biomedical applications. J Mater Chem B 2024; 12:11611-11635. [PMID: 39465414 DOI: 10.1039/d4tb01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The development of bioactive materials with controllable preparation is of great significance for biomedical engineering. Citric acid-based biomaterials are one of the few bioactive materials with many advantages such as simple synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, controllable biodegradability, and further functionalization. In this paper, we review the development of multifunctional citrate-based biomaterials for biomedical applications, and summarize their multifunctional properties in terms of physical, chemical, and biological aspects, and finally the applications of citrate-based biomaterials in biomedical engineering, including bone tissue engineering, skin tissue engineering, drug/cell delivery, vascular and neural tissue engineering, and bioimaging.
Collapse
Affiliation(s)
- Shihao Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cailin Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Su
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Dong Zhou
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ziwei Tao
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia.
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| |
Collapse
|
2
|
Dastgerdi NK, Dastgerdi NK, Bayraktutan H, Costabile G, Atyabi F, Dinarvand R, Longobardi G, Alexander C, Conte C. Enhancing siRNA cancer therapy: Multifaceted strategies with lipid and polymer-based carrier systems. Int J Pharm 2024; 663:124545. [PMID: 39098747 DOI: 10.1016/j.ijpharm.2024.124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Cancers are increasing in prevalence and many challenges remain for their treatment, such as chemoresistance and toxicity. In this context, siRNA-based therapeutics have many potential advantages for cancer therapies as a result of their ability to reduce or prevent expression of specific cancer-related genes. However, the direct delivery of naked siRNA is hindered by issues like enzymatic degradation, insufficient cellular uptake, and poor pharmacokinetics. Hence, the discovery of a safe and efficient delivery vehicle is essential. This review explores various lipid and polymer-based delivery systems for siRNA in cancer treatment. Both polymers and lipids have garnered considerable attention as carriers for siRNA delivery. While all of these systems protect siRNA and enhance transfection efficacy, each exhibits its unique strengths. Lipid-based delivery systems, for instance, demonstrate high entrapment efficacy and utilize cost-effective materials. Conversely, polymeric-based delivery systems offer advantages through chemical modifications. Nonetheless, certain drawbacks still limit their usage. To address these limitations, combining different materials in formulations (lipid, polymer, or targeting agent) could enhance pharmaceutical properties, boost transfection efficacy, and reduce side effects. Furthermore, co-delivery of siRNA with other therapeutic agents presents a promising strategy to overcome cancer resistance. Lipid-based delivery systems have been demonstrated to encapsulate many therapeutic agents and with high efficiency, but most are limited in terms of the functionalities they display. In contrast, polymeric-based delivery systems can be chemically modified by a wide variety of routes to include multiple components, such as release or targeting elements, from the same materials backbone. Accordingly, by incorporating multiple materials such as lipids, polymers, and/or targeting agents in RNA formulations it is possible to improve the pharmaceutical properties and therapeutic efficacy while reducing side effects. This review focuses on strategies to improve siRNA cancer treatments and discusses future prospects in this important field.
Collapse
Affiliation(s)
- Nazgol Karimi Dastgerdi
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Karimi Dastgerdi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | | | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran.
| | | | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
3
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
4
|
Wang Y, Wang L, Chang H, Shen Q, Zhang S, Sun S, Liu Y, Zheng J, Liu H. Enhancing anti-tumor therapy with agmatine-cholesterol conjugate liposomes: in vitro and in vivo evidence. Drug Deliv Transl Res 2024; 14:788-801. [PMID: 37755673 DOI: 10.1007/s13346-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 09/28/2023]
Abstract
In this study, we synthesized a novel compound, agmatine-cholesterol conjugate (AG-Chol), to enhance the anti-tumor activity of drug-loaded liposomes. We replaced cholesterol with AG-Chol in preparing doxorubicin hydrochloride (DOX) liposomes by using an active loading method for DOX. We assessed the physical and chemical properties of the resulting AG-Liposomes and evaluated their efficacy in vitro and in vivo. The results showed that AG-Liposomes were stable with high encapsulation efficiency. Compared with the control liposomes, AG-Liposomes exhibited a slower drug release rate in the release medium at pH 6.8. The in vitro cell experiments demonstrated that AG-Liposomes had higher tumor cell uptake rate, stronger migration inhibition rate, higher apoptosis rate, better anti-clonogenic ability, and higher lysosome escape ability than the control liposomes. In vivo distribution results demonstrate that liposomes prepared with AG-Chol instead of cholesterol can significantly enhance their tumor targeting abilities and reduce their distribution to non-targeted sites. In vivo tumor suppression experiments showed that AG-Liposomes had a higher tumor suppression rate than the control liposomes without causing apparent toxicity to normal tissues, as evidenced by histological staining. Therefore, substituting cholesterol with AG-Chol in the preparation of liposomes can result in enhanced lysosome escape, improved tumor targeting, and increased efficacy of anti-tumor drugs.
Collapse
Affiliation(s)
- Yanzhi Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China.
| | - Linchao Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China
- Jining No. 1 People's Hospital, Jining, China
| | - Hanyue Chang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China
| | - Qing Shen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China
| | - Sai Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China
| | - Shanshan Sun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiaxin Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Wang M, Li S, Zhang L, Tian J, Ma J, Lei B, Xu P. Injectable Bioactive Antioxidative One-Component Polycitrate Hydrogel with Anti-Inflammatory Effects for Osteoarthritis Alleviation and Cartilage Protection. Adv Healthc Mater 2024; 13:e2301953. [PMID: 37788390 DOI: 10.1002/adhm.202301953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Chronic inflammation in osteoarthritis (OA) can destroy the cartilage extracellular matrix (ECM), causing cartilage damage and further exacerbating the inflammation. Effective regulation of the inflammatory microenvironment has important clinical significance for OA alleviation and cartilage protection. Polycitrate-based polymers have good antioxidant and anti-inflammatory abilities but cannot self-polymerize to form hydrogels. Herein, a one-component multifunctional polycitrate-based (PCCGA) hydrogel for OA alleviation and cartilage protection is reported. The PCCGA hydrogel is prepared using only the PCCGA polymer by self-polymerization and exhibits multifunctional properties such as injectability, adhesion, controllable pore size and elasticity, self-healing ability, and photoluminescence. Moreover, the PCCGA hydrogel exhibits good biocompatibility, biodegradability, antioxidation by scavenging intracellular reactive oxygen species, and anti-inflammatory ability by downregulating the expression of proinflammatory cytokines and promoting the proliferation and migration of stem cells. In vivo results from an OA rat model show that the PCCGA hydrogel can effectively alleviate OA and protect the cartilage by restoring uniform articular surface and cartilage ECM levels, as well as inhibiting cartilage resorption and matrix metalloproteinase-13 levels. These results indicate that the PCCGA hydrogel, as a novel bioactive material, is an effective strategy for OA treatment and has broad application prospects in inflammation-related biomedicine.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Liuyang Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Jing Tian
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Junping Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
6
|
Wang D, Chen Y, Xia T, Claudino M, Melendez A, Ni X, Dong C, Liu Z, Yang J. Citric Acid-Based Intrinsic Band-Shifting Photoluminescent Materials. RESEARCH (WASHINGTON, D.C.) 2023; 6:0152. [PMID: 37256199 PMCID: PMC10226408 DOI: 10.34133/research.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023]
Abstract
Citric acid, an important metabolite with abundant reactive groups, has been demonstrated as a promising starting material to synthesize diverse photoluminescent materials including small molecules, polymers, and carbon dots. The unique citrate chemistry enables the development of a series of citric acid-based molecules and nanomaterials with intriguing intrinsic band-shifting behavior, where the emission wavelength shifts as the excitation wavelength increases, ideal for chromatic imaging and many other applications. In this review, we discuss the concept of "intrinsic band-shifting photoluminescent materials", introduce the recent advances in citric acid-based intrinsic band-shifting materials, and discuss their potential applications such as chromatic imaging and multimodal sensing. It is our hope that the insightful and forward-thinking discussion in this review will spur the innovation and applications of the unique band-shifting photoluminescent materials.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Yizhu Chen
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Tunan Xia
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Mariana Claudino
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Allison Melendez
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Xingjie Ni
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact Mater 2023; 19:511-537. [PMID: 35600971 PMCID: PMC9096270 DOI: 10.1016/j.bioactmat.2022.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/21/2022] Open
Abstract
Developing bioactive biomaterials with highly controlled functions is crucial to enhancing their applications in regenerative medicine. Citrate-based polymers are the few bioactive polymer biomaterials used in biomedicine because of their facile synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, and functional groups available for modification. In recent years, various multifunctional designs and biomedical applications, including cardiovascular, orthopedic, muscle tissue, skin tissue, nerve and spinal cord, bioimaging, and drug or gene delivery based on citrate-based polymers, have been extensively studied, and many of them have good clinical application potential. In this review, we summarize recent progress in the multifunctional design and biomedical applications of citrate-based polymers. We also discuss the further development of multifunctional citrate-based polymers with tailored properties to meet the requirements of various biomedical applications. Multifunctional bioactive citrate-based biomaterials have broad applications in regenerative medicine. Recent advances in multifunctional design and biomedical applications of citate-based polymers are summarized. Future challenge of citrate-based polymers in various biomedical applications are discussed.
