1
|
Cai W, Sun T, Qiu C, Sheng H, Chen R, Xie C, Kou L, Yao Q. Stable triangle: nanomedicine-based synergistic application of phototherapy and immunotherapy for tumor treatment. J Nanobiotechnology 2024; 22:635. [PMID: 39420366 PMCID: PMC11488210 DOI: 10.1186/s12951-024-02925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
In recent decades, cancer has posed a challenging obstacle that humans strive to overcome. While phototherapy and immunotherapy are two emerging therapies compared to traditional methods, they each have their advantages and limitations. These limitations include easy metastasis and recurrence, low response rates, and strong side effects. To address these issues, researchers have increasingly focused on combining these two therapies by utilizing a nano-drug delivery system due to its superior targeting effect and high drug loading rate, yielding remarkable results. The combination therapy demonstrates enhanced response efficiency and effectiveness, leading to a preparation that is highly targeted, responsive, and with low recurrence rates. This paper reviews several main mechanisms of anti-tumor effects observed in combination therapy based on the nano-drug delivery system over the last five years. Furthermore, the challenges and future prospects of this combination therapy are also discussed.
Collapse
Affiliation(s)
- Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Huixiang Sheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Luo Y, Chen M, Zhang T, Peng Q. 2D nanomaterials-based delivery systems and their potentials in anticancer synergistic photo-immunotherapy. Colloids Surf B Biointerfaces 2024; 242:114074. [PMID: 38972257 DOI: 10.1016/j.colsurfb.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
As the field of cancer therapeutics evolves, integrating two-dimensional (2D) nanomaterials with photo-immunotherapy has emerged as a promising approach with significant potential to augment cancer treatment efficacy. These 2D nanomaterials include graphene-based 2D nanomaterials, 2D MXenes, 2D layered double hydroxides, black phosphorus nanosheets, 2D metal-organic frameworks, and 2D transition metal dichalcogenides. They exhibit high load capacities, multiple functionalization pathways, optimal biocompatibility, and physiological stability. Predominantly, they function as anti-tumor delivery systems, amalgamating diverse therapeutic modalities, most notably phototherapy and immunotherapy, and the former is a recognized non-invasive treatment modality, and the latter represents the most promising anti-cancer strategy presently accessible. Thus, integrating phototherapy and immunotherapy founded on 2D nanomaterials unveils a novel paradigm in the war against cancer. This review delineates the latest developments in 2D nanomaterials as delivery systems for synergistic photo-immunotherapy in cancer treatment. We elaborate on the burgeoning realm of photo-immunotherapy, exploring the interplay between phototherapy and enhanced immune cells, immune response modulation, or immunosuppressive tumor microenvironments. Notably, the strategies to augment photo-immunotherapy have also been discussed. Finally, we discuss the challenges and future perspectives of these 2D nanomaterials in photo-immunotherapy.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ming Chen
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
He M, Xu W, Dan Y, Pan Y, Li Y, Chen M, Dong CM. Mannosylated Fluoropolypeptide Nanovaccines Remodeling Tumor Immunosuppressive Microenvironment to Achieve Highly Potent Cancer Immunotherapy. Adv Healthc Mater 2024:e2401354. [PMID: 39233541 DOI: 10.1002/adhm.202401354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Indexed: 09/06/2024]
Abstract
It is challenging for nanovaccines (NVs) to effectively deliver antigens/neoantigens to prime specifically potent immunities and remodel immunosuppressive tumor microenvironment (TME) for combating immune "cold" cancers. Herein, a novel kind of mannosylated fluoropolypeptide NVs of MFPCOFG (i.e., mannosylated fluoropoly(D,L-cysteine) ovalbumin-loaded Fe2+-gallic acid) is designed that synergistically integrates triple antigen-metal-thermoimmunity to remodel immunosuppressive TME and achieve highly potent immunities. MFPCOFG plus near-infrared irradiation (NIR) effectively facilitated antigen uptake and escape, induced the maturation and antigen cross-presentations of dendritic cells and macrophages, polarized anti-inflammatory macrophage phenotype M2 into tumoricial M1, primed potent CD4+/CD8+T cells responses, proinflammatory cytokines secretion and immune memory effects, showcasing triple antigen-metal-thermoimmunity outperforming combo/mono-immunity. Importantly, both MFPCOFG + NIR and personalized NVs can remarkably enhance the tumor infiltration of CD4+/CD8+T and NK cells to boost potent immunities and long-lasting memory effects, reduce regulatory T (Tregs) and M2 to remodel immunosuppressive TME in B16-OVA and 4T1 models, achieving superior tumor prevention, ablation, and tumor relapse and metastasis inhibition, as further orchestrated with anti-PD-1. Consequently, this work opens up a new avenue to design biocompatible polypeptide nanovaccines with potent immune-priming and TME-remodeling capabilities, holding great potentials to combat immune "cold" cancers with clinic-used anti-PD-1 for cancer immunotherapy and personalized immunotherapy.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuxin Dan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yue Pan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Yingying Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai, 201508, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Khan K, Tareen AK, Ahmad W, Hussain I, Chaudhry MU, Mahmood A, Khan MF, Zhang H, Xie Z. Recent Advances in Non-Ti MXenes: Synthesis, Properties, and Novel Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303998. [PMID: 38894594 PMCID: PMC11423233 DOI: 10.1002/advs.202303998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/10/2023] [Indexed: 06/21/2024]
Abstract
One of the most fascinating 2D nanomaterials (NMs) ever found is various members of MXene family. Among them, the titanium-based MXenes, with more than 70% of publication-related investigations, are comparatively well studied, producing fundamental foundation for the 2D MXene family members with flexible properties, familiar with a variety of advanced novel technological applications. Nonetheless, there are still more candidates among transitional metals (TMs) that can function as MXene NMs in ways that go well beyond those that are now recognized. Systematized details of the preparations, characteristics, limitations, significant discoveries, and uses of the novel M-based MXenes (M-MXenes), where M stands for non-Ti TMs (M = Sc, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W, and Lu), are given. The exceptional qualities of the 2D non-Ti MXene outperform standard Ti-MXene in several applications. There is many advancement in top-down as well as bottom-up production of MXenes family members, which allows for exact control of the M-characteristics MXene NMs to contain cutting-edge applications. This study offers a systematic evaluation of existing research, covering everything in producing complex M-MXenes from primary limitations to the characterization and selection of their applications in accordance with their novel features. The development of double metal combinations, extension of additional metal candidates beyond group-(III-VI)B family, and subsequent development of the 2D TM carbide/TMs nitride/TM carbonitrides to 2D metal boride family are also included in this overview. The possibilities and further recommendations for the way of non-Ti MXene NMs are in the synthesis of NMs will discuss in detail in this critical evaluation.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
- Shenzhen Nuoan Environmental and Safety Inc., Shenzhen, 518107, China
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Waqas Ahmad
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Mujeeb U Chaudhry
- Department of Engineering, Durham University, Lower Mountjoy, South Rd, Durham, DH1 3LE, UK
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, 518038, P. R. China
| |
Collapse
|
5
|
Qu J, Yan Z, Lei D, Zhong T, Fang C, Wen Z, Liu J, Lai Z, Yu XF, Zheng B, Geng S. Effect of Bioactive Black Phosphorus Nanomaterials on Cancer-Associated Fibroblast Heterogeneity in Pancreatic Cancer. ACS NANO 2024; 18:19354-19368. [PMID: 38975953 DOI: 10.1021/acsnano.4c06147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Tumor-stromal interactions and stromal heterogeneity in the tumor microenvironment are critical factors that influence the progression, metastasis, and chemoresistance of pancreatic ductal adenocarcinoma (PDAC). Here, we used spatial transcriptome technology to profile the gene expression landscape of primary PDAC and liver metastatic PDAC after bioactive black phosphorus nanomaterial (bioactive BP) treatment using a murine model of PDAC (LSL-KrasG12D/+; LSL-Trp53R172H/+; and Pdx-1-Cre mice). Bioinformatic and biochemical analyses showed that bioactive BP contributes to the tumor-stromal interplay by suppressing cancer-associated fibroblast (CAF) activation. Our results showed that bioactive BP contributes to CAF heterogeneity by decreasing the amount of inflammatory CAFs and myofibroblastic CAFs, two CAF subpopulations. Our study demonstrates the influence of bioactive BP on tumor-stromal interactions and CAF heterogeneity and suggests bioactive BP as a potential PDAC treatment.
