1
|
Ma H, Zhang W, Yang K, Liu Z, Zhang W. Bimetallic MOF nanoparticles decorated on polyacrylonitrile-based electrospun nanofiber membranes for synergistic antibacterial activity and organic dye adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124465. [PMID: 39923634 DOI: 10.1016/j.jenvman.2025.124465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/12/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Electrospun nanofiber membranes functionalized with metal-organic framework (MOF) are considered as a promising materials for removal contaminants from wastewater. In this study, a bottom-up approach was proposed for the preparation bimetallic MOF based polyacrylonitrile (PAN) electrospun nanofiber membranes. Polydopamine (PDA)-modified PAN nanofiber membranes increased the anchoring of Co/Zn-MOF nanoparticles, further leading to the formation of Co/Zn-MOF@PDA-PAN nanofiber membranes with secondary growth method. With the increasing of 2-MIM concentration, the surface roughness and hydrophilicity of Co/Zn-MOF@PDA-PAN exhibited the increasing tendency. In addition, the antibacterials rates of Co/Zn-MOF@PDA-PAN were 59.6% and 64.9% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 1h, rising to over 99.9% after 24h, demonstrating rapid and effective antibacterial activity. Importantly, membranes showed excellent anti-adhesion properties against two experimental strains. The release of ROS from Co/Zn-MOF could disrupt bacterial physiological activities, leading to their death, which could be the primary antibacterial mechanism of nanofiber membranes. The adsorption isotherm of MOF@PAN was characterized by the Langmuir model, showing a maximum adsorption capacity of 564 mg/g for SY, while kinetic data were best fitted with the pseudo-second-order model. The bimetallic MOF-based nanofiber membranes will be an effective and promising materials for antibacterial applications and water purification.
Collapse
Affiliation(s)
- Hongyang Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Wen Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China; Hebei Industrial Technology Research Institute of Membranes, Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| | - Kun Yang
- Tianjin Baodi district Qingniao Beifu Experimental School, Tianjin, 301899, China
| | | | - Wanwan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
2
|
Chen W, Li H, Zhang X, Sang Y, Nie Z. Microfluidic preparation of monodisperse PLGA-PEG/PLGA microspheres with controllable morphology for drug release. LAB ON A CHIP 2024; 24:4623-4631. [PMID: 39248189 DOI: 10.1039/d4lc00486h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Monodisperse biodegradable polymer microspheres show broad applications in drug delivery and other fields. In this study, we developed an effective method that combines microfluidics with interfacial instability to prepare monodispersed poly(lactic-co-glycolic acid)-b-polyethylene glycol (PLGA-PEG)/poly(lactic-co-glycolic acid) (PLGA) microspheres with tailored surface morphology. By adjusting the mass ratio of PLGA-PEG to PLGA, the concentration of stabilizers and the type of PLGA, we generated microspheres with various unique folded morphologies, such as "fishtail-like", "lace-like" and "sponge-like" porous structures. Additionally, we demonstrated that risperidone-loaded PLGA-PEG/PLGA microspheres with these folded morphologies significantly enhanced drug release, particularly in the initial stage, by exhibiting a logarithmic release profile. This feature could potentially address the issue of delayed release commonly observed in sustained-release formulations. This study presents a straightforward yet effective approach to construct precisely engineered microspheres offering enhanced control over drug release dynamics.
Collapse
Affiliation(s)
- Wenwen Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Hao Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xinyue Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Yutao Sang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
3
|
Hua M, Pan Y, Jiang C, Yu P, Li X, Gao Y, Xu S, Pan G. A facile strategy for the preparation of polylactide nano-microspheres with enhanced stereo-complexations. RSC Adv 2024; 14:30192-30200. [PMID: 39315020 PMCID: PMC11418589 DOI: 10.1039/d4ra04919e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Stereo-complexed polylactide (sc-PLA) nano-microspheres were separated by adding poor solvent to the poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blend solution. The effects of different process parameters (concentration, processing method, ratio of PLLA/PDLA blend solution to poor solvent) on the microsphere particle size were investigated. The microscopic morphology, crystallinity, and thermal properties were investigated by Fourier transform infrared spectroscopy, differential scanning calorimetry, two-dimensional wide-angle X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The results indicated that when the concentration reached 10 wt% and the PLLA/PDLA blend solution to poor solvent ratio was 1 : 5, the sc-PLA nano-microspheres exhibited more regular shape, good sphericity and uniform particle size, and the highest crystallinity. Additionally, the degree of crystallinity of the stereo-complexed crystals was as high as 39.60%, the rate of stereo-complexation was 99.65%, and the melting temperature reached 220 °C, indicating notable improvement in the crystallization and thermal properties. The sc-PLA nano-microspheres obtained in this research could be used as a nucleating agent for fibers and drug delivery carrier, and the sc-PLA nano-microspheres have broad application prospects in the textile and biomedical fields.