Collapse
|
8
|
Wang X, Wu B, Zhang Y, Dou X, Zhao C, Feng C. Polydopamine-doped supramolecular chiral hydrogels for postoperative tumor recurrence inhibition and simultaneously enhanced wound repair. Acta Biomater 2022; 153:204-215. [PMID: 36108967 DOI: 10.1016/j.actbio.2022.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/23/2022]
Abstract
Cancer recurrence remains a major challenge after primary tumor excision, and the inflammation of tumor-caused wounds can hinder wound healing and potentially promote tumor growth. Herein, a chiral L-phenylalanine-based (LPFEG) supramolecular hydrogel system encapsulated with polydopamine nanoparticles (PDA-NPs) has been developed in order to prevent tumor relapse after surgery and promote wound repair. PDA-NPs allow for near-infrared (NIR) light-triggered photothermal therapy, especially, it can scavenge free radicals in the surgical wound. LPFEG can mimic native extracellular matrix (ECM) structure to create a chiral microenvironment that enhances fibroblast adhesion, proliferation, and new tissue regeneration. With anticancer drug doxorubicin (DOX) loaded into the composite hydrogel, the antitumor effect is significantly enhanced by the integration of chemo-photothermal therapy both in vitro and in vivo. The PDA-based chiral supramolecular composite hydrogel as an effective postoperative adjuvant possesses promising applicable prospects in inhibiting tumor recurrence and accelerating wound healing after operation. STATEMENT OF SIGNIFICANCE: After primary tumor excision, cancer recurrence remains a severe concern, and the inflammation induced by tumor-related wounds can delay wound healing. Herein, we designed a chiral L-phenylalanine-based (LPFEG) supramolecular hydrogel platform that was co-assembled with polydopamine nanoparticles (PDA-NPs). Among them, PDA-NPs can offer photothermal therapy and scavenge free radicals in surgical wounds. LPFEG can create a chiral microenvironment that promotes fibroblast adhesion, proliferation, and new tissue regeneration. Furthermore, with anticancer drug doxorubicin (DOX) loaded into the composite hydrogel, the antitumor effect is considerably boosted. Therefore, the PDA-based chiral supramolecular hydrogel shows high application potential as a postoperative adjuvant in preventing tumor relapse as well as accelerating wound healing after surgery.
Collapse
Affiliation(s)
- Xueqian Wang
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beibei Wu
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqian Zhang
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Luo M, Wang Y, Xie C, Lei B. Multiple Coordination-Derived Bioactive Hydrogel with Proangiogenic Hemostatic Capacity for Wound Repair. Adv Healthc Mater 2022; 11:e2200722. [PMID: 35840538 DOI: 10.1002/adhm.202200722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/01/2022] [Indexed: 01/27/2023]
Abstract
Bioactive hydrogels with multifunctional properties have shown promising potential in promoting wound repair and skin tissue regeneration. The regulation on different stages of skin wound healing (hemostasis and inflammation) is important for wound repair. Herein, a multiple coordination-derived bioactive hydrogel (SGPA) with anti-inflammatory proangiogenic hemostatic capacity for wound repair is reported. The SGPA is prepared through a facile multiple metal coordination action based on the sodium alginate, metal ions (Gd3+ ), and bisphosphate functionalized polycitrate. The SGPA exhibits a large porous structure, good injectability, and self-healing performance, as well as controlled biodegradation. Furthermore, the SGPA has good cytocompatibility and hemocompatibility, and can further promote the migration of endothelial cells. The SGPA hydrogel presents good hemostasis capacity in a liver hemorrhage model in vivo. The full-thickness cutaneous wound model demonstrates that the SGPA hydrogel can effectively accelerate the wound repair through down-regulating the inflammatory factors and stimulating the angiogenesis around the wound beds. This work suggests that the multiple metal-organic coordination may be a good strategy to construct the multifunctional bioactive hydrogel for wound repair.
Collapse
Affiliation(s)
- Meng Luo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Yidan Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Chenxi Xie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China.,State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710054, P. R. China.,Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| |
Collapse
|
10
|
Vetter VC, Wagner E. Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. J Control Release 2022; 346:110-135. [PMID: 35436520 DOI: 10.1016/j.jconrel.2022.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The current medical reality of cancer gene therapy is reflected by more than ten approved products on the global market, including oncolytic and other viral vectors and CAR T-cells as ex vivo gene-modified cell therapeutics. The development of synthetic antitumoral nucleic acid therapeutics has been proceeding at a lower but steady pace, fueled by a plethora of alternative nucleic acid platforms (from various antisense oligonucleotides, siRNA, microRNA, lncRNA, sgRNA, to larger mRNA and DNA) and several classes of physical and chemical delivery technologies. This review summarizes the challenges and strategies for tumor-targeted nucleic acid delivery. Focusing primarily on polyplexes (polycation complexes) as nanocarriers, delivery options across multiple barriers into tumor cells are illustrated.
Collapse
Affiliation(s)
- Victoria C Vetter
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich 81377, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany.
| |
Collapse
|
11
|
Recent Advances in Environmentally Friendly and Green Degumming Processes of Silk for Textile and Non-Textile Applications. Polymers (Basel) 2022; 14:polym14040659. [PMID: 35215571 PMCID: PMC8876672 DOI: 10.3390/polym14040659] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/30/2022] Open
Abstract
Silk has been widely used not only in the textile field but also in non-textile applications, which is composed of inner fibrous protein, named fibroin, and outer global protein, named sericin. Due to big differences, such as appearance, solubility, amino acid composition and amount of reactive groups, silk fibroin and sericin usually need to be separated before further process. The residual sericin may influence the molecular weight, structure, morphology and properties of silk fibroin, so that degumming of silk is important and necessary, not only in textile field but also in non-textile applications. Traditional textile degumming processes, including soap, alkali or both, could bring such problems as environmental damage, heavy use of water and energy, and damage to silk fibroin. Therefore, this review aims to present a systematic work on environmentally friendly and green degumming processes of raw silk, including art of green degumming process, quantitative and qualitative evaluation, influence of degumming on molecular weight, structure, morphology and properties of silk. It is anticipated that rational selection and design of environmentally friendly and green degumming process is quite important and meaningful, not only for textile application but also for non-textile application.
