1
|
Jian C, Hong Y, Liu H, Yang Q, Zhao S. ROS-responsive quercetin-based polydopamine nanoparticles for targeting ischemic stroke by attenuating oxidative stress and neuroinflammation. Int J Pharm 2024; 669:125087. [PMID: 39675536 DOI: 10.1016/j.ijpharm.2024.125087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Ischemic stroke (IS), a prevalent cerebrovascular disorder, is characterized by high morbidity rates and significant disability. However, relevant drug therapy for IS still suffers from limitations such as limited blood-brain barrier (BBB) penetration efficiency, single therapeutic target, short half-life, and strong side effects. The development of multi-target neuroprotective agents using natural drug molecules with low toxicity and combining them with nanotechnology to improve BBB permeability and drug utilization is an important direction in the development of IS therapeutic strategies. Based on the anti-inflammatory and antioxidant properties of quercetin (Que), as well as the ROS-responsive degradation properties of polydopamine (PDA), an IS therapeutic strategy (Que@DAR NPs) was developed in this study. Que@DAR NPs were formed by dopamine wrapping Que by oxidative self-assembly and wrapping the rabies virus glycoprotein (RVG29) on the surface. The results showed that Que@DAR NPs greatly improved the dispersion stability of Que and exhibited ROS-responsive degradation properties. Cellular internalization assay in human neuroblastoma cells (SH-SY5Y) showed that RVG29 peptide substantially augmented the cellular uptake of Que@DAR NPs. Moreover, Que@DAR NPs can effectively reduce the oxidative damage of SH-SY5Y cells and induce the polarization of microglia to anti-inflammatory (M2) phenotype. In vivo studies further demonstrated that Que@DAR NPs inhibited neuroinflammation, reduced neuronal apoptosis, and significantly ameliorated neurological dysfunction in a rat model of middle cerebral artery occlusion (MCAO). In conclusion, Que@DAR NPs provide a safe and effective new strategy for the precision treatment of IS.
Collapse
Affiliation(s)
- Chuyao Jian
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yigen Hong
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongsheng Liu
- Guangdong Huayi Biomedical Science and Technology Center, Guangzhou, Guangdong, China
| | - Qinglu Yang
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Shaofeng Zhao
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Belgamwar A, Sharma R, Mali Y, Agrawal YO, Nakhate KT. Nano revolutions in ischemic stroke: A critical analysis of current options and the potential of nanomedicines in diagnosis and therapeutics. Neuroscience 2024; 562:90-105. [PMID: 39433081 DOI: 10.1016/j.neuroscience.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
A stroke, also known as cerebrovascular accident, is a medical emergency that occurs when the blood supply to the brain is interrupted. This disruption can happen in two main ways: through a hemorrhagic stroke, where a blood vessel in the brain bursts, or through an ischemic stroke, where a blood clot blocks an artery. Both types of stroke cause damage to brain cells, leading to a range of health complications. Globally, stroke ranks as the second leading cause of death and disability.This review provides an overview of stroke, focusing on its early detection, current treatment options, and emerging therapies. We discuss the complex mechanisms that contribute to stroke development, including the roles of cells, biomolecules, and blood vessels. Additionally, the review explores recent advances in the use of nanoparticles to enhance the efficacy of the pharmacotherapy of stroke, particularly ischemic stroke. Ongoing clinical trials in stroke management are also highlighted. Timely diagnosis and prompt intervention are critical for improving patient outcomes.We aim to increase awareness and understanding of stroke among researchers and healthcare professionals, ultimately improving patient care.
Collapse
Affiliation(s)
- Aarti Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Rarchita Sharma
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogesh Mali
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogeeta O Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India.
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| |
Collapse
|
3
|
Ji P, Xu Q, Li J, Wang Z, Mao W, Yan P. Advances in nanoparticle-based therapeutics for ischemic stroke: Enhancing drug delivery and efficacy. Biomed Pharmacother 2024; 180:117564. [PMID: 39405899 DOI: 10.1016/j.biopha.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Ischemic stroke, characterized by vascular occlusion, has recently emerged as one of the primary causes of mortality and disability worldwide. Conventional treatment modalities, such as thrombolytic and neuroprotective therapies, face numerous challenges, including limited bioavailability, significant neurotoxicity, suboptimal targeting, short half