Collapse
Affiliation(s)
- Jianhua Qu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zilong Yan
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Defeng Lei
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tongning Zhong
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chongzhou Fang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zonghua Wen
- Department of Pathology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China
| | - Jikui Liu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, China
| | - Xue-Feng Yu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Biao Zheng
- Department of Surgery, The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan 523710, China
| | - Shengyong Geng
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
6
|
Huang J, Zhang L, Li B, Lian Y, Lin X, Li Z, Zhang B, Feng Z. Bibliometric and visual analysis in the field of two-dimensions nano black phosphorus in cancer from 2015 to 2023. Discov Oncol 2024; 15:260. [PMID: 38961044 PMCID: PMC11222346 DOI: 10.1007/s12672-024-01104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
This study aims to provide a comprehensive summary of the status and trends of Two-Dimensional Nano Black Phosphorus (2D nano BP) in cancer research from 2015 to 2023, offering insights for future studies. To achieve this, articles from the Web of Science database published between 2015 and 2023 were analyzed using R and VOSviewer software. The analysis included 446 articles, revealing a consistent increase in publication rates, especially between 2017 and 2019. China emerged as a leader in both publication volume and international collaborations. Prominent journals in this field included ACS Applied Materials & Interfaces and Advanced Materials, while key researchers were identified as Zhang Han, Tao Wei, and Yu Xuefeng. The analysis highlighted common keywords such as drug delivery, photothermal therapy, photodynamic therapy, and immunotherapy, indicating the major research focuses. The findings suggest that 2D nano BP holds significant promise in cancer treatment research, with a growing global interest. This study thus serves as a valuable reference for future investigations, providing a detailed analysis of the current state and emerging trends in this promising field.
Collapse
Affiliation(s)
- Jing'an Huang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Ling Zhang
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Boren Li
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuanchu Lian
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Xiaoxin Lin
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Zonghuai Li
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China.
| | - Zhongwen Feng
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
7
|
Guo J, Liu C, Qi Z, Qiu T, Zhang J, Yang H. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioact Mater 2024; 36:330-357. [PMID: 38496036 PMCID: PMC10940734 DOI: 10.1016/j.bioactmat.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Guo
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Zhaoyang Qi
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Ting Qiu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| |
Collapse
|
8
|
Boennec N, Renous AS. [Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathway]. Med Sci (Paris) 2024; 40:474-476. [PMID: 38819287 DOI: 10.1051/medsci/2024049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Affiliation(s)
- Natacha Boennec
- Master 2 infectiologie, immunité, vaccinologie et biomédicaments, Université de Tours, 37000 Tours, France
| | - Anne-Sophie Renous
- Master 2 infectiologie, immunité, vaccinologie et biomédicaments, Université de Tours, 37000 Tours, France
| |
Collapse
|
9
|
Lan Z, Liu WJ, Yin WW, Yang SR, Cui H, Zou KL, Cheng GW, Chen H, Han YH, Rao L, Tian R, Li LL, Zhao YY, Yu GT. Biomimetic MDSCs membrane coated black phosphorus nanosheets system for photothermal therapy/photodynamic therapy synergized chemotherapy of cancer. J Nanobiotechnology 2024; 22:174. [PMID: 38609922 PMCID: PMC11015563 DOI: 10.1186/s12951-024-02417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.
Collapse
Affiliation(s)
- Zhou Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China
| | - Wei-Jia Liu
- Department of Oral Mucosal Diseases, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Wu-Wei Yin
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China
| | - Sheng-Ren Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China
| | - Ke-Long Zou
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China
| | - Guo-Wang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hao Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China
| | - Yan-Hua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ling-Ling Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, No 101, Longmian Road, Jiangning Region, Nanjing, 211166, China.
| | - Yu-Yue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China.
| | - Guang-Tao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China.