Collapse
|
12
|
Bidar N, Darroudi M, Ebrahimzadeh A, Safdari M, de la Guardia M, Baradaran B, Goodarzi V, Oroojalian F, Mokhtarzadeh A. Simultaneous nanocarrier-mediated delivery of siRNAs and chemotherapeutic agents in cancer therapy and diagnosis: Recent advances. Eur J Pharmacol 2022; 915:174639. [PMID: 34919890 DOI: 10.1016/j.ejphar.2021.174639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Recently, investigations have revealed that RNA interference (RNAi) has a remarkable potential to decrease cancer burden by downregulating genes. Among various RNAi molecules, small interfering RNA (siRNA) has been more attractive for this goal and is able to silence a target pathological path and promote the degradation of a certain mRNA, resulting in either gain or loss of function of proteins. Moreover, therapeutic siRNAs have exhibited low side effects compared to other therapeutic molecular candidates. Nevertheless, siRNA delivery has its own limitations including quick degradation in circulation, ineffective internalization and low passive uptake by cells, possible toxicity against off-target sites, and inducing unfavorable immune responses. Therefore, delivery tools must be able to specifically direct siRNAs to their target locations without inflicting detrimental effects on other sites. To conquer the mentioned problems, nanocarrier-mediated delivery of siRNAs, using inorganic nanoparticles (NPs), polymers, and lipids, has been developed as a biocompatible delivery approach. In this review, we have discussed recent advances in the siRNA delivery methods that employ nanoparticles, lipids, and polymers, as well as the inorganic-based co-delivery systems used to deliver siRNAs and anticancer agents to target cells.
Collapse
Affiliation(s)
- Negar Bidar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ailin Ebrahimzadeh
- Department of Advanced Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Ahmadi S, Jajarmi V, Fatahi Y, Aldhaher A, Tahriri M, Webster TJ, Mostafavi E. Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:919-932. [PMID: 34580605 PMCID: PMC8457547 DOI: 10.1007/s40097-021-00446-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/03/2021] [Indexed: 05/17/2023]
Abstract
UNLABELLED There have been numerous advancements in the early diagnosis, detection, and treatment of genetic diseases. In this regard, CRISPR technology is promising to treat some types of genetic issues. In this study, the relationship between calcium (due to its considerable physicochemical properties) and chitosan (as a natural linear polysaccharide) was investigated and optimized for pCRISPR delivery. To achieve this, different forms of calcium, such as calcium nanoparticles (CaNPs), calcium phosphate (CaP), a binary blend of calcium and chitosan including CaNPs/Chitosan and CaP/Chitosan, as well as their tertiary blend including CaNPs-CaP/Chitosan, were prepared via both routine and green procedures using Salvia hispanica to reduce toxicity and increase nanoparticle stability (with a yield of 85%). Such materials were also applied to the human embryonic kidney (HEK-293) cell line for pCRISPR delivery. The results were optimized using different characterization techniques demonstrating acceptable binding with DNA (for both CaNPs/Chitosan and CaNPs-CaP/Chitosan) significantly enhancing green fluorescent protein (EGFP) (about 25% for CaP/Chitosan and more than 14% for CaNPs-CaP/Chitosan). SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40097-021-00446-1.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451 Iran
- Faculty of Pharmacy, Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, 14155-6451 Iran
- Universal Scientific Education and Research Network (USERN), Tehran, 15875-4413 Iran
| | - Abdullah Aldhaher
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
14
|
Wang B, Tan F, Yu F, Li H, Zhang M. Efficient biorefinery of whole cassava for citrate production using Aspergillus niger mutated by atmospheric and room temperature plasma and enhanced co-saccharification strategy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4613-4620. [PMID: 33474750 DOI: 10.1002/jsfa.11104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The non-grain crop cassava has attracted intense attention in the biorefinery process. However, efficient biorefinery of whole cassava is faced with some challenges due to the existence of strain inhibition and refractory cellulose during the citrate production process. RESULTS Here, a novel breeding method - atmospheric and room temperature plasma (ARTP) - was applied for strain improvement of citrate-producing strain Aspergillus niger from whole cassava. The citrate yield of the mutant obtained using ARTP mutagenesis increased by 36.5% in comparison with the original strain. Moreover, citric acid fermentation was further improved on the basis of an enhanced co-saccharification strategy by supplementing glucoamylase and cellulase. The fermentation efficiency increased by 35.8% with a 17.0 g L-1 reduction in residual sugar on a pilot scale. CONCLUSIONS All these results confirmed that a combination of the novel breeding method and enhanced co-saccharification strategy could be used to efficiently refine whole cassava. The results also provide inspiration for the production of value-added products and waste disposal in agro-based industries. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoshi Wang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Fengling Tan
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Feifei Yu
- Shandong Drug and Food Vocational College, Weihai, China
| | - Hua Li
- School of Life Sciences, Institute of Microbial Engineering, Henan University, Kaifeng, China
| | - Mingxia Zhang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
15
|
Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021; 9:3543-3575. [PMID: 33634800 DOI: 10.1039/d0bm02149k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Theranostic platforms that combine therapy with diagnosis not only prevent the undesirable biological responses that may occur when these processes are conducted separately, but also allow individualized therapies for patients. Polymer hydrogels have been employed to provide well-controlled drug release and targeted therapy in theranostics, where injectable hydrogels enable non-invasive treatment and monitoring with a single injection, offering greater patient comfort and efficient therapy. Efforts have been focused on applying injectable polymer hydrogels in theranostic research and clinical use. This review highlights recent progress in the design of injectable polymer hydrogels for cancer theranostics, particularly focusing on the elements/components of theranostic hydrogels, and their cross-linking strategies, structures, and performance with regard to drug delivery/tracking. Therapeutic agents and tracking modalities that are essential components of the theranostic platforms are introduced, and the design strategies, properties and applications of the injectable hydrogels developed via two approaches, namely chemical bonds and physical interactions, are described. The theranostic functions of the platforms are highly dependent on the architecture and components employed for the construction of hydrogels. Challenges currently presented by theranostic platforms based on injectable hydrogels are identified, and prospects of acquiring more comfortable and personalized therapies are proposed.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China. and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
16
|
Integration of [12]aneN3 and Acenaphtho[1,2-b]quinoxaline as non-viral gene vectors with two-photon property for enhanced DNA/siRNA delivery and bioimaging. Bioorg Chem 2021; 113:104983. [PMID: 34029935 DOI: 10.1016/j.bioorg.2021.104983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Two-photon fluorescent Acenaphtho[1,2-b]quinoxaline (ANQ) and the hydrophilic di-(triazole-[12]aneN3) moieties were combined through an alkyl chain (ANQ-A-M) or a β-hairpin motif with two aromatic γ-amino acid residues (ANQ-H-M) to explore their capabilities for in vitro and in vivo gene delivery and tracing. ANQ-A-M and ANQ-H-M showed the same maximum absorption at 420 nm, and their fluorescent intensities around 650 nm were varied in different solvents and became poor in the protic solvents. Gel electrophoresis assays indicated that both compounds completely retarded the migration of pDNA at 20 μM in the presence of DOPE. However, the DNA condensation with ANQ-H-M was not reversible, and the particle size of the corresponding complexes were larger indicated from the SEM and DLS measurements. In vitro transfections indicated ANQ-A-M/DOPE achieved Luciferase and GFP expressions were to be 7.9- and 5.7-fold of those by Lipo2000 in A549 cells respectively. However, ANQ-H-M showed very poor transfection efficiency in Luciferase expression. With the help of single/two-photon fluorescence imaging it clearly demonstrated that the successful transfection of ANQ-A-M was attributed to its cellular uptake, apparent lysosomal escape, and reversible release of DNA; and the poor transfection of ANQ-H-M was resulted from the aggregation of the DNA complexes which prevented them from the cellular uptake, and also the strong binding ability which is not easy to release DNA. ANQ-A-M/DOPE also exhibited robust gene silencing (83% knockdown of Luciferase) and GFP expression (2.47-fold higher) efficiency compared with Lipo2000 in A549 and zebrafish, respectively. The work demonstrated that the linkage structure between fluorescent and di(triazole-[12]aneN3) played the important role for their gene delivery performance, and that ANQ-A-M represents a vector with the strong transfection efficiency in vitro and in vivo as well as the efficient real time bioimaging properties, which is potential for the development in biomedical research.
