1
|
Sarikhani E, Meganathan DP, Larsen AKK, Rahmani K, Tsai CT, Lu CH, Marquez-Serrano A, Sadr L, Li X, Dong M, Santoro F, Cui B, Klausen LH, Jahed Z. Engineering the Cellular Microenvironment: Integrating Three-Dimensional Nontopographical and Two-Dimensional Biochemical Cues for Precise Control of Cellular Behavior. ACS NANO 2024; 18:19064-19076. [PMID: 38978500 PMCID: PMC11271182 DOI: 10.1021/acsnano.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
The development of biomaterials capable of regulating cellular processes and guiding cell fate decisions has broad implications in tissue engineering, regenerative medicine, and cell-based assays for drug development and disease modeling. Recent studies have shown that three-dimensional (3D) nanoscale physical cues such as nanotopography can modulate various cellular processes like adhesion and endocytosis by inducing nanoscale curvature on the plasma and nuclear membranes. Two-dimensional (2D) biochemical cues such as protein micropatterns can also regulate cell function and fate by controlling cellular geometries. Development of biomaterials with precise control over nanoscale physical and biochemical cues can significantly influence programming cell function and fate. In this study, we utilized a laser-assisted micropatterning technique to manipulate the 2D architectures of cells on 3D nanopillar platforms. We performed a comprehensive analysis of cellular and nuclear morphology and deformation on both nanopillar and flat substrates. Our findings demonstrate the precise engineering of single cell architectures through 2D micropatterning on nanopillar platforms. We show that the coupling between the nuclear and cell shape is disrupted on nanopillar surfaces compared to flat surfaces. Furthermore, our results suggest that cell elongation on nanopillars enhances nanopillar-induced endocytosis. We believe our platform serves as a versatile tool for further explorations into programming cell function and fate through combined physical cues that create nanoscale curvature on cell membranes and biochemical cues that control the geometry of the cell.
Collapse
Affiliation(s)
- Einollah Sarikhani
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Dhivya Pushpa Meganathan
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | | | - Keivan Rahmani
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Ching-Ting Tsai
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Chih-Hao Lu
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Abel Marquez-Serrano
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Leah Sadr
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Xiao Li
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Mingdong Dong
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark
| | - Francesca Santoro
- Center
for Advanced Biomaterials for Healthcare, Tissue Electronics, Instituto Italiano di Tecnologia, Naples 80125, Italy
- Faculty
of Electrical Engineering and IT, RWTH, Aachen 52074, Germany
- Institute
for Biological Information Processing-Bioelectronics, Forschungszentrum
Juelich, Julich 52428, Germany
| | - Bianxiao Cui
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | | | - Zeinab Jahed
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
- Department
of Bioengineering, University of California
San Diego, La Jolla ,California 92093, United States
| |
Collapse
|
2
|
Lacueva-Aparicio A, Martínez-Gimeno L, Torcal P, Ochoa I, Giménez I. Advanced Kidney Models In Vitro Using the Established Cell Line Renal Proximal Tubular Epithelial/Telomerase Reverse Transcriptase1 for Nephrotoxicity Assays. Biomimetics (Basel) 2024; 9:446. [PMID: 39056887 PMCID: PMC11275192 DOI: 10.3390/biomimetics9070446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Nephrotoxicity stands as one of the most limiting effects in the development and validation of new drugs. The kidney, among the organs evaluated in toxicity assessments, has a higher susceptibility, with nephrotoxic potential frequently evading detection until late in clinical trials. Traditional cell culture, which has been widely used for decades, does not recapitulate the structure and complexity of the native tissue, which can affect cell function, and the response to cytotoxins does not resemble what occurs in the kidney. In the current study, we aimed to address these challenges by creating in vitro kidney models that faithfully biomimic the dynamics of the renal proximal tubule, using the well-established RPTEC/TERT1 cell line. For doing so, two models were developed, one recreating tubule-like structures (2.5D model) and the other using microfluidic technology (kidney-on-a-chip). The 2.5D model allowed tubular structures to be generated in the absence of hydrogels, and the kidney-on-a-chip model allowed shear stress to be applied to the cell culture, which is a physiological stimulus in the renal tissue. After characterization of both models, different nephrotoxic compounds such as cisplatin, tacrolimus, and daunorubicin were used to study cell responses after treatment. The developed models in our study could be a valuable tool for pre-clinical nephrotoxic testing of drugs and new compounds.