Collapse
Affiliation(s)
- Ming Hua
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Ying Pan
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Changmei Jiang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Peiyan Yu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Xingang Li
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Yao Gao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Sijun Xu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Gangwei Pan
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| |
Collapse
|
4
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
5
|
Liu T, Wang Y, Liu J, Han X, Zou Y, Wang P, Xu R, Tong L, Liu J, Liang J, Sun Y, Fan Y, Zhang X. An injectable photocuring silk fibroin-based hydrogel for constructing an antioxidant microenvironment for skin repair. J Mater Chem B 2024; 12:2282-2293. [PMID: 38323909 DOI: 10.1039/d3tb02214e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Skin has a protein microenvironment dominated by functional collagen fibers, while oxidative stress caused by injury can greatly slow down the progress of wound healing. Here, methacrylated dopamine was incorporated into methacrylated silk fibroin molecule chains to develop an injectable hydrogel with photocuring properties for constructing an antioxidant skin protein microenvironment. This silk fibroin-based hydrogel (SF-g-SDA) showed good tensile and adhesion properties for adapting to the wound shape and skin movement, exhibited stable mechanical properties, good biodegradability and cytocompatibility, and promoted cell adhesion and vascularization in vitro. In addition, its phenolic hydroxyl-mediated antioxidant properties effectively protected cells from damage caused by oxidative stress and supported normal cellular life activities. In animal experiments, SF-g-SDA achieved better skin repair effects in comparison to commercial Tegaderm™ in vivo, showing its ability to accelerate wound healing, improve collagen deposition and alignment in newly fabricated tissues, and promote neovascularization and hair follicle formation. These experimental results indicated that the SF-g-SDA hydrogel is a promising wound dressing.
Collapse
Affiliation(s)
- Tangjinhai Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Jingyi Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xiaowen Han
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yaping Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Ruiling Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Junli Liu
- Department of Orthopedics, Chongqing General Hospital, No. 118 Xingguang Avenue, Liangjiang New District, Chongqing, 401147, P. R. China.
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
6
|
Dai Y, Xie Q, Zhang Y, Sun Y, Zhu S, Wang C, Tan Y, Gou X. Neoteric Semiembedded β-Tricalcium Phosphate Promotes Osteogenic Differentiation of Mesenchymal Stem Cells under Cyclic Stretch. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8289-8300. [PMID: 38329794 DOI: 10.1021/acsami.3c15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
β-Tricalcium phosphate (β-TCP) is a bioactive material for bone regeneration, but its brittleness limits its use as a standalone scaffold. Therefore, continuous efforts are necessary to effectively integrate β-TCP into polymers, facilitating a sturdy ion exchange for cell regulation. Herein, a novel semiembedded technique was utilized to anchor β-TCP nanoparticles onto the surface of the elastic polymer, followed by hydrophilic modification with the polymerization of dopamine. Cell adhesion and osteogenic differentiation of mesenchymal stem cells (MSCs) under static and dynamic uniaxial cyclic stretching conditions were investigated. The results showed that the new strategy was effective in promoting cell adhesion, proliferation, and osteogenic induction by the sustained release of Ca2+ in the vicinity and creating a reasonable roughness. Specifically, released Ca2+ from β-TCP could activate the calcium signaling pathway, which further upregulated calmodulin and calcium/calmodulin-dependent protein kinase II genes in MSCs. Meanwhile, the roughness of the membrane and the uniaxial cyclic stretching activated the PIEZO1 signaling pathway. Chemical and mechanical stimulation promotes osteogenic differentiation and increases the expression of related genes 2-8-fold. These findings demonstrated that the neoteric semiembedded structure was a promising strategy in controlling both chemical and mechanical factors of biomaterials for cell regulation.