Collapse
|
17
|
Chen M, Wang M, Niu W, Cheng W, Guo Y, Wang Y, Luo M, Xie C, Leng T, Zhang X, Lin C, Lei B. Multifunctional Protein-Decorated Bioactive Glass Nanoparticles for Tumor-Specific Therapy and Bioimaging In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14985-14994. [PMID: 33779130 DOI: 10.1021/acsami.1c01337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multifunctional nanocarriers with a simple structure and biocompatibility for bioimaging, potential tumor targeting, and precise antitumor ability are promising in cancer therapy. Bioactive glass is an important biomaterial and has been used in clinical bone tissue repair due to the high biocompatibility and bioactivity. Herein, we report fetal bovine serum (FBS)-decorated europium-doped bioactive glass nanoparticles (EuBGN@FBS) with excellent biosafety and enhanced tumor targeting for cancer imaging and therapy. EuBGN@FBS showed the controlled photoluminescent properties and pH-responsive anticancer drug release behavior. The FBS decoration significantly enhanced the dispersibility in physiological medium and improved hemocompatibility and cellular uptake of EuBGN. Relative to EuBGN, EuBGN@FBS could also efficiently image the cancer cell and show significantly enhanced targeted tumor imaging and chemotherapy in vivo while retaining negligible side effects. The simple and biocompatible structure with efficient tumor targeting, imaging, and therapy makes EuBGN@FBS highly promising in future cancer therapy.
Collapse
Affiliation(s)
- Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Yi Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Yidan Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Meng Luo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Chenxi Xie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Tongtong Leng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Xingxing Zhang
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Cai Lin
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| |
Collapse
|
18
|
Salihu R, Abd Razak SI, Ahmad Zawawi N, Rafiq Abdul Kadir M, Izzah Ismail N, Jusoh N, Riduan Mohamad M, Hasraf Mat Nayan N. Citric acid: A green cross-linker of biomaterials for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110271] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Nangare S, Vispute Y, Tade R, Dugam S, Patil P. Pharmaceutical applications of citric acid. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00203-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Citric acid (CA) is a universal plant and animal-metabolism intermediate. It is a commodity chemical processed and widely used around the world as an excellent pharmaceutical excipient. Notably, CA is offering assorted significant properties viz. biodegradability, biocompatibility, hydrophilicity, safety, etc. Therefore, CA is broadly employed in many sectors including foodstuffs, beverages, pharmaceuticals, nutraceuticals, and cosmetics as a flavoring agent, sequestering agent, buffering agent, etc. From the beginning, CA is a regular ingredient for cosmetic pH-adjustment and as a metallic ion chelator in antioxidant systems. In addition, it is used to improve the taste of pharmaceuticals such as syrups, solutions, elixirs, etc. Furthermore, free CA is also employed as an acidulant in mild astringent preparations.
Main text
In essence, it is estimated that the functionality present in CA provides excellent assets in pharmaceutical applications such as cross-linking, release-modifying capacity, interaction with molecules, capping and coating agent, branched polymer nanoconjugates, gas generating agent, etc. Mainly, the center of attention of the review is to deliver an impression of the CA-based pharmaceutical applications.
Conclusion
In conclusion, CA is reconnoitered for multiple novels pharmaceutical and biomedical/applications including as a green crosslinker, release modifier, monomer/branched polymer, capping and coating agent, novel disintegrant, absorption enhancer, etc. In the future, CA can be utilized as an excellent substitute for pharmaceutical and biomedical applications.
Graphical abstract
Collapse
|
20
|
Gangopadhyay S, Nikam RR, Gore KR. Folate Receptor-Mediated siRNA Delivery: Recent Developments and Future Directions for RNAi Therapeutics. Nucleic Acid Ther 2021; 31:245-270. [PMID: 33595381 DOI: 10.1089/nat.2020.0882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi), a gene regulatory process mediated by small interfering RNAs (siRNAs), has made remarkable progress as a potential therapeutic agent against various diseases. However, RNAi is associated with fundamental challenges such as poor systemic delivery and susceptibility to the nucleases. Targeting ligand-bound delivery vehicles has improved the accumulation of drug at the target site, which has resulted in high transfection efficiency and enhanced gene silencing. Recently, folate receptor (FR)-mediated targeted delivery of siRNAs has garnered attention due to their enhanced cellular uptake and high transfection efficiency toward tumor cells. Folic acid (FA), due to its small size, low immunogenicity, high in vivo stability, and high binding affinity toward FRs, has attracted much attention for targeted siRNA delivery. FRs are overexpressed in a large number of tumors, including ovarian, breast, kidney, and lung cancer cells. In this review, we discuss recent advances in FA-mediated siRNA delivery to treat cancers and inflammatory diseases. This review summarizes various FA-conjugated nanoparticle systems reported so far in the literature, including liposome, silica, metal, graphene, dendrimers, chitosan, organic copolymers, and RNA nanoparticles. This review will help in the design and development of potential delivery vehicles for siRNA drug targeting to tumor cells using an FR-mediated approach.
Collapse
Affiliation(s)
- Sumit Gangopadhyay
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rahul R Nikam
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
21
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
22
|
A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury. Bioact Mater 2021; 6:2523-2534. [PMID: 33615043 PMCID: PMC7873581 DOI: 10.1016/j.bioactmat.2021.01.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022] Open
Abstract
The repair and motor functional recovery after spinal cord injury (SCI) remains a worldwide challenge. The inflammatory microenvironment is one of main obstacles on inhibiting the recovery of SCI. Using mesenchymal stem cells (MSCs) derived extracellular vesicles to replace MSCs transplantation and mimic cell paracrine secretions provides a potential strategy for microenvironment regulation. However, the effective preservation and controlled release of extracellular vesicles in the injured spinal cord tissue are still not satisfied. Herein, we fabricated an injectable adhesive anti-inflammatory F127-polycitrate-polyethyleneimine hydrogel (FE) with sustainable and long term extracellular vesicle release (FE@EVs) for improving motor functional recovery after SCI. The orthotopic injection of FE@EVs hydrogel could encapsulate extracellular vesicles on the injured spinal cord, thereby synergistically induce efficient integrated regulation through suppressing fibrotic scar formation, reducing inflammatory reaction, promoting remyelination and axonal regeneration. This study showed that combining extracellular vesicles into bioactive multifunctional hydrogel should have great potential in achieving satisfactory locomotor recovery of central nervous system diseases. The novel FE hydrogel was designed for encapsulating the extracellular vesicles (FE@EVs). FE hydrogel exert the capabilities of temperature-responsive, injectable, adhesive and biocompatible. FE hydrogel with sustainable and long-term extracellular vesicle release for improving motor functional recovery after SCI. FE@EVs plays a vital role in pathological process of spinal cord injury in rats.