Collapse
Affiliation(s)
- Alodia Lacueva-Aparicio
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, 50018 Zaragoza, Spain;
| | - Laura Martínez-Gimeno
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Institute for Health Sciences of Aragon (IACS), 50009 Zaragoza, Spain
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
| | - Pilar Torcal
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Institute for Health Sciences of Aragon (IACS), 50009 Zaragoza, Spain
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, 50018 Zaragoza, Spain;
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Ignacio Giménez
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Institute for Health Sciences of Aragon (IACS), 50009 Zaragoza, Spain
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Kowalczewski A, Sun S, Mai NY, Song Y, Hoang P, Liu X, Yang H, Ma Z. Design optimization of geometrically confined cardiac organoids enabled by machine learning techniques. CELL REPORTS METHODS 2024; 4:100798. [PMID: 38889687 PMCID: PMC11228370 DOI: 10.1016/j.crmeth.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Stem cell organoids are powerful models for studying organ development, disease modeling, drug screening, and regenerative medicine applications. The convergence of organoid technology, tissue engineering, and artificial intelligence (AI) could potentially enhance our understanding of the design principles for organoid engineering. In this study, we utilized micropatterning techniques to create a designer library of 230 cardiac organoids with 7 geometric designs. We employed manifold learning techniques to analyze single organoid heterogeneity based on 10 physiological parameters. We clustered and refined the cardiac organoids based on their functional similarity using unsupervised machine learning approaches, thus elucidating unique functionalities associated with geometric designs. We also highlighted the critical role of calcium transient rising time in distinguishing organoids based on geometric patterns and clustering results. This integration of organoid engineering and machine learning enhances our understanding of structure-function relationships in cardiac organoids, paving the way for more controlled and optimized organoid design.
Collapse
Affiliation(s)
- Andrew Kowalczewski
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Shiyang Sun
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Nhu Y Mai
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Yuanhui Song
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Plansky Hoang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Xiyuan Liu
- Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
4
|
Fang K, Müller S, Ueda M, Nakagawa Y, S Furukawa K, Ushida T, Ikoma T, Ito Y. Cyclic stretch modulates the cell morphology transition under geometrical confinement by covalently immobilized gelatin. J Mater Chem B 2023; 11:9155-9162. [PMID: 37455606 DOI: 10.1039/d3tb00421j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Fibroblasts geometrically confined by photo-immobilized gelatin micropatterns were subjected to cyclic stretch on the silicone elastomer. By using covalently micropatterned surfaces, the cell morphologies such as cell area and length were quantitatively investigated under a cyclic stretch for 20 hours. The mechanical forces did not affect the cell growth but significantly altered the cellular morphology on both non-patterned and micropatterned surfaces. It was found that cells on non-patterns showed increasing cell length and decreasing cell area under the stretch. The width of the strip micropatterns provided a different extent of contact guidance for fibroblasts. The highly extended cells on the 10 μm pattern under static conditions would perform a contraction behavior once treated by cyclic stretch. In contrast, cells with a low extension on the 2 μm pattern kept elongating according to the micropattern under the cyclic stretch. The vertical stretch induced an increase in cell area and length more than the parallel stretch in both the 10 μm and 2 μm patterns. These results provided new insights into cell behaviors under geometrical confinement in a dynamic biomechanical environment and may guide biomaterial design for tissue engineering in the future.
