1
|
Qin K, Huang X, Wang S, Liang J, Fan Z. 3D-Printed In Situ Growth of Bilayer MOF Hydrogels for Accelerated Osteochondral Defect Repair. Adv Healthc Mater 2025; 14:e2403840. [PMID: 39552270 DOI: 10.1002/adhm.202403840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Repairing osteochondral (OC) defect presents a significant challenge due to the intricate structural requirements and the unpredictable differentiation pathways of bone marrow mesenchymal stem cells (BMSCs). To address this challenge, a novel biomimetic OC hydrogel scaffold is developed that features a structure of soft and hard components. This scaffold incorporates bilayer metal-organic frameworks (MOFs), specifically ZIF-67 in the upper layer and ZIF-8 in the lower layer, achieved through an in situ printing process. This configuration enables the spatial and temporal modulation of BMSC differentiation by controlling the release of Co2⁺ and Zn2⁺. The results demonstrate that the bilayer MOF hydrogels significantly outperform hydrogels that either lack MOFs or contain a single type of MOF in enhancing repair outcomes in rabbit models of knee OC defects. The improved regenerative efficacy is attributed to the distinct chondrogenic and osteogenic differentiation cues provided by the bilayer MOFs, effectively guiding BMSCs toward enhanced tissue regeneration. This customizable biomimetic OC hydrogel scaffold not only opens new avenues for innovative therapeutic strategies but also holds great promise for widespread clinical applications.
Collapse
Affiliation(s)
- Kaiqi Qin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Xinyue Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Shengfeng Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Jiachen Liang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
2
|
Lu J, Shi X, Zhou Z, Lu N, Chu G, Jin H, Zhu L, Chen A. Enhancing Fracture Healing with 3D Bioprinted Hif1a-Overexpressing BMSCs Hydrogel: A Novel Approach to Accelerated Bone Repair. Adv Healthc Mater 2025; 14:e2402415. [PMID: 39580668 DOI: 10.1002/adhm.202402415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Indexed: 11/26/2024]
Abstract
Addressing the urgent need for effective fracture treatments, this study investigates the efficacy of a 3D bioprinted biomimetic hydrogel, enriched with bone marrow mesenchymal stem cells (BMSCs) and targeted hypoxia-inducible factor 1 alpha (Hif1a) gene activation, in enhancing fracture healing. A photocross-linkable bioink, gelatin methacryloyl bone matrix anhydride (GBMA) is developed, and selected its 5% concentration for bioink formulation. Rat BMSCs are isolated and combined with GBMA to create the GBMA@BMSCs bioink. This bioink is then used in 3D bioprinting to fabricate a hydrogel for application in a rat femoral fracture model. Through transcriptome sequencing, WGCNA, and Venn analysis, the hypoxia-inducible factor Hif1a is identified as a critical gene in the fracture healing process. In vitro studies showed that Hif1a promoted BMSC proliferation, chondrogenic differentiation, and cartilage matrix stability. The in vivo application of the GBMA@BMSCs hydrogel with Hif1a overexpression significantly accelerated fracture healing, evidenced by early and enhanced cartilage callus formation. The study demonstrates that 3D bioprinting of GBMA@BMSCs hydrogel, particularly with Hif1a-enhanced BMSCs, offers a promising approach for rapid and effective fracture repair.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200001, P. R. China
| | - Xiaojian Shi
- Department of Orthopedic Trauma, Haimen People's Hospital of Jiangsu Province, Haimen, 226100, P. R. China
| | - Zhibin Zhou
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, 110016, P. R. China
| | - Nan Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
| | - Guangxin Chu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Lei Zhu
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200001, P. R. China
| | - Aimin Chen
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
| |
Collapse
|
3
|
Kermavnar T, Guttridge C, Mulcahy NJ, Duffy E, Twomey F, O'Sullivan L. 3D printing in palliative medicine: systematic review. BMJ Support Palliat Care 2024; 14:e2244-e2253. [PMID: 39806577 PMCID: PMC11671886 DOI: 10.1136/bmjspcare-2021-003196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/28/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Three-dimensional printing (3DP) enables the production of highly customised, cost-efficient devices in a relatively short time, which can be particularly valuable to clinicians treating patients with palliative care intent who are in need of timely and effective solutions in the management of their patients' specific needs, including the relief of distressing symptoms. METHOD Four online databases were searched for articles published by December 2020 that described studies using 3DP in palliative care. The fields of application, and the relevant clinical and technological data were extracted and analysed. RESULTS Thirty studies were reviewed, describing 36 medical devices, including anatomical models, endoluminal stents, navigation guides, obturators, epitheses, endoprostheses and others. Two-thirds of the studies were published after the year 2017. The main reason for using 3DP was the difficulty of producing customised devices with traditional methods. Eleven papers described proof-of-concept studies that did not involve human testing. For those devices that were tested on patients, favourable clinical outcomes were reported in general, and treatment with the use of 3DP was deemed superior to conventional clinical approaches. The most commonly employed 3DP technologies were fused filament fabrication with acrylonitrile butadiene styrene and stereolithography or material jetting with various types of photopolymer resin. CONCLUSION Recently, there has been a considerable increase in the application of 3DP to produce medical devices and bespoke solutions in the delivery of treatments with palliative care intent. 3DP was found successful in overcoming difficulties with conventional approaches and in treating medical conditions requiring highly customised solutions.
Collapse
Affiliation(s)
- Tjaša Kermavnar
- Health Research Institute, School of Design, and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| | - Callum Guttridge
- Health Research Institute, School of Design, and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| | - Niall J Mulcahy
- Health Research Institute, School of Design, and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| | - Ed Duffy
- Deparment of Palliative Medicine, Milford Care Centre Castletroy, Limerick, Ireland
| | | | - Leonard O'Sullivan
- Health Research Institute, School of Design, and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| |
Collapse
|
4
|
Li Y, Wu J, Ye P, Cai Y, Shao M, Zhang T, Guo Y, Zeng S, Pathak JL. Decellularized Extracellular Matrix Scaffolds: Recent Advances and Emerging Strategies in Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:7372-7385. [PMID: 39492720 DOI: 10.1021/acsbiomaterials.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Bone tissue engineering (BTE) is a complex biological process involving the repair of bone tissue with proper neuronal network and vasculature as well as bone surrounding soft tissue. Synthetic biomaterials used for BTE should be biocompatible, support bone tissue regeneration, and eventually be degraded in situ and replaced with the newly generated bone tissue. Recently, various forms of bone graft materials such as hydrogel, nanofiber scaffolds, and 3D printed composite scaffolds have been developed for BTE application. Decellularized extracellular matrix (DECM), a kind of natural biological material obtained from specific tissues and organs, has certain advantages over synthetic and exogenous biomaterial-derived bone grafts. Moreover, DECM can be developed from a wide range of biological sources and possesses strong molding abilities, natural 3D structures, and bioactive factors. Although DECM has shown robust osteogenic, proangiogenic, immunomodulatory, and bone defect healing potential, the rapid degradation and limited mechanical properties should be improved for bench-to-bed translation in BTE. This review summarizes the recent advances in DECM-based BTE and discusses emerging strategies of DECM-based BTE.