Collapse
|
23
|
Zhou L, Ge J, Wang M, Chen M, Cheng W, Ji W, Lei B. Injectable muscle-adhesive antioxidant conductive photothermal bioactive nanomatrix for efficiently promoting full-thickness skeletal muscle regeneration. Bioact Mater 2020; 6:1605-1617. [PMID: 33294737 PMCID: PMC7691551 DOI: 10.1016/j.bioactmat.2020.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
The completed skeletal muscle regeneration resulted from severe injury and muscle-related disease is still a challenge. Here, we developed an injectable muscle-adhesive antioxidant conductive bioactive photothermo-responsive nanomatrix for regulating the myogenic differentiation and promoting the skeletal muscle regeneration in vivo. The multifunctional nanomatrix was composed of polypyrrole@polydopamine (PPy@PDA, 342 ± 5.6 nm) nanoparticles-crosslinked Pluronic F-127 (F127)-polycitrate matrix (FPCP). The FPCP nanomatrix demonstrated inherent multifunctional properties including excellent photothermo-responsive and shear-thinning behavior, muscle-adhesive feature, injectable ability, electronic conductivity (0.48 ± 0.03 S/m) and antioxidant activity and photothermal function. The FPCP nanomatrix displayed better photothermal performance with near-infrared irradiation, which could provide the photo-controlled release of protein (91% ± 2.6% of BSA was released after irradiated 3 times). Additionally, FPCP nanomatrix could significantly enhance the cell proliferation and myogenic differentiation of mouse myoblast cells (C2C12) by promoting the expressions of myogenic genes (MyoD and MyoG) and myosin heavy chain (MHC) protein with negligible cytotoxicity. Based on the multifunctional properties, FPCP nanomatrix efficiently promoted the full-thickness skeletal muscle repair and regeneration in vivo, through stimulating the angiogenesis and myotube formation. This study firstly indicated the vital role of multifunctional PPy@PDA nanoparticles in regulating myogenic differentiation and skeletal muscle regeneration. This work also suggests that rational design of bioactive matrix with multifunctional feature would greatly enhance the development of regenerative medicine. Multifunctional muscle-adhesive nanomatrix was designed. Nanomatrix showed good injectability, conductivity and antioxidant ability. Nanomatrix displayed good photothermal function and biocompatibility. Nanomatrix significantly enhanced cell proliferation and myogenic differentiation. Nanomatrix efficiently promoted the full-thickness skeletal muscle regeneration.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710129, China.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Juan Ge
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China.,Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
24
|
Shin HH, Choi HW, Lim JH, Kim JW, Chung BG. Near-Infrared Light-Triggered Thermo-responsive Poly(N-Isopropylacrylamide)-Pyrrole Nanocomposites for Chemo-photothermal Cancer Therapy. NANOSCALE RESEARCH LETTERS 2020; 15:214. [PMID: 33180229 PMCID: PMC7661614 DOI: 10.1186/s11671-020-03444-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/02/2020] [Indexed: 05/28/2023]
Abstract
The combination therapy based on multifunctional nanocomposites has been considered as a promising approach to improve cancer therapeutic efficacy. Herein, we report targeted multi-functional poly(N-isopropylacrylamide) (PNIPAM)-based nanocomposites for synergistic chemo-photothermal therapy toward breast cancer cells. To increase the transition temperature, acrylic acid (AAc) was added in synthetic process of PNIPAM, showing that the intrinsic lower critical solution temperature was changed to 42 °C . To generate the photothermal effect under near-infrared (NIR) laser irradiation (808 nm), polypyrrole (ppy) nanoparticles were uniformly decorated in PNIPAM-AAc. Folic acid (FA), as a cancer targeting ligand, was successfully conjugated on the surplus carboxyl groups in PNIPAM network. The drug release of PNIPAM-ppy-FA nanocomposites was efficiently triggered in response to the temperature change by NIR laser irradiation. We also confirmed that PNIPAM-ppy-FA was internalized to MDA-MB-231 breast cancer cells by folate-receptor-mediated endocytosis and significantly enhanced cancer therapeutic efficacy with combination treatment of chemo-photothermal effects. Therefore, our work encourages further exploration of multi-functional nanocarrier agents for synergistic therapeutic approaches to different types of cancer cells.
Collapse
Affiliation(s)
- Ha Hee Shin
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Hyung Woo Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Jae Hyun Lim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Ji Woon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
25
|
Targeted co-delivery of curcumin and doxorubicin by citric acid functionalized Poly (ε-caprolactone) based micelle in MDA-MB-231 cell. Colloids Surf B Biointerfaces 2020; 194:111225. [DOI: 10.1016/j.colsurfb.2020.111225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
|
26
|
Guo Y, Wang M, Ge J, Niu W, Chen M, Cheng W, Lei B. Bioactive biodegradable polycitrate nanoclusters enhances the myoblast differentiation and in vivo skeletal muscle regeneration via p38 MAPK signaling pathway. Bioact Mater 2020; 5:486-495. [PMID: 32322759 PMCID: PMC7162996 DOI: 10.1016/j.bioactmat.2020.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/23/2022] Open
Abstract
Complete skeletal muscle repair and regeneration due to severe large injury or disease is still a challenge. Biochemical cues are critical to control myoblast cell function and can be utilized to develop smart biomaterials for skeletal muscle engineering. Citric acid-based biodegradable polymers have received much attention on tissue engineering, however, their regulation on myoblast cell differentiation and mechanism was few investigated. Here, we find that citrate-based polycitrate-polyethylene glycol-polyethylenimine (POCG-PEI600) nanoclusters can significantly enhance the in vitro myoblast proliferation by probably reinforcing the mitochondrial number, promote the myotube formation and full-thickness skeletal muscle regeneration in vivo by activating the myogenic biomarker genes expression of Myod and Mhc. POCG-PEI600 nanoclusters could also promote the phosphorylation of p38 in MAP kinases (MAPK) signaling pathway, which led to the promotion of the myoblast differentiation. The in vivo skeletal muscle loss rat model also confirmed that POCG-PEI600 nanoclusters could significantly improve the angiogenesis, myofibers formation and complete skeletal muscle regeneration. POCG-PEI600 nanocluster could be also biodegraded into small molecules and eliminated in vivo, suggesting their high biocompatibility and biosafety. This study could provide a bioactive biomaterial-based strategy to repair and regenerate skeletal muscle tissue.
Collapse
Affiliation(s)
- Yi Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Juan Ge
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
27
|
Wang M, Chen M, Niu W, Winston DD, Cheng W, Lei B. Injectable biodegradation-visual self-healing citrate hydrogel with high tissue penetration for microenvironment-responsive degradation and local tumor therapy. Biomaterials 2020; 261:120301. [PMID: 32871470 DOI: 10.1016/j.biomaterials.2020.120301] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Local tumor therapy through injectable biodegradable hydrogels with controlled drug release has attracted much attention recently, due to their easy operation, low side effect and efficiency. However, most of the reported therapeutic hydrogel system showed a lack of biodegradation tracking and tumor environment-responsive degradation/therapy. Herein, we developed a multifunctional injectable biodegradation-visual citric acid-based self-healing scaffolds with microenvironment-responsive degradation and drug release for safe and efficient skin tumor therapy (FPRC hydrogel). FPRC scaffolds possess multifunctional properties including thermosensitive, injectable, self-healing, photoluminescent and pH-responsive degradation/drug release. The FPRC scaffolds with strong red fluorescence which has good photostability, tissue penetration and biocompatibility can be tracked and monitored to evaluate the degradation of the scaffolds in vivo. Moreover, the FPRC scaffolds showed pH-responsive doxorubicin (DOX) release, efficiently killed the A375 cancer cell in vitro and suppressed the tumor growth in vivo. Compared to the free drug (DOX), the FPRC@DOX scaffolds displayed a significantly high therapeutic effect and less biotoxicity. This work provides an alternative strategy to design smart visual scaffolds for tumor therapy and regenerative medicine.
Collapse
Affiliation(s)
- Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Dagogo Dorothy Winston
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
28
|
Zhang Q, Liang J, Yun SLJ, Liang K, Yang D, Gu Z. Recent advances in improving tumor-targeted delivery of imaging nanoprobes. Biomater Sci 2020; 8:4129-4146. [PMID: 32638731 DOI: 10.1039/d0bm00761g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor-targeted delivery of imaging nanoprobes provides a promising approach for the precision imaging diagnosis of cancers. Nanoprobes with desired bio-nano interface properties can preferably enter tumor tissues through the vascular endothelium, penetrate into deep tissues, and detect target lesions. Surface engineering of nanoparticles offers a critical strategy to improve tumor-targeting capacities of nanoprobes. Improvements to the efficacy of targeted nanoprobes have been intensively explored and much of this work centers on the selection of suitable targeting ligands. Herein, in this review, various recent strategies based on different targeting ligands to improve tumor-targeting of imaging nanoprobes have been developed, ranging from small molecule ligands to biomimetic coatings, with highlights on emerging coating techniques using cell membranes and dual-targeting ligands. In particular, construction and surface modification methods, targeting capacities, and imaging/theranostic performance with key issues and potential questions have been described and discussed together with considerations for future development and innovations.