Collapse
Affiliation(s)
- Yujie Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Qingyun Xie
- Department of Orthopedics, General Hospital of Western Theater Command, Chengdu 610031, China
| | - Yimeng Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Yiwan Sun
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Shaomei Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Chongyu Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xue Gou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
7
|
Li Y, Liu S, Zhang J, Wang Y, Lu H, Zhang Y, Song G, Niu F, Shen Y, Midgley AC, Li W, Kong D, Zhu M. Elastic porous microspheres/extracellular matrix hydrogel injectable composites releasing dual bio-factors enable tissue regeneration. Nat Commun 2024; 15:1377. [PMID: 38355941 PMCID: PMC10866888 DOI: 10.1038/s41467-024-45764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Injectable biomaterials have garnered increasing attention for their potential and beneficial applications in minimally invasive surgical procedures and tissue regeneration. Extracellular matrix (ECM) hydrogels and porous synthetic polymer microspheres can be prepared for injectable administration to achieve in situ tissue regeneration. However, the rapid degradation of ECM hydrogels and the poor injectability and biological inertness of most polymeric microspheres limit their pro-regenerative capabilities. Here, we develop a biomaterial system consisting of elastic porous poly(l-lactide-co-ε-caprolactone) (PLCL) microspheres mixed with ECM hydrogels as injectable composites with interleukin-4 (IL-4) and insulin-like growth factor-1 (IGF-1) dual-release functionality. The developed multifunctional composites have favorable injectability and biocompatibility, and regulate the behavior of macrophages and myogenic cells following injection into muscle tissue. The elicited promotive effects on tissue regeneration are evidenced by enhanced neomusle formation, vascularization, and neuralization at 2-months post-implantation in a male rat model of volumetric muscle loss. Our developed system provides a promising strategy for engineering bioactive injectable composites that demonstrates desirable properties for clinical use and holds translational potential for application as a minimally invasive and pro-regenerative implant material in multiple types of surgical procedures.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Siyang Liu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jingjing Zhang
- Chifeng Municipal Hospital, Chifeng, 024000, Inner Mongolia, China
| | - Yumeng Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Hongjiang Lu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yuexi Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Guangzhou Song
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Fanhua Niu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yufan Shen
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Wen Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Deling Kong
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Zhou S, Xiao C, Fan L, Yang J, Ge R, Cai M, Yuan K, Li C, Crawford RW, Xiao Y, Yu P, Deng C, Ning C, Zhou L, Wang Y. Injectable ultrasound-powered bone-adhesive nanocomposite hydrogel for electrically accelerated irregular bone defect healing. J Nanobiotechnology 2024; 22:54. [PMID: 38326903 PMCID: PMC10851493 DOI: 10.1186/s12951-024-02320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
The treatment of critical-size bone defects with irregular shapes remains a major challenge in the field of orthopedics. Bone implants with adaptability to complex morphological bone defects, bone-adhesive properties, and potent osteogenic capacity are necessary. Here, a shape-adaptive, highly bone-adhesive, and ultrasound-powered injectable nanocomposite hydrogel is developed via dynamic covalent crosslinking of amine-modified piezoelectric nanoparticles and biopolymer hydrogel networks for electrically accelerated bone healing. Depending on the inorganic-organic interaction between the amino-modified piezoelectric nanoparticles and the bio-adhesive hydrogel network, the bone adhesive strength of the prepared hydrogel exhibited an approximately 3-fold increase. In response to ultrasound radiation, the nanocomposite hydrogel could generate a controllable electrical output (-41.16 to 61.82 mV) to enhance the osteogenic effect in vitro and in vivo significantly. Rat critical-size calvarial defect repair validates accelerated bone healing. In addition, bioinformatics analysis reveals that the ultrasound-responsive nanocomposite hydrogel enhanced the osteogenic differentiation of bone mesenchymal stem cells by increasing calcium ion influx and up-regulating the PI3K/AKT and MEK/ERK signaling pathways. Overall, the present work reveals a novel wireless ultrasound-powered bone-adhesive nanocomposite hydrogel that broadens the therapeutic horizons for irregular bone defects.
Collapse
Affiliation(s)
- Shiqi Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Cairong Xiao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ruihan Ge
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Min Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Kaiting Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ross William Crawford
- Institute of Health and Biomedical Innovation & Australia-China Centre for Tissue Engineering and Regenerative Medicine, Centre for Biomedical Technologies, Queensland University of Technology, Queensland, 4059, Australia
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Queensland, 4111, Australia
| | - Peng Yu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Chunlin Deng
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Chengyun Ning
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| |
Collapse
|
9
|
Ren Z, Wang Y, Wu H, Cong H, Yu B, Shen Y. Preparation and application of hemostatic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 257:128299. [PMID: 38008144 DOI: 10.1016/j.ijbiomac.2023.128299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Bleeding from uncontrollable wounds can be fatal, and the body's clotting mechanisms are unable to control bleeding in a timely and effective manner in emergencies such as battlefields and traffic accidents. For irregular and inaccessible wounds, hemostatic materials are needed to intervene to stop bleeding. Hemostatic microspheres are promising for hemostasis, as their unique structural features can promote coagulation. There is a wide choice of materials for the preparation of microspheres, and the modification of natural macromolecular materials such as chitosan to enhance the hemostatic properties and make up for the deficiencies of synthetic macromolecular materials makes the hemostatic microspheres multifunctional and expands the application fields of hemostatic microspheres. Here, we focus on the hemostatic mechanism of different materials and the preparation methods of microspheres, and introduce the modification methods, related properties and applications (in cancer therapy) for the structural characteristics of hemostatic microspheres. Finally, we discuss the future trends of hemostatic microspheres and research opportunities for developing the next generation of hemostatic microsphere materials.