Collapse
Affiliation(s)
- Kun Fang
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Stefan Müller
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasuhiro Nakagawa
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Katsuko S Furukawa
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Takashi Ushida
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Toshiyuki Ikoma
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Graduate School of Material Science and Engineering, Tokyo Institute of Technology, Meguro, 2-12-1 Ookayama, Tokyo 152-8550, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
5
|
Kopeć K, Podgórski R, Ciach T, Wojasiński M. System for Patterning Polydopamine and VAPG Peptide on Polytetrafluoroethylene and Biodegradable Polyesters for Patterned Growth of Smooth Muscle Cells In Vitro. ACS OMEGA 2023; 8:22055-22066. [PMID: 37360448 PMCID: PMC10285958 DOI: 10.1021/acsomega.3c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Biomaterial's surface functionalization for selective adhesion and patterned cell growth remains essential in developing novel implantable medical devices for regenerative medicine applications. We built and applied a 3D-printed microfluidic device to fabricate polydopamine (PDA) patterns on the surface of polytetrafluoroethylene (PTFE), poly(l-lactic acid-co-D,l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) (PLGA). Then, we covalently attached the Val-Ala-Pro-Gly (VAPG) peptide to the created PDA pattern to promote the adhesion of the smooth muscle cells (SMCs). We proved that the fabrication of PDA patterns allows for the selective adhesion of mouse fibroblast and human SMCs to PDA-patterned surfaces after only 30 min of in vitro cultivation. After 7 days of SMC culture, we observed the proliferation of cells only along the patterns on PTFE but over the entire surface of the PLA and PLGA, regardless of patterning. This means that the presented approach is beneficial for application to materials resistant to cell adhesion and proliferation. The additional attachment of the VAPG peptide to the PDA patterns did not bring measurable benefits due to the high increase in adhesion and patterned cell proliferation by PDA itself.
Collapse
Affiliation(s)
- Kamil Kopeć
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Rafał Podgórski
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
- Warsaw
University of Technology, CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Michał Wojasiński
- Warsaw
University of Technology, Faculty of Chemical and Process Engineering,
Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
6
|
Lacueva-Aparicio A, Lindoso RS, Mihăilă SM, Giménez I. Role of extracellular matrix components and structure in new renal models in vitro. Front Physiol 2022; 13:1048738. [PMID: 36569770 PMCID: PMC9767975 DOI: 10.3389/fphys.2022.1048738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM), a complex set of fibrillar proteins and proteoglycans, supports the renal parenchyma and provides biomechanical and biochemical cues critical for spatial-temporal patterning of cell development and acquisition of specialized functions. As in vitro models progress towards biomimicry, more attention is paid to reproducing ECM-mediated stimuli. ECM's role in in vitro models of renal function and disease used to investigate kidney injury and regeneration is discussed. Availability, affordability, and lot-to-lot consistency are the main factors determining the selection of materials to recreate ECM in vitro. While simpler components can be synthesized in vitro, others must be isolated from animal or human tissues, either as single isolated components or as complex mixtures, such as Matrigel or decellularized formulations. Synthetic polymeric materials with dynamic and instructive capacities are also being explored for cell mechanical support to overcome the issues with natural products. ECM components can be used as simple 2D coatings or complex 3D scaffolds combining natural and synthetic materials. The goal is to recreate the biochemical signals provided by glycosaminoglycans and other signaling molecules, together with the stiffness, elasticity, segmentation, and dimensionality of the original kidney tissue, to support the specialized functions of glomerular, tubular, and vascular compartments. ECM mimicking also plays a central role in recent developments aiming to reproduce renal tissue in vitro or even in therapeutical strategies to regenerate renal function. Bioprinting of renal tubules, recellularization of kidney ECM scaffolds, and development of kidney organoids are examples. Future solutions will probably combine these technologies.