| |
Collapse
|
10
|
Li WH, Su JY, Zhang BD, Zhao L, Zhuo SH, Wang TY, Hu HG, Li YM. Myeloid Cell-Triggered In Situ Cell Engineering for Robust Vaccine-Based Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308155. [PMID: 38295870 DOI: 10.1002/adma.202308155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Following the success of the dendritic cell (DC) vaccine, the cell-based tumor vaccine shows its promise as a vaccination strategy. Except for DC cells, targeting other immune cells, especially myeloid cells, is expected to address currently unmet clinical needs (e.g., tumor types, safety issues such as cytokine storms, and therapeutic benefits). Here, it is shown that an in situ injected macroporous myeloid cell adoptive scaffold (MAS) not only actively delivers antigens (Ags) that are triggered by scaffold-infiltrating cell surface thiol groups but also releases granulocyte-macrophage colony-stimulating factor and other adjuvant combos. Consequently, this promotes cell differentiation, activation, and migration from the produced monocyte and DC vaccines (MASVax) to stimulate antitumor T-cell immunity. Neoantigen-based MASVax combined with immune checkpoint blockade induces rejection of established tumors and long-term immune protection. The combined depletion of immunosuppressive myeloid cells further enhances the efficacy of MASVax, indicating the potential of myeloid cell-based therapies for immune enhancement and normalization treatment of cancer.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo-Dou Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lang Zhao
- Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Shao-Hua Zhuo
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tian-Yang Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hong-Guo Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Wang Y, Zhang X, Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J Nanobiotechnology 2024; 22:67. [PMID: 38369468 PMCID: PMC10874567 DOI: 10.1186/s12951-024-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Two-dimensional nanomaterials (2D NMs), characterized by a large number of atoms or molecules arranged in one dimension (typically thickness) while having tiny dimensions in the other two dimensions, have emerged as a pivotal class of materials with unique properties. Their flat and sheet-like structure imparts distinctive physical, chemical, and electronic attributes, which offers several advantages in biomedical applications, including enhanced surface area for efficient drug loading, surface-exposed atoms allowing precise chemical modifications, and the ability to form hierarchical multilayer structures for synergistic functionality. Exploring their nano-bio interfacial interactions with biological components holds significant importance in comprehensively and systematically guiding safe applications. However, the current lack of in-depth analysis and comprehensive understanding of interfacial effects on cancer treatment motivates our ongoing efforts in this field. This study provides a comprehensive survey of recent advances in utilizing 2D NMs for cancer treatment. It offers insights into the structural characteristics, synthesis methods, and surface modifications of diverse 2D NMs. The investigation further delves into the formation of nano-bio interfaces during their in vivo utilization. Notably, the study discusses a wide array of biomedical applications in cancer treatment. With their potential to revolutionize therapeutic strategies and outcomes, 2D NMs are poised at the forefront of cancer treatment, holding the promise of transformative advancements.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Yang L, Wang T, Zhang D, Huang X, Dong Y, Gao W, Ye Y, Ren K, Zhao W, Qiao H, Jia L. Black Phosphorus Nanosheets Assist Nanoerythrosomes for Efficient mRNA Vaccine Delivery and Immune Activation. Adv Healthc Mater 2023; 12:e2300935. [PMID: 37363954 DOI: 10.1002/adhm.202300935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Messenger RNA (mRNA)-based vaccines have enormous potential in infectious disease prevention and tumor neoantigen application. However, developing an advanced delivery system for efficient mRNA delivery and intracellular release for protein translation remains a challenge. Herein, a biocompatible biomimetic system is designed using red blood cell-derived nanoerythrosomes (NER) and black phosphorus nanosheets (BP) for mRNA delivery. BP is covalently modified with polyethyleneimine (PEI), serving as a core to efficiently condense mRNA via electrostatic interactions. To facilitate the spleen targeting of the mRNA-loaded BP (BPmRNA ), NER is co-extruded with BPmRNA to construct a stable "core-shell" nanovaccine (NER@BPmRNA ). The mRNA nanovaccine exhibits efficient protein expression and immune activation via BP-mediated adjuvant effect and enhanced lysosomal escape. In vivo evaluation demonstrates that the system delivery of mRNA encoding coronavirus receptor-binding domain (RBD) significantly increases the antibody titer and pseudovirus neutralization effect compared with that of NER without BP assistance. Furthermore, the mRNA extracted from mouse melanoma tissues is utilized to simulate tumor neoantigen delivered by NER@BPmRNA . In the vaccinated mice, BP-assisted NER for the delivery of melanoma mRNA can induce more antibodies that specifically recognize tumor antigens. Thus, BP-assisted NER can serve as a safe and effective delivery vehicle in mRNA-based therapy.
Collapse
Affiliation(s)
- Lixin Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Tengqi Wang
- Central Lab, Bayannur Hospital, Bayannur, 015000, China
| | - Dexin Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuqin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen Gao
- Central Lab, Bayannur Hospital, Bayannur, 015000, China
| | - Youqing Ye
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Ren
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Wei Zhao
- Department of Pathology, China Pharmaceutical University Nanjing First Hospital, Nanjing, 210012, China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Lizhou Jia
- Central Lab, Bayannur Hospital, Bayannur, 015000, China
| |
Collapse
|
13
|
Chen Z, Yue Z, Yang K, Shen C, Cheng Z, Zhou X, Li S. Four Ounces Can Move a Thousand Pounds: The Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2300882. [PMID: 37539730 DOI: 10.1002/adhm.202300882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, nanomaterials have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current work aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy.
Collapse
Affiliation(s)
- Ziyin Chen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Congrong Shen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 110042, Shenyang, P. R. China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, 110042, China
| |
Collapse
|
14
|
Zhuo SH, Noda N, Hioki K, Jin S, Hayashi T, Hiraga K, Momose H, Li WH, Zhao L, Mizukami T, Ishii KJ, Li YM, Uesugi M. Identification of a Self-Assembling Small-Molecule Cancer Vaccine Adjuvant with an Improved Toxicity Profile. J Med Chem 2023; 66:13266-13279. [PMID: 37676021 DOI: 10.1021/acs.jmedchem.3c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Protein or peptide cancer vaccines usually include immune potentiators, so-called adjuvants. However, it remains challenging to identify structurally simple, chemically accessible synthetic molecules that are effective and safe as vaccine adjuvant. Here, we present cholicamideβ (6), a self-assembling small-molecule vaccine adjuvant with an improved toxicity profile and proven efficacy in vivo. We demonstrate that cholicamideβ (6), which is less cytotoxic than its parent compound, forms virus-like particles to potently activate dendritic cells with the concomitant secretion of cytokines. When combined with a peptide antigen, cholicamideβ (6) potentiated the antigen presentation on dendritic cells to induce antigen-specific T cells. As a therapeutic cancer vaccine adjuvant in mice, a mixture of cholicamideβ (6) and a peptide antigen protected mice from the challenges of malignant cancer cells without overt toxicity. Cholicamideβ (6) may offer a translational opportunity as an unprecedented class of small-molecule cancer vaccine adjuvants.