Collapse
Affiliation(s)
- Yunyang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Jingwen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Peilin Ye
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai 519040, P. R. China
| | - Yilin Cai
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Tong Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanchuan Guo
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Sujuan Zeng
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| |
Collapse
|
5
|
Yan J, Ye Z, Wang X, Zhong D, Wang Z, Yan T, Li T, Yuan Y, Liu Y, Wang Y, Cai X. Recent research progresses of bioengineered biliary stents. Mater Today Bio 2024; 29:101290. [PMID: 39444940 PMCID: PMC11497374 DOI: 10.1016/j.mtbio.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Bile duct lesion, including benign (eg. occlusion, cholelithiasis, dilatation, malformation) and malignant (cholangiocarcinoma) diseases, is a frequently encountered challenge in hepatobiliary diseases, which can be repaired by interventional or surgical procedures. A viable cure for bile duct lesions is implantation with biliary stents. Despite the placement achieved by current clinical biliary stents, the creation of functional and readily transplantable biliary stents remains a formidable obstacle. Excellent biocompatibility, stable mechanics, and absorbability are just a few benefits of using bioengineered biliary stents, which can also support and repair damaged bile ducts that drain bile. Additionally, cell sources & organoids derived from the biliary system that are loaded onto scaffolds can encourage bile duct regeneration. Therefore, the implantation of bioengineered biliary stent is considered as an ideal treatment for bile duct lesion, holding a broad potential for clinical applications in future. In this review, we look back on the development of conventional biliary stents, biodegradable biliary stents, and bioengineered biliary stents, highlighting the crucial elements of bioengineered biliary stents in promoting bile duct regeneration. After providing an overview of the various types of cell sources & organoids and fabrication methods utilized for the bioengineering process, we present the in vitro and in vivo applications of bioengineered biliary ducts, along with the latest advances in this exciting field. Finally, we also emphasize the ongoing challenges and future development of bioengineered biliary stents.
Collapse
Affiliation(s)
- Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yu Liu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
6
|
Qiu S, Cao L, Xiang D, Wang S, Wang D, Qian Y, Li X, Zhou X. Enhanced osteogenic differentiation in 3D hydrogel scaffold via macrophage mitochondrial transfer. J Nanobiotechnology 2024; 22:540. [PMID: 39237942 PMCID: PMC11375923 DOI: 10.1186/s12951-024-02757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
To assess the efficacy of a novel 3D biomimetic hydrogel scaffold with immunomodulatory properties in promoting fracture healing. Immunomodulatory scaffolds were used in cell experiments, osteotomy mice treatment, and single-cell transcriptomic sequencing. In vitro, fluorescence tracing examined macrophage mitochondrial transfer and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Scaffold efficacy was assessed through alkaline phosphatase (ALP), Alizarin Red S (ARS) staining, and in vivo experiments. The scaffold demonstrated excellent biocompatibility and antioxidant-immune regulation. Single-cell sequencing revealed a shift in macrophage distribution towards the M2 phenotype. In vitro experiments showed that macrophage mitochondria promoted BMSCs' osteogenic differentiation. In vivo experiments confirmed accelerated fracture healing. The GAD/Ag-pIO scaffold enhances osteogenic differentiation and fracture healing through immunomodulation and promotion of macrophage mitochondrial transfer.
Collapse
Affiliation(s)
- Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning Province, China
| | - Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, China
| | - Dingding Xiang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Shu Wang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Di Wang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Yiyi Qian
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Xiaohua Li
- Department of Orthopedics, Zhongmeng Hospital, Arong Banner, Hulunbuir City, Inner, Mongolia
| | - Xiaoshu Zhou
- Department of Orthopedics, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
7
|
Park JH, Tucker SJ, Yoon JK, Kim Y, Hollister SJ. 3D printing modality effect: Distinct printing outcomes dependent on selective laser sintering (SLS) and melt extrusion. J Biomed Mater Res A 2024; 112:1015-1024. [PMID: 38348580 DOI: 10.1002/jbm.a.37682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 05/03/2024]
Abstract
A direct and comprehensive comparative study on different 3D printing modalities was performed. We employed two representative 3D printing modalities, laser- and extrusion-based, which are currently used to produce patient-specific medical implants for clinical translation, to assess how these two different 3D printing modalities affect printing outcomes. The same solid and porous constructs were created from the same biomaterial, a blend of 96% poly-ε-caprolactone (PCL) and 4% hydroxyapatite (HA), using two different 3D printing modalities. Constructs were analyzed to assess their printing characteristics, including morphological, mechanical, and biological properties. We also performed an in vitro accelerated degradation study to compare their degradation behaviors. Despite the same input material, the 3D constructs created from different 3D printing modalities showed distinct differences in morphology, surface roughness and internal void fraction, which resulted in different mechanical properties and cell responses. In addition, the constructs exhibited different degradation rates depending on the 3D printing modalities. Given that each 3D printing modality has inherent characteristics that impact printing outcomes and ultimately implant performance, understanding the characteristics is crucial in selecting the 3D printing modality to create reliable biomedical implants.
Collapse
Affiliation(s)
- Jeong Hun Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - YongTae Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Wan H, Xiang J, Mao G, Pan S, Li B, Lu Y. Recent Advances in the Application of 3D-Printing Bioinks Based on Decellularized Extracellular Matrix in Tissue Engineering. ACS OMEGA 2024; 9:24219-24235. [PMID: 38882108 PMCID: PMC11170705 DOI: 10.1021/acsomega.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
In recent years, 3D bioprinting with various types of bioinks has been widely used in tissue engineering to fabricate human tissues and organs with appropriate biological functions. Decellularized extracellular matrix (dECM) is an excellent bioink candidate because it is enriched with a variety of bioactive proteins and bioactive factors and can provide a suitable environment for tissue repair or tissue regeneration while reducing the likelihood of severe immune rejection. In this Review, we systematically review recent advances in 3D bioprinting and decellularization technologies and comprehensively detail the latest research and applications of dECM as a bioink for tissue engineering in various systems, with the aim of providing a reference for researchers in tissue engineering to better understand the properties of dECM bioinks.
Collapse
Affiliation(s)
- Haoxin Wan
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Jian Xiang
- Affiliated
Hospital of Yangzhou University, Yangzhou 225000, China
| | - Guocai Mao
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Shu Pan
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Bing Li
- The
Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yi Lu
- Clinical
Medical College, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
9
|
Man J, Shen Y, Song Y, Yang K, Pei P, Hu L. Biomaterials-mediated radiation-induced diseases treatment and radiation protection. J Control Release 2024; 370:318-338. [PMID: 38692438 DOI: 10.1016/j.jconrel.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanhua Shen
- Experimental Animal Centre of Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215005, China
| | - Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China..
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
10
|
Chen Y, Lu W, Zhou Y, Hu Z, Wu H, Gao Q, Shi J, Wu W, Lv S, Yao K, He Y, Xie Z. A Spatiotemporal Controllable Biomimetic Skin for Accelerating Wound Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310556. [PMID: 38386291 DOI: 10.1002/smll.202310556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Indexed: 02/23/2024]
Abstract
Skin injury repair is a dynamic process involving a series of interactions over time and space. Linking human physiological processes with materials' changes poses a significant challenge. To match the wound healing process, a spatiotemporal controllable biomimetic skin is developed, which comprises a three-dimensional (3D) printed membrane as the epidermis, a cell-containing hydrogel as the dermis, and a cytokine-laden hydrogel as the hypodermis. In the initial stage of the biomimetic skin repair wound, the membrane frame aids wound closure through pre-tension, while cells proliferate within the hydrogel. Next, as the frame disintegrates over time, cells released from the hydrogel migrate along the residual membrane. Throughout the process, continuous cytokines release from the hypodermis hydrogel ensures comprehensive nourishment. The findings reveal that in the rat full-thickness skin defect model, the biomimetic skin demonstrated a wound closure rate eight times higher than the blank group, and double the collagen content, particularly in the early repair process. Consequently, it is reasonable to infer that this biomimetic skin holds promising potential to accelerate wound closure and repair. This biomimetic skin with mechanobiological effects and spatiotemporal regulation emerges as a promising option for tissue regeneration engineering.
