1
|
Loke YH, Jayakrishnan A, Mod Razif MRF, Yee KM, Kee PE, Goh BH, Helal Uddin ABM, Lakshminarayanan V, Liew KB. A Comprehensive Review of Challenges in Oral Drug Delivery Systems and Recent Advancements in Innovative Design Strategies. Curr Pharm Des 2025; 31:360-376. [PMID: 39390835 DOI: 10.2174/0113816128338560240923073357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
The oral route of drug administration is often preferred by patients and healthcare providers due to its convenience, ease of use, non-invasiveness, and patient acceptance. However, traditional oral dosage forms have several limitations, including low bioavailability, limited drug loading capacity, and stability and storage issues, particularly with solutions and suspensions. Over the years, researchers have dedicated considerable effort to developing novel oral drug delivery systems to overcome these limitations. This review discusses various challenges associated with oral drug delivery systems, including biological, pharmaceutical, and physicochemical barriers. It also explores common delivery approaches, such as gastroretentive drug delivery, small intestine drug delivery, and colon-targeting drug delivery systems. Additionally, numerous strategies aimed at improving oral drug delivery efficiency are reviewed, including solid dispersion, absorption enhancers, lipidbased formulations, nanoparticles, polymer-based nanocarriers, liposomal formulations, microencapsulation, and micellar formulations. Furthermore, innovative approaches like orally disintegrating tablets (ODT), orally disintegrating films (ODF), layered tablets, micro particulates, self-nano emulsifying formulations (SNEF), and controlled release dosage forms are explored for their potential in enhancing oral drug delivery efficiency and promoting patients' compliance. Overall, this review highlights significant progress in addressing challenges in the pharmaceutical industry and clinical settings, offering novel approaches for the development of effective oral drug delivery systems.
Collapse
Affiliation(s)
- Ying Hui Loke
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| | - Achuth Jayakrishnan
- Department of Microbiology, Hindusthan College of Arts and Science, Coimbatore 641028, Tamil Nadu, India
| | | | - Kar Ming Yee
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| | - Phei Er Kee
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Bey Hing Goh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - A B M Helal Uddin
- Faculty of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Pahang, Malaysia
| | - Vijayakumar Lakshminarayanan
- Department of Pharmaceutical Technology, Hindusthan Institute of Technology, Coimbatore 641032, Tamil Nadu, India
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| |
Collapse
|
2
|
Ambele MA, Maebele LT, Mulaudzi TV, Kungoane T, Damane BP. Advances in nano-delivery of phytochemicals for glioblastoma treatment. DISCOVER NANO 2024; 19:216. [PMID: 39718730 DOI: 10.1186/s11671-024-04172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor characterized by cellular and molecular diversity. This diversity presents significant challenges for treatment and leads to poor prognosis. Surgery remains the primary treatment of choice for GBMs, but it often results in tumor recurrence due to complex interactions between GBM cells and the peritumoral brain zone. Phytochemicals have shown promising anticancer activity in in-vitro studies and are being investigated as potential treatments for various cancers, including GBM. However, some phytochemicals have failed to translate their efficacy to pre-clinical studies due to limited penetration into the tumor microenvironment, leading to high toxicity. Thus, combining phytochemicals with nanotechnology has emerged as a promising alternative for treating GBM. This review explores the potential of utilizing specific nanoparticles to deliver known anticancer phytochemicals directly to tumor cells. This method has demonstrated potential in overcoming the challenges of the complex GBM microenvironment, including the tight blood-brain barrier while minimizing damage to healthy brain tissue. Therefore, employing this interdisciplinary approach holds significant promise for developing effective phyto-nanomedicines for GBM and improving patient outcomes.
Collapse
Affiliation(s)
- Melvin Anyasi Ambele
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, P.O. Box 1266, Pretoria, 0001, South Africa.
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 0084, Gezina, South Africa.
| | - Lorraine Tshegofatso Maebele
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Tsholofelo Kungoane
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, P.O. Box 1266, Pretoria, 0001, South Africa
| | - Botle Precious Damane
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa.
| |
Collapse
|
3
|
Lim Y, Campochiaro PA, Green JJ. Suprachoroidal Delivery of Viral and Nonviral Vectors for Treatment of Retinal and Choroidal Vascular Diseases. Am J Ophthalmol 2024:S0002-9394(24)00571-3. [PMID: 39716546 DOI: 10.1016/j.ajo.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
PURPOSE Current treatments for retinal and choroidal neovascular diseases suffer from insufficient durability, including anti-vascular endothelial growth factor-A agents. It is, therefore, of interest to explore alternative methods that could allow for robust improvement in visual acuity with fewer injections required. DESIGN Literature review. RESULTS Among various preclinical and clinical studies in the literature, a promising approach is the use of suprachoroidal injection with viral and nonviral gene delivery vectors. Compared with other ocular injection methods, suprachoroidal injection has demonstrated wide biodistribution of injected agents and safety as an outpatient procedure. In terms of viral vectors, suprachoroidal injection of an adeno-associated virus 8 vector expressing an anti-vascular endothelial growth factor-A antibody fragment has shown an excellent safety profile and evidence of biological activity. In terms of nonviral vectors, lipid nanoparticles and polymeric nanoparticles both demonstrate strong promise for ocular gene therapy in large animal models. In particular, biodegradable poly(β-amino ester) nanoparticles show excellent biodistribution, safety, and efficacy for gene therapy via the suprachoroidal route. Nonviral nanoparticle approaches can have notable advantages over viral vectors in terms of carrying capacity, redosability, and manufacturing costs. An advantage of gene therapy is that once a delivery vector has been optimized, genetic cargos can be readily tailored without changing the safety, efficacy, and pharmacokinetic properties of the delivery vector. CONCLUSIONS This review highlights recent progress that has been made and compares viral and nonviral suprachoroidal gene delivery for the treatment of retinal and choroidal vascular diseases. Suprachoroidal gene therapy is an emerging biotechnology that holds substantial potential to make a translational impact in treating these diseases.
Collapse
Affiliation(s)
- Yeongseo Lim
- From the Department of Biomedical Engineering (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center (Y.L., J.J.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Johns Hopkins Translational ImmunoEngineering Center (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter A Campochiaro
- Department of Ophthalmology (P.A.C., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Department of Neuroscience (P.A.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Jordan J Green
- From the Department of Biomedical Engineering (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center (Y.L., J.J.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Johns Hopkins Translational ImmunoEngineering Center (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Department of Ophthalmology (P.A.C., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Departments of Chemical & Biomolecular Engineering and Materials Science & Engineering (J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Departments of Neurosurgery and Oncology (J.J.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Institute for Nanobiotechnology, Johns Hopkins University (J.J.G.), Baltimore, Maryland, USA..
| |
Collapse
|
4
|
Al‐Kharboosh R, Bechtle A, Tzeng SY, Zheng J, Mondal SK, Wilson DR, Perez‐Vega C, Green JJ, Quiñones‐Hinojosa A. Therapeutic potential and impact of nanoengineered patient-derived mesenchymal stem cells in a murine resection and recurrence model of human glioblastoma. Bioeng Transl Med 2024; 9:e10675. [PMID: 39545093 PMCID: PMC11558202 DOI: 10.1002/btm2.10675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 11/17/2024] Open
Abstract
Confounding results of engineered mesenchymal stem cells (MSCs) used as cellular vehicles has plagued technologies whereby success or failure of novel approaches may be dismissed or inaccurately ascribed solely to the biotechnology platform rather than suitability of the human donor. Polymeric materials were screened for non-viral engineering of MSCs from multiple human donors to deliver bone morphogenic protein-4 (BMP4), a protein previously investigated in clinical trials for glioblastoma (GBM) to combat a subpopulation of highly invasive and tumorigenic clones. A "smart technology" that target the migratory and stem-like nature of GBM will require: (1) a cellular vehicle (MSC) which can scavenge and target residual cells left behind after surgical debulking and deliver; (2) anti-glioma cargo (BMP4). Multiple MSC donors are safely engineered, though varied in susceptibility to accept BMP4 due to intrinsic characteristics revealed by their molecular signatures. Efficiency is compared via secretion, downstream signaling, differentiation, and anti-proliferative properties across all donors. In a clinically relevant resection and recurrence model of patient-derived human GBM, we demonstrate that nanoengineered MSCs are not "donor agnostic" and efficacy is influenced by the inherent suitability of the MSC to the cargo. Therefore, donor profiles hold greater influence in determining downstream outcomes than the technical capabilities of the engineering technology.