Collapse
Affiliation(s)
- Qianyi Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
He Y, Wang M, Li X, Yu T, Gao X. Targeted MIP-3β plasmid nanoparticles induce dendritic cell maturation and inhibit M2 macrophage polarisation to suppress cancer growth. Biomaterials 2020; 249:120046. [PMID: 32325346 DOI: 10.1016/j.biomaterials.2020.120046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 02/05/2023]
Abstract
In recent decades, cancer immunotherapy has demonstrated considerable clinical advantages in cancer therapy. Particularly, the use of immunological gene therapy continues to grow in this field. Macrophage Inflammatory Protein 3 Beta (MIP-3β) has emerged as a potential immunomodulator for anti-cancer treatments by enhancing the interaction among immune responses. In this study, we demonstrate an innovative targeted gene delivery system based on a self-assembly technique with 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP), Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA), and folic acid modified poly(ethylene glycol)-poly(ε-caprolactone) (FA-PEG-PCL) (FDMCA). Results showed that the expression of MIP-3β was up-regulated in cancer cells following the transfection with FDMCA-pMIP-3β, in comparison with cells transfected with DMCA-pMIP-3β. The supernatants collected from cancer cells transfected with FDMCA-pMIP-3β and DMCA-pMIP-3β both instigate dendritic cell maturation, M1 polarisation of macrophages, activation and presentation of cytotoxicity in lymphocytes. Moreover, tumor growth and metastasis were markedly inhibited following the administration of the FDMCA-pMIP-3β complex in both subcutaneous and pulmonary metastasis mice models, which is attributed to reduced angiogenesis, enhanced cancer cell apoptosis, and suppressed proliferation by activation of the immune system. Our study suggests that the MIP-3β plasmid and FDMCA complex provide a new approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yihong He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Manni Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xiaoling Li
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ting Yu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
30
|
Xi Y, Ge J, Wang M, Chen M, Niu W, Cheng W, Xue Y, Lin C, Lei B. Bioactive Anti-inflammatory, Antibacterial, Antioxidative Silicon-Based Nanofibrous Dressing Enables Cutaneous Tumor Photothermo-Chemo Therapy and Infection-Induced Wound Healing. ACS NANO 2020; 14:2904-2916. [PMID: 32031782 DOI: 10.1021/acsnano.9b07173] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Traditional skin tumor surgery and chronic bacterial-infection-induced wound healing/skin regeneration is still a challenge. The ideal strategy should eliminate the tumor, enhance wound healing/skin formation, and be anti-infection. Herein, we designed a multifunctional elastomeric poly(l-lactic acid)-poly(citrate siloxane)-curcumin@polydopamine hybrid nanofibrous scaffold (denoted as PPCP matrix) for tumor-infection therapy and infection-induced wound healing. The PPCP matrix showed intrinsically multifunctional properties including antioxidative, anti-inflammatory, photothermal, antibacterial, anticancer, and angiogenesis bioactivities. The polydopamine/curcumin presented an excellent near-infrared photothermal/cancer cell toxicity capacity, respectively, which supported PPCP for synergetic skin tumor therapy and antibacterial properties in vitro/in vivo. Additionally, the PPCP nanofibrous matrix significantly promotes the adhesion and proliferation of normal skin cells and accelerates the cutaneous wound healing in normal mice and bacterial-infected mice by enhancing the early angiogenesis. The PPCP nanofibrous matrix with multifunctional bioactivities provides a competitive strategy for skin tumor and bacterial-infection-induced wound healing.
Collapse
Affiliation(s)
- Yuewei Xi
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Juan Ge
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yumeng Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Cai Lin
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bo Lei
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
31
|
Sun W, Liu XY, Ma LL, Lu ZL. Tumor Targeting Gene Vector for Visual Tracking of Bcl-2 siRNA Transfection and Anti-Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10193-10201. [PMID: 32045197 DOI: 10.1021/acsami.0c00652] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor targeting provided more effective gene therapy. Bcl-2 is an oncogene, and Bcl-2 small interfering RNA (Bcl-2 siRNA) can inhibit its expression. Here, a fluorescent and gene-loading capacity vector DPL, derived from diketopyrrolopyrrole (DPP), was developed for Bcl-2 siRNA-targeted delivery and tumor imaging in vitro and in vivo. The vector DPL showed a significant emission enhancement after interacting with siRNA, which was used to track the gene transfer process. Compared to commercial transfection reagent Lipo 2000, DPL obviously downregulated the Bcl-2 protein expression and exhibited excellent antitumor efficacy with less Bcl-2 siRNA. Importantly, DPL can target tumors to transport Bcl-2 siRNA to tumor sites in vivo based on the enhanced permeability and retention (EPR) effect for effective in vivo tumor therapy. This work inspired us to design and synthesize a multifunctional gene vector for tumor targeting and gene therapy.
Collapse
Affiliation(s)
- Wan Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Xu-Ying Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Le-Le Ma
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
32
|
Xue Y, Niu W, Wang M, Chen M, Guo Y, Lei B. Engineering a Biodegradable Multifunctional Antibacterial Bioactive Nanosystem for Enhancing Tumor Photothermo-Chemotherapy and Bone Regeneration. ACS NANO 2020; 14:442-453. [PMID: 31702885 DOI: 10.1021/acsnano.9b06145] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The simultaneous therapy of tumors and bone defects resulting from tumor surgery is still a challenge in clinical orthopedics. Few nanomaterial systems simultaneously possess multifunctional capacities, including biodegradability, tumor treatment, and enhanced bone regeneration. Herein, we designed a biodegradable monodispersed bioactive glass nanoparticle (BGN) platform with multifunctional properties for enhanced colon cancer photothermo-chemotherapy and bone repair. The mussel-inspired surface assembly with BGN was established as a stable NIR-excited photothermal nanoplatform (BGN@PDA) for ablating tumors. BGN@PDA shows an ultrahigh anticancer drug (DOX) loading with on-demand (pH/NIR-responsive) drug release behavior and antibacterial activity for enhanced tumor chemotherapy (BGN@PDA-DOX). The growth of colon cancer cells (Hct116 cells) and cervical cancer cells (HeLa cells) was significantly inhibited in vitro, and superior local anticancer efficacy could be achieved by synergic chemo-photothermal therapy in vivo. BGN@PDA underwent a gradual degradation in vivo during 60 days and showed negligible toxic side effects. Meanwhile, BGN@PDA could positively induce the osteogenesis of osteoblasts in vitro and possess excellent in vivo bone repair ability in rat cranial defects. This work presents a distinctive strategy to design a bioactive multifunctional nanoplatform for treating tumor disease-resulted bone tissue regeneration.