Collapse
Affiliation(s)
- Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Haiyan Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Shang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
11
|
Zhang Z, Bi F, Huang Y, Guo W. Construction of dental pulp decellularized matrix by cyclic lavation combined with mechanical stirring and its proteomic analysis. Biomed Mater 2024; 19:045002. [PMID: 38653259 DOI: 10.1088/1748-605x/ad4245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yibing Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming 650500, People's Republic of China
| |
Collapse
|
12
|
Lee J, Dutta SD, Acharya R, Park H, Kim H, Randhawa A, Patil TV, Ganguly K, Luthfikasari R, Lim KT. Stimuli-Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing. Adv Healthc Mater 2024; 13:e2302394. [PMID: 37950552 DOI: 10.1002/adhm.202302394] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Conductive hydrogels (CHs) are promising alternatives for electrical stimulation of cells and tissues in biomedical engineering. Wound healing and immunomodulation are complex processes that involve multiple cell types and signaling pathways. 3D printable conductive hydrogels have emerged as an innovative approach to promote wound healing and modulate immune responses. CHs can facilitate electrical and mechanical stimuli, which can be beneficial for altering cellular metabolism and enhancing the efficiency of the delivery of therapeutic molecules. This review summarizes the recent advances in 3D printable conductive hydrogels for wound healing and their effect on macrophage polarization. This report also discusses the properties of various conductive materials that can be used to fabricate hydrogels to stimulate immune responses. Furthermore, this review highlights the challenges and limitations of using 3D printable CHs for future material discovery. Overall, 3D printable conductive hydrogels hold excellent potential for accelerating wound healing and immune responses, which can lead to the development of new therapeutic strategies for skin and immune-related diseases.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
13
|
Barcena AJR, Dhal K, Patel P, Ravi P, Kundu S, Tappa K. Current Biomedical Applications of 3D-Printed Hydrogels. Gels 2023; 10:8. [PMID: 38275845 PMCID: PMC10815850 DOI: 10.3390/gels10010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, has revolutionized the production of physical 3D objects by transforming computer-aided design models into layered structures, eliminating the need for traditional molding or machining techniques. In recent years, hydrogels have emerged as an ideal 3D printing feedstock material for the fabrication of hydrated constructs that replicate the extracellular matrix found in endogenous tissues. Hydrogels have seen significant advancements since their first use as contact lenses in the biomedical field. These advancements have led to the development of complex 3D-printed structures that include a wide variety of organic and inorganic materials, cells, and bioactive substances. The most commonly used 3D printing techniques to fabricate hydrogel scaffolds are material extrusion, material jetting, and vat photopolymerization, but novel methods that can enhance the resolution and structural complexity of printed constructs have also emerged. The biomedical applications of hydrogels can be broadly classified into four categories-tissue engineering and regenerative medicine, 3D cell culture and disease modeling, drug screening and toxicity testing, and novel devices and drug delivery systems. Despite the recent advancements in their biomedical applications, a number of challenges still need to be addressed to maximize the use of hydrogels for 3D printing. These challenges include improving resolution and structural complexity, optimizing cell viability and function, improving cost efficiency and accessibility, and addressing ethical and regulatory concerns for clinical translation.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Kashish Dhal
- Department of Mechanical & Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.D.); (P.P.)
| | - Parimal Patel
- Department of Mechanical & Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.D.); (P.P.)
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Suprateek Kundu
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
Guo H, Huang T, Dai Y, Fan Q, Zhang Y, He Y, Huang S, He X, Hu P, Chen G, Zhu W, Zhong Z, Liu D, Lu L, Zhang F. A Functional Stent Encapsulating Radionuclide in Temperature-Memory Spiral Tubes for Malignant Stenosis of Esophageal Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307141. [PMID: 37929924 DOI: 10.1002/adma.202307141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Stent implantation is a commonly used palliative treatment for alleviating stenosis in advanced esophageal cancer. However, tissue proliferation induced by stent implantation and continuous tumor growth can easily lead to restenosis. Therefore, functional stents are required to relieve stenosis while inhibiting tissue proliferation and tumor growth, thereby extending the patency. Currently, no ideal functional stents are available. Here, iodine-125 (125 I) nuclides are encapsulated into a nickel-titanium alloy (NiTi) tube to develop a novel temperature-memory spiral radionuclide stent (TSRS). It has the characteristics of temperature-memory, no cold regions at the end of the stent, and a uniform spatial dose distribution. Cell-viability experiments reveal that the TSRS can reduce the proliferation of fibroblasts and tumor cells. TSRS implantation is feasible and safe, has no significant systemic radiotoxicity, and can inhibit in-stent and edge stenosis caused by stent-induced tissue proliferation in healthy rabbits. Moreover, TSRS can improve malignant stenosis and luminal patency resulting from continuous tumor growth in a VX2 esophageal cancer model. As a functional stent, the TSRS combines the excellent properties of NiTi with brachytherapy of the 125 I nuclide and will make significant contributions to the treatment of malignant esophageal stenosis.
Collapse
Affiliation(s)
- Huanqing Guo
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Tao Huang
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Yi Dai
- Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Qichao Fan
- Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Yanling Zhang
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Yao He
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Shuke Huang
- Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Xiaofeng He
- Vascular and Interventional Therapy Department, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Pan Hu
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Guanyu Chen
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Wenliang Zhu
- Department of Minimally Invasive & Interventional Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Zhihui Zhong
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Dengyao Liu
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
- Department of Interventional Radiology, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, P. R. China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, P. R. China
| | - Fujun Zhang
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| |
Collapse
|
15
|
Li X, Shan J, Chen X, Cui H, Wen G, Yu Y. Decellularized diseased tissues: current state-of-the-art and future directions. MedComm (Beijing) 2023; 4:e399. [PMID: 38020712 PMCID: PMC10661834 DOI: 10.1002/mco2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianyang Shan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
16
|
Pandey A, Pragya, Kanoujia J, Parashar P. New Insights into the Applications of 3D-Printed Biomaterial in Wound Healing and Prosthesis. AAPS PharmSciTech 2023; 24:191. [PMID: 37726576 DOI: 10.1208/s12249-023-02643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Recently three-dimensional bioprinting (3D-bioP) has emerged as a revolutionary technique for numerous biomedical applications. 3D-bioP has facilitated the printing of advanced and complex human organs resulting in satisfactory therapeutic practice. One of the important biomedical applications of 3D-bioP is in tissue engineering, wound healing, and prosthetics. 3D-bioP is basically aimed to restore the natural extracellular matrix of human's damage due to wounds. The relevant search was explored using various scientific database, viz., PubMed, Web of Science, Scopus, and ScienceDirect. The objective of this review is to emphasize interpretations from the pre-executed studies and to assess the worth of employing 3D-bioP in wound healing as well as prosthetics in terms of patient compliance, clinical outcomes, and economic viability. Furthermore, the benefits of applying 3D-bioP in wound healing over traditional methods have been covered along with the biocompatible biomaterials employed as bioinks has been discussion. Additionally, the review expands about the clinical trials in 3D-bioP field, showing promise of biomedical applicability of this technique with growing advancement in recent years.