Collapse
Affiliation(s)
- Shao-Hua Zhuo
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Naotaka Noda
- Graduate School of Medicine, Kyoto University, Uji 611-0011, Kyoto, Japan
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| | - Kou Hioki
- Division of Vaccine Science, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Shuyu Jin
- Graduate School of Medicine, Kyoto University, Uji 611-0011, Kyoto, Japan
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Kou Hiraga
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Haruka Momose
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Wen-Hao Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lang Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Takuo Mizukami
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Ken J Ishii
- Division of Vaccine Science, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Beijing Institute for Brain Disorders, Beijing 100069, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
15
|
Xiong B, Si L, Zhu L, Liu Y, Xu W, Tang KW, Yin SF, Qian PC, Wong WY. Copper-Catalyzed Aerobic Oxidative/Decarboxylative Phosphorylation of Aryl Acrylic Acids with P(III)-Nucleophiles. J Org Chem 2023; 88:12502-12518. [PMID: 37579226 DOI: 10.1021/acs.joc.3c01238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A copper-catalyzed aerobic oxidative/decarboxylative phosphorylation of aryl acrylic acids with P(III)-nucleophiles via the Michaelis-Arbuzov rearrangement for the synthesis of β-ketophosphine oxides, β-ketophosphinates, and β-ketophosphonates is reported. The present reaction could be conducted effectively without the use of a ligand and a base. Various kinds of aryl acrylic acids and P(III)-nucleophiles are tolerated in the transformation, generating the desired β-keto-organophosphorus compounds as a valuable class of phosphorus-containing intermediates with good to excellent yields. In addition, the possible mechanism and kinetic studies for the reaction have been explored by step-by-step control experiments and competitive experiments, and the results proved that this transformation may follow second-order chemical kinetics as well as involve a radical process.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, P. R. China
| | - Lulu Si
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Peng-Cheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035 Zhejiang, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, P. R. China
| |
Collapse
|
16
|
Relvas CM, Santos SG, Oliveira MJ, Magalhães FD, Pinto AM. Nanomaterials for Skin Cancer Photoimmunotherapy. Biomedicines 2023; 11:biomedicines11051292. [PMID: 37238966 DOI: 10.3390/biomedicines11051292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Skin cancer is one of the most common types of cancer, and its incidence continues to increase. It is divided into two main categories, melanoma and non-melanoma. Treatments include surgery, radiation therapy, and chemotherapy. The relatively high mortality in melanoma and the existing recurrence rates, both for melanoma and non-melanoma, create the need for studying and developing new approaches for skin cancer management. Recent studies have focused on immunotherapy, photodynamic therapy, photothermal therapy, and photoimmunotherapy. Photoimmunotherapy has gained much attention due to its excellent potential outcomes. It combines the advantages of photodynamic and/or photothermal therapy with a systemic immune response, making it ideal for metastatic cancer. This review critically discusses different new nanomaterials' properties and mechanisms of action for skin cancer photoimmunotherapy and the main results obtained in the field.
Collapse
Affiliation(s)
- Carlota M Relvas
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Susana G Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Maria J Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernão D Magalhães
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Artur M Pinto
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| |
Collapse
|
17
|
Miao Y, Chen Y, Luo J, Liu X, Yang Q, Shi X, Wang Y. Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration. Bioact Mater 2023; 21:97-109. [PMID: 36093326 PMCID: PMC9417961 DOI: 10.1016/j.bioactmat.2022.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The classical 3D-printed scaffolds have attracted enormous interests in bone regeneration due to the customized structural and mechanical adaptability to bone defects. However, the pristine scaffolds still suffer from the absence of dynamic and bioactive microenvironment that is analogous to natural extracellular matrix (ECM) to regulate cell behaviour and promote tissue regeneration. To address this challenge, we develop a black phosphorus nanosheets-enabled dynamic DNA hydrogel to integrate with 3D-printed scaffold to build a bioactive gel-scaffold construct to achieve enhanced angiogenesis and bone regeneration. The black phosphorus nanosheets reinforce the mechanical strength of dynamic self-healable hydrogel and endow the gel-scaffold construct with preserved protein binding to achieve sustainable delivery of growth factor. We further explore the effects of this activated construct on both human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs) as well as in a critical-sized rat cranial defect model. The results confirm that the gel-scaffold construct is able to promote the growth of mature blood vessels as well as induce osteogenesis to promote new bone formation, indicating that the strategy of nano-enabled dynamic hydrogel integrated with 3D-printed scaffold holds great promise for bone tissue engineering. Therapeutic VEGF-engineered black phosphorus nanosheets are incorporated into DNA hydrogels. Nano-enabled DNA hydrogel integrating with 3D-printed scaffold builds gel-scaffold construct. Gel-scaffold construct upregulates the expression of genes and proteins related to angiogenesis and osteogenesis. Gel-scaffold construct accelerates the formation of early vascular network and new bone tissue.
Collapse
Affiliation(s)
- Yali Miao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Jinshui Luo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiao Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Qian Yang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xuetao Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
18
|
Zhang X, Donskyi IS, Tang W, Deng S, Liu D, Zhang S, Zhao Q, Xing B. Biological Effects of Black Phosphorus Nanomaterials on Mammalian Cells and Animals. Angew Chem Int Ed Engl 2023; 62:e202213336. [PMID: 36218046 PMCID: PMC10107789 DOI: 10.1002/anie.202213336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
The remarkable progress of applied black phosphorus nanomaterials (BPNMs) is attributed to BP's outstanding properties. Due to its potential for applications, environmental release and subsequent human exposure are virtually inevitable. Therefore, how BPNMs impact biological systems and human health needs to be considered. In this comprehensive Minireview, the most recent advancements in understanding the mechanisms and regulation factors of BPNMs' endogenous toxicity to mammalian systems are presented. These achievements lay the groundwork for an understanding of its biological effects, aimed towards establishing regulatory principles to minimize the adverse health impacts.