Collapse
Affiliation(s)
- Rawan Al‐Kharboosh
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
- Department of NeuroscienceMayo Clinic Graduate SchoolJacksonvilleFloridaUSA
- AtPoint tx Co.WashingtonDistrict of ColumbiaUSA
| | - Alex Bechtle
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
| | - Stephany Y. Tzeng
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Translational Immuno Engineering Center, Translational Tissue Engineering Center, and Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jiaying Zheng
- Department of NeuroscienceMayo Clinic Graduate SchoolJacksonvilleFloridaUSA
| | | | - David R. Wilson
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Translational Immuno Engineering Center, Translational Tissue Engineering Center, and Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Jordan J. Green
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Translational Immuno Engineering Center, Translational Tissue Engineering Center, and Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Departments of Neurosurgery, Oncology, Ophthalmology, Materials Science & Engineering, and Chemical & Biomolecular EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | |
Collapse
|
5
|
Zhang L, Lou W, Wang J. Advances in nucleic acid therapeutics: structures, delivery systems, and future perspectives in cancer treatment. Clin Exp Med 2024; 24:200. [PMID: 39196428 PMCID: PMC11358240 DOI: 10.1007/s10238-024-01463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Cancer has emerged as a significant threat to human health. Nucleic acid therapeutics regulate the gene expression process by introducing exogenous nucleic acid fragments, offering new possibilities for tumor remission and even cure. Their mechanism of action and high specificity demonstrate great potential in cancer treatment. However, nucleic acid drugs face challenges such as low stability and limited ability to cross physiological barriers in vivo. To address these issues, various nucleic acid delivery vectors have been developed to enhance the stability and facilitate precise targeted delivery of nucleic acid drugs within the body. In this review article, we primarily introduce the structures and principles of nucleic acid drugs commonly used in cancer therapy, as well as their cellular uptake and intracellular transportation processes. We focus on the various vectors commonly employed in nucleic acid drug delivery, highlighting their research progress and applications in recent years. Furthermore, we propose potential trends and prospects of nucleic acid drugs and their carriers in the future.
Collapse
Affiliation(s)
- Leqi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wenting Lou
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
7
|
Gawel AM, Betkowska A, Gajda E, Godlewska M, Gawel D. Current Non-Metal Nanoparticle-Based Therapeutic Approaches for Glioblastoma Treatment. Biomedicines 2024; 12:1822. [PMID: 39200286 PMCID: PMC11351974 DOI: 10.3390/biomedicines12081822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The increase in the variety of nano-based tools offers new possibilities to approach the therapy of poorly treatable tumors, which includes glioblastoma multiforme (GBM; a primary brain tumor). The available nanocomplexes exhibit great potential as vehicles for the targeted delivery of anti-GBM compounds, including chemotherapeutics, nucleic acids, and inhibitors. The main advantages of nanoparticles (NPs) include improved drug stability, increased penetration of the blood-brain barrier, and better precision of tumor targeting. Importantly, alongside their drug-delivery ability, NPs may also present theranostic properties, including applications for targeted imaging or photothermal therapy of malignant brain cells. The available NPs can be classified into two categories according to their core, which can be metal or non-metal based. Among non-metal NPs, the most studied in regard to GBM treatment are exosomes, liposomes, cubosomes, polymeric NPs, micelles, dendrimers, nanogels, carbon nanotubes, and silica- and selenium-based NPs. They are characterized by satisfactory stability and biocompatibility, limited toxicity, and high accumulation in the targeted tumor tissue. Moreover, they can be easily functionalized for the improved delivery of their cargo to GBM cells. Therefore, the non-metal NPs discussed here, offer a promising approach to improving the treatment outcomes of aggressive GBM tumors.
Collapse
Affiliation(s)
- Agata M. Gawel
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Anna Betkowska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Ewa Gajda
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Damian Gawel
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| |
Collapse
|
8
|
Kromer AE, Sieber-Schäfer F, Farfan Benito J, Merkel OM. Design of Experiments Grants Mechanistic Insights into the Synthesis of Spermine-Containing PBAE Copolymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37545-37554. [PMID: 38985802 PMCID: PMC11284743 DOI: 10.1021/acsami.4c06079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Successful therapeutic delivery of siRNA with polymeric nanoparticles seems to be a promising but not vastly understood and complicated goal to achieve. Despite years of research, no polymer-based delivery system has been approved for clinical use. Polymers, as a delivery system, exhibit considerable complexity and variability, making their consistent production a challenging endeavor. However, a better understanding of the polymerization process of polymer excipients may improve the reproducibility and material quality for more efficient use in drug products. Here, we present a combination of Design of Experiment and Python-scripted data science to establish a prediction model, from which important parameters can be extracted that influence the synthesis results of polybeta-amino esters (PBAEs), a common type of polymer used preclinically for nucleic acid delivery. We synthesized a library of 27 polymers, each one at different temperatures with different reaction times and educt ratios using an orthogonal central composite (CCO-) design. This design allowed a detailed characterization of factor importance and interactions using a very limited number of experiments. We characterized the polymers by analyzing the resulting composition by 1H-NMR and the size distribution by GPC measurements. To further understand the complex mechanism of block polymerization in a one-pot synthesis, we developed a Python script that helps us to understand possible step-growth steps. We successfully developed and validated a predictive response surface and gathered a deeper understanding of the synthesis of polyspermine-based amphiphilic PBAEs.
Collapse
Affiliation(s)
- Adrian
P. E. Kromer
- Pharmaceutical
Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich 81377, Germany
| | - Felix Sieber-Schäfer
- Pharmaceutical
Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich 81377, Germany
| | - Johan Farfan Benito
- Pharmaceutical
Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich 81377, Germany
- Université
Paris Cité, Paris 75015, France
| | - Olivia M. Merkel
- Pharmaceutical
Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich 81377, Germany
- Center
for NanoScience Munich (CeNS), Munich 81377, Germany
- Cluster
for Nucleic Acid Therapeutics Munich (CNATM), Munich 81377, Germany
| |
Collapse
|
9
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
10
|
Mao M, Wu Y, He Q. Recent advances in targeted drug delivery for the treatment of glioblastoma. NANOSCALE 2024; 16:8689-8707. [PMID: 38606460 DOI: 10.1039/d4nr01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the highly malignant brain tumors characterized by significant morbidity and mortality. Despite the recent advancements in the treatment of GBM, major challenges persist in achieving controlled drug delivery to tumors. The management of GBM poses considerable difficulties primarily due to unresolved issues in the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB) and GBM microenvironment. These factors limit the uptake of anti-cancer drugs by the tumor, thus limiting the therapeutic options. Current breakthroughs in nanotechnology provide new prospects concerning unconventional drug delivery approaches for GBM treatment. Specifically, swimming nanorobots show great potential in active targeted delivery, owing to their autonomous propulsion and improved navigation capacities across biological barriers, which further facilitate the development of GBM-targeted strategies. This review presents an overview of technological progress in different drug administration methods for GBM. Additionally, the limitations in clinical translation and future research prospects in this field are also discussed. This review aims to provide a comprehensive guideline for researchers and offer perspectives on further development of new drug delivery therapies to combat GBM.
Collapse
Affiliation(s)
- Meng Mao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
11
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Ahirwar K, Kumar A, Srivastava N, Saraf SA, Shukla R. Harnessing the potential of nanoengineered siRNAs carriers for target responsive glioma therapy: Recent progress and future opportunities. Int J Biol Macromol 2024; 266:131048. [PMID: 38522697 DOI: 10.1016/j.ijbiomac.2024.131048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Past scientific testimonials in the field of glioma research, the deadliest tumor among all brain cancer types with the life span of 10-15 months after diagnosis is considered as glioblastoma multiforme (GBM). Even though the availability of treatment options such as chemotherapy, radiotherapy, and surgery, are unable to completely cure GBM due to tumor microenvironment complexity, intrinsic cellular signalling, and genetic mutations which are involved in chemoresistance. The blood-brain barrier is accountable for restricting drugs entry at the tumor location and related biological challenges like endocytic degradation, short systemic circulation, and insufficient cellular penetration lead to tumor aggression and progression. The above stated challenges can be better mitigated by small interfering RNAs (siRNA) by knockdown genes responsible for tumor progression and resistance. However, siRNA encounters with challenges like inefficient cellular transfection, short circulation time, endogenous degradation, and off-target effects. The novel functionalized nanocarrier approach in conjunction with biological and chemical modification offers an intriguing potential to address challenges associated with the naked siRNA and efficiently silence STAT3, coffilin-1, EGFR, VEGF, SMO, MGMT, HAO-1, GPX-4, TfR, LDLR and galectin-1 genes in GBM tumor. This review highlights the nanoengineered siRNA carriers, their recent advancements, future perspectives, and strategies to overcome the systemic siRNA delivery challenges for glioma treatment.
Collapse
Affiliation(s)
- Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Ankit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India.
| |
Collapse
|
13
|
López-Estévez AM, Lapuhs P, Pineiro-Alonso L, Alonso MJ. Personalized Cancer Nanomedicine: Overcoming Biological Barriers for Intracellular Delivery of Biopharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309355. [PMID: 38104275 DOI: 10.1002/adma.202309355] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Indexed: 12/19/2023]
Abstract
The success of personalized medicine in oncology relies on using highly effective and precise therapeutic modalities such as small interfering RNA (siRNA) and monoclonal antibodies (mAbs). Unfortunately, the clinical exploitation of these biological drugs has encountered obstacles in overcoming intricate biological barriers. Drug delivery technologies represent a plausible strategy to overcome such barriers, ultimately facilitating the access to intracellular domains. Here, an overview of the current landscape on how nanotechnology has dealt with protein corona phenomena as a first and determinant biological barrier is presented. This continues with the analysis of strategies facilitating access to the tumor, along with conceivable methods for enhanced tumor penetration. As a final step, the cellular barriers that nanocarriers must confront in order for their biological cargo to reach their target are deeply analyzed. This review concludes with a critical analysis and future perspectives of the translational advances in personalized oncological nanomedicine.