Collapse
Affiliation(s)
- Aayushi Pandey
- Amity Institute of Pharmacy, Amity University Uttar Pradesh Lucknow Campus, Lucknow, U.P., 226028, India
| | - Pragya
- Amity Institute of Pharmacy, Amity University Uttar Pradesh Lucknow Campus, Lucknow, U.P., 226028, India
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh, 474005, India
| | - Poonam Parashar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh Lucknow Campus, Lucknow, U.P., 226028, India.
| |
Collapse
|
17
|
Kim MK, Jeong W, Kang HW. Liver dECM-Gelatin Composite Bioink for Precise 3D Printing of Highly Functional Liver Tissues. J Funct Biomater 2023; 14:417. [PMID: 37623662 PMCID: PMC10455418 DOI: 10.3390/jfb14080417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
In recent studies, liver decellularized extracellular matrix (dECM)-based bioinks have gained significant attention for their excellent compatibility with hepatocytes. However, their low printability limits the fabrication of highly functional liver tissue. In this study, a new liver dECM-gelatin composite bioink (dECM gBioink) was developed to overcome this limitation. The dECM gBioink was prepared by incorporating a viscous gelatin mixture into the liver dECM material. The novel dECM gBioink showed 2.44 and 10.71 times higher bioprinting resolution and compressive modulus, respectively, than a traditional dECM bioink. In addition, the new bioink enabled stable stacking with 20 or more layers, whereas a structure printed with the traditional dECM bioink collapsed. Moreover, the proposed dECM gBioink exhibited excellent hepatocyte and endothelial cell compatibility. At last, the liver lobule mimetic structure was successfully fabricated with a precisely patterned endothelial cell cord-like pattern and primary hepatocytes using the dECM gBioink. The fabricated lobule structure exhibited excellent hepatic functionalities and dose-dependent responses to hepatotoxic drugs. These results demonstrated that the gelatin mixture can significantly improve the printability and mechanical properties of the liver dECM materials while maintaining good cytocompatibility. This novel liver dECM gBioink with enhanced 3D printability and resolution can be used as an advanced tool for engineering highly functional liver tissues.
Collapse
Affiliation(s)
| | | | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST 50, UNIST-gil, Ulsan 44919, Republic of Korea; (M.K.K.); (W.J.)
| |
Collapse
|
18
|
Sanchez‐Rubio A, Jayawarna V, Maxwell E, Dalby MJ, Salmeron‐Sanchez M. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity. Adv Healthc Mater 2023; 12:e2202110. [PMID: 36938891 PMCID: PMC11469230 DOI: 10.1002/adhm.202202110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Tissue engineering aims at replicating tissues and organs to develop applications in vivo and in vitro. In vivo, by engineering artificial constructs using functional materials and cells to provide both physiological form and function. In vitro, by engineering three-dimensional (3D) models to support drug discovery and enable understanding of fundamental biology. 3D culture constructs mimic cell-cell and cell-matrix interactions and use biomaterials seeking to increase the resemblance of engineered tissues with its in vivo homologues. Native tissues, however, include complex architectures, with compartmentalized regions of different properties containing different types of cells that can be captured by multicompartment constructs. Recent advances in fabrication technologies, such as micropatterning, microfluidics or 3D bioprinting, have enabled compartmentalized structures with defined compositions and properties that are essential in creating 3D cell-laden multiphasic complex architectures. This review focuses on advances in engineered multicompartment constructs that mimic tissue heterogeneity. It includes multiphasic 3D implantable scaffolds and in vitro models, including systems that incorporate different regions emulating in vivo tissues, highlighting the emergence and relevance of 3D bioprinting in the future of biological research and medicine.
Collapse
Affiliation(s)
| | - Vineetha Jayawarna
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Emily Maxwell
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | | |
Collapse
|
19
|
Li Y, Liu H, Ding Y, Li W, Zhang Y, Luo S, Xiang Q. The Use of Hydrogel-Based Materials for Radioprotection. Gels 2023; 9:gels9040301. [PMID: 37102914 PMCID: PMC10137482 DOI: 10.3390/gels9040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Major causes of the radiation-induced disease include nuclear accidents, war-related nuclear explosions, and clinical radiotherapy. While certain radioprotective drug or bioactive compounds have been utilized to protect against radiation-induced damage in preclinical and clinical settings, these strategies are hampered by poor efficacy and limited utilization. Hydrogel-based materials are effective carriers capable of enhancing the bioavailability of compounds loaded therein. As they exhibit tunable performance and excellent biocompatibility, hydrogels represent promising tools for the design of novel radioprotective therapeutic strategies. This review provides an overview of common approaches to radioprotective hydrogel preparation, followed by a discussion of the pathogenesis of radiation-induced disease and the current states of research focused on using hydrogels to protect against these diseases. These findings ultimately provide a foundation for discussions of the challenges and future prospects associated with the use of radioprotective hydrogels.
Collapse
Affiliation(s)
- Yang Li
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Han Liu
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yaqun Ding
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wanyu Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Yuansong Zhang
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Qiang Xiang
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
20
|
Mahmoud DB, Schulz‐Siegmund M. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Adv Healthc Mater 2023; 12:e2202631. [PMID: 36571721 PMCID: PMC11468531 DOI: 10.1002/adhm.202202631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.
Collapse
Affiliation(s)
- Dina B. Mahmoud
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
- Department of PharmaceuticsEgyptian Drug Authority12311GizaEgypt
| | - Michaela Schulz‐Siegmund
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
| |
Collapse
|
21
|
Prashantha K, Krishnappa A, Muthappa M. 3D bioprinting of gastrointestinal cancer models: A comprehensive review on processing, properties, and therapeutic implications. Biointerphases 2023; 18:020801. [PMID: 36963961 DOI: 10.1116/6.0002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Gastrointestinal tract (GIT) malignancies are an important public health problem considering the increased incidence in recent years and the high morbidity and mortality associated with it. GIT malignancies constitute 26% of the global cancer incidence burden and 35% of all cancer-related deaths. Gastrointestinal cancers are complex and heterogenous diseases caused by the interplay of genetic and environmental factors. The tumor microenvironment (TME) of gastrointestinal tract carcinomas is dynamic and complex; it cannot be recapitulated in the basic two-dimensional cell culture systems. In contrast, three-dimensional (3D) in vitro models can mimic the TME more closely, enabling an improved understanding of the microenvironmental cues involved in the various stages of cancer initiation, progression, and metastasis. However, the heterogeneity of the TME is incompletely reproduced in these 3D culture models, as they fail to regulate the orientation and interaction of various cell types in a complex architecture. To emulate the TME, 3D bioprinting has emerged as a useful technique to engineer cancer tissue models. Bioprinted cancer tissue models can potentially recapitulate cancer pathology and increase drug resistance in an organ-mimicking 3D environment. In this review, we describe the 3D bioprinting methods, bioinks, characterization of 3D bioprinted constructs, and their application in developing gastrointestinal tumor models that integrate their microenvironment with different cell types and substrates, as well as bioprinting modalities and their application in therapy and drug screening. We review prominent studies on the 3D bioprinted esophageal, hepatobiliary, and colorectal cancer models. In addition, this review provides a comprehensive understanding of the cancer microenvironment in printed tumor models, highlights current challenges with respect to their clinical translation, and summarizes future perspectives.
Collapse
Affiliation(s)
- Kalappa Prashantha
- Centre for Research and Innovation, Adichunchanagiri School of Natural Sciences, Adichunchanagiri University, BGSIT, B.G. Nagara, Mandya District 571448, Karnataka, India
| | - Amita Krishnappa
- Department of Pathology, Adichunchanagiri Institute of Medicinal Sciences Adichunchanagiri University, B.G. Nagara, Mandya District 571448, Karnataka, India
| | - Malini Muthappa
- Department of Physiology, Adichunchanagiri Institute of Medicinal Sciences Adichunchanagiri University, B.G. Nagara, Mandya District 571448, Karnataka, India
| |
Collapse
|
22
|
Adhesive, antibacterial and double crosslinked carboxylated polyvinyl alcohol/chitosan hydrogel to enhance dynamic skin wound healing. Int J Biol Macromol 2023; 228:744-753. [PMID: 36563817 DOI: 10.1016/j.ijbiomac.2022.12.169] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
An available dressing material which promotes skin tissue repair is of significant importance for public health. Moreover, dynamic wounds have special requirements for hydrogel dressings due to their motion state. Correspondingly, a double crosslinked hydrogel was prepared based on amide and coordination bonds from carboxylated polyvinyl alcohol (PC) and chitosan (CS)/Fe3+. The hydrogel exhibited excellent swelling ratio and suitable biodegradability, which is beneficial to the tissue repair. The results showed that hydrogels with crosslinked structure possessed better unique properties, such as stronger mechanical (78 kPa of G') and adhesion properties, and shorter self-healing time (5 mins), the change of which was consistent with dynamic wounds. The hydrogel exhibited not only antibacterial activity (98 % fatality rate), but also superior hemostatic capacity during the wound healing process. In addition, the hydrogel could shorten skin healing time to 14 days, and obviously accelerated skin structure reconstruction by promoting angiogenesis and collagen deposition. Therefore, double crosslinked hydrogel is a promising dynamic wound dressing.