Collapse
Affiliation(s)
- Yumeng Xue
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an 710000 , China
| | - Wen Niu
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an 710000 , China
| | - Min Wang
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an 710000 , China
| | - Mi Chen
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an 710000 , China
| | - Yi Guo
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an 710000 , China
- Department of Biologic and Materials Science , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Bo Lei
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an 710000 , China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology , Xi'an Jiaotong University , Xi'an 710054 , China
- Instrument Analysis Center , Xi'an Jiaotong University , Xi'an 710054 , China
| |
Collapse
|
33
|
Chen M, Zhao F, Li Y, Wang M, Chen X, Lei B. 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110153. [DOI: 10.1016/j.msec.2019.110153] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 01/04/2023]
|
34
|
Fang H, Chen J, Lin L, Liu F, Tian H, Chen X. A Strategy of Killing Three Birds with One Stone for Cancer Therapy through Regulating the Tumor Microenvironment by H 2O 2-Responsive Gene Delivery System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47785-47797. [PMID: 31773940 DOI: 10.1021/acsami.9b18144] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Constructing an efficient in vivo gene delivery system has always been extremely challenging. Herein, a highly efficient H2O2-responsive in vivo polycationic gene delivery system is developed for the first time. The efficient vector PLL-RT (i.e., polylysine grafted with p-tosyl-l-arginine) is used to mediate plasmid DNA (pDNA) delivery, and H2O2-responsive thioketal dipropanedioic acid-modified dextran (TDPAD) is used as a shielding system for effectively coating vector/pDNA polyplexes. The constructed gene delivery system exhibits a prolonged circulatory half-life in vivo and accelerates the accumulation of vector/DNA polyplexes in tumor tissue by the enhanced permeability and retention (EPR) effect. Moreover, this gene delivery system exhibits highly efficient and synergistic antitumor effects through a strategy of killing three birds with one stone. First, upon the arrival of TDPAD/PLL-RT/pDNA [abbreviated as T(PD)] at the tumor site by the EPR effect, TDPAD reacts with excess H2O2 in tumor tissue, contributing to the detachment of TDPAD, and PLL-RT then mediates the enhanced endocytosis of pDNA encoding shVEGF and significantly downregulates the expression of vascular endothelial growth factor (VEGF) in tumor tissue, exhibiting an outstanding antitumor effect. Second, the H2O2 consumption by TDPAD significantly decreases the H2O2 level in tumor tissue, which synergistically suppresses tumor growth. Third, small-molecule product mercaptopropionic acid, generated by the reaction of TDPAD with H2O2, can induce cancer cell apoptosis and exert pronounced antitumor efficacy. This polycationic gene delivery system shows negligible toxicity in vitro and in vivo. This strategy provides an ideal platform for constructing an efficient in vivo gene delivery system and has bright prospects for cancer therapy.
Collapse
Affiliation(s)
- Huapan Fang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Feng Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , China
- University of Science and Technology of China , Hefei 230026 , China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , China
| |
Collapse
|
35
|
Yan J, Yan S, Hou P, Lu W, Ma PX, He W, Lei B. A Hierarchical Peptide-Lanthanide Framework To Accurately Redress Intracellular Carcinogenic Protein-Protein Interaction. NANO LETTERS 2019; 19:7918-7926. [PMID: 31645103 DOI: 10.1021/acs.nanolett.9b03028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intracellular protein-protein interactions (PPIs) are a vital and yet underexploited class of therapeutic targets for their crucial roles in cellular processes and involvement in disease initiation and progression. Although some successful chemistry and nanotechnologies have been introduced into peptide PPI modulators to allow cell and tissue permeability, significant challenges remain with regard to the efficient and precise modulation of PPIs within specific cells of diseased tissues, such as solid tumors. Herein, an intratumoral transformable hierarchical framework, termed iPLF, was fabricated via a two-step self-assembly between peptides and lanthanide-doped nanocrystals. In this proof-of-concept study, using NanoEL effect, TME response, and tumor marker targeting, iPLF in vivo delivered the p53-MDM2 modulator DPMI into tumor cells and β-catenin-Bcl9 modulator Bcl9p into tumor stem cells. This crafted programmed nanomedicine with triple-stage delivery and responsiveness accurately modulated the specific intracellular protein-protein interactions, resulting in the suppression of tumor growth and metastasis in vivo, while maintaining a highly favorable safety profile. iPLF reached the goal of accurate, potent, and hazard-free intracellular PPI modulation, thereby providing a means to improve current knowledge of PPI networks and a novel therapeutic strategy for a great variety of diseases.
Collapse
Affiliation(s)
- Jin Yan
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology , Xi'an Jiaotong University , Xi'an 710054 , China
| | - Siqi Yan
- The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , P.R. China
| | - Peng Hou
- The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , P.R. China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Peter X Ma
- Department of Biologic and Materials Sciences, Department of Biomedical Engineering, Macromolecular Science and Engineering Center, Department of Materials Science and Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Wangxiao He
- Department of Talent Highland , The First Affiliated Hospital of Xi'an Jiao Tong University , Xi'an 710061 , China
| | - Bo Lei
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology , Xi'an Jiaotong University , Xi'an 710054 , China
| |
Collapse
|
36
|
Guan G, Song B, Zhang J, Chen K, Hu H, Wang M, Chen D. An Effective Cationic Human Serum Albumin-Based Gene-Delivery Carrier Containing the Nuclear Localization Signal. Pharmaceutics 2019; 11:E608. [PMID: 31766300 PMCID: PMC6920835 DOI: 10.3390/pharmaceutics11110608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
Considerable effort has been devoted to the development of gene carriers over the years. However, toxicity, immunogenicity, and low transfection efficiency are still major barriers. How to overcome these obstacles has become a burning question in gene delivery. In the present study, a simple cationic human serum albumin (CHSA)-based gene-delivery system containing nuclear localization signals (NLSs) was constructed to conquer the limitations. CHSA/NLS/plasmid DNA (pDNA) complexes were prepared and characterized by Hoechst 33258 intercalation, gel retardation assay, morphological analysis, circular dichroism (CD) spectroscopy, particle size, and zeta potential measurements. Results showed that CHSA/NLS/pDNA complexes were able to condense and protect pDNA with high encapsulation efficiency. The complexes displayed a nutritional effect on cells at a low concentration and there was no significant cytotoxicity or immunogenicity. In addition, CHSA/NLS/pDNA complexes exhibited excellent cellular uptake rates and the mechanism was mainly the clathrin or macropinocytosis-dependent endocytosis pathway. Furthermore, CHSA/NLS/pDNA significantly enhanced gene expression efficiency in vitro. More importantly, CHSA/NLS/pDNA complexes showed a desired antitumor effect in vivo, exhibiting the highest inhibition rate (57.3%) and significant upregulation in p53 protein. All these results confirm that CHSA/NLS/pDNA complexes have a bright future as a safe and effective delivery system for gene therapy.
Collapse
Affiliation(s)
- Guannan Guan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| | - Baohui Song
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| | - Jie Zhang
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing 314001, China;
| | - Kang Chen
- Department of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong 999077, China;
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| | - Mingyue Wang
- Department of Pharmacy, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| |
Collapse
|
37
|
Lei B, Boccaccini AR, Chen X. Editorial: Multifunctional Bioactive Nanomaterials for Tissue Regeneration. Front Chem 2019; 7:679. [PMID: 31681731 PMCID: PMC6803441 DOI: 10.3389/fchem.2019.00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China
- Key Laboratory of Biomedical Materials and Engineering, South China University of Technology, Ministry of Education, Guangzhou, China
| |
Collapse
|
38
|
Wang M, Wang C, Chen M, Xi Y, Cheng W, Mao C, Xu T, Zhang X, Lin C, Gao W, Guo Y, Lei B. Efficient Angiogenesis-Based Diabetic Wound Healing/Skin Reconstruction through Bioactive Antibacterial Adhesive Ultraviolet Shielding Nanodressing with Exosome Release. ACS NANO 2019; 13:10279-10293. [PMID: 31483606 DOI: 10.1021/acsnano.9b03656] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Diabetic wound healing and angiogenesis remain a worldwide challenge for both clinic and research. The use of adipose stromal cell derived exosomes delivered by bioactive dressing provides a potential strategy for repairing diabetic wounds with less scar formation and fast healing. In this study, we fabricated an injectable adhesive thermosensitive multifunctional polysaccharide-based dressing (FEP) with sustained pH-responsive exosome release for promoting angiogenesis and diabetic wound healing. The FEP dressing possessed multifunctional properties including efficient antibacterial activity/multidrug-resistant bacteria, fast hemostatic ability, self-healing behavior, and tissue-adhesive and good UV-shielding performance. FEP@exosomes (FEP@exo) can significantly enhance the proliferation, migration, and tube formation of endothelial cells in vitro. In vivo results from a diabetic full-thickness cutaneous wound model showed that FEP@exo dressing accelerated the wound healing by stimulating the angiogenesis process of the wound tissue. The enhanced cell proliferation, granulation tissue formation, collagen deposition, remodeling, and re-epithelialization probably lead to the fast healing with less scar tissue formation and skin appendage regeneration. This study showed that combining bioactive molecules into multifunctional dressing should have great potential in achieving satisfactory healing in diabetic and other vascular-impaired related wounds.