Collapse
Affiliation(s)
- Ana María López-Estévez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Philipp Lapuhs
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Laura Pineiro-Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
14
|
Reshma G B, Miglani C, Pal A, Ganguli M. Sugar alcohol-modified polyester nanoparticles for gene delivery via selective caveolae-mediated endocytosis. NANOSCALE 2024; 16:4114-4124. [PMID: 38353098 DOI: 10.1039/d3nr05300h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Nucleic acid-based drugs are changing the scope of emerging medicine in preventing and treating diseases. Nanoparticle systems based on lipids and polymers developed to navigate tissue-level and cellular-level barriers are now emerging as vector systems that can be translated to clinical settings. A class of polymers, poly(β-amino esters) (PBAEs) known for their chemical flexibility and biodegradability, has been explored for gene delivery. These polymers are sensitive to changes in the monomer composition affecting transfection efficiency. Hence to add functionality to these polymers, we partially substituted ligands to an identified effective polymer chemistry. We report here a new series of statistical copolymers based on PBAEs where the backbone is modified with sugar alcohols to selectively facilitate the caveolae-mediated endocytosis pathway of cellular transport. These ligands are grafted at the polymer's backbone, thereby establishing a new strategy of modification in PBAEs. We demonstrate that these polymers form nanoparticles with DNA, show effective complexation and cargo release, enter the cell via selective caveolae-mediated endocytosis, exhibit low cytotoxicity, and increase transfection in neuronal cells.
Collapse
Affiliation(s)
- Betsy Reshma G
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Han EL, Padilla MS, Palanki R, Kim D, Mrksich K, Li JJ, Tang S, Yoon IC, Mitchell MJ. Predictive High-Throughput Platform for Dual Screening of mRNA Lipid Nanoparticle Blood-Brain Barrier Transfection and Crossing. NANO LETTERS 2024; 24:1477-1486. [PMID: 38259198 DOI: 10.1021/acs.nanolett.3c03509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Lipid nanoparticle (LNP)-mediated nucleic acid therapies, including mRNA protein replacement and gene editing therapies, hold great potential in treating neurological disorders including neurodegeneration, brain cancer, and stroke. However, delivering LNPs across the blood-brain barrier (BBB) after systemic administration remains underexplored. In this work, we engineered a high-throughput screening transwell platform for the BBB (HTS-BBB), specifically optimized for screening mRNA LNPs. Unlike most transwell assays, which only assess transport across an endothelial monolayer, HTS-BBB simultaneously measures LNP transport and mRNA transfection of the endothelial cells themselves. We then use HTS-BBB to screen a library of 14 LNPs made with structurally diverse ionizable lipids and demonstrate it is predictive of in vivo performance by validating lead candidates for mRNA delivery to the mouse brain after intravenous injection. Going forward, this platform could be used to screen large libraries of brain-targeted LNPs for a range of protein replacement and gene editing applications.
Collapse
Affiliation(s)
- Emily L Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Dongyoon Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kaitlin Mrksich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jacqueline J Li
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sophia Tang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Il-Chul Yoon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Ma Y, Li S, Lin X, Chen Y. Bioinspired Spatiotemporal Management toward RNA Therapies. ACS NANO 2023; 17:24539-24563. [PMID: 38091941 DOI: 10.1021/acsnano.3c08219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Ribonucleic acid (RNA)-based therapies have become an attractive topic in disease intervention, especially with some that have been approved by the FDA such as the mRNA COVID-19 vaccine (Comirnaty, Pfizer-BioNTech, and Spikevax, Moderna) and Patisiran (siRNA-based drug for liver delivery). However, extensive applications are still facing challenges in delivering highly negatively charged RNA to the targeted site. Therapeutic delivery strategies including RNA modifications, RNA conjugates, and RNA polyplexes and delivery platforms such as viral vectors, nanoparticle-based delivery platforms, and hydrogel-based delivery platforms as potential nucleic acid-releasing depots have been developed to enhance their cellular uptake and protect nucleic acid from being degraded by immune systems. Here, we review the growing number of viral vectors, nanoparticles, and hydrogel-based RNA delivery systems; describe RNA loading/release mechanism induced by environmental stimulations including light, heat, pH, or enzyme; discuss their physical or chemical interactions; and summarize the RNA therapeutics release period (temporal) and their target cells/organs (spatial). Finally, we describe current concerns, highlight current challenges and future perspectives of RNA-based delivery systems, and provide some possible research areas that provide opportunities for clinical translation of RNA delivery carriers.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Fornaguera C, Torres-Coll A, Olmo L, Garcia-Fernandez C, Guerra-Rebollo M, Borrós S. Engineering oncogene-targeted anisamide-functionalized pBAE nanoparticles as efficient lung cancer antisense therapies. RSC Adv 2023; 13:29986-30001. [PMID: 37842686 PMCID: PMC10573942 DOI: 10.1039/d3ra05830a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of worldwide death, mainly due to the lack of efficient and safe therapies. Currently, NSCLC standard of care for consist on the use of traditional chemotherapeutics, non-selectively distributed through the whole body, thus causing severe side effects while not achieving high efficacy outcomes. Consequently, the need of novel therapies, targeted to modify specific subcellular routes aberrantly expressed only in tumor cells is still urgent. In this context, the delivery of siRNAs that can know-down overexpressed oncogenes, such as mTOR, could become the promised targeted therapy. However, siRNA effective delivery remains a challenge due to its compromised stability in biological fluids and its inability to cross biological and plasmatic membranes. Therefore, polymeric nanoparticles that efficiently encapsulate siRNAs and are selectively targeted to tumor cells could play a pivotal role. Accordingly, we demonstrate in this work that oligopeptide end-modified poly(beta aminoester) (OM-pBAE) polymers can efficiently complex siRNA in small nanometric particles using very low polymer amounts, protecting siRNA from nucleases attack. These nanoparticles are stable in the presence of serum, advantageous fact in terms of in vivo use. We also demonstrated that they efficiently transfect cells in vitro, in the presence of serum and are able to knock down target gene expression. Moreover, we demonstrated their antitumor efficacy by encapsulating mTOR siRNA, as a model antisense therapy, which showed specific lung tumor cell growth inhibition in vitro and in vivo. Finally, through the addition of anisamide functionalization to the surface of the nanoparticles, we proved that they become selective to lung tumor cells, while not affecting healthy cells. Therefore, our results are a first step in the discovery of a tumor cell-targeted efficient silencing nanotherapy for NSCLC patients survival improvement.
Collapse
Affiliation(s)
- Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| | - Antoni Torres-Coll
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| | - Laura Olmo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| | - Coral Garcia-Fernandez
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| |
Collapse
|
18
|
Afrin H, Geetha Bai R, Kumar R, Ahmad SS, Agarwal SK, Nurunnabi M. Oral delivery of RNAi for cancer therapy. Cancer Metastasis Rev 2023; 42:699-724. [PMID: 36971908 PMCID: PMC10040933 DOI: 10.1007/s10555-023-10099-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Cancer is a major health concern worldwide and is still in a continuous surge of seeking for effective treatments. Since the discovery of RNAi and their mechanism of action, it has shown promises in targeted therapy for various diseases including cancer. The ability of RNAi to selectively silence the carcinogenic gene makes them ideal as cancer therapeutics. Oral delivery is the ideal route of administration of drug administration because of its patients' compliance and convenience. However, orally administered RNAi, for instance, siRNA, must cross various extracellular and intracellular biological barriers before it reaches the site of action. It is very challenging and important to keep the siRNA stable until they reach to the targeted site. Harsh pH, thick mucus layer, and nuclease enzyme prevent siRNA to diffuse through the intestinal wall and thereby induce a therapeutic effect. After entering the cell, siRNA is subjected to lysosomal degradation. Over the years, various approaches have been taken into consideration to overcome these challenges for oral RNAi delivery. Therefore, understanding the challenges and recent development is crucial to offer a novel and advanced approach for oral RNAi delivery. Herein, we have summarized the delivery strategies for oral delivery RNAi and recent advancement towards the preclinical stages.
Collapse
Affiliation(s)
- Humayra Afrin
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Renu Geetha Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56/1, 51006, Tartu, Estonia
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Sheikh Shafin Ahmad
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA
| | - Sandeep K Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA.
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
| |
Collapse
|
19
|
Roque D, Cruz N, Ferreira HA, Reis CP, Matela N, Herculano-Carvalho M, Cascão R, Faria CC. Nanoparticle-Based Treatment in Glioblastoma. J Pers Med 2023; 13:1328. [PMID: 37763096 PMCID: PMC10532799 DOI: 10.3390/jpm13091328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GB) is a malignant glioma associated with a mean overall survival of 12 to 18 months, even with optimal treatment, due to its high relapse rate and treatment resistance. The standardized first-line treatment consists of surgery, which allows for diagnosis and cytoreduction, followed by stereotactic fractionated radiotherapy and chemotherapy. Treatment failure can result from the poor passage of drugs through the blood-brain barrier (BBB). The development of novel and more effective therapeutic approaches is paramount to increasing the life expectancy of GB patients. Nanoparticle-based treatments include epitopes that are designed to interact with specialized transport systems, ultimately allowing the crossing of the BBB, increasing therapeutic efficacy, and reducing systemic toxicity and drug degradation. Polymeric nanoparticles have shown promising results in terms of precisely directing drugs to the brain with minimal systemic side effects. Various methods of drug delivery that pass through the BBB, such as the stereotactic injection of nanoparticles, are being actively tested in vitro and in vivo in animal models. A significant variety of pre-clinical studies with polymeric nanoparticles for the treatment of GB are being conducted, with only a few nanoparticle-based drug delivery systems to date having entered clinical trials. Pre-clinical studies are key to testing the safety and efficacy of these novel anticancer therapies and will hopefully facilitate the testing of the clinical validity of this promising treatment method. Here we review the recent literature concerning the most frequently reported types of nanoparticles for the treatment of GB.