Collapse
|
23
|
Kort-Mascort J, Flores-Torres S, Peza-Chavez O, Jang JH, Pardo LA, Tran SD, Kinsella J. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater Sci 2023; 11:400-431. [PMID: 36484344 DOI: 10.1039/d2bm01273a] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Tissue development, wound healing, pathogenesis, regeneration, and homeostasis rely upon coordinated and dynamic spatial and temporal remodeling of extracellular matrix (ECM) molecules. ECM reorganization and normal physiological tissue function, require the establishment and maintenance of biological, chemical, and mechanical feedback mechanisms directed by cell-matrix interactions. To replicate the physical and biological environment provided by the ECM in vivo, methods have been developed to decellularize and solubilize tissues which yield organ and tissue-specific bioactive hydrogels. While these biomaterials retain several important traits of the native ECM, the decellularizing process, and subsequent sterilization, and solubilization result in fragmented, cleaved, or partially denatured macromolecules. The final product has decreased viscosity, moduli, and yield strength, when compared to the source tissue, limiting the compatibility of isolated decellularized ECM (dECM) hydrogels with fabrication methods such as extrusion bioprinting. This review describes the physical and bioactive characteristics of dECM hydrogels and their role as biomaterials for biofabrication. In this work, critical variables when selecting the appropriate tissue source and extraction methods are identified. Common manual and automated fabrication techniques compatible with dECM hydrogels are described and compared. Fabrication and post-manufacturing challenges presented by the dECM hydrogels decreased mechanical and structural stability are discussed as well as circumvention strategies. We further highlight and provide examples of the use of dECM hydrogels in tissue engineering and their role in fabricating complex in vitro 3D microenvironments.
Collapse
Affiliation(s)
| | | | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Joyce H Jang
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Chae S, Cho DW. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta Biomater 2023; 156:4-20. [PMID: 35963520 DOI: 10.1016/j.actbio.2022.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 02/02/2023]
Abstract
The advent of three-dimensional (3D) bioprinting has enabled impressive progress in the development of 3D cellular constructs to mimic the structural and functional characteristics of natural tissues. Bioprinting has considerable translational potential in tissue engineering and regenerative medicine. This review highlights the rational design and biofabrication strategies of diverse 3D bioprinted tissue constructs for orthopedic tissue engineering applications. First, we elucidate the fundamentals of 3D bioprinting techniques and biomaterial inks and discuss the basic design principles of bioprinted tissue constructs. Next, we describe the rationale and key considerations in 3D bioprinting of tissues in many different aspects. Thereafter, we outline the recent advances in 3D bioprinting technology for orthopedic tissue engineering applications, along with detailed strategies of the engineering methods and materials used, and discuss the possibilities and limitations of different 3D bioprinted tissue products. Finally, we summarize the current challenges and future directions of 3D bioprinting technology in orthopedic tissue engineering and regenerative medicine. This review not only delineates the representative 3D bioprinting strategies and their tissue engineering applications, but also provides new insights for the clinical translation of 3D bioprinted tissues to aid in prompting the future development of orthopedic implants. STATEMENT OF SIGNIFICANCE: 3D bioprinting has driven major innovations in the field of tissue engineering and regenerative medicine; aiming to develop a functional viable tissue construct that provides an alternative regenerative therapy for musculoskeletal tissue regeneration. 3D bioprinting-based biofabrication strategies could open new clinical possibilities for creating equivalent tissue substitutes with the ability to customize them to meet patient demands. In this review, we summarize the significance and recent advances in 3D bioprinting technology and advanced bioinks. We highlight the rationale for biofabrication strategies using 3D bioprinting for orthopedic tissue engineering applications. Furthermore, we offer ample perspective and new insights into the current challenges and future direction of orthopedic bioprinting translation research.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang 37673, South Korea; EDmicBio Inc., 111 Hoegi-ro, Dongdaemun-gu, Seoul 02445, South Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| |
Collapse
|
25
|
Yang P, Ju Y, Hu Y, Xie X, Fang B, Lei L. Emerging 3D bioprinting applications in plastic surgery. Biomater Res 2023; 27:1. [PMID: 36597149 PMCID: PMC9808966 DOI: 10.1186/s40824-022-00338-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Plastic surgery is a discipline that uses surgical methods or tissue transplantation to repair, reconstruct and beautify the defects and deformities of human tissues and organs. Three-dimensional (3D) bioprinting has gained widespread attention because it enables fine customization of the implants in the patient's surgical area preoperatively while avoiding some of the adverse reactions and complications of traditional surgical approaches. In this paper, we review the recent research advances in the application of 3D bioprinting in plastic surgery. We first introduce the printing process and basic principles of 3D bioprinting technology, revealing the advantages and disadvantages of different bioprinting technologies. Then, we describe the currently available bioprinting materials, and dissect the rationale for special dynamic 3D bioprinting (4D bioprinting) that is achieved by varying the combination strategy of bioprinting materials. Later, we focus on the viable clinical applications and effects of 3D bioprinting in plastic surgery. Finally, we summarize and discuss the challenges and prospects for the application of 3D bioprinting in plastic surgery. We believe that this review can contribute to further development of 3D bioprinting in plastic surgery and provide lessons for related research.