Collapse
Affiliation(s)
- Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
10
|
Nayan MU, Panja S, Sultana A, Zaman LA, Vora LK, Sillman B, Gendelman HE, Edagwa B. Polymer Delivery Systems for Long-Acting Antiretroviral Drugs. Pharmaceutics 2024; 16:183. [PMID: 38399244 PMCID: PMC10892262 DOI: 10.3390/pharmaceutics16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients' needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Sudipta Panja
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lubaba A. Zaman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK;
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| |
Collapse
|
11
|
Lin J, He Y, He Y, Feng Y, Wang X, Yuan L, Wang Y, Chen J, Luo F, Li Z, Li J, Tan H. Janus functional electrospun polyurethane fibrous membranes for periodontal tissue regeneration. J Mater Chem B 2023; 11:9223-9236. [PMID: 37700625 DOI: 10.1039/d3tb01407j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The guided tissue regeneration (GTR) technique with GTR membranes is an efficient method for repairing periodontal defects. Conventional periodontal membranes act as physical barriers that resist the growth of fibroblasts, epithelial cells, and connective tissue. However, they cannot facilitate the regeneration of periodontal tissue. To address this issue, the exploitation of novel GTR membranes with bioactive functions based on therapeutic requirements is critical. Herein, we exploited a biodegradable bilayer polyurethane fibrous membrane by uniaxial electrostatic spinning to construct two sides with Janus properties by integrating the bioactive molecule dopamine (DA) and antimicrobial Gemini quaternary ammonium salt (QAS). The DA-containing side, located inside the injury, can effectively promote cell adhesion and mesenchymal stem cell growth as well as support mineralization and antioxidant properties, which are beneficial for bone regeneration. The QAS-containing side, located on the outer surface of the injury, endows antibacterial properties and limits fibroblast adhesion and growth on its surface owing to its strong hydrophilicity. An in vivo study demonstrates that the Janus polyurethane fibrous membrane can significantly promote the regeneration of periodontal defects in rats. Owing to its superior mechanical properties and biocompatibility, this polyurethane fibrous membrane has potential applications in the field of periodontal regeneration.
Collapse
Affiliation(s)
- Jingjing Lin
- College of Polymer Science and Engineering, State Kedy Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China.
| | - Yushui He
- College of Polymer Science and Engineering, State Kedy Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China.
| | - Yuanyuan He
- College of Polymer Science and Engineering, State Kedy Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China.
| | - Yuan Feng
- College of Polymer Science and Engineering, State Kedy Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China.
| | - Xiao Wang
- College of Polymer Science and Engineering, State Kedy Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China.
| | - Lei Yuan
- College of Polymer Science and Engineering, State Kedy Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China.
| | - Yanchao Wang
- College of Polymer Science and Engineering, State Kedy Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China.
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Jie Chen
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Kedy Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China.
| | - Zhen Li
- College of Polymer Science and Engineering, State Kedy Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Kedy Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Kedy Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Wu M, Liu H, Zhu Y, Chen F, Chen Z, Guo L, Wu P, Li G, Zhang C, Wei R, Cai L. Mild Photothermal-Stimulation Based on Injectable and Photocurable Hydrogels Orchestrates Immunomodulation and Osteogenesis for High-Performance Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300111. [PMID: 37191242 DOI: 10.1002/smll.202300111] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/25/2023] [Indexed: 05/17/2023]
Abstract
A photoactivated bone scaffold integrated with minimally invasive implantation and mild thermal-stimulation capability shows great promise in the repair and regeneration of irregularly damaged bone tissues. Developing multifunctional photothermal biomaterials that can simultaneously serve as both controllable thermal stimulators and biodegradable engineering scaffolds for integrated immunomodulation, infection therapy, and impaired bone repair remains an enormous challenge. Herein, an injectable and photocurable hydrogel therapeutic platform (AMAD/MP) based on alginate methacrylate, alginate-graft-dopamine, and polydopamine (PDA)-functionalized Ti3C2 MXene (MXene@PDA) nanosheets is rationally designed for near-infrared (NIR)-mediated bone regeneration synergistic immunomodulation, osteogenesis, and bacterial elimination. The optimized AMAD/MP hydrogel exhibits favorable biocompatibility, osteogenic activity, and immunomodulatory functions in vitro. The proper immune microenvironment provided by AMAD/MP could further modulate the balance of M1/M2 phenotypes of macrophages, thereby suppressing reactive oxygen species-induced inflammatory status. Significantly, this multifunctional hydrogel platform with mild thermal stimulation efficiently attenuates local immune reactions and further promotes new bone formation without the addition of exogenous cells, cytokines, or growth factors. This work highlights the potential application of an advanced multifunctional hydrogel providing photoactivated on-demand thermal cues for bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Huifan Liu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Yufan Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan, 430071, China
| | - Zhe Chen