Collapse
Affiliation(s)
- Diogo Roque
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisbon, Portugal; (D.R.); (M.H.-C.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - Nuno Cruz
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (N.C.); (H.A.F.); (C.P.R.); (N.M.)
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (N.C.); (H.A.F.); (C.P.R.); (N.M.)
| | - Catarina Pinto Reis
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (N.C.); (H.A.F.); (C.P.R.); (N.M.)
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Matela
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (N.C.); (H.A.F.); (C.P.R.); (N.M.)
| | - Manuel Herculano-Carvalho
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisbon, Portugal; (D.R.); (M.H.-C.)
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - Claudia C. Faria
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisbon, Portugal; (D.R.); (M.H.-C.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
20
|
Mekala JR, Adusumilli K, Chamarthy S, Angirekula HSR. Novel sights on therapeutic, prognostic, and diagnostics aspects of non-coding RNAs in glioblastoma multiforme. Metab Brain Dis 2023; 38:1801-1829. [PMID: 37249862 PMCID: PMC10227410 DOI: 10.1007/s11011-023-01234-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Glioblastoma Multiforme (GBM) is the primary brain tumor and accounts for 200,000 deaths each year worldwide. The standard therapy includes surgical resection followed by temozolomide (TMZ)-based chemotherapy and radiotherapy. The survival period of GBM patients is only 12-15 months. Therefore, novel treatment modalities for GBM treatment are urgently needed. Mounting evidence reveals that non-coding RNAs (ncRNAs) were involved in regulating gene expression, the pathophysiology of GBM, and enhancing therapeutic outcomes. The combinatory use of ncRNAs, chemotherapeutic drugs, and tumor suppressor gene expression induction might provide an innovative, alternative therapeutic approach for managing GBM. Studies have highlighted the role of Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in prognosis and diagnosis. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Studies have also indicated the blood-brain barrier (BBB) as a crucial factor that hinders chemotherapy. Although several nanoparticle-mediated drug deliveries were degrading effectively against GBM in vitro conditions. However, the potential to cross the BBB and optimum delivery of oligonucleotide RNA into GBM cells in the brain is currently under intense clinical trials. Despite several advances in molecular pathogenesis, GBM remains resistant to chemo and radiotherapy. Targeted therapies have less clinical benefit due to high genetic heterogeneity and activation of alternative pathways. Thus, identifying GBM-specific prognostic pathways, essential genes, and genomic aberrations provide several potential benefits as subtypes of GBM. Also, these approaches will provide insights into new strategies to overcome the heterogenous nature of GBM, which will eventually lead to successful therapeutic interventions toward precision medicine and precision oncology.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India.
| | - Kowsalya Adusumilli
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Sahiti Chamarthy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Hari Sai Ram Angirekula
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
21
|
Yadav K, Sahu KK, Sucheta, Gnanakani SPE, Sure P, Vijayalakshmi R, Sundar VD, Sharma V, Antil R, Jha M, Minz S, Bagchi A, Pradhan M. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications. Int J Biol Macromol 2023; 241:124582. [PMID: 37116843 DOI: 10.1016/j.ijbiomac.2023.124582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
In the past few decades, substantial advancement has been made in nucleic acid (NA)-based therapies. Promising treatments include mRNA, siRNA, miRNA, and anti-sense DNA for treating various clinical disorders by modifying the expression of DNA or RNA. However, their effectiveness is limited due to their concentrated negative charge, instability, large size, and host barriers, which make widespread application difficult. The effective delivery of these medicines requires safe vectors that are efficient & selective while having non-pathogenic qualities; thus, nanomaterials have become an attractive option with promising possibilities despite some potential setbacks. Nanomaterials possess ideal characteristics, allowing them to be tuned into functional bio-entity capable of targeted delivery. In this review, current breakthroughs in the non-viral strategy of delivering NAs are discussed with the goal of overcoming challenges that would otherwise be experienced by therapeutics. It offers insight into a wide variety of existing NA-based therapeutic modalities and techniques. In addition to this, it provides a rationale for the use of non-viral vectors and a variety of nanomaterials to accomplish efficient gene therapy. Further, it discusses the potential for biomedical application of nanomaterials-based gene therapy in various conditions, such as cancer therapy, tissue engineering, neurological disorders, and infections.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | | | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - V D Sundar
- Department of Pharmaceutical Technology, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - Versha Sharma
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Ruchita Antil
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, England, United Kingdom of Great Britain and Northern Ireland
| | - Megha Jha
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, M.P., 484887, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | | |
Collapse
|
22
|
Fu J, Dong H, Wu J, Jin Y. Emerging Progress of RNA-Based Antitumor Therapeutics. Int J Biol Sci 2023; 19:3159-3183. [PMID: 37416764 PMCID: PMC10321292 DOI: 10.7150/ijbs.83732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
RNA-based therapeutics (e.g., mRNAs, siRNAs, microRNAs, ASOs, and saRNAs) have considerable potential for tumor treatment. The development and optimization of RNA modifications and delivery systems enable the stable and efficient delivery of RNA cargos in vivo to elicit an antitumor response. Targeted RNA-based therapeutics with multiple specificities and high efficacies are now available. In this review, we discuss progress in RNA-based antitumor therapeutics, including mRNAs, siRNAs, miRNAs, ASOs, saRNAs, RNA aptamers, and CRISPR-based gene editing. We focus on the immunogenicity, stability, translation efficiency, and delivery of RNA drugs, and summarize their optimization and the development of delivery systems. In addition, we describe the mechanisms by which RNA-based therapeutics induce antitumor responses. Furthermore, we review the merits and limitations of RNA cargos and their therapeutic potential for cancers.
Collapse
Affiliation(s)
- Jiayan Fu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Haiyang Dong
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
| | - Yongfeng Jin
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, China
| |
Collapse
|
23
|
Kurakula H, Vaishnavi S, Sharif MY, Ellipilli S. Emergence of Small Interfering RNA-Based Gene Drugs for Various Diseases. ACS OMEGA 2023; 8:20234-20250. [PMID: 37323391 PMCID: PMC10268023 DOI: 10.1021/acsomega.3c01703] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Small molecule, peptide, and protein-based drugs have been developed over decades to treat various diseases. The importance of gene therapy as an alternative to traditional drugs has increased after the discovery of gene-based drugs such as Gendicine for cancer and Neovasculgen for peripheral artery disease. Since then, the pharma sector is focusing on developing gene-based drugs for various diseases. After the discovery of the RNA interference (RNAi) mechanism, the development of siRNA-based gene therapy has been accelerated immensely. siRNA-based treatment for hereditary transthyretin-mediated amyloidosis (hATTR) using Onpattro and acute hepatic porphyria (AHP) by Givlaari and three more FDA-approved siRNA drugs has set up a milestone and further improved the confidence for the development of gene therapeutics for a spectrum of diseases. siRNA-based gene drugs have more advantages over other gene therapies and are under study to treat different types of diseases such as viral infections, cardiovascular diseases, cancer, and many more. However, there are a few bottlenecks to realizing the full potential of siRNA-based gene therapy. They include chemical instability, nontargeted biodistribution, undesirable innate immune responses, and off-target effects. This review provides a comprehensive view of siRNA-based gene drugs: challenges associated with siRNA delivery, their potential, and future prospects.
Collapse
Affiliation(s)
- Harshini Kurakula
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Swetha Vaishnavi
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Mohammed Yaseen Sharif
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Satheesh Ellipilli
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
24
|
Kurt AH, Olutas EB, Avcioglu F, Karakuş H, Sungur MA, Kara Oztabag C, Yıldırım M. Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:362-376. [PMID: 36998241 PMCID: PMC10043739 DOI: 10.3762/bjnano.14.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The presented study comprises the one-pot synthesis and the characterization of quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles (Ch/Q- and Ch/CA-Ag NPs), and their antibacterial and anticancer activities. The formation of Ch/Q- and Ch/CA-Ag NPs has been confirmed by ultraviolet-visible (UV-vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The characteristic surface plasmon resonance (SPR) absorption band has been found at 417 and 424 nm for Ch/Q- and Ch/CA-Ag NPs, respectively. The formation of a chitosan shell comprising quercetin and caffeic acid, which surround the colloidal core Ag NPs, was confirmed by UV-vis, and FTIR analyses, and monitored by TEM microscopy. The size of nanoparticles has been determined as 11.2 and 10.3 nm for Ch/Q- and Ch/CA-Ag, respectively. The anticancer activity of Ch/Q- and Ch/CA-Ag NPs has been evaluated against U-118 MG (human glioblastoma) and ARPE-19 (human retinal pigment epithelium) cells. Both NPs showed anticancer activity, but Ch/Q-Ag NPs seemed to be more effective on cancer cell lines (U-118 MG) in comparison to healthy ones (ARPE-19). Furthermore, the antibacterial activity of Ch/Q- and Ch/CA-Ag NPs against Gram-negative (P. aeruginosa and E. coli) and Gram-positive (S. aureus and S. epidermidis) bacteria was determined, and dose-dependent antibacterial effects were found.