Collapse
Affiliation(s)
- Pu Yang
- grid.452708.c0000 0004 1803 0208Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Yikun Ju
- grid.452708.c0000 0004 1803 0208Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Yue Hu
- grid.449525.b0000 0004 1798 4472School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000 People’s Republic of China
| | - Xiaoyan Xie
- grid.452708.c0000 0004 1803 0208Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Bairong Fang
- grid.452708.c0000 0004 1803 0208Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Lanjie Lei
- grid.263826.b0000 0004 1761 0489School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People’s Republic of China
| |
Collapse
|
26
|
Talebi Jouybari M, Fani N, Jahangir S, Bagheri F, Golru R, Taghiyar L. Validation of Tissue-Engineered Constructs: Preclinical and Clinical Studies. CARTILAGE: FROM BIOLOGY TO BIOFABRICATION 2023:491-527. [DOI: 10.1007/978-981-99-2452-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Barbon S, Biccari A, Stocco E, Capovilla G, D’Angelo E, Todesco M, Sandrin D, Bagno A, Romanato F, Macchi V, De Caro R, Agostini M, Merigliano S, Valmasoni M, Porzionato A. Bio-Engineered Scaffolds Derived from Decellularized Human Esophagus for Functional Organ Reconstruction. Cells 2022; 11:cells11192945. [PMID: 36230907 PMCID: PMC9563623 DOI: 10.3390/cells11192945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Esophageal reconstruction through bio-engineered allografts that highly resemble the peculiar properties of the tissue extracellular matrix (ECM) is a prospective strategy to overcome the limitations of current surgical approaches. In this work, human esophagus was decellularized for the first time in the literature by comparing three detergent-enzymatic protocols. After decellularization, residual DNA quantification and histological analyses showed that all protocols efficiently removed cells, DNA (<50 ng/mg of tissue) and muscle fibers, preserving collagen/elastin components. The glycosaminoglycan fraction was maintained (70–98%) in the decellularized versus native tissues, while immunohistochemistry showed unchanged expression of specific ECM markers (collagen IV, laminin). The proteomic signature of acellular esophagi corroborated the retention of structural collagens, basement membrane and matrix–cell interaction proteins. Conversely, decellularization led to the loss of HLA-DR expression, producing non-immunogenic allografts. According to hydroxyproline quantification, matrix collagen was preserved (2–6 µg/mg of tissue) after decellularization, while Second-Harmonic Generation imaging highlighted a decrease in collagen intensity. Based on uniaxial tensile tests, decellularization affected tissue stiffness, but sample integrity/manipulability was still maintained. Finally, the cytotoxicity test revealed that no harmful remnants/contaminants were present on acellular esophageal matrices, suggesting allograft biosafety. Despite the different outcomes showed by the three decellularization methods (regarding, for example, tissue manipulability, DNA removal, and glycosaminoglycans/hydroxyproline contents) the ultimate validation should be provided by future repopulation tests and in vivo orthotopic implant of esophageal scaffolds.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Andrea Biccari
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Giovanni Capovilla
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Edoardo D’Angelo
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Deborah Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Marco Agostini
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-96-40-160
| | - Stefano Merigliano
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Michele Valmasoni
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| |
Collapse
|
28
|
Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NY. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials 2022; 289:121786. [DOI: 10.1016/j.biomaterials.2022.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
|
29
|
Fabrication of hydrogels with adjustable mechanical properties through 3D cell-laden printing technology. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Zhang CY, Fu CP, Li XY, Lu XC, Hu LG, Kankala RK, Wang SB, Chen AZ. Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113442. [PMID: 35684380 PMCID: PMC9182049 DOI: 10.3390/molecules27113442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3D) bioprinting is one of the most promising additive manufacturing technologies for fabricating various biomimetic architectures of tissues and organs. In this context, the bioink, a critical element for biofabrication, is a mixture of biomaterials and living cells used in 3D printing to create cell-laden structures. Recently, decellularized extracellular matrix (dECM)-based bioinks derived from natural tissues have garnered enormous attention from researchers due to their unique and complex biochemical properties. This review initially presents the details of the natural ECM and its role in cell growth and metabolism. Further, we briefly emphasize the commonly used decellularization treatment procedures and subsequent evaluations for the quality control of the dECM. In addition, we summarize some of the common bioink preparation strategies, the 3D bioprinting approaches, and the applicability of 3D-printed dECM bioinks to tissue engineering. Finally, we present some of the challenges in this field and the prospects for future development.
Collapse
Affiliation(s)
- Chun-Yang Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Chao-Ping Fu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- Correspondence: (C.-P.F.); (A.-Z.C.)
| | - Xiong-Ya Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Xiao-Chang Lu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Long-Ge Hu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- Correspondence: (C.-P.F.); (A.-Z.C.)
| |
Collapse
|
31
|
Loskot J, Jezbera D, Zmrhalová ZO, Nalezinková M, Alferi D, Lelkes K, Voda P, Andrýs R, Fučíková AM, Hosszú T, Bezrouk A. A Complex In Vitro Degradation Study on Polydioxanone Biliary Stents during a Clinically Relevant Period with the Focus on Raman Spectroscopy Validation. Polymers (Basel) 2022; 14:polym14050938. [PMID: 35267761 PMCID: PMC8912347 DOI: 10.3390/polym14050938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Biodegradable biliary stents are promising treatments for biliary benign stenoses. One of the materials considered for their production is polydioxanone (PPDX), which could exhibit a suitable degradation time for use in biodegradable stents. Proper material degradation characteristics, such as sufficient stiffness and disintegration resistance maintained for a clinically relevant period, are necessary to ensure stent safety and efficacy. The hydrolytic degradation of commercially available polydioxanone biliary stents (ELLA-CS, Hradec Králové, Czech Republic) in phosphate-buffered saline (PBS) was studied. During 9 weeks of degradation, structural, physical, and surface changes were monitored using Raman spectroscopy, differential scanning calorimetry, scanning electron microscopy, and tensile and torsion tests. It was found that the changes in mechanical properties are related to the increase in the ratio of amorphous to crystalline phase, the so-called amorphicity. Monitoring the amorphicity using Raman spectroscopy has proven to be an appropriate method to assess polydioxanone biliary stent degradation. At the 1732 cm−1 Raman peak, the normalized shoulder area is less than 9 cm−1 which indicates stent disintegration. The stent disintegration started after 9 weeks of degradation in PBS, which agrees with previous in vitro studies on polydioxanone materials as well as with in vivo studies on polydioxanone biliary stents.
Collapse
Affiliation(s)
- Jan Loskot
- Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (J.L.); (D.J.)
| | - Daniel Jezbera
- Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (J.L.); (D.J.)
| | - Zuzana Olmrová Zmrhalová
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 530 02 Pardubice, Czech Republic;
| | - Martina Nalezinková
- Department of Biology, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (M.N.); (A.M.F.)
| | - Dino Alferi
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (D.A.); (K.L.); (P.V.)
| | - Krisztina Lelkes
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (D.A.); (K.L.); (P.V.)
| | - Petr Voda
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (D.A.); (K.L.); (P.V.)
| | - Rudolf Andrýs
- Department of Chemistry, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic;
| | - Alena Myslivcová Fučíková
- Department of Biology, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (M.N.); (A.M.F.)
| | - Tomáš Hosszú
- Department of Neurosurgery, Faculty of Medicine in Hradec Králové, Charles University, Sokolská 581, 500 05 Hradec Králové, Czech Republic;
- Department of Neurosurgery, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Aleš Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (D.A.); (K.L.); (P.V.)
- Correspondence:
| |
Collapse
|
32
|
Chae S, Kim J, Yi HG, Cho DW. 3D Bioprinting of an In Vitro Model of a Biomimetic Urinary Bladder with a Contract-Release System. MICROMACHINES 2022; 13:277. [PMID: 35208401 PMCID: PMC8877589 DOI: 10.3390/mi13020277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023]
Abstract
The development of curative therapy for bladder dysfunction is usually hampered owing to the lack of reliable ex vivo human models that can mimic the complexity of the human bladder. To overcome this issue, 3D in vitro model systems offering unique opportunities to engineer realistic human tissues/organs have been developed. However, existing in vitro models still cannot entirely reflect the key structural and physiological characteristics of the native human bladder. In this study, we propose an in vitro model of the urinary bladder that can create 3D biomimetic tissue structures and dynamic microenvironments to replicate the smooth muscle functions of an actual human urinary bladder. In other words, the proposed biomimetic model system, developed using a 3D bioprinting approach, can recreate the physiological motion of the urinary bladder by incorporating decellularized extracellular matrix from the bladder tissue and introducing cyclic mechanical stimuli. The results showed that the developed bladder tissue models exhibited high cell viability and proliferation rate and promoted myogenic differentiation potential given dynamic mechanical cues. We envision the developed in vitro bladder mimicry model can serve as a research platform for fundamental studies on human disease modeling and pharmaceutical testing.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (S.C.); (J.K.)
| | - Jaewook Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (S.C.); (J.K.)
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (S.C.); (J.K.)
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
33
|
Krause J, Brokmann F, Rosenbaum C, Weitschies W. The challenges of drug delivery to the esophagus and how to overcome them. Expert Opin Drug Deliv 2022; 19:119-131. [DOI: 10.1080/17425247.2022.2033206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Julius Krause
- University of Greifswald, Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Friederike Brokmann
- University of Greifswald, Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Christoph Rosenbaum
- University of Greifswald, Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Werner Weitschies
- University of Greifswald, Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| |
Collapse
|
34
|
Lavrador P, Gaspar VM, Mano JF. Engineering mammalian living materials towards clinically relevant therapeutics. EBioMedicine 2021; 74:103717. [PMID: 34839265 PMCID: PMC8628209 DOI: 10.1016/j.ebiom.2021.103717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/28/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Engineered living materials represent a new generation of human-made biotherapeutics that are highly attractive for a myriad of medical applications. In essence, such cell-rich platforms provide encodable bioactivities with extended lifetimes and environmental multi-adaptability currently unattainable in conventional biomaterial platforms. Emerging cell bioengineering tools are herein discussed from the perspective of materializing living cells as cooperative building blocks that drive the assembly of multiscale living materials. Owing to their living character, pristine cellular units can also be imparted with additional therapeutically-relevant biofunctionalities. On this focus, the most recent advances on the engineering of mammalian living materials and their biomedical applications are herein outlined, alongside with a critical perspective on major roadblocks hindering their realistic clinical translation. All in all, transposing the concept of leveraging living materials as autologous tissue-building entities and/or self-regulated biotherapeutics opens new realms for improving precision and personalized medicine strategies in the foreseeable future.