Collapse
Affiliation(s)
- Xuejiao Zhang
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Ievgen S. Donskyi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Weihao Tang
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
- University of Chinese Academy of SciencesBeijing100049China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
- University of Chinese Academy of SciencesBeijing100049China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Qing Zhao
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Baoshan Xing
- Stockbridge School of AgricultureUniversity of MassachusettsAmherstMA 01003USA
| |
Collapse
|
19
|
Wang J, Chen W, Du W, Zhang H, Ilmer M, Song L, Hu Y, Ma X. ROS Generative Black Phosphorus-Tamoxifen Nanosheets for Targeted Endocrine-Sonodynamic Synergistic Breast Cancer Therapy. Int J Nanomedicine 2023; 18:2389-2409. [PMID: 37192893 PMCID: PMC10182776 DOI: 10.2147/ijn.s406627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Introduction Tamoxifen (TAM) has proven to be a therapeutic breakthrough to reduce mortality and recurrence in estrogen receptor-positive (ER+) breast cancer patients. However, the application of TAM exhibits low bioavailability, off-target toxicity, instinct and acquired TAM resistance. Methods We utilized black phosphorus (BP) as a drug carrier and sonosensitizer, integrated with TAM and tumor-targeting ligand folic acid (FA) to construct TAM@BP-FA for synergistic endocrine and sonodynamic therapy (SDT) of breast cancer. The exfoliated BP nanosheets were modified through in situ polymerization of dopamine, followed by electrostatic adsorption of TAM and FA. The anticancer effect of TAM@BP-FA was evaluated through in vitro cytotoxicity and in vivo antitumor model. RNA-sequencing (RNA-seq), quantitative real-time PCR, Western blot analysis, flow cytometry analysis and peripheral blood mononuclear cells (PBMCs) analysis were performed for mechanism investigation. Results TAM@BP-FA had satisfactory drug loading capacity, the TAM release behavior can be controlled through pH microenvironment and ultrasonic stimulation. An amount of hydroxyl radical (∙OH) and singlet oxygen (1O2) were as expected generated under ultrasound stimulation. TAM@BP-FA nanoplatform showed excellent internalization in both TAM-sensitive MCF7 and TAM-resistant (TMR) cells. Using TMR cells, TAM@BP-FA displayed significantly enhanced antitumor ability in comparison with TAM (7.7% vs 69.6% viability at 5μg/mL), the additional SDT further caused 15% more cell death. RNA-seq unraveled the TAM@BP-FA antitumor mechanisms including effects on cell cycle, apoptosis and cell proliferation. Further analysis showed additional SDT successfully triggering reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) reduction. Moreover, PBMCs exposed to TAM@BP-FA induced an antitumor immune response by natural killer (NK) cell upregulation and immunosuppression macrophage reduction. Conclusion The novel BP-based strategy not only delivers TAM specifically to tumor cells but also exhibits satisfactory antitumor effects through targeted therapy, SDT, and immune cell modulation. The nanoplatform may provide a superior synergistic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| | - Weijian Chen
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Wenxiang Du
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Hongjie Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Matthias Ilmer
- Department of General, Visceral, and Transplantation Surgery, Ludwig-Maximilians-University (LMU), Campus Grosshadern, Munich, 81377, Germany
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
- Correspondence: Yuan Hu; Xiaopeng Ma, Email ;
| | - Xiaopeng Ma
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| |
Collapse
|
20
|
Ding L, Liang M, Li C, Ji X, Zhang J, Xie W, Reis RL, Li FR, Gu S, Wang Y. Design Strategies of Tumor-Targeted Delivery Systems Based on 2D Nanomaterials. SMALL METHODS 2022; 6:e2200853. [PMID: 36161304 DOI: 10.1002/smtd.202200853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Conventional chemotherapy and radiotherapy are nonselective and nonspecific for cell killing, causing serious side effects and threatening the lives of patients. It is of great significance to develop more accurate tumor-targeting therapeutic strategies. Nanotechnology is in a leading position to provide new treatment options for cancer, and it has great potential for selective targeted therapy and controlled drug release. 2D nanomaterials (2D NMs) have broad application prospects in the field of tumor-targeted delivery systems due to their special structure-based functions and excellent optical, electrical, and thermal properties. This review emphasizes the design strategies of tumor-targeted delivery systems based on 2D NMs from three aspects: passive targeting, active targeting, and tumor-microenvironment targeting, in order to promote the rational application of 2D NMs in clinical practice.
Collapse
Affiliation(s)
- Lin Ding
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Minli Liang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinting Ji
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Weifen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Guimarães, 4805-017, Portugal
| | - Fu-Rong Li
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Shuo Gu
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Yanli Wang
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| |
Collapse
|
21
|
Li WH, Su JY, Li YM. Rational Design of T-Cell- and B-Cell-Based Therapeutic Cancer Vaccines. Acc Chem Res 2022; 55:2660-2671. [PMID: 36048514 DOI: 10.1021/acs.accounts.2c00360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer vaccines provide an efficient strategy to enhance tumor-specific immune responses by redeploying immune systems. Despite the approval of the first cancer vaccine (Sipuleucel-T) by the U.S. Food and Drug Administration in 2010, most therapeutic cancer vaccines fail in clinical trials. Basically, tumor-specific immune responses rely on not only T-cell but also B-cell immunity, which indicates that cancer vaccines should leverage both arms of the adaptive immune system. For example, CD8+ T cells activated by antigen-presenting cells (APCs) recognize and directly kill tumor cells via peptide-bound major histocompatibility complex (pMHC). B cells recognize antigen with no need of pMHC and require CD4+ T cells for sufficient activation and antibody generation, enabling antibody-mediated nondirect killing on tumor cells. Considering the different mechanisms of T-cell and B-cell activation, the rational design of therapeutic cancer vaccines should consider several factors, including antigen selection and recognition, immune activation, vaccine delivery, and repeatable vaccination, which can be advanced by chemical strategies.In this Account, we summarize our recent contributions to the development of effective T-cell- and B-cell-based therapeutic cancer vaccines. For T-cell-based vaccines, we focus on adjuvants as the key component for controllable APC activation and T-cell priming. Not only synthetic molecular agonists of pattern recognition receptors (PRRs) but also adjuvant nanomaterials were explored to satisfy diversiform vaccine designs. For example, a type of natural cyclic dinucleotide (CDN) that was chemically modified with fluorination and ipsilateral phosphorothioation to activate the stimulator of interferon gene (STING) was found to mediate antitumor responses. It retains structural similarity to the parent CDN scaffold but possesses increased stability, cellular uptake, and immune activation for antitumor treatment. It also facilitates facile conjugation with other agonists, which not only enhances APC-targeting delivery but also balances cellular and humoral antitumor responses. We also explored the intrinsic properties of nanomaterials that allow them to serve as adjuvants. A black phosphorus nanosheet-based nanovaccine was constructed and found to strongly potentiate antigen-specific T-cell antitumor immune responses through multiple immune-potentiating properties, leading to a highly integrated nanomaterial-based adjuvant design. For B-cell-based vaccines, multicomponent and multivalent strategies were applied to improve the immunogenicity. A multicomponent linear vaccine conjugate coordinates helper T (Th) cells and APCs to proliferate and differentiates B cells for enhanced antitumor immunoglobulin G antibody responses. To further improve antigen recognition, clustered designs on a multivalent epitope were applied by generating various structures, including branched lysine-based peptides, natural multivalent scaffold molecules, and self-assembled nanofibers. We also engineered nano- and microvaccine systems to optimize systemic and localized vaccination. A multilayer-assembled nanovaccine successfully integrated antigens and multiple agonists to modulate APC activation. A DNA hydrogel contributed to the control of APC's immune behaviors, including cell recruitment, activation, and migration, and induced robust antitumor responses as an all-in-one designable platform. In this Account, by summarizing strategies for both T-cell- and B-cell-based vaccine design, we not only compare the differences but also address the intrinsic uniformity between such vaccine designs and further discuss the potential of a combined T-cell- and B-cell-based vaccine, which highlights the applicability and feasibility of chemical strategies.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China.,Beijing Institute for Brain Disorders, 10 Youanmenwai Xitoutiao, Fengtai District, Beijing 100069, China.,Center for Synthetic and Systems Biology, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| |
Collapse
|
22
|
Huang X, Zhong Y, Li Y, Zhou X, Yang L, Zhao B, Zhou J, Qiao H, Huang D, Qian H, Chen W. Black Phosphorus-Synergic Nitric Oxide Nanogasholder Spatiotemporally Regulates Tumor Microenvironments for Self-Amplifying Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37466-37477. [PMID: 35968831 DOI: 10.1021/acsami.2c10098] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The lack of tumor immunogenicity coupled with the presence of tumor immunosuppression severely hinders antitumor immunity, especially in the treatment of "immune cold" tumors. Here, we have developed a drug-free and NIR-enabled nitric oxide (NO)-releasing nanogasholder (NOPS@BP) composed of an outer cloak of nitrate-containing polymeric NO donor and an inner core of black phosphorus (BP) as the energy converter to spatiotemporally regulate NO-mediated tumor microenvironment remodeling and achieve multimodal therapy. Following NIR-irradiation, BP-induced photothermia and its intrinsic reducing property accelerate NO release from the outer cloak, by which the instantaneous NO burst concomitant with mild photothermia, on the one hand, induces immunogenic cell death (ICD), thereby provoking antitumor responses such as the maturation of dendritic cells (DCs) and the infiltration of cytotoxic T lymphocytes (CTLs); on the other hand, it reverses tumor immunosuppression via Treg inhibition, M2 macrophage restraint, and PD-L1 downregulation, further strengthening antitumor immunity. Therefore, this drug-free NOPS@BP by means of multimodal therapy (NO gas therapy, immune therapy, photothermal therapy) realizes extremely significant curative effects against primary and distant tumors and even metastasis in B16F10 tumor models, providing a new modality to conquer immune cold tumors by NO-potentiated ICD and immunosuppression reversal.