Collapse
Affiliation(s)
- Akif Hakan Kurt
- Department of Medicinal Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Elif Berna Olutas
- Department of Chemistry, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Fatma Avcioglu
- Department of Medical Microbiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Hamza Karakuş
- Technology Transfer Application and Research Center, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Mehmet Ali Sungur
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Duzce University, 81620 Duzce, Türkiye
| | - Cansu Kara Oztabag
- Department of Interdisciplinary Neuroscience, Graduate Education Institute, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Muhammet Yıldırım
- Department of Chemistry, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye
| |
Collapse
|
25
|
Guo ZH, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang CY, Wu DD, Ji XY. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023; 28:1283. [PMID: 36770950 PMCID: PMC9921752 DOI: 10.3390/molecules28031283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023] Open
Abstract
Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.
Collapse
Affiliation(s)
- Zi-Hua Guo
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, No. 54 East Caizhengting St., Kaifeng 475000, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sufyan Razak
- Dow Medical College, John Hopkins Medical Center, School of Medicine, Baltimore, MD 21205, USA
| | - Chang-Yong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
26
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
27
|
Sil S, Bertilla J, Rupachandra S. A comprehensive review on RNA interference-mediated targeting of interleukins and its potential therapeutic implications in colon cancer. 3 Biotech 2023; 13:18. [PMID: 36568500 PMCID: PMC9768089 DOI: 10.1007/s13205-022-03421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Colon cancer is the world's fourth leading cause of death. It is cancer of the latter part of the large intestine, i.e. the colon. Chronic inflammation over a long period also leads to the development of cancer. Cancer in the colon region is arduous to diagnose and is detected at a later stage when it metastasizes to other parts of the body like the liver, lungs, peritoneum, etc. Colon cancer is a great example of solid tumours associated with chronic inflammation. Although conventional therapies are effective, they lose their effectiveness beyond a certain point. Relapse of the disease occurs frequently. RNA interference (RNAi) is emerging as a great tool to specifically attack the cancer cells of a target site like the colon. RNAi deals with epigenetic changes made in the defective cells which ultimately leads to their death without harming the healthy cells. In this review, two types of epigenetic modulators have been considered, namely siRNA and miRNA, and their effect on interleukins. Interleukins, a class of cytokines, are major inflammatory responses of the body that are released by immune cells like leukocytes and macrophages. Some of these interleukins are pro-inflammatory, thereby promoting inflammation which eventually causes cancer. RNAi can prevent colon cancer by inhibiting pro-inflammatory interleukins.
Collapse
Affiliation(s)
- Sagari Sil
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - Janet Bertilla
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - S. Rupachandra
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| |
Collapse
|
28
|
Gattupalli M, Dey P, Poovizhi S, Patel RB, Mishra D, Banerjee S. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
29
|
Kandasamy G, Maity D. Current Advancements in Self-assembling Nanocarriers-Based siRNA Delivery for Cancer Therapy. Colloids Surf B Biointerfaces 2022; 221:113002. [PMID: 36370645 DOI: 10.1016/j.colsurfb.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Different therapeutic practices for treating cancers have significantly evolved to compensate and/or overcome the failures in conventional methodologies. The demonstrated potentiality in completely inhibiting the tumors and in preventing cancer relapse has made nucleic acids therapy (NAT)/gene therapy as an attractive practice. This has been made possible because NAT-based cancer treatments are highly focused on the fundamental mechanisms - i.e., silencing the expression of oncogenic genes responsible for producing abnormal proteins (via messenger RNAs (mRNAs)). However, the future clinical translation of NAT is majorly dependent upon the effective delivery of the exogenous nucleic acids (especially RNAs - e.g., short interfering RNAs (siRNAs) - herein called biological drugs). Moreover, nano-based vehicles (i.e., nanocarriers) are involved in delivering them to prevent degradation and undesired bioaccumulation while enhancing the stability of siRNAs. Herein, we have initially discussed about three major types of self-assembling nanocarriers (liposomes, polymeric nanoparticles and exosomes). Later, we have majorly reviewed recent developments in non-targeted/targeted nanocarriers for delivery of biological drugs (individual/dual) to silence the most important genes/mRNAs accountable for inducing protein abnormality. These proteins include polo-like kinase 1 (PLK1), survivin, vascular endothelial growth factor (VEGF), B-cell lymphoma/leukaemia-2 (Bcl-2) and multi-drug resistance (MDR). Besides, the consequent therapeutic effects on cancer growth, invasion and/or metastasis have also been discussed. Finally, we have comprehensively reviewed the improvements achieved in the cutting-edge cancer therapeutics while delivering siRNAs in combination with clinically approved chemotherapeutic drugs.
Collapse
|
30
|
Choudhury H, Pandey M, Mohgan R, Jong JSJ, David RN, Ngan WY, Chin TL, Ting S, Kesharwani P, Gorain B. Dendrimer-based delivery of macromolecules for the treatment of brain tumor. BIOMATERIALS ADVANCES 2022; 141:213118. [PMID: 36182834 DOI: 10.1016/j.bioadv.2022.213118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Brain tumor represents the most lethal form of cancer with the highest mortality and morbidity rates irrespective of age and sex. Advancements in macromolecule-based therapy (such as nucleic acids and peptides) have shown promising roles in the treatment of brain tumor where the phenomenon of severe toxicities due to the conventional chemotherapeutic agents can be circumvented. Despite its preclinical progress, successful targeting of these macromolecules across the blood-brain barrier without altering their physical and chemical characteristics is of great challenge. With the advent of nanotechnology, nowadays targeted delivery of therapeutics is being explored extensively and these macromolecules, including peptides and nucleic acids, have shown initial success in the treatment, where dendrimer has shown its potential for optimal delivery. Dendrimers are being favored as a mode of drug delivery due to their nano-spherical size and structure, high solubilization potential, multivalent surface, and high loading capacity, where biomolecule resembling characteristics of dendritic 3D structures has shown effective delivery of various therapeutic agents to the brain. Armed with targeting ligands to these dendrimers further expedite the transportation of these multifunctional shuttles specifically to the glioblastoma cells. Thus, a focus has been made in this review on therapeutic applications of dendrimer platforms in brain tumor treatment. The future development of dendrimers as a potential platform for nucleic acid and peptide delivery and its promising clinical application could provide effective and target-specific treatment against brain tumors.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana 123031, India.
| | - Raxshanaa Mohgan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Jim Sii Jack Jong
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Roshini Nicole David
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Wan Yi Ngan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Tze Liang Chin
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Shereen Ting
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
31
|
Vaughan HJ, Zamboni CG, Hassan LF, Radant NP, Jacob D, Mease RC, Minn I, Tzeng SY, Gabrielson KL, Bhardwaj P, Guo X, Francisco D, Pomper MG, Green JJ. Polymeric nanoparticles for dual-targeted theranostic gene delivery to hepatocellular carcinoma. SCIENCE ADVANCES 2022; 8:eabo6406. [PMID: 35857843 PMCID: PMC9299552 DOI: 10.1126/sciadv.abo6406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/03/2022] [Indexed: 05/29/2023]
Abstract
Hepatocellular carcinoma (HCC) develops predominantly in the inflammatory environment of a cirrhotic liver caused by hepatitis, toxin exposure, or chronic liver disease. A targeted therapeutic approach is required to enable cancer killing without causing toxicity and liver failure. Poly(beta-amino-ester) (PBAE) nanoparticles (NPs) were used to deliver a completely CpG-free plasmid harboring mutant herpes simplex virus type 1 sr39 thymidine kinase (sr39) DNA to human HCC cells. Transfection with sr39 enables cancer cell killing with the prodrug ganciclovir and accumulation of 9-(4-18F-fluoro-3-hydroxymethylbutyl)guanine (18F-FHBG) for in vivo imaging. Targeting was achieved using a CpG-free human alpha fetoprotein (AFP) promoter (CpGf-AFP-sr39). Expression was restricted to AFP-producing HCC cells, enabling selective transfection of orthotopic HCC xenografts. CpGf-AFP-sr39 NP treatment resulted in 62% reduced tumor size, and therapeutic gene expression was detectable by positron emission tomography (PET). This systemic nanomedicine achieved tumor-specific delivery, therapy, and imaging, representing a promising platform for targeted treatment of HCC.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Camila G. Zamboni
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Laboni F. Hassan
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nicholas P. Radant
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Desmond Jacob
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Il Minn
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kathleen L. Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pranshu Bhardwaj
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Francisco
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Martin G. Pomper
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering and the Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering and the Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Departments of Neurosurgery, Oncology, Ophthalmology, and Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
32
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
33
|
Teng XQ, Qu J, Li GH, Zhuang HH, Qu Q. Small Interfering RNA for Gliomas Treatment: Overcoming Hurdles in Delivery. Front Cell Dev Biol 2022; 10:824299. [PMID: 35874843 PMCID: PMC9304887 DOI: 10.3389/fcell.2022.824299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are central nervous system tumors originating from glial cells, whose incidence and mortality rise in coming years. The current treatment of gliomas is surgery combined with chemotherapy or radiotherapy. However, developing therapeutic resistance is one of the significant challenges. Recent research suggested that small interfering RNA (siRNA) has excellent potential as a therapeutic to silence genes that are significantly involved in the manipulation of gliomas’ malignant phenotypes, including proliferation, invasion, metastasis, therapy resistance, and immune escape. However, it is challenging to deliver the naked siRNA to the action site in the cells of target tissues. Therefore, it is urgent to develop delivery strategies to transport siRNA to achieve the optimal silencing effect of the target gene. However, there is no systematic discussion about siRNAs’ clinical potential and delivery strategies in gliomas. This review mainly discusses siRNAs’ delivery strategies, especially nanotechnology-based delivery systems, as a potential glioma therapy. Moreover, we envisage the future orientation and challenges in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Xin-Qi Teng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Guo-Hua Li
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qiang Qu,
| |
Collapse
|
34
|
Shamshiripour P, Hajiahmadi F, Lotfi S, Esmaeili NR, Zare A, Akbarpour M, Ahmadvand D. Next-Generation Anti-Angiogenic Therapies as a Future Prospect for Glioma Immunotherapy; From Bench to Bedside. Front Immunol 2022; 13:859633. [PMID: 35757736 PMCID: PMC9231436 DOI: 10.3389/fimmu.2022.859633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (grade IV glioma) is the most aggressive histopathological subtype of glial tumors with inordinate microvascular proliferation as one of its key pathological features. Extensive angiogenesis in the tumor microenvironment supplies oxygen and nutrients to tumoral cells; retains their survival under hypoxic conditions; and induces an immunosuppressive microenvironment. Anti-angiogenesis therapy for high-grade gliomas has long been studied as an adjuvant immunotherapy strategy to overcome tumor growth. In the current review, we discussed the underlying molecular mechanisms contributing to glioblastoma aberrant angiogenesis. Further, we discussed clinical applications of monoclonal antibodies, tyrosine kinase inhibitors, and aptamers as three major subgroups of anti-angiogenic immunotherapeutics and their limitations. Moreover, we reviewed clinical and preclinical applications of small interfering RNAs (siRNAs) as the next-generation anti-angiogenic therapeutics and summarized their potential advantages and limitations. siRNAs may serve as next-generation anti-angiogenic therapeutics for glioma. Additionally, application of nanoparticles as a delivery vehicle could increase their selectivity and lower their off-target effects.