Collapse
Affiliation(s)
- Pedro Lavrador
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
35
|
Kim SD, Kim IG, Tran HN, Cho H, Janarthanan G, Noh I, Chung EJ. Three-Dimensional Printed Design of Antibiotic-Releasing Esophageal Patches for Antimicrobial Activity Prevention. Tissue Eng Part A 2021; 27:1490-1502. [PMID: 33847168 DOI: 10.1089/ten.tea.2020.0268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pharyngoesophageal defects can cause exposure to various bacterial flora and severe inflammation. We fabricated a biodegradable polycaprolactone (PCL) patch composed of both thin film and three-dimensional (3D) printed lattice, and then investigated the efficacy of pharyngoesophageal reconstruction by using 3D printed antibiotic-releasing PCL patches that inhibited early inflammation by sustained tetracycline (TCN) release from both thin PCL films and printed rods implanted in esophageal partial defects. PCL was 3D printed in lattice form on a presolution casted PCL thin film at ∼100 μm resolution. TCN was loaded onto the PCL-printed patches by 3D printing a mixture of TCN and PCL particles melted at 100°C. TCN exhibited sustained release in vitro for over 1 month. After loading TCN, the patches showed decreased tensile strength and Young's modulus, and less than 20% TCN was slowly released from the 2.5% TCN-loaded PCL patches over 150 days. Cytotoxicity tests of extract solutions from patch samples demonstrated excellent in vitro cell compatibility. Antibiotic-releasing PCL patches were then transplanted into partial esophageal defects in rats. Microcomputed tomography analysis revealed no leak of orally injected contrast agent in the entire esophagus. Tissue remodeling was examined through histological responses of M1 and M2 macrophages. In particular, the 1% and 3% TCN patch groups exhibited significant muscle layer regeneration by desmin immunostaining. Further histological and immunofluorescence analyses revealed that the 1% and 3% TCN patch groups exhibited the best esophageal regeneration according to reepithelialization, neovascularization, and elastin texture around the implanted sites. Our antibiotic-releasing patch successfully consolidates the regenerative potential of esophageal muscle and mucosa and the antibacterial activity of TCN for 3D esophageal reconstruction. Impact statement Anastomosis site leakage and necrosis after pharyngoesophageal transplantation inevitably causes mortality because the mediastinum and neck compartments become contaminated. Herein, we present antibiotic-releasing pharyngoesophageal patch that prevents saliva leakage and has an antimicrobial effect. We have demonstrated antibiotic release profile and mechanical properties for esophageal transplantation. Upon esophageal transplantation of antibiotic-releasing polycaprolactone patches, antimicrobial effects and muscle regeneration around the graft sites were clearly identified in the group containing 1% and 3% of tetracycline. The esophageal graft led to the remarkable recovery throughout reepithelialization, neovascularization, and elastin texture of around the implanted sites. We believe that current system is capable of various applications that require antibacterial in vivo.
Collapse
Affiliation(s)
- Seong Dong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, National Medical Center, Seoul, Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hao Nguyen Tran
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Hana Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gopinathan Janarthanan
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Lu CH, Yeh YC. Fabrication of Multiresponsive Magnetic Nanocomposite Double-Network Hydrogels for Controlled Release Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105997. [PMID: 34791796 DOI: 10.1002/smll.202105997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Nanocomposite double-network hydrogels (ncDN hydrogels) have been demonstrated as promising biomaterials to present several desired properties (e.g., high mechanical strength, stimuli-responsiveness, and local therapy) for biomedicine. Here, a new type of ncDN hydrogels featuring definable microstructures and properties as well as multistimuli responsiveness for controlled release applications is developed. Amine-functionalized iron oxide nanoparticles (IOPs_NH2 ) are used as nanoparticle cross-linkers to simultaneously connect the dual networks of gelatin (Gel) and polydextran aldehyde (PDA) through hydrogen bonding, electrostatic interactions, and dynamic imine bonds. The pH- and temperature-responsive Gel/PDA/IOP_NH2 ncDN hydrogels present a fast release profile of proteins at acidic pH and high temperature. Besides, IOP_NH2 also contributes the magnetic-responsiveness to the ncDN hydrogels, allowing the use of magnetic field to generate heat to facilitate the structural change of hydrogels and the subsequent applications. Taken together, a versatile ncDN hydrogel platform capable of multistimuli responsiveness and local heating for controlled release is developed for advanced biomedical applications.
Collapse
Affiliation(s)
- Cheng-Hsun Lu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
37
|
Liu Z, Wang J, Chen H, Zhang G, Lv Z, Li Y, Zhao S, Li W. Coaxial Electrospun PLLA Fibers Modified with Water-Soluble Materials for Oligodendrocyte Myelination. Polymers (Basel) 2021; 13:polym13203595. [PMID: 34685353 PMCID: PMC8537353 DOI: 10.3390/polym13203595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Myelin sheaths are essential in maintaining the integrity of axons. Development of the platform for in vitro myelination would be especially useful for demyelinating disease modeling and drug screening. In this study, a fiber scaffold with a core-shell structure was prepared in one step by the coaxial electrospinning method. A high-molecular-weight polymer poly-L-lactic acid (PLLA) was used as the core, while the shell was a natural polymer material such as hyaluronic acid (HA), sodium alginate (SA), or chitosan (CS). The morphology, differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), contact angle, viability assay, and in vitro myelination by oligodendrocytes were characterized. The results showed that such fibers are bead-free and continuous, with an average size from 294 ± 53 to 390 ± 54 nm. The DSC and FTIR curves indicated no changes in the phase state of coaxial brackets. Hyaluronic acid/PLLA coaxial fibers had the minimum contact angle (53.1° ± 0.24°). Myelin sheaths were wrapped around a coaxial electrospun scaffold modified with water-soluble materials after a 14-day incubation. All results suggest that such a scaffold prepared by coaxial electrospinning potentially provides a novel platform for oligodendrocyte myelination.
Collapse
Affiliation(s)
- Zhepeng Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
- Correspondence: (Z.L.); (W.L.)
| | - Jing Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Haini Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Guanyu Zhang
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
| | - Zhuman Lv
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
| | - Yijun Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Shoujin Zhao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Wenlin Li
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
- Correspondence: (Z.L.); (W.L.)
| |
Collapse
|
38
|
Dong C, Qiao F, Chen G, Lv Y. Demineralized and decellularized bone extracellular matrix-incorporated electrospun nanofibrous scaffold for bone regeneration. J Mater Chem B 2021; 9:6881-6894. [PMID: 34612335 DOI: 10.1039/d1tb00895a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular matrix (ECM)-based materials have been employed as scaffolds for bone tissue engineering, providing a suitable microenvironment with biophysical and biochemical cues for cell attachment, proliferation and differentiation. In this study, bone-derived ECM (bECM)-incorporated electrospun poly(ε-caprolactone) (PCL) (bECM/PCL) nanofibrous scaffolds were prepared and their effects on osteogenesis were evaluated in vitro and in vivo. The results showed that the bECM/PCL scaffolds promoted the attachment, spreading, proliferation and osteogenic differentiation of rat mesenchymal stem cells (MSCs), mitigated the foreign-body reaction, and facilitated bone regeneration in a rat calvarial critical size defect model. Thus, this study suggests that bECM can provide a promising option for bone regeneration.