Collapse
Affiliation(s)
- Alodia Lacueva-Aparicio
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, Zaragoza, Spain
| | - Rafael Soares Lindoso
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ignacio Giménez
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain,School of Medicine, University of Zaragoza, Zaragoza, Spain,*Correspondence: Ignacio Giménez,
| |
Collapse
|
7
|
Parigoris E, Lee JH, Liu AY, Zhao X, Takayama S. Extended longevity geometrically-inverted proximal tubule organoids. Biomaterials 2022; 290:121828. [PMID: 36215909 PMCID: PMC10693433 DOI: 10.1016/j.biomaterials.2022.121828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/11/2022] [Accepted: 09/24/2022] [Indexed: 01/22/2023]
Abstract
This study reports the cellular self-organization of primary human renal proximal tubule epithelial cells (RPTECs) around a minimal Matrigel scaffold to produce basal-in and apical-out proximal tubule organoids (tubuloids). These tubuloids are produced and maintained in hanging drop cultures for 90+ days, the longest such culture of any kind reported to date. The tubuloids upregulate maturity markers, such as aquaporin-1 (AQP1) and megalin (LRP2), and exhibit less mesenchymal and proliferation markers, such as vimentin and Ki67, compared to 2D cultures. They also experience changes over time as revealed by a comparison of gene expression patterns of cells in 2D culture and in day 31 and day 67 tubuloids. Gene expression analysis and immunohistochemistry reveal an increase in the expression of megalin, an endocytic receptor that can directly bind and uptake protein or potentially assist protein uptake. The tubuloids, including day 90 tubuloids, uptake fluorescent albumin and reveal punctate fluorescent patterns, suggesting functional endocytic uptake through these receptors. Furthermore, the tubuloids release kidney injury molecule-1 (KIM-1), a common biomarker for kidney injury, when exposed to albumin in both dose- and time-dependent manners. While this study focuses on potential applications for modeling proteinuric kidney disease, the tubuloids may have broad utility for studies where apical proximal tubule cell access is required.
Collapse
Affiliation(s)
- Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Amy Yunfan Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Xueying Zhao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
8
|
Wang D, Gust M, Ferrell N. Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration. SENSORS (BASEL, SWITZERLAND) 2022; 22:6889. [PMID: 36146238 PMCID: PMC9503911 DOI: 10.3390/s22186889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Bioengineered in vitro models of the kidney offer unprecedented opportunities to better mimic the in vivo microenvironment. Kidney-on-a-chip technology reproduces 2D or 3D features which can replicate features of the tissue architecture, composition, and dynamic mechanical forces experienced by cells in vivo. Kidney cells are exposed to mechanical stimuli such as substrate stiffness, shear stress, compression, and stretch, which regulate multiple cellular functions. Incorporating mechanical stimuli in kidney-on-a-chip is critically important for recapitulating the physiological or pathological microenvironment. This review will explore approaches to applying mechanical stimuli to different cell types using kidney-on-a-chip models and how these systems are used to study kidney physiology, model disease, and screen for drug toxicity. We further discuss sensor integration into kidney-on-a-chip for monitoring cellular responses to mechanical or other pathological stimuli. We discuss the advantages, limitations, and challenges associated with incorporating mechanical stimuli in kidney-on-a-chip models for a variety of applications. Overall, this review aims to highlight the importance of mechanical stimuli and sensor integration in the design and implementation of kidney-on-a-chip devices.
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Matthew Gust
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Statistics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Ferrell
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Jones CFE, Di Cio S, Connelly JT, Gautrot JE. Design of an Integrated Microvascularized Human Skin-on-a-Chip Tissue Equivalent Model. Front Bioeng Biotechnol 2022; 10:915702. [PMID: 35928950 PMCID: PMC9343775 DOI: 10.3389/fbioe.2022.915702] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-engineered skin constructs have been under development since the 1980s as a replacement for human skin tissues and animal models for therapeutics and cosmetic testing. These have evolved from simple single-cell assays to increasingly complex models with integrated dermal equivalents and multiple cell types including a dermis, epidermis, and vasculature. The development of micro-engineered platforms and biomaterials has enabled scientists to better recreate and capture the tissue microenvironment in vitro, including the vascularization of tissue models and their integration into microfluidic chips. However, to date, microvascularized human skin equivalents in a microfluidic context have not been reported. Here, we present the design of a novel skin-on-a-chip model integrating human-derived primary and immortalized cells in a full-thickness skin equivalent. The model is housed in a microfluidic device, in which a microvasculature was previously established. We characterize the impact of our chip design on the quality of the microvascular networks formed and evidence that this enables the formation of more homogenous networks. We developed a methodology to harvest tissues from embedded chips, after 14 days of culture, and characterize the impact of culture conditions and vascularization (including with pericyte co-cultures) on the stratification of the epidermis in the resulting skin equivalents. Our results indicate that vascularization enhances stratification and differentiation (thickness, architecture, and expression of terminal differentiation markers such as involucrin and transglutaminase 1), allowing the formation of more mature skin equivalents in microfluidic chips. The skin-on-a-chip tissue equivalents developed, because of their realistic microvasculature, may find applications for testing efficacy and safety of therapeutics delivered systemically, in a human context.