Collapse
Affiliation(s)
- Min Wang
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology , Xi'an Jiaotong University , Xi'an 710000 , China
| | - Chenggui Wang
- Key Laboratory of Orthopedics of Zhejiang Province , Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
- Department of Orthopedics Surgery , Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009 , China
| | - Mi Chen
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology , Xi'an Jiaotong University , Xi'an 710000 , China
| | - Yuewei Xi
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology , Xi'an Jiaotong University , Xi'an 710000 , China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology , Xi'an Jiaotong University , Xi'an 710000 , China
| | - Cong Mao
- Key Laboratory of Orthopedics of Zhejiang Province , Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
| | - Tianzhen Xu
- Key Laboratory of Orthopedics of Zhejiang Province , Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
| | - Xingxing Zhang
- Department of Burn , First Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Cai Lin
- Department of Burn , First Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Weiyang Gao
- Key Laboratory of Orthopedics of Zhejiang Province , Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
| | - Yi Guo
- Department of Biologic and Materials Science , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Bo Lei
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology , Xi'an Jiaotong University , Xi'an 710000 , China
| |
Collapse
|
39
|
Yang Q, Liu S, Liu X, Liu Z, Xue W, Zhang Y. Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems. Acta Biomater 2019; 96:436-455. [PMID: 31254682 DOI: 10.1016/j.actbio.2019.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
Abstract
As an effective and well-recognized strategy used in many delivery systems, such as polycation gene vectors, charge reversal refers to the alternation of vector surface charge from negative (in blood circulation) to positive (in the targeted tissue) in response to specific stimuli to simultaneously satisfy the requirements of biocompatibility and targeting. Although charge reversal vectors are intended to avoid interactions with blood in their application, no overall or systematic investigation has been carried out to verify the role of charge reversal in the blood compatibility. Herein, we comprehensively mapped the effects of a typical charge-reversible polycation gene vector based on pH-responsive 2,3-dimethylmaleic anhydride (DMMA)-modified polyethylenimine (PEI)/pDNA complex in terms of blood components, coagulation function, and immune response as compared to conventional PEGylated modification. The in vitro and in vivo results displayed that charge-reversal modification significantly improves the PEI/pDNA-induced abnormal effect on vascular endothelial cells, platelet activation, clotting factor activity, fibrinogen polymerization, blood coagulation process, and pro-inflammatory cytokine expression. Unexpectedly, (PEI/pDNA)-DMMA induced the cytoskeleton impairment-mediated erythrocyte morphological alternation and complement activation even more than PEI/pDNA. Further, transcriptome sequencing demonstrated that the overexpression of pro-inflammatory cytokines was correlated with vector-induced differentially expressed gene number and mediated by inflammation-related signaling pathways (MAPK, NF-κB, Toll-like receptor, and JAK-STAT) activation. By comparison, charge-reversal modification improved the hemocompatibility to a greater extent than dose PEGylation except for erythrocyte rupture. Nevertheless, it is inferior to mPEG modification in terms of immunocompatibility. These findings provide comprehensive insights to understand the molecular mechanisms of the effects of charge reversal on blood components and their function and to provide valuable information for its potential applications from laboratory to clinic. STATEMENT OF SIGNIFICANCE: The seemingly revolutionary charge reversal strategy has been believed to possess stealth character with negative charge eluding interaction with blood components during circulation. However to date, no overall or systematic investigation has been carried out to verify the role of charge-reversal on the blood/immune compatibility, which impede their development from laboratory to bedside. Therefore, we comprehensively mapped the effects of a typical charge-reversible polycationic gene vector on blood components (vascular endothelial cell, platelet, clotting factors, fibrinogen, RBCs and coagulation function) and immune response (complement and pro-inflammatory cytokines) at cellular and molecular level in comparison to PEGylation modification. These findings help to elucidate the molecular mechanisms for the effects of charge-reversal on blood components and functions, and provide valuable information for the possible application in clinical settings.
Collapse
Affiliation(s)
- Qi Yang
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Shuo Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xin Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Wei Xue
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Yi Zhang
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
40
|
Zhao M, Li J, Chen D, Hu H. A Valid Bisphosphonate Modified Calcium Phosphate-Based Gene Delivery System: Increased Stability and Enhanced Transfection Efficiency In Vitro and In Vivo. Pharmaceutics 2019; 11:pharmaceutics11090468. [PMID: 31514452 PMCID: PMC6781291 DOI: 10.3390/pharmaceutics11090468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
Calcium phosphate (CaP) nanoparticles, as a promising vehicle for gene delivery, have been widely used owing to their biocompatibility, biodegradability and adsorptive capacity for nucleic acids. Unfortunately, their utility in vivo has been profoundly restricted due to numerous technical barriers such as the lack of tissue specificity and limited transfection efficiency, as well as uncontrollable aggregation over time. To address these issues, an effective conjugate folate-polyethylene glycol-pamidronate (shortened as FA-PEG-Pam) was designed and coated on the surface of CaP/NLS/pDNA (CaP/NDs), forming a versatile gene carrier FA-PEG-Pam/CaP/NDs. Inclusion of FA-PEG-Pam significantly reduced the size of CaP nanoparticles, thus inhibiting the aggregation of CaP nanoparticles. FA-PEG-Pam/CaP/NDs showed better cellular uptake than mPEG-Pam/CaP/NDs, which could be attributed to the high-affinity interactions between FA and highly expressed FR. Meanwhile, FA-PEG-Pam/CaP/NDs had low cytotoxicity and desired effect on inducing apoptosis (71.1%). Furthermore, FA-PEG-Pam/CaP/NDs showed admirable transfection efficiency (63.5%) due to the presence of NLS peptides. What’s more, in vivo studies revealed that the hybrid nanoparticles had supreme antitumor activity (IR% = 58.7%) among the whole preparations. Altogether, FA-PEG-Pam/CaP/NDs was expected to be a hopeful strategy for gene delivery.
Collapse
Affiliation(s)
- Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Ji Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
41
|
Simpson JD, Ediriweera GR, Howard CB, Fletcher NL, Bell CA, Thurecht KJ. Polymer design and component selection contribute to uptake, distribution & trafficking behaviours of polyethylene glycol hyperbranched polymers in live MDA-MB-468 breast cancer cells. Biomater Sci 2019; 7:4661-4674. [PMID: 31469127 DOI: 10.1039/c9bm00957d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As polymeric nanomedicines grow increasingly complex in design, an effective therapeutic release is often inherently tied to localisation to specific intracellular compartments or microenvironments. The inclusion of environmentally-sensitive moieties links the functionality of such materials to the trafficking behaviours exhibited once materials have obtained access to the cellular milieu. In order to perform their designed function, such materials often need to encounter specific biological cues or stimuli. As such, there is an increased need to improve our understanding of how the physicochemical properties of nanomaterials influence post-internalisation behaviours. Amongst the unknown factors that may contribute to the trafficking behaviours and distribution of polymers within the cellular environment, is the influence of the components selected in the development of such materials. To examine whether composition and arrangement of components within small polymeric nanomaterials contribute to their ability to navigate the intracellular space, here we utilise fluorophores to model component selection, varying the fluorescent handle selected and its method of incorporation. We explore the intracellular behaviours of well-characterised hyperbranched polymers in live MDA-MB-468 breast cancer cells in vitro. Changes in distribution as a function of both fluorophore selection and placement are reported, and our data suggest that the individual components used to produce potential nanomedicines are critical to their overall functioning and efficacy. Further to this, through the use of a novel non-conjugated targeting ligand, we demonstrate that there is inherent competition between component-directing factors and cellular influences on the ultimate fate of the polymers. The behaviours reported here suggest that not only does component selection contribute to intracellular processing, but these factors could potentially be harnessed when designing polymers to ensure improved functionality of future materials for therapeutic delivery.
Collapse
Affiliation(s)
- Joshua D Simpson
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gayathri R Ediriweera
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig A Bell
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|