Collapse
Affiliation(s)
- Xin Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yanfei Li
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Lifen Yang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhou
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
23
|
Su JY, Li WH, Li YM. New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chem Soc Rev 2022; 51:7944-7970. [PMID: 35996977 DOI: 10.1039/d2cs00486k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunotherapy is recognised as an attractive method for the treatment of cancer, and numerous treatment strategies have emerged over recent years. Investigations of the tumour microenvironment (TME) have led to the identification of many potential therapeutic targets and methods. However, many recently applied immunotherapies are based on previously identified strategies, such as boosting the immune response by combining commonly used stimulators, and the release of drugs through changes in pH. Although methodological improvements such as structural optimisation and combining strategies can be undertaken, applying those novel targets and methods in immunotherapy remains an important goal. In this review, we summarise the latest research on the TME, and discuss how small molecules, immune cells, and their interactions with tumour cells can be regulated in the TME. Additionally, the techniques currently employed for delivery of these agents to the TME are also mentioned. Strategies to modulate cell phenotypes and interactions between immune cells and tumours are mainly discussed. We consider both modulatory and targeting methods aiming to bridge the gap between the TME and chemical modulation thereof.
Collapse
Affiliation(s)
- Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China
| |
Collapse
|
24
|
Yang C, Luo Y, Shen H, Ge M, Tang J, Wang Q, Lin H, Shi J, Zhang X. Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathways. Nat Commun 2022; 13:4866. [PMID: 35982036 PMCID: PMC9388665 DOI: 10.1038/s41467-022-32405-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Strategies to manipulate immune cell co-inhibitory or co-activating signals have revolutionized immunotherapy. However, certain immunologically cold diseases, such as bacterial biofilm infections of medical implants are hard to target due to the complexity of the immune co-stimulatory pathways involved. Here we show that two-dimensional manganese chalcogenophosphates MnPSe3 (MPS) nanosheets modified with polyvinylpyrrolidone (PVP) are capable of triggering a strong anti-bacterial biofilm humoral immunity in a mouse model of surgical implant infection via modulating antigen presentation and costimulatory molecule expression in the infectious microenvironment (IME). Mechanistically, the PVP-modified MPS (MPS-PVP) damages the structure of the biofilm which results in antigen exposure by generating reactive oxidative species, while changing the balance of immune-inhibitory (IL4I1 and CD206) and co-activator signals (CD40, CD80 and CD69). This leads to amplified APC priming and antigen presentation, resulting in biofilm-specific humoral immune and memory responses. In our work, we demonstrate that pre-surgical neoadjuvant immunotherapy utilizing MPS-PVP successfully mitigates residual and recurrent infections following removal of the infected implants. This study thus offers an alternative to replace antibiotics against hard-to-treat biofilm infections.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Yao Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China.
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China.
| |
Collapse
|
25
|
Potential of Black Phosphorus in Immune-Based Therapeutic Strategies. Bioinorg Chem Appl 2022; 2022:3790097. [PMID: 35859703 PMCID: PMC9293569 DOI: 10.1155/2022/3790097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/07/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Black phosphorus (BP) consists of phosphorus atoms, an essential element of bone and nucleic acid, which covalently bonds to three adjacent phosphorus atoms to form a puckered bilayer structure. With its anisotropy, band gap, biodegradability, and biocompatibility properties, BP is considered promising for cancer therapy. For example, BP under irradiation can convert near-infrared (NIR) light into heat and reactive oxygen species (ROS) to damage cancer cells, called photothermal therapy (PTT) and photodynamic therapy (PDT). Compared with PTT and PDT, the novel techniques of sonodynamic therapy (SDT) and photoacoustic therapy (PAT) exhibit amplified ROS generation and precise photoacoustic-shockwaves to enhance anticancer effect when BP receives ultrasound or NIR irradiation. Based on the prospective phototherapy, BP with irradiation can cause a “double-kill” to tumor cells, involving tumor-structure damage induced by heat, ROS, and shockwaves and a subsequent anticancer immune response induced by in situ vaccines construction in tumor site, which is referred to as photoimmunotherapy (PIT). In conclusion, BP shows promise in natural antitumor biological activity, biological imaging, drug delivery, PTT/PDT/SDT/PAT/PIT, nanovaccines, nanoadjuvants, and combination immunotherapy regimens.