Collapse
Affiliation(s)
- Christian F. E. Jones
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stefania Di Cio
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - John T. Connelly
- The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Julien E. Gautrot
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Hoang P, Ma Z. Biomaterial-guided stem cell organoid engineering for modeling development and diseases. Acta Biomater 2021; 132:23-36. [PMID: 33486104 PMCID: PMC8629488 DOI: 10.1016/j.actbio.2021.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Organoids are miniature models of organs to recapitulate spatiotemporal cellular organization and tissue functionality. The production of organoids has revolutionized the field of developmental biology, providing the possibility to study and guide human development and diseases in a dish. More recently, novel biomaterial-based culture systems demonstrated the feasibility and versatility to engineer and produce the organoids in a consistent and reproducible manner. By engineering proper tissue microenvironment, functional organoids have been able to exhibit spatial-distinct tissue patterning and morphogenesis. This review focuses on enabling technologies in the field of organoid engineering, including the control of biochemical and biophysical cues via hydrogels, as well as size and geometry control via microwell and microfabrication techniques. In addition, this review discusses the enhancement of organoid systems for therapeutic applications using biofabrication and organoid-on-chip platforms, which facilitate the assembly of complex organoid systems for in vitro modeling of development and diseases. STATEMENT OF SIGNIFICANCE: Stem cell organoids have revolutionized the fields of developmental biology and tissue engineering, providing the opportunity to study human organ development and disease progression in vitro. Various works have demonstrated that organoids can be generated using a wide variety of engineering tools, materials, and systems. Specific culture microenvironment is tailored to support the formation, function, and physiology of the organ of interest. This review highlights the importance of cellular microenvironment in organoid culture, the versatility of organoid engineering techniques, and future perspectives to build better organoid systems.
Collapse
Affiliation(s)
- Plansky Hoang
- Department of Biomedical and Chemical Engineering, Syracuse University, NY, United States; BioInspired Syracuse Institute for Material and Living Systems, NY, United States
| | - Zhen Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, NY, United States; BioInspired Syracuse Institute for Material and Living Systems, NY, United States.
| |
Collapse
|
11
|
Gontran E, Loarca L, El Kassis C, Bouzhir L, Ayollo D, Mazari-Arrighi E, Fuchs A, Dupuis-Williams P. Self-Organogenesis from 2D Micropatterns to 3D Biomimetic Biliary Trees. Bioengineering (Basel) 2021; 8:112. [PMID: 34436115 PMCID: PMC8389215 DOI: 10.3390/bioengineering8080112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND AIMS Globally, liver diseases account for 2 million deaths per year. For those with advanced liver disease the only curative approach is liver transplantation. However, less than 10% of those in need get a liver transplant due to limited organ availability. To circumvent this challenge, there has been a great focus in generating a bioengineered liver. Despite its essential role in liver functions, a functional biliary system has not yet been developed. In this framework, exploration of epithelial cell self-organogenesis and microengineering-driven geometrical cell confinement allow to envision the bioengineering of a functional biomimetic intrahepatic biliary tract. APPROACH three-dimensional (3D) bile ducts were built in vitro by restricting cell adhesion to two-dimensional (2D) patterns to guide cell self-organization. Tree shapes mimicking the configuration of the human biliary system were micropatterned on glass slides, restricting cell attachment to these areas. Different tree geometries and culture conditions were explored to stimulate self-organogenesis of normal rat cholangiocytes (NRCs) used as a biliary cell model, either alone or in co-culture with human umbilical endothelial cells (HUVECs). RESULTS Pre-seeding the micropatterns with HUVECs promoted luminogenesis with higher efficiency to yield functional branched biliary tubes. Lumen formation, apico-basal polarity, and preservation of the cholangiocyte phenotype were confirmed. Moreover, intact and functional biliary structures were detached from the micropatterns for further manipulation. CONCLUSION This study presents physiologically relevant 3D biliary duct networks built in vitro from 2D micropatterns. This opens opportunities for investigating bile duct organogenesis, physiopathology, and drug testing.