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Liangyu Guo
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Ping Wu
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Zhejiang, 325000, China
| | - Gailing Li
- Department of Pharmacy, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China
| | - Chong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Renxiong Wei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| |
Collapse
|
13
|
Liu H, Shi Y, Zhu Y, Wu P, Deng Z, Dong Q, Wu M, Cai L. Bioinspired Piezoelectric Periosteum to Augment Bone Regeneration via Synergistic Immunomodulation and Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12273-12293. [PMID: 36890691 DOI: 10.1021/acsami.2c19767] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ideal periosteum materials are required to participate in a sequence of bone repair-related physiological events, including the initial immune response, endogenous stem cell recruitment, angiogenesis, and osteogenesis. However, conventional tissue-engineered periosteal materials have difficulty achieving these functions by simply mimicking the periosteum via structural design or by loading exogenous stem cells, cytokines, or growth factors. Herein, we present a novel biomimetic periosteum preparation strategy to comprehensively enhance the bone regeneration effect using functionalized piezoelectric materials. The resulting biomimetic periosteum possessing an excellent piezoelectric effect and improved physicochemical properties was prepared using a biocompatible and biodegradable poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) polymer matrix, antioxidized polydopamine-modified hydroxyapatite (PHA), and barium titanate (PBT), which were further incorporated into the polymer matrix to fabricate a multifunctional piezoelectric periosteum by a simple one-step spin-coating method. The addition of PHA and PBT dramatically enhanced the physicochemical properties and biological functions of the piezoelectric periosteum, resulting in improved surface hydrophilicity and roughness, enhanced mechanical performance, tunable degradation behavior, and stable and desired endogenous electrical stimulations, which is conducive to accelerating bone regeneration. Benefiting from endogenous piezoelectric stimulation and bioactive components, the as-fabricated biomimetic periosteum demonstrated favorable biocompatibility, osteogenic activity, and immunomodulatory functions in vitro, which not only promoted adhesion, proliferation, and spreading as well as osteogenesis of mesenchymal stem cells (MSCs) but also effectively induced M2 macrophage polarization, thereby suppressing reactive oxygen species (ROS)-induced inflammatory reactions. Through in vivo experiments, the biomimetic periosteum with endogenous piezoelectric stimulation synergistically accelerated the formation of new bone in a rat critical-sized cranial defect model. The whole defect was almost completely covered by new bone at 8 weeks post treatment, with a thickness close to that of the host bone. Collectively, with its favorable immunomodulatory and osteogenic properties, the biomimetic periosteum developed here represents a novel method to rapidly regenerate bone tissue using piezoelectric stimulation.
Collapse
Affiliation(s)
- Huifan Liu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, People's Republic of China
| | - Yihua Shi
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Yufan Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, People's Republic of China
| | - Ping Wu
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, 325000, Zhejiang, China
| | - Zhouming Deng
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, People's Republic of China
| | - Qi Dong
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan 430071, China
| | - Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, People's Republic of China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, People's Republic of China
| |
Collapse
|
14
|
Sun S, Cui Y, Yuan B, Dou M, Wang G, Xu H, Wang J, Yin W, Wu D, Peng C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol 2023; 11:1117647. [PMID: 36793443 PMCID: PMC9923112 DOI: 10.3389/fbioe.2023.1117647] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dankai Wu
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Luo C, Liu S, Luo W, Wang J, He H, Chen C, Xiao L, Liu C, Li Y. Fabrication of PLCL Block Polymer with Tunable Structure and Properties for Biomedical Application. Macromol Biosci 2023; 23:e2200507. [PMID: 36645702 DOI: 10.1002/mabi.202200507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Indexed: 01/17/2023]
Abstract
Biodegradable materials are pivotal in the biomedical field, where how to precisely control their structure and performance is critical for their translational application. In this study, poly(L-lactide-b-ε-caprolactone) block copolymers (bPLCL) with well-defined segment structure are obtained by a first synthesis of poly(ε-caprolactone) soft block, followed by ring opening polymerization of lactide to form poly(L-lactide acid) hard block. The pre-polymerization allows for fabrication of bPLCL with the definite compositions of soft/hard segment while preserving the individual segment of their special soft or hard segment. These priorities make the bPLCL afford biodegradable polymer with better mechanical and biodegradable controllability than the random poly(L-lactide-co-ε-caprolactone) (rPLCL) synthesized via traditional one-pot polymerization. 10 mol% ε-caprolactone introduction can result in a formation of an elastic polymer with elongation at break of 286.15% ± 55.23%. Also, bPLCL preserves the unique crystalline structure of the soft and hard segments to present a more sustainable biodegradability than the rPLCL. The combinative merits make the pre-polymerization technique a promising strategy for a scalable production of PLCL materials for potential biomedical application.