Collapse
Affiliation(s)
- Chanjuan Dong
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China.
| | | | | | | |
Collapse
|
39
|
Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D Printing of Pharmaceutical Application: Drug Screening and Drug Delivery. Pharmaceutics 2021; 13:1373. [PMID: 34575448 PMCID: PMC8465948 DOI: 10.3390/pharmaceutics13091373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022] Open
Abstract
Advances in three-dimensional (3D) printing techniques and the development of tailored biomaterials have facilitated the precise fabrication of biological components and complex 3D geometrics over the past few decades. Moreover, the notable growth of 3D printing has facilitated pharmaceutical applications, enabling the development of customized drug screening and drug delivery systems for individual patients, breaking away from conventional approaches that primarily rely on transgenic animal experiments and mass production. This review provides an extensive overview of 3D printing research applied to drug screening and drug delivery systems that represent pharmaceutical applications. We classify several elements required by each application for advanced pharmaceutical techniques and briefly describe state-of-the-art 3D printing technology consisting of cells, bioinks, and printing strategies that satisfy requirements. Furthermore, we discuss the limitations of traditional approaches by providing concrete examples of drug screening (organoid, organ-on-a-chip, and tissue/organ equivalent) and drug delivery systems (oral/vaginal/rectal and transdermal/surgical drug delivery), followed by the introduction of recent pharmaceutical investigations using 3D printing-based strategies to overcome these challenges.
Collapse
Affiliation(s)
- Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China;
| | - Minjun Ahn
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Won-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Kyungbuk, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| |
Collapse
|
40
|
Wang J, Zhang Y, Aghda NH, Pillai AR, Thakkar R, Nokhodchi A, Maniruzzaman M. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv Drug Deliv Rev 2021; 174:294-316. [PMID: 33895212 DOI: 10.1016/j.addr.2021.04.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
The 'one-size-fits-all' approach followed by conventional drug delivery platforms often restricts its application in pharmaceutical industry, due to the incapability of adapting to individual pharmacokinetic traits. Driven by the development of additive manufacturing (AM) technology, three-dimensional (3D) printed drug delivery medical devices have gained increasing popularity, which offers key advantages over traditional drug delivery systems. The major benefits include the ability to fabricate 3D structures with customizable design and intricate architecture, and most importantly, ease of personalized medication. Furthermore, the emergence of multi-material printing and four-dimensional (4D) printing integrates the benefits of multiple functional materials, and thus provide widespread opportunities for the advancement of personalized drug delivery devices. Despite the remarkable progress made by AM techniques, concerns related to regulatory issues, scalability and cost-effectiveness remain major hurdles. Herein, we provide an overview on the latest accomplishments in 3D printed drug delivery devices as well as major challenges and future perspectives for AM enabled dosage forms and drug delivery systems.
Collapse
Affiliation(s)
- Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Yu Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Niloofar Heshmati Aghda
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Amit Raviraj Pillai
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Rishi Thakkar
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA.
| |
Collapse
|
41
|
A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials 2021; 276:120838. [PMID: 34274780 DOI: 10.1016/j.biomaterials.2021.120838] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 01/18/2023]
Abstract
Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic burn wounds, we designed a novel double cross-linked hydrogel prepared by Schiff base and catechol-Fe3+ chelation bond. The unique double cross-linked structure of the hydrogel resulted in better physicochemical properties and enhanced efficacy. The enhanced physicochemical properties, such as faster gelation time (52 ± 2 s), stronger mechanical property (535 kPa of G'), enhanced adhesive strength (19.3 kPa) and better self-healing property, made the hydrogel suitable for dynamic wounds. The excellent shape adaptability (97.1 ± 1.3% of recovery) made the hydrogel suitable for wounds with irregular shapes. The hydrogel exhibited not only biodegradability during the wound healing process but also superior inherent antibacterial activity (100% killing ratio) and hemostatic property. The results showed that the hydrogel shortened the healing time of burn wounds to 13 days, and accelerated the reconstruction of skin structure and function. This double cross-linked multifunctional hydrogel is a promising candidate as a dynamic burn wound dressing.
Collapse
|
42
|
Suvarnapathaki S, Nguyen MA, Goulopoulos AA, Lantigua D, Camci-Unal G. Engineering calcium peroxide based oxygen generating scaffolds for tissue survival. Biomater Sci 2021; 9:2519-2532. [PMID: 33565527 PMCID: PMC11442008 DOI: 10.1039/d0bm02048f] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxygen supply is essential for the long-term viability and function of tissue engineered constructs in vitro and in vivo. The integration with the host blood supply as the primary source of oxygen to cells requires 4 to 5 weeks in vivo and involves neovascularization stages to support the delivery of oxygenated blood to cells. Consequently, three-dimensional (3D) encapsulated cells during this process are prone to oxygen deprivation, cellular dysfunction, damage, and hypoxia-induced necrosis. Here we demonstrate the use of calcium peroxide (CaO2) and polycaprolactone (PCL), as part of an emerging paradigm of oxygen-generating scaffolds that substitute the host oxygen supply via hydrolytic degradation. The 35-day in vitro study showed predictable oxygen release kinetics that achieved 5% to 29% dissolved oxygen with increasing CaO2 loading. As a biomaterial, the iterations of 0 mg, 40 mg, and 60 mg of CaO2 loaded scaffolds yielded modular mechanical behaviors, ranging from 5-20 kPa in compressive strength. The other controlled physiochemical features included swelling capacities of 22-33% and enzymatic degradation rates of 0.8% to 60% remaining mass. The 3D-encapsulation experiments of NIH/3T3 fibroblasts, L6 rat myoblasts, and primary cardiac fibroblasts in these scaffolds showed enhanced cell survival, proliferation, and function under hypoxia. During continuous oxygen release, the scaffolds maintained a stable tissue culture system between pH 8 to 9. The broad basis of this work supports prospects in the expansion of robust and clinically translatable tissue constructs.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | | | | | | | | |
Collapse
|
43
|
Jiang Y, Li R, Han C, Huang L. Extracellular matrix grafts: From preparation to application (Review). Int J Mol Med 2020; 47:463-474. [PMID: 33416123 PMCID: PMC7797433 DOI: 10.3892/ijmm.2020.4818] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023] Open
Abstract
Recently, the increasing emergency of traffic accidents and the unsatisfactory outcome of surgical intervention are driving research to seek a novel technology to repair traumatic soft tissue injury. From this perspective, decellularized matrix grafts (ECM-G) including natural ECM materials, and their prepared hydrogels and bioscaffolds, have emerged as possible alternatives for tissue engineering and regenerative medicine. Over the past decades, several physical and chemical decellularization methods have been used extensively to deal with different tissues/organs in an attempt to carefully remove cellular antigens while maintaining the non-immunogenic ECM components. It is anticipated that when the decellularized biomaterials are seeded with cells in vitro or incorporated into irregularly shaped defects in vivo, they can provide the appropriate biomechanical and biochemical conditions for directing cell behavior and tissue remodeling. The aim of this review is to first summarize the characteristics of ECM-G and describe their major decellularization methods from different sources, followed by analysis of how the bioactive factors and undesired residual cellular compositions influence the biologic function and host tissue response following implantation. Lastly, we also provide an overview of the in vivoapplication of ECM-G in facilitating tissue repair and remodeling.
Collapse
Affiliation(s)
- Yongsheng Jiang
- Science and Education Management Center, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China
| | - Rui Li
- Science and Education Management Center, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China
| | - Chunchan Han
- Science and Education Management Center, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China
| | - Lijiang Huang
- Science and Education Management Center, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China
| |
Collapse
|