Collapse
|
26
|
Peng G, Fadeel B. Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system. Adv Drug Deliv Rev 2022; 188:114422. [PMID: 35810883 DOI: 10.1016/j.addr.2022.114422] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022]
Abstract
Two-dimensional (2D) materials such as the graphene-based materials, transition metal dichalcogenides, transition metal carbides and nitrides (MXenes), black phosphorus, hexagonal boron nitride, and others have attracted considerable attention due to their unique physicochemical properties. This is true not least in the field of medicine. Understanding the interactions between 2D materials and the immune system is therefore of paramount importance. Furthermore, emerging evidence suggests that 2D materials may interact with microorganisms - pathogens as well as commensal bacteria that dwell in and on our body. We discuss the interplay between 2D materials, the immune system, and the microbial world in order to bring a systems perspective to bear on the biological interactions of 2D materials. The use of 2D materials as vectors for drug delivery and as immune adjuvants in tumor vaccines, and 2D materials to counteract inflammation and promote tissue regeneration, are explored. The bio-corona formation on and biodegradation of 2D materials, and the reciprocal interactions between 2D materials and microorganisms, are also highlighted. Finally, we consider the future challenges pertaining to the biomedical applications of various classes of 2D materials.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
27
|
Sutrisno L, Chen H, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Preparation of composite scaffolds composed of gelatin and Au nanostar-deposited black phosphorus nanosheets for the photothermal ablation of cancer cells and adipogenic differentiation of stem cells. BIOMATERIALS ADVANCES 2022; 138:212938. [PMID: 35913234 DOI: 10.1016/j.bioadv.2022.212938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Photothermal nanoparticles are important in photothermal therapy. Combining different nanoparticles can achieve a high photothermal capacity. In this study, composite nanoparticles composed of black phosphorus nanosheets (BPNSs) and gold nanostars (BP-AuNSs) were synthesized by using BPNSs as the reductant. AuNSs were deposited on the BPNSs. The BP-AuNSs were further hybridized with porous gelatin scaffolds to prepare gelatin-BP-AuNS composite scaffolds. The gelatin-BP-AuNS composite scaffolds promoted cell migration and distribution. The synergistic effects of the BPNSs and AuNSs endowed the gelatin-BP-AuNS composite scaffolds with excellent photothermal properties. The gelatin-BP-AuNS composite scaffolds eliminated cancer cells after near infrared laser exposure and supported the adipogenic differentiation of human mesenchymal stem cells. Thus, this gelatin-BP-AuNS composite scaffold holds promise for breast cancer therapy.
Collapse
Affiliation(s)
- Linawati Sutrisno
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
28
|
Lan P, Chen H, Guo Y, Li Y, Zheng Y, Zhang Y, Li M, Guo Z, Liu Z. NIR-II Responsive Molybdenum Dioxide Nanosystem Manipulating Cellular Immunogenicity for Enhanced Tumor Photoimmunotherapy. NANO LETTERS 2022; 22:4741-4749. [PMID: 35623050 DOI: 10.1021/acs.nanolett.2c00899] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photothermal therapy (PTT) in the second near-infrared (NIR-II) window has emerged as a better candidate for deep-tissue tumor elimination. More interestingly, the photothermal ablated tumor cells also manifest somewhat immunostimulation potency to elicit antitumor immunity, although most dying cells are undergoing apoptosis that is commonly considered as immunologically silent. Here, a NIR-II responsive nanosystem is established for tumor photoimmunotherapy using molybdenum dioxide (MoO2) nanodumbbells as the nanoconverter. Meanwhile, an apoptosis-blocking strategy is proposed to regulate the cell death pattern under NIR-II laser irradiation in order to improve the immunogenic cell death. The nanoformulation can efficiently block caspase 8-dependent apoptotic pathway in photothermal ablated tumor cells and transform into more immunogenic death patterns, thereby activating systemic immunity to inhibit tumor growth and metastasis. In addition, this strategy also helps enhance the body's responses to α-PD-1 immune checkpoint inhibitor, which implies a potential optimal combination for cancer immunotherapy.
Collapse
Affiliation(s)
- Peilin Lan
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haolin Chen
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yanxian Guo
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yang Li
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ying Zheng
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yue Zhang
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Meng Li
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhouyi Guo
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhiming Liu
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
29
|
Two-dimensional nanomaterials for tumor microenvironment modulation and anticancer therapy. Adv Drug Deliv Rev 2022; 187:114360. [PMID: 35636568 DOI: 10.1016/j.addr.2022.114360] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 12/28/2022]
Abstract
The development of two-dimensional (2D) nanomaterials for cancer therapy has attracted increasing attention due to their high specific surface area, unique ultrathin structure, electronic and photonic properties. For biomedical applications, investigations into the family of 2D materials have been sparked by graphene and its derivatives. Many 2D nanomaterials, including layered double hydroxides, transition metal dichalcogenides, nitrides and carbonitrides, black phosphorus nanosheets, and metal-organic framework nanosheets, are extensively explored as cancer theranostic platforms. In addition to the high drug loading, 2D nanomaterials are featured with improved physiological properties of drugs, prolonged blood circulation, and increased tumor accumulation and bioavailability. As a consequence, 2D nanomaterials have been widely examined in pre-clinical tumor therapy, particularly through the tumor microenvironment (TME) modulation. This review summarizes recent progresses in developing 2D nanomaterials for TME modulating-based cancer diagnosis and therapy. It is anticipated that this review will benefit researchers to obtain a deeper understanding of interactions between 2D nanomaterials and TME components and develop rational and reliable 2D nanomedicines for pre/clinical cancer theranostics.
Collapse
|
30
|
Jia C, Zhang F, Lin J, Feng L, Wang T, Feng Y, Yuan F, Mai Y, Zeng X, Zhang Q. Black phosphorus-Au-thiosugar nanosheets mediated photothermal induced anti-tumor effect enhancement by promoting infiltration of NK cells in hepatocellular carcinoma. J Nanobiotechnology 2022; 20:90. [PMID: 35189896 PMCID: PMC8862374 DOI: 10.1186/s12951-022-01286-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/30/2022] [Indexed: 01/14/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a heterogeneous cancer required combination therapy, such as photothermal therapy and chemotherapy. In recent years, cancer immunotherapies are rapidly evolving and are some of the most promising avenues to approach malignancies. Thus, the combination of the traditional therapies and immunotherapy in one platform may improve the efficacy for HCC treatment. Results In this work, we have prepared a black phosphorus (BP)-Au-thiosugar nanosheets (BATNS), in which Au-thiosugar coating and functionalization improved the stability of both black phosphorus nanosheets (BPNS) and gold ions in different simulated physiological environments. The compression of the BATNS band gap can convert more photon energy to heat generation compared with BPNS, resulting in higher photothermal conversion efficiency. The in vitro and in vivo results also revealed a stronger reduction on the hepatocellular carcinoma of mice and prolonged survival of disease models compared with BPNS. More importantly, BATNS showed an additional immune effect by increasing local NK cell infiltration but not T cell on the liver cancer treatment, and this immune effect was caused by the thermal effect of BATNS photothermal treatment. Conclusions The novel BATNS could improve the stability of BPNS and simultaneously combine the cancer thermotherapy and immunotherapy leaded by local NK cell infiltration, resulting in a better therapeutic efficacy on hepatocellular carcinoma. This work also provided a new path to design BP-based materials for biomedical applications. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01286-z.