Collapse
Affiliation(s)
- Parisa Shamshiripour
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Hajiahmadi
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Lotfi
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Robab Esmaeili
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Zare
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Advanced Cellular Therapeutics Facility, David and Etta Jonas Center for Cellular Therapy, Hematopoietic Cellular Therapy Program, The University of Chicago Medical Center, Chicago, IL, United States.,Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno-TACT), Universal Science and Education Research Network (USERN), Tehran, Iran
| | - Davoud Ahmadvand
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Cojocaru E, Ghitman J, Stan R. Electrospun-Fibrous-Architecture-Mediated Non-Viral Gene Therapy Drug Delivery in Regenerative Medicine. Polymers (Basel) 2022; 14:2647. [PMID: 35808692 PMCID: PMC9269101 DOI: 10.3390/polym14132647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022] Open
Abstract
Gene-based therapy represents the latest advancement in medical biotechnology. The principle behind this innovative approach is to introduce genetic material into specific cells and tissues to stimulate or inhibit key signaling pathways. Although enormous progress has been achieved in the field of gene-based therapy, challenges connected to some physiological impediments (e.g., low stability or the inability to pass the cell membrane and to transport to the desired intracellular compartments) still obstruct the exploitation of its full potential in clinical practices. The integration of gene delivery technologies with electrospun fibrous architectures represents a potent strategy that may tackle the problems of stability and local gene delivery, being capable to promote a controlled and proficient release and expression of therapeutic genes in the targeted cells, improving the therapeutic outcomes. This review aims to outline the impact of electrospun-fibrous-architecture-mediated gene therapy drug delivery, and it emphatically discusses the latest advancements in their formulation and the therapeutic outcomes of these systems in different fields of regenerative medicine, along with the main challenges faced towards the translation of promising academic results into tangible products with clinical application.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Raluca Stan
- Department of Organic Chemistry “C. Nenitzescu”, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| |
Collapse
|
36
|
Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders. NANOMATERIALS 2022; 12:nano12132140. [PMID: 35807977 PMCID: PMC9268720 DOI: 10.3390/nano12132140] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023]
Abstract
Neurological disorders (NDs) are recognized as one of the major health concerns globally. According to the World Health Organization (WHO), neurological disorders are one of the main causes of mortality worldwide. Neurological disorders include Alzheimer’s disease, Parkinson′s disease, Huntington′s disease, Amyotrophic lateral sclerosis, Frontotemporal dementia, Prion disease, Brain tumor, Spinal cord injury, and Stroke. These diseases are considered incurable diseases because no specific therapies are available to cross the blood-brain barrier (BBB) and reach the brain in a significant amount for the pharmacological effect in the brain. There is a need for the development of strategies that can improve the efficacy of drugs and circumvent BBB. One of the promising approaches is the use of different types of nano-scale materials. These nano-based drugs have the ability to increase the therapeutic effect, reduce toxicity, exhibit good stability, targeted delivery, and drug loading capacity. Different types and shapes of nanomaterials have been widely used for the treatment of neurological disorders, including quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These nanoparticles have unique characteristics, including sensitivity, selectivity, and the ability to cross the BBB when used in nano-sized particles, and are widely used for imaging studies and treatment of NDs. In this review, we briefly summarized the recent literature on the use of various nanomaterials and their mechanism of action for the treatment of various types of neurological disorders.
Collapse
|
37
|
George R, Hehlgans S, Fleischmann M, Rödel C, Fokas E, Rödel F. Advances in nanotechnology-based platforms for survivin-targeted drug discovery. Expert Opin Drug Discov 2022; 17:733-754. [PMID: 35593177 DOI: 10.1080/17460441.2022.2077329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Due to its unique functional impact on multiple cancer cell circuits including proliferation, apoptosis, tumor dissemination, DNA damage repair and immune response, the inhibitor of apoptosis protein (IAP) survivin has gained high interest as a molecular target and a multitude of therapeutics were developed to interfere with survivin expression and functionality. First clinical evaluations of these therapeutics, however, were disappointing highlighting the need to develop advanced delivery systems of survivin-targeting molecules to increase stability, bioavailability as well as the selective guidance to tumor tissue. AREAS COVERED : This review focuses on advancements in nanocarriers to molecularly target survivin in human malignancies. A plethora of nanoparticle platforms, including liposomes, polymeric systems, dendrimers, inorganic nanocarriers, RNA/DNA nanotechnology and exosomes are discussed in the background of survivin-tailored RNA interference, small molecule inhibitors, dominant negative mutants or survivin vaccination or combined modality treatment with chemotherapeutic drugs and photo- dynamic/photothermal strategies. EXPERT OPINION Novel therapeutic approaches include the use of biocompatible nanoformulations carrying gene silencing or drug molecules to directly or indirectly target proteins, allow for a more precise and controlled delivery of survivin therapeutics. Moreover, surface modification of these nanocarriers may result in a tumor entity specific delivery. Therefore, nanomedicine exploiting survivin-tailored strategies in a multimodal background is considered the way forwaerd to enhance the development of future personalized medicine.
Collapse
Affiliation(s)
- Rosemol George
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Maximillian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| | - Emmanouil Fokas
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| |
Collapse
|
38
|
Chuang CC, Lan YH, Lu YJ, Weng YL, Chen JP. Targeted delivery of irinotecan and SLP2 shRNA with GRP-conjugated magnetic graphene oxide for glioblastoma treatment. Biomater Sci 2022; 10:3201-3222. [PMID: 35579261 DOI: 10.1039/d2bm00420h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic nanoparticles (MNPs) are useful for magnetic targeted drug delivery while ligand-mediated active targeting is another common delivery strategy for cancer therapy. In this work, we intend to prepare magnetic graphene oxide (mGO) by chemical co-precipitation of MNPs on the GO surface, followed by conjugation of the gastrin releasing peptide (GRP) as a targeting ligand, for dual targeted drug/gene delivery in invasive brain glioma treatment. mGO was grafted with chitosan, complexed with shRNA plasmid DNA for stomatin-like protein 2 (SLP2) gene silencing, modified with urocanic acid for plasmid DNA endosomal escape, PEGylated for GRP conjugation, and loaded with the chemotherapeutic drug irinotecan (CPT-11) by π-π interaction for pH-responsive drug release (mGOCUG/CPT-11/shRNA). In addition to the in depth characterization of the physico-chemical and biological properties during each preparation step, we also study the loading/pH-responsive release behavior of CPT-11 and the shRNA plasmid loading/cell transfection efficiency. The targeting and antitumor efficacies of the nanocomposite were studied with U87 human glioblastoma cells in vitro. An in vivo study revealed that intravenous administration followed by magnetic guidance results in the efficient targeted delivery of mGOCUG/CPT-11/shRNA to orthotopic brain tumors in nude mice, and it exhibits excellent antitumor efficacy with a reduced tumor growth rate and prolonged animal survival time. Our work thus highlights a multifunctional mGO-based drug/gene delivery platform for effective combination cancer therapy in glioblastoma treatment.
Collapse
Affiliation(s)
- Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yu-Hsiang Lan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yu-Lun Weng
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33305, Taiwan
| | - Jyh-Ping Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan. .,Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33305, Taiwan.,Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan.,Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan.,Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
39
|
Ezra Manicum AL, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Abstract
RNA-based gene therapy requires therapeutic RNA to function inside target cells without eliciting unwanted immune responses. RNA can be ferried into cells using non-viral drug delivery systems, which circumvent the limitations of viral delivery vectors. Here, we review the growing number of RNA therapeutic classes, their molecular mechanisms of action, and the design considerations for their respective delivery platforms. We describe polymer-based, lipid-based, and conjugate-based drug delivery systems, differentiating between those that passively and those that actively target specific cell types. Finally, we describe the path from preclinical drug delivery research to clinical approval, highlighting opportunities to improve the efficiency with which new drug delivery systems are discovered.