Collapse
Affiliation(s)
- Emilie Gontran
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
- INSERM U-1279, Gustave Roussy, F-94805 Villejuif, France
| | - Lorena Loarca
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
| | - Cyrille El Kassis
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
| | - Latifa Bouzhir
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
| | - Dmitry Ayollo
- INSERM, Institut Universitaire d’Hematologie, Université de Paris, U976 HIPI, F-75006 Paris, France; (D.A.); (E.M.-A.); (A.F.)
- AP-HP, Hôpital Saint-Louis, 1 Avenue Vellefaux, F-75010 Paris, France
- CEA, IRIG, F-38000 Grenoble, France
| | - Elsa Mazari-Arrighi
- INSERM, Institut Universitaire d’Hematologie, Université de Paris, U976 HIPI, F-75006 Paris, France; (D.A.); (E.M.-A.); (A.F.)
- AP-HP, Hôpital Saint-Louis, 1 Avenue Vellefaux, F-75010 Paris, France
- CEA, IRIG, F-38000 Grenoble, France
| | - Alexandra Fuchs
- INSERM, Institut Universitaire d’Hematologie, Université de Paris, U976 HIPI, F-75006 Paris, France; (D.A.); (E.M.-A.); (A.F.)
- AP-HP, Hôpital Saint-Louis, 1 Avenue Vellefaux, F-75010 Paris, France
- CEA, IRIG, F-38000 Grenoble, France
| | - Pascale Dupuis-Williams
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
- ESPCI Paris, Université PSL, F-75005 Paris, France
| |
Collapse
|
12
|
Bosch-Fortea M, Martín-Belmonte F. Methods to Generate Tube Micropatterns for Epithelial Morphogenetic Analyses and Tissue Engineering. Methods Mol Biol 2021; 2179:227-242. [PMID: 32939724 DOI: 10.1007/978-1-0716-0779-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cells live in a highly curved and folded 3D microenvironment within the human body. Since epithelial cells in internal organs usually adopt a tubular shape, there is a need to engineer simple in vitro devices to promote this cellular configuration. The aim of these devices would be to investigate epithelial morphogenesis and cell behavior-leading to the development of more sophisticated platforms for tissue engineering and regenerative medicine. In this chapter, we first explain the need for such epithelial tubular micropatterns based on anatomical considerations and then survey methods that can be used to study different aspects of epithelial tubulogenesis. The methods examined can broadly be divided into two classes: conventional 2D microfabrication for the formation of simple epithelial tubes in substrates of different stiffness; and 3D approaches to enable the self-assembly of organoid-derived epithelial tubes in a tubular configuration. These methods demonstrate that modeling tubulogenesis in vitro with high resolution, accuracy, and reproducibility is possible.