Collapse
Affiliation(s)
- Chenmin Luo
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengyang Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Luo
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongyan He
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Can Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Queensland, 4000, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Queensland, 4000, Australia
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
16
|
Huang X, Chen D, Liang C, Shi K, Zhou X, Zhang Y, Li Y, Chen J, Xia K, Shu J, Yang B, Wang J, Xu H, Yu C, Cheng F, Wang S, Zhang Y, Wang C, Ying L, Li H, Han M, Li F, Tao Y, Zhao Q, Chen Q. Swelling-Mediated Mechanical Stimulation Regulates Differentiation of Adipose-Derived Mesenchymal Stem Cells for Intervertebral Disc Repair Using Injectable UCST Microgels. Adv Healthc Mater 2023; 12:e2201925. [PMID: 36250343 DOI: 10.1002/adhm.202201925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Indexed: 01/26/2023]
Abstract
Mechanical stimulation is an effective approach for controlling stem cell differentiation in tissue engineering. However, its realization in in vivo tissue repair remains challenging since this type of stimulation can hardly be applied to injectable seeding systems. Here, it is presented that swelling of injectable microgels can be transformed to in situ mechanical stimulation via stretching the cells adhered on their surface. Poly(acrylamide-co-acrylic acid) microgels with the upper critical solution temperature property are fabricated using inverse emulsion polymerization and further coated with polydopamine to increase cell adhesion. Adipose-derived mesenchymal stem cells (ADSCs) adhered on the microgels can be omnidirectionally stretched along with the responsive swelling of the microgels, which upregulate TRPV4 and Piezo1 channel proteins and enhance nucleus pulposus (NP)-like differentiation of ADSCs. In vivo experiments reveal that the disc height and extracellular matrix content of NP are promoted after the implantation with the microgels. The findings indicate that swelling-induced mechanical stimulation has great potential for regulating stem cell differentiation during intervertebral disc repair.
Collapse
Affiliation(s)
- Xianpeng Huang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Di Chen
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Kesi Shi
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yuang Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yi Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiangjie Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiawei Shu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Biao Yang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Haibin Xu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chao Yu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Feng Cheng
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Shaoke Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yongxiang Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Liwei Ying
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Hao Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Meiling Han
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fangcai Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yiqing Tao
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qixin Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
17
|
Hu L, Zou L, Liu Q, Geng Y, Xu G, Chen L, Pan P, Chen J. Construction of chitosan-based asymmetric antioxidant and anti-inflammatory repair film for acceleration of wound healing. Int J Biol Macromol 2022; 215:377-386. [PMID: 35728636 DOI: 10.1016/j.ijbiomac.2022.06.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022]
Abstract
Oxidative stress damage caused by free radicals around the moist microenvironment of wound has been a clinical challenge in skin tissue healing. Here, a novel chitosan-based bioinspired asymmetric wound repair composite (BAWRC) film was designed by facilitated endogenous tissue engineering strategy through layer-by-layer self-assembly technology for accelerated wound healing. The asymmetric characteristics were skillfully reflected by two different functional layers: hydrophilic chitosan (CS)/silk fibroin (SF) repair layer, and a hydrophobic bacteriostatic tea tree oil (TTO) layer with a rough surface. Simultaneously, sodium ascorbate (SA)-entrapped poly (lactic-co-glycolic acid) (PLGA) microspheres are distributed homogeneously in the hydrophilic layer to induce antioxidant response for skin repair. The distinctive asymmetric structure of BAWRC film endows it with synergistic effects, i.e., protects against the risk of infection from the external environment and facilitates deep skin wound healing. Results show that the minimum inhibition and bactericidal concentration of the BAWRC film were 1.25 and 6.25 mg/mL, respectively, demonstrating good antibacterial properties. The content of biofilm formation was significantly reduced when the concentration of TTO exceeds 5 mg/mL, indicating TTO shows a positive effect on bacteriostasis. In addition, the DPPH rates of BAWRC film were up to 64.7 % after incubation for 12 h, which was ascribed to that the release of SA and TTO as a natural product could accelerate free radical scavenging. The BAWRC film exhibited excellent biocompatibility, and good antibacterial capacity, enhancing adhesion and proliferation of the NIH3T3 cell in vitro, further facilitating the healing of a rat full-thickness skin wounds model. Herein, this versatile asymmetric film possesses great potential for clinical management of wound healing and related soft tissue regeneration.