Collapse
Affiliation(s)
- Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
41
|
Byun MJ, Lim J, Kim SN, Park DH, Kim TH, Park W, Park CG. Advances in Nanoparticles for Effective Delivery of RNA Therapeutics. BIOCHIP JOURNAL 2022; 16:128-145. [PMID: 35261724 PMCID: PMC8891745 DOI: 10.1007/s13206-022-00052-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 12/17/2022]
Abstract
RNA therapeutics, including messenger RNA (mRNA) and small interfering RNA (siRNA), are genetic materials that mediate the translation of genetic direction from genes to induce or inhibit specific protein production. Although the interest in RNA therapeutics is rising globally, the absence of an effective delivery system is an obstacle to the clinical application of RNA therapeutics. Additionally, immunogenicity, short duration of protein expression, unwanted enzymatic degradation, and insufficient cellular uptake could limit the therapeutic efficacy of RNA therapeutics. In this regard, novel platforms based on nanoparticles are crucial for delivering RNAs to the targeted site to increase efficiency without toxicity. In this review, the most recent status of nanoparticles as RNA delivery vectors, with a focus on polymeric nanoparticles, peptide-derived nanoparticles, inorganic nanoparticles, and hybrid nanoparticles, is discussed. These nanoparticular platforms can be utilized for safe and effective RNA delivery to augment therapeutic effects. Ultimately, RNA therapeutics encapsulated in nanoparticle-based carriers will be used to treat many diseases and save lives.
Collapse
Affiliation(s)
- Min Ji Byun
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Se-Na Kim
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi 16419 Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Gyeonggi 16419 Republic of Korea
| |
Collapse
|
42
|
Ko M, Makena MR, Schiapparelli P, Suarez-Meade P, Mekile AX, Lal B, Lopez-Bertoni H, Kozielski KL, Green JJ, Laterra J, Quiñones-Hinojosa A, Rao R. The endosomal pH regulator NHE9 is a driver of stemness in glioblastoma. PNAS NEXUS 2022; 1:pgac013. [PMID: 35387234 PMCID: PMC8974362 DOI: 10.1093/pnasnexus/pgac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 09/26/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
A small population of self-renewing stem cells initiate tumors and maintain therapeutic resistance in glioblastoma (GBM). Given the limited treatment options and dismal prognosis for this disease, there is urgent need to identify drivers of stem cells that could be druggable targets. Previous work showed that the endosomal pH regulator NHE9 is upregulated in GBM and correlates with worse survival prognosis. Here, we probed for aberrant signaling pathways in patient-derived GBM cells and found that NHE9 increases cell surface expression and phosphorylation of multiple receptor tyrosine kinases (RTKs) by promoting their escape from lysosomal degradation. Downstream of NHE9-mediated receptor activation, oncogenic signaling pathways converged on the JAK2-STAT3 transduction axis to induce pluripotency genes Oct4 and Nanog and suppress markers of glial differentiation. We used both genetic and chemical approaches to query the role of endosomal pH in GBM phenotypes. Loss-of-function mutations in NHE9 that failed to alkalinize endosomal lumen did not increase self-renewal capacity of gliomaspheres in vitro. However, monensin, a chemical mimetic of Na+/H+ exchanger activity, and the H+ pump inhibitor bafilomycin bypassed NHE9 to directly alkalinize the endosomal lumen resulting in stabilization of RTKs and induction of Oct4 and Nanog. Using orthotopic models of primary GBM cells we found that NHE9 increased tumor initiation in vivo. We propose that NHE9 initiates inside-out signaling from the endosomal lumen, distinct from the established effects of cytosolic and extracellular pH on tumorigenesis. Endosomal pH may be an attractive therapeutic target that diminishes stemness in GBM, agnostic of specific receptor subtype.
Collapse
Affiliation(s)
- Myungjun Ko
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Monish R Makena
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Paula Schiapparelli
- Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Paola Suarez-Meade
- Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Allatah X Mekile
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristen L Kozielski
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Jordan J Green
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
43
|
Vaughan HJ, Green JJ. Recent Advances in Gene Therapy for Cancer Theranostics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100300. [PMID: 34738046 PMCID: PMC8562678 DOI: 10.1016/j.cobme.2021.100300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is great interest in developing gene therapies for many disease indications, including cancer. However, successful delivery of nucleic acids to tumor cells is a major challenge, and in vivo efficacy is difficult to predict. Cancer theranostics is an approach combining anti-tumor therapy with imaging or diagnostic capabilities, with the goal of monitoring successful delivery and efficacy of a therapeutic agent in a tumor. Successful theranostics must maintain a high degree of anticancer targeting and efficacy while incorporating high-contrast imaging agents that are nontoxic and compatible with clinical imaging modalities. This review highlights recent advancements in theranostic strategies, including imaging technologies and genetic engineering approaches. Graphical Abstract.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
44
|
Karlsson J, Luly KM, Tzeng SY, Green JJ. Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies. Adv Drug Deliv Rev 2021; 179:113999. [PMID: 34715258 PMCID: PMC8720292 DOI: 10.1016/j.addr.2021.113999] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) is an aggressive central nervous system cancer with a dismal prognosis. The standard of care involves surgical resection followed by radiotherapy and chemotherapy, but five-year survival is only 5.6% despite these measures. Novel therapeutic approaches, such as immunotherapies, targeted therapies, and gene therapies, have been explored to attempt to extend survival for patients. Nanoparticles have been receiving increasing attention as promising vehicles for non-viral nucleic acid delivery in the context of GBM, though delivery is often limited by low blood-brain barrier permeability, particle instability, and low trafficking to target brain structures and cells. In this review, nanoparticle design considerations and new advances to overcome nucleic acid delivery challenges to treat brain cancer are summarized and discussed.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kathryn M. Luly
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
45
|
Garcia CA, Bhargav AG, Brooks M, Suárez-Meade P, Mondal SK, Zarco N, ReFaey K, Jentoft M, Middlebrooks EH, Snuderl M, Carrano A, Guerrero-Cazares H, Schiapparelli P, Sarabia-Estrada R, Quiñones-Hinojosa A. Functional Characterization of Brain Tumor-Initiating Cells and Establishment of GBM Preclinical Models that Incorporate Heterogeneity, Therapy, and Sex Differences. Mol Cancer Ther 2021; 20:2585-2597. [PMID: 34465594 PMCID: PMC8687628 DOI: 10.1158/1535-7163.mct-20-0547] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/09/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain cancer in adults where tumor cell heterogeneity and sex differences influence clinical outcomes. Here, we functionally characterize three male and three female patient-derived GBM cell lines, identify protumorigenic BTICs, and create novel male and female preclinical models of GBM. Cell lines were evaluated on the following features: proliferation, stemness, migration, tumorigenesis, clinical characteristics, and sensitivity to radiation, TMZ, rhTNFSF10 (rhTRAIL), and rhBMP4 All cell lines were classified as GBM according to epigenetic subtyping, were heterogenous and functionally distinct from one another, and re-capitulated features of the original patient tumor. In establishing male and female preclinical models, it was found that two male-derived GBM cell lines (QNS108 and QNS120) and one female-derived GBM cell line (QNS315) grew at a faster rate in female mice brains. One male-derived GBM cell line (QNS108) decreased survival in female mice in comparison with male mice. However, no survival differences were observed for mice injected with a female-derived cell line (QNS315). In summary, a panel of six GBM patient-derived cell lines were functionally characterized, and it was shown that BTIC lines can be used to construct sex-specific models with differential phenotypes for additional studies.
Collapse
Affiliation(s)
- Cesar A Garcia
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Brain Tumor Stem Cell Laboratory, Mayo Clinic, Jacksonville, Florida
| | - Adip G Bhargav
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Brain Tumor Stem Cell Laboratory, Mayo Clinic, Jacksonville, Florida
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mieu Brooks
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Brain Tumor Stem Cell Laboratory, Mayo Clinic, Jacksonville, Florida
| | - Paola Suárez-Meade
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Brain Tumor Stem Cell Laboratory, Mayo Clinic, Jacksonville, Florida
| | - Sujan K Mondal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Brain Tumor Stem Cell Laboratory, Mayo Clinic, Jacksonville, Florida
| | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Neurogenesis and Brain Tumors Laboratory, Mayo Clinic, Jacksonville, Florida
| | - Karim ReFaey
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
| | - Mark Jentoft
- Department of Pathology, Mayo Clinic, Jacksonville, Florida
| | - Erik H Middlebrooks
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Department of Radiology, Mayo Clinic, Jacksonville, Florida
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health, New York, New York
| | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Neurogenesis and Brain Tumors Laboratory, Mayo Clinic, Jacksonville, Florida
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Neurogenesis and Brain Tumors Laboratory, Mayo Clinic, Jacksonville, Florida
| | - Paula Schiapparelli
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Brain Tumor Stem Cell Laboratory, Mayo Clinic, Jacksonville, Florida
| | - Rachel Sarabia-Estrada
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Brain Tumor Stem Cell Laboratory, Mayo Clinic, Jacksonville, Florida
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida.