Collapse
Affiliation(s)
- Minerva Bosch-Fortea
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
13
|
Tran R, Hoesli CA, Moraes C. Accessible dynamic micropatterns in monolayer cultures via modified desktop xurography. Biofabrication 2020; 13. [PMID: 33238251 DOI: 10.1088/1758-5090/abce0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/25/2020] [Indexed: 11/12/2022]
Abstract
Micropatterned cell cultures provide an important tool to understand dynamic biological processes, but often require specialized equipment and expertise. Here we present subtractive bioscribing (SuBscribe), a readily accessible and inexpensive technique to generate dynamic micropatterns in biomaterial monolayers on-the-fly. We first describe our modifications to a commercially available desktop xurographer and demonstrate the utility and limits of this system in creating micropatterned cultures by mechanically scribing patterns into a brittle, non-adhesive biomaterial layer. Patterns are sufficiently small to influence cell morphology and orientation and can be extended to pattern large areas with complex reproducible shapes. We also demonstrate the use of this system as a dynamic patterning tool for cocultures. Finally, we use this technique to explore and improve upon the well-established epithelial scratch assay, and demonstrate that robotic control of the scratching tool can be used to create custom-shaped wounds in epithelial monolayers, and that the scribing direction leaves trace remnants of matrix molecules that may significantly affect conventional implementations of this common assay.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, H4X1N3, CANADA
| | - Corinne Annette Hoesli
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, H4X 1N3, CANADA
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, 3610 University Street, Rm 3A, Montreal, Quebec, H4X1N3, CANADA
| |
Collapse
|
14
|
Fabre K, Berridge B, Proctor WR, Ralston S, Will Y, Baran SW, Yoder G, Van Vleet TR. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. LAB ON A CHIP 2020; 20:1049-1057. [PMID: 32073020 DOI: 10.1039/c9lc01168d] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Safety related drug failures continue to be a challenge for pharmaceutical companies despite the numerous complex and lengthy in vitro assays and in vivo studies that make up the typical safety screening funnel. A lack of complete translation of animal data to humans can explain some of those shortcomings. Differences in sensitivity and drug disposition between animals and humans may also play a role. Many gaps exist for potential target tissues of drugs that cannot be adequately modeled in vitro. Microphysiological systems (MPS) may help to better model these target tissues and provide an opportunity to better assess some aspects of human safety prior to clinical studies. There is hope that these systems can supplement current preclinical drug safety and disposition evaluations, filling gaps and enhancing our ability to predict and understand human relevant toxicities. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) MPS Affiliate is a group of pharmaceutical industry scientists who seek to expedite appropriate characterization and incorporation of MPS to potentially improve drug safety assessment and provide safer and more effective medicines to patients. In keeping with this mission, the IQ MPS Affiliate scientists have prepared a series of organotypic manuscripts for several key drug safety and disposition target tissues (lung, liver, kidney, skin, gastrointestinal, cardiovascular, and blood brain barrier/central nervous system). The goal of these manuscripts is to provide key information related to likely initial contexts of use (CoU) and key characterization data needed for incorporation of MPS in pharmaceutical safety screening including a list of characteristic functions, cell types, toxicities, and test agents (representing major mechanisms of toxicity) that can be used by MPS developers. Additional manuscripts focusing on testing biologically based therapeutics and ADME considerations have been prepared as part of this effort. These manuscripts focus on general needs for assessing biologics and ADME endpoints and include similar information to the tissue specific manuscripts where appropriate. The current manuscript is an introduction to several general concepts related to pharmaceutical industry needs with regard to MPS application and other MPS concepts that apply across the organ specific manuscripts.
Collapse
Affiliation(s)
- Kristin Fabre
- Translational Research Institute for Space Health, Baylor College of Medicine, Houston, TX, USA and MPS Center of Excellence, Drug Safety & Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA, USA
| | - Brian Berridge
- National Toxicology Program, The National Institute of Environmental Health Sciences, 530 Davis Dr., Keystone Building, Durham, North Carolina, USA
| | - William R Proctor
- Investigative Toxicology, Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Sherry Ralston
- Department of Preclinical Safety, AbbVie, N Chicago, IL, USA.
| | - Yvonne Will
- Discovery, Product Development & Supply, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | - Szczepan W Baran
- Emerging Technologies, LAS, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Gorm Yoder
- Analytical Development - Small Molecule Pharmaceutical Development, Janssen Research & Development, LLC, USA
| | | |
Collapse
|