Collapse
Affiliation(s)
- Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Lin Zou
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Yusheng Geng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Gan Xu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Li Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
18
|
Precise Fabrication of Porous Microspheres by Iso-Density Emulsion Combined with Microfluidics. Polymers (Basel) 2022; 14:polym14132687. [PMID: 35808731 PMCID: PMC9269203 DOI: 10.3390/polym14132687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Polymer porous microspheres with large specific surface areas and good fluidity have promising important applications in the biomedical field. However, controllable fabrication of porous microspheres with precise size, morphology, and pore structure is still a challenge, and phase separation caused by the instability of the emulsion is the main factor affecting the precise preparation of porous microspheres. Herein, a method combining the iso-density emulsion (IDE) template and microfluidics was proposed to realize the controllable preparation of polymer porous microspheres. The IDE exhibited excellent stability with minimal phase separation within 4 h, thus showing potential advantages in the large-scale preparation of porous microspheres. With the IDE template combined microfluidics technique and the use of a customized amphoteric copolymer, PEG-b-polycaprolactone, polycaprolactone (PCL) porous microspheres with porosity higher than 90% were successfully prepared. Afterwards, the main factors, including polymer concentration, water–oil ratio and homogenization time were investigated to regulate the pore structure of microspheres, and microspheres with different pore sizes (1–30 μm) were obtained. PCL porous microspheres exhibited comparable cell viability relative to the control group and good potential as cell microcarriers after surface modification with polydopamine. The modified PCL porous microspheres implanted subcutaneously in rats underwent rapid in vivo degradation and tissue ingrowth. Overall, this study demonstrated an efficient strategy for the precise preparation of porous microspheres and investigated the potential of the as-prepared PCL porous microspheres as cell microcarriers and micro-scaffolds.
Collapse
|
19
|
Polydopamine constructed interfacial molecular bridge in nano-hydroxylapatite/polycaprolactone composite scaffold. Colloids Surf B Biointerfaces 2022; 217:112668. [PMID: 35810612 DOI: 10.1016/j.colsurfb.2022.112668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022]
Abstract
Nano-hydroxylapatite (nano-HAP)/polycaprolactone (PCL) composite scaffold is proved to possess great potential for bone tissue engineering application since the biocompatibility of PCL and the osteoinduction ability of nano-HAP. However, the interfacial bonding between nano-HAP and PCL is weak by reason of the difference in thermodynamic properties. Herein, nano-HAP was modified by polydopamine (PDA) and then added to the PCL matrix to enhance their interface bonding in bone scaffold manufactured by selective laser sintering (SLS). The results indicated that PDA acted as an interfacial molecular bridge between PCL and nano-HAP. On one hand, the amino groups of PDA formed hydrogen bonding with the hydroxyl groups of nano-HAP, and on the other hand, the catechol groups of PDA formed hydrogen bonding with the ester groups of PCL. Compared with the HAP/PCL scaffolds, the tensile and compressive strength of the P-HAP/PCL scaffolds loading 12 wt% P-HAP were increased by 10% and 16%, respectively. Meanwhile, the scaffold possessed great bioactivity and cytocompatibility that could accelerate the formation of apatite layers and promote the cell adhesion, proliferation and differentiation.
Collapse
|
20
|
Darie-Niță RN, Râpă M, Frąckowiak S. Special Features of Polyester-Based Materials for Medical Applications. Polymers (Basel) 2022; 14:951. [PMID: 35267774 PMCID: PMC8912343 DOI: 10.3390/polym14050951] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
This article presents current possibilities of using polyester-based materials in hard and soft tissue engineering, wound dressings, surgical implants, vascular reconstructive surgery, ophthalmology, and other medical applications. The review summarizes the recent literature on the key features of processing methods and potential suitable combinations of polyester-based materials with improved physicochemical and biological properties that meet the specific requirements for selected medical fields. The polyester materials used in multiresistant infection prevention, including during the COVID-19 pandemic, as well as aspects covering environmental concerns, current risks and limitations, and potential future directions are also addressed. Depending on the different features of polyester types, as well as their specific medical applications, it can be generally estimated that 25-50% polyesters are used in the medical field, while an increase of at least 20% has been achieved since the COVID-19 pandemic started. The remaining percentage is provided by other types of natural or synthetic polymers; i.e., 25% polyolefins in personal protection equipment (PPE).
Collapse
Affiliation(s)
- Raluca Nicoleta Darie-Niță
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Maria Râpă
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Stanisław Frąckowiak
- Faculty of Environmental Engineering, University of Science and Technology, 50-013 Wrocław, Poland;
| |
Collapse
|
21
|
Lin A, Liu S, Xiao L, Fu Y, Liu C, Li Y. Controllable preparation of bioactive open porous microspheres for tissue engineering. J Mater Chem B 2022; 10:6464-6471. [DOI: 10.1039/d2tb01198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biodegradable microspheres have been widely applied as cell carriers for tissue engineering and regenerative medicine. However, most cell carriers only have simple planar structure and show poor biological activity and...