- Brain Tumor Stem Cell Laboratory, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
46
|
Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy. Cells 2021; 10:cells10123348. [PMID: 34943856 PMCID: PMC8699513 DOI: 10.3390/cells10123348] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of death and is the fourth most malignant tumor in men. The epigenetic and genetic alterations appear to be responsible for development of PC. Small interfering RNA (siRNA) is a powerful genetic tool that can bind to its target and reduce expression level of a specific gene. The various critical genes involved in PC progression can be effectively targeted using diverse siRNAs. Moreover, siRNAs can enhance efficacy of chemotherapy and radiotherapy in inhibiting PC progression. However, siRNAs suffer from different off target effects and their degradation by enzymes in serum can diminish their potential in gene silencing. Loading siRNAs on nanoparticles can effectively protect them against degradation and can inhibit off target actions by facilitating targeted delivery. This can lead to enhanced efficacy of siRNAs in PC therapy. Moreover, different kinds of nanoparticles such as polymeric nanoparticles, lipid nanoparticles and metal nanostructures have been applied for optimal delivery of siRNAs that are discussed in this article. This review also reveals that how naked siRNAs and their delivery systems can be exploited in treatment of PC and as siRNAs are currently being applied in clinical trials, significant progress can be made by translating the current findings into the clinical settings.
Collapse
|
47
|
Iqbal S, Luo B, Melamed JR, Day ES. Critical Evaluation of Different Lysosomal Labeling Methods Used to Analyze RNA Nanocarrier Trafficking in Cells. Bioconjug Chem 2021; 32:2245-2256. [PMID: 34543006 PMCID: PMC9014481 DOI: 10.1021/acs.bioconjchem.1c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of nucleic acids to regulate gene expression is a rapidly developing field with immense clinical potential. Nanomaterials are frequently used to deliver nucleic acids into cells as they can overcome the poor cellular uptake and endo/lysosomal degradation of bare nucleic acids. For these nanocarriers to be effective, they must escape endo/lysosomal compartments to deliver their nucleic acid cargo into the cytosol (for ribonucleic acid (RNA)) or nucleus (for deoxyribonucleic acid (DNA)). This process is poorly understood and remains an area of active research toward the goal of developing effective delivery strategies. Fluorescent endo/lysosomal markers are among the most widely employed tools used to evaluate the endosomal escape of nucleic acid nanocarriers. However, the endo/lysosomal labeling method may alter the extent of and route of nanocarrier uptake by cells. The impact of these markers on cellular function and cell-nanocarrier interactions has not been probed in a systematic manner. To investigate this, we compared the effects of several common lysosomal labeling methods, namely, LysoTracker Red (LT Red), transient lysosomal-associated membrane protein 1-mutant green fluorescent protein (LAMP1-mGFP) transfection (Transient GFP), and stable lentiviral LAMP1-mGFP transfection (Stable GFP), on cellular metabolic activity, nanocarrier uptake, nanocarrier/lysosomal label colocalization, and gene silencing potency in U87 glioblastoma and MDA-MB-231 breast cancer cells using polyethyleneimine (PEI)/ribonucleic acid (RNA) polyplexes as a model nanocarrier. In both U87s and MDA-MB-231s, Transient GFP and LT Red labeling reduced metabolic activity relative to untransfected (Parental) cells, while Stable GFP labeling increased metabolic activity. Congruently, flow cytometry indicates Stable GFP cells have greater polyplex uptake than LT Red-labeled cells in both cell lines. Despite these similar trends in uptake, polyplex intracellular trafficking differs in the two cell lines, as confocal imaging revealed greater polyplex/lysosome colocalization in Stable GFP U87 cells than LT Red-labeled U87 cells, while the trend was reversed in MBA-MB-231s. The level of RNA-mediated gene silencing achieved in Parental versus Stable GFP U87 and MDA-MB-231 cells agreed with the observed levels of polyplex/lysosome colocalization, supporting the established concept that endosomal escape is the rate-limiting step for RNA interference. These findings indicate that lysosomal labels can profoundly alter cellular function and cell-nanocarrier interactions, presenting critical new considerations for researchers investigating nanoparticle trafficking.
Collapse
Affiliation(s)
- Shoaib Iqbal
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Benjamin Luo
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Jilian R Melamed
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
- Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
- Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, Delaware 19713, United States
| |
Collapse
|
48
|
Sharma RK, Calderon C, Vivas-Mejia PE. Targeting Non-coding RNA for Glioblastoma Therapy: The Challenge of Overcomes the Blood-Brain Barrier. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:678593. [PMID: 35047931 PMCID: PMC8757885 DOI: 10.3389/fmedt.2021.678593] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant form of all primary brain tumors, and it is responsible for around 200,000 deaths each year worldwide. The standard therapy for GBM treatment includes surgical resection followed by temozolomide-based chemotherapy and/or radiotherapy. With this treatment, the median survival rate of GBM patients is only 15 months after its initial diagnosis. Therefore, novel and better treatment modalities for GBM treatment are urgently needed. Mounting evidence indicates that non-coding RNAs (ncRNAs) have critical roles as regulators of gene expression. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are among the most studied ncRNAs in health and disease. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Several dysregulated miRNAs and lncRNAs have been identified in GBM cell lines and GBM tumor samples. Some of them have been proposed as diagnostic and prognostic markers, and as targets for GBM treatment. Most ncRNA-based therapies use oligonucleotide RNA molecules which are normally of short life in circulation. Nanoparticles (NPs) have been designed to increase the half-life of oligonucleotide RNAs. An additional challenge faced not only by RNA oligonucleotides but for therapies designed for brain-related conditions, is the presence of the blood-brain barrier (BBB). The BBB is the anatomical barrier that protects the brain from undesirable agents. Although some NPs have been derivatized at their surface to cross the BBB, optimal NPs to deliver oligonucleotide RNA into GBM cells in the brain are currently unavailable. In this review, we describe first the current treatments for GBM therapy. Next, we discuss the most relevant miRNAs and lncRNAs suggested as targets for GBM therapy. Then, we compare the current drug delivery systems (nanocarriers/NPs) for RNA oligonucleotide delivery, the challenges faced to send drugs through the BBB, and the strategies to overcome this barrier. Finally, we categorize the critical points where research should be the focus in order to design optimal NPs for drug delivery into the brain; and thus move the Oligonucleotide RNA-based therapies from the bench to the clinical setting.
Collapse
Affiliation(s)
- Rohit K. Sharma
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Carlos Calderon
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Pablo E. Vivas-Mejia
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
49
|
Song P, Song N, Li L, Wu M, Lu Z, Zhao X. Angiopep-2-Modified Carboxymethyl Chitosan-Based pH/Reduction Dual-Stimuli-Responsive Nanogels for Enhanced Targeting Glioblastoma. Biomacromolecules 2021; 22:2921-2934. [PMID: 34180218 DOI: 10.1021/acs.biomac.1c00314] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glioblastoma (GBM) is a fatal brain tumor with poor prognosis. Blood-brain barrier (BBB) prevents the effective delivery of chemotherapeutic agents to GBM. Herein, we developed a pH/reduction-sensitive carboxymethyl chitosan nanogel (CMCSN) modified by targeting peptide angiopep-2 (ANG) and loaded with doxorubicin (DOX). The multifunctional nanogel (DOX-ANG-CMCSN) exhibited good pH and reduction sensitivity, ideal stability, and biocompatibility. Its hydrodynamic diameter was 190 nm, drug loading was 12.7%, and the cumulative release rate of 24 h was 82.3% under the simulated tumor microenvironment. More importantly, the modification of ANG significantly enhanced BBB penetration and tumor targeting ability both in vivo and in vitro. DOX-ANG-CMCSN achieved 2-3-fold higher uptake and an enhanced antitumor activity compared with nontargeted DOX-CMCSN. Therefore, the targeted nanogels with the pH/reduction dual-stimuli response may provide a promising platform for GBM-targeted chemotherapy.
Collapse
Affiliation(s)
- Panpan Song
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Nannan Song
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Li Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Minghao Wu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhongxia Lu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
50
|
Tseng YY, Chen TY, Liu SJ. Role of Polymeric Local Drug Delivery in Multimodal Treatment of Malignant Glioma: A Review. Int J Nanomedicine 2021; 16:4597-4614. [PMID: 34267515 PMCID: PMC8275179 DOI: 10.2147/ijn.s309937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant gliomas (MGs) are the most common and devastating primary brain tumor. At present, surgical interventions, radiotherapy, and chemotherapy are only marginally effective in prolonging the life expectancy of patients with MGs. Inherent heterogeneity, aggressive invasion and infiltration, intact physical barriers, and the numerous mechanisms underlying chemotherapy and radiotherapy resistance contribute to the poor prognosis for patients with MGs. Various studies have investigated methods to overcome these obstacles in MG treatment. In this review, we address difficulties in MG treatment and focus on promising polymeric local drug delivery systems. In contrast to most local delivery systems, which are directly implanted into the residual cavity after intratumoral injection or the surgical removal of a tumor, some rapidly developing and promising nanotechnological methods—including surface-decorated nanoparticles, magnetic nanoparticles, and focused ultrasound assist transport—are administered through (systemic) intravascular injection. We also discuss further synergistic and multimodal strategies for heightening therapeutic efficacy. Finally, we outline the challenges and therapeutic potential of these polymeric drug delivery systems.
Collapse
Affiliation(s)
- Yuan-Yun Tseng
- Department of Neurosurgery, New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Tai-Yuan Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkuo, Tao-Yuan, Taiwan
| |
Collapse
|