Collapse
Affiliation(s)
- Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Fan Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Jiamei Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Liwen Feng
- Boji Medical Biotechnological Co. Ltd., Boji Pharmaceutical Research Center, Boji Medical Building, No. 62 Nanxiang First Road, Science City, Huangpu District, Guangzhou, 510000, China
| | - Tiantian Wang
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Feng Yuan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China.
| | - Qi Zhang
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
31
|
Zheng Y, Wu JJ. Overcoming STING Agonists Barriers: Peptide, Protein, Biomembrane-based Biocompatible Delivery Strategies. Chem Asian J 2022; 17:e202101400. [PMID: 35080118 DOI: 10.1002/asia.202101400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Indexed: 11/11/2022]
Abstract
After the development for more ten years, stimulator of interferon genes (STING), a representative of pattern recognition receptors (PRRs), is now entering the stage of widespread applications. Along with evolution of STING agonists of cyclic dinucleotides (CDNs) and non-nucleotide molecules, the stability of agonists has been improved. However, their poor performance in clinical trials triggers urgent demands for highly effective delivery strategies to further improve the cellular permeability, tissue targetability and retention. In this review, we summarized the recent progress of STING agonists applications and delivery strategies with a focus on the biocompatible platforms of peptide, protein and biomembrane, providing a novel vision for STING field and future direction.
Collapse
Affiliation(s)
- Yongfang Zheng
- Fujian Normal University, college of chemistry and material science, 32 Shangsan Road, Fuzhou 350007, People's Republic of China, 350007, Fuzhou, CHINA
| | - Jun-Jun Wu
- Fujian Normal University, college of life sciences, CHINA
| |
Collapse
|
32
|
Li L, Zhou B, Xu H, Shi H, Gao L, Ge B. Zinc-Loaded Black Phosphorus Multifunctional Nanodelivery System Combined With Photothermal Therapy Have the Potential to Treat Prostate Cancer Patients Infected With COVID-19. Front Endocrinol (Lausanne) 2022; 13:872411. [PMID: 35464050 PMCID: PMC9019928 DOI: 10.3389/fendo.2022.872411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
Abstract
Since 2019, coronavirus disease 2019 (COVID-19) has swept the world and become a new virus threatening the health of all mankind. The survey found that prostate cancer accounts for one in three male cancer patients infected with COVID-19. This undoubtedly makes prostate cancer patients face a more difficult situation. Prostate cancer is the second most harmful malignant tumor in men because of its insidious onset, easy metastasis, and easy development into castration-resistant prostate cancer even after treatment. Due to its high immunogenicity and a small number of specific infiltrating T cells with tumor-associated antigens in the tissue, it is difficult to obtain a good therapeutic effect with immune checkpoint blocking therapy alone. Therefore, in the current study, we developed a platform carrying Doxorubicin (DOX)-loaded black phosphate nanometer combined with photothermal therapy (PTT) and found this drug combination stimulated the immungentic cell death (ICD) process in PC-3 cells and DC maturation. More importantly, zinc ions have a good immunomodulatory function against infectious diseases, and can improve the killing ability of the nanosystem against prostate cancer cells. The introduction of Aptamer (Apt) enhances the targeting of the entire nanomedicine. We hope that this excellent combination will lead to effective treatment strategies for prostate cancer patients infected with COVID-19.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Urology, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Baotong Zhou
- Department of Urology, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Haoyang Xu
- Department of Urology, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Hailin Shi
- Department of Urology, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Li Gao
- Department of Urology, Affiliated Hospital of Guilin Medical College, Guilin, China
- *Correspondence: Li Gao, ; Bo Ge,
| | - Bo Ge
- The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Li Gao, ; Bo Ge,
| |
Collapse
|
33
|
Zhang Y, Hu Z, Li X, Ding Y, Zhang Z, Zhang X, Zheng W, Yang Z. Amino acid sequence determines the adjuvant potency of a D-Tetra-Peptide hydrogel. Biomater Sci 2022; 10:3092-3098. [PMID: 35522938 DOI: 10.1039/d2bm00263a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of novel vaccine adjuvants is essential for the production of modern vaccines against infectious agents and cancer. We recently reported a supramolecular hydrogel of a self-assembling D-tetra-peptide named...
Collapse
Affiliation(s)
- Yiming Zhang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhiwen Hu
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Xinxin Li
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Yinghao Ding
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhenghao Zhang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Xiangyang Zhang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Wenting Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Zhimou Yang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
34
|
Liu H, Mei Y, Zhao Q, Zhang A, Tang L, Gao H, Wang W. Black Phosphorus, an Emerging Versatile Nanoplatform for Cancer Immunotherapy. Pharmaceutics 2021; 13:1344. [PMID: 34575419 PMCID: PMC8466662 DOI: 10.3390/pharmaceutics13091344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Black phosphorus (BP) is one of the emerging versatile nanomaterials with outstanding biocompatibility and biodegradability, exhibiting great potential as a promising inorganic nanomaterial in the biomedical field. BP nanomaterials possess excellent ability for valid bio-conjugation and molecular loading in anticancer therapy. Generally, BP nanomaterials can be classified into BP nanosheets (BPNSs) and BP quantum dots (BPQDs), both of which can be synthesized through various preparation routes. In addition, BP nanomaterials can be applied as photothermal agents (PTA) for the photothermal therapy (PTT) due to their high photothermal conversion efficiency and larger extinction coefficients. The generated local hyperpyrexia leads to thermal elimination of tumor. Besides, BP nanomaterials are capable of producing singlet oxygen, which enable its application as a photosensitizer for photodynamic therapy (PDT). Moreover, BP nanomaterials can be oxidized and degraded to nontoxic phosphonates and phosphate under physiological conditions, improving their safety as a nano drug carrier in cancer therapy. Recently, it has been reported that BP-based PTT is capable of activating immune responses and alleviating the immunosuppressive tumor microenvironment by detection of T lymphocytes and various immunocytokines, indicating that BP-based nanocomposites not only serve as effective PTAs to ablate large solid tumors but also function as an immunomodulation agent to eliminate discrete tumorlets. Therefore, BP-mediated immunotherapy would provide more possibilities for synergistic cancer treatment.
Collapse
Affiliation(s)
- Hao Liu
- Department of Pharmacy, Guangdong Food and Drug Vocational College, Guangzhou 510520, China;
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.M.); (Q.Z.); (A.Z.); (L.T.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Qingqing Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.M.); (Q.Z.); (A.Z.); (L.T.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.M.); (Q.Z.); (A.Z.); (L.T.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.M.); (Q.Z.); (A.Z.); (L.T.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hongbin Gao
- Department of Pharmacy, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.M.); (Q.Z.); (A.Z.); (L.T.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|