Collapse
|
22
|
Yu P, Yu F, Xiang J, Zhou K, Zhou L, Zhang Z, Rong X, Ding Z, Wu J, Li W, Zhou Z, Ye L, Yang W. Mechanistically Scoping Cell-Free and Cell-Dependent Artificial Scaffolds in Rebuilding Skeletal and Dental Hard Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107922. [PMID: 34837252 DOI: 10.1002/adma.202107922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Rebuilding mineralized tissues in skeletal and dental systems remains costly and challenging. Despite numerous demands and heavy clinical burden over the world, sources of autografts, allografts, and xenografts are far limited, along with massive risks including viral infections, ethic crisis, and so on. Per such dilemma, artificial scaffolds have emerged to provide efficient alternatives. To date, cell-free biomimetic mineralization (BM) and cell-dependent scaffolds have both demonstrated promising capabilities of regenerating mineralized tissues. However, BM and cell-dependent scaffolds have distinctive mechanisms for mineral genesis, which makes them methodically, synthetically, and functionally disparate. Herein, these two strategies in regenerative dentistry and orthopedics are systematically summarized at the level of mechanisms. For BM, methodological and theoretical advances are focused upon; and meanwhile, for cell-dependent scaffolds, it is demonstrated how scaffolds orchestrate osteogenic cell fate. The summary of the experimental advances and clinical progress will endow researchers with mechanistic understandings of artificial scaffolds in rebuilding hard tissues, by which better clinical choices and research directions may be approached.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Jie Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Kai Zhou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Zhou
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Xiao Rong
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Zichuan Ding
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Jiayi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wudi Li
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zongke Zhou
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wei Yang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| |
Collapse
|
23
|
Maciel MM, Correia TR, Henriques M, Mano JF. Microparticles orchestrating cell fate in bottom-up approaches. Curr Opin Biotechnol 2021; 73:276-281. [PMID: 34597880 DOI: 10.1016/j.copbio.2021.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/30/2022]
Abstract
The modulation of cells in tissue formation is still one of the hardest tasks to achieve in Tissue Engineering. To control the cell response when undergoing their normal functions such as adhesion, differentiation, assembly, or maturation is vital the development of more successful solutions. Herein, we discuss how microparticles are being overlooked in their potential for controlling the cellular response. Until now, their role was quite often restricted to a reservoir of chemical compounds or as carriers for cell expansion. Nevertheless, microparticles design with the introduction of biophysical and biochemical cues can effectively modulate cell response.
Collapse
Affiliation(s)
- Marta M Maciel
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Tiago R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana Henriques
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
24
|
Han X, Wu Y, Shan Y, Zhang X, Liao J. Effect of Micro-/Nanoparticle Hybrid Hydrogel Platform on the Treatment of Articular Cartilage-Related Diseases. Gels 2021; 7:gels7040155. [PMID: 34698122 PMCID: PMC8544595 DOI: 10.3390/gels7040155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Joint diseases that mainly lead to articular cartilage injury with prolonged severe pain as well as dysfunction have remained unexplained for many years. One of the main reasons is that damaged articular cartilage is unable to repair and regenerate by itself. Furthermore, current therapy, including drug therapy and operative treatment, cannot solve the problem. Fortunately, the micro-/nanoparticle hybrid hydrogel platform provides a new strategy for the treatment of articular cartilage-related diseases, owing to its outstanding biocompatibility, high loading capability, and controlled release effect. The hybrid platform is effective for controlling symptoms of pain, inflammation and dysfunction, and cartilage repair and regeneration. In this review, we attempt to summarize recent studies on the latest development of micro-/nanoparticle hybrid hydrogel for the treatment of articular cartilage-related diseases. Furthermore, some prospects are proposed, aiming to improve the properties of the micro-/nanoparticle hybrid hydrogel platform so as to offer useful new ideas for the effective and accurate treatment of articular cartilage-related diseases.
Collapse
|
25
|
Zhou L, Li QL, Wong HM. A Novel Strategy for Caries Management: Constructing an Antibiofouling and Mineralizing Dual-Bioactive Tooth Surface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31140-31152. [PMID: 34156831 DOI: 10.1021/acsami.1c06989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Existing single-functional agents against dental caries are inadequate in antibacterial performance or mineralization balance. This problem can be resolved through a novel strategy, namely, the construction of an antibiofouling and mineralizing dual-bioactive tooth surface by grafting a dentotropic moiety to an antimicrobial peptide. The constructed bioactive peptide can strongly adsorb onto the tooth surface and has beneficial functions in a myriad of ways. It inhibits cariogenic bacteria Streptococcus mutans adhesion, kills planktonic S. mutans, and destroys the S. mutans biofilm on the tooth surface. It also protects teeth from demineralization in acidic environments, and induces self-healing regeneration in the remineralization environment. Molecular dynamics simulations elucidate the main adsorption mechanism that the positively charged amino acid residues in the bioactive peptide bind to phosphate groups on the tooth surface, and the main mineralization mechanism that the negative charges on the outermost layer of the bioactive peptide repel acetic acid ions and attract calcium ions as nucleation sites for remineralization. This study suggests that this in-house synthesized dual-bioactive peptide is a promising functional agent to prevent dental caries, and is effective in inducing in situ self-healing remineralization for the treatment of decayed teeth.
Collapse
Affiliation(s)
- Li Zhou
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR 999077, China
| | - Quan Li Li
- Key Lab. of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230000, China
| | - Hai Ming Wong
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR 999077, China
| |
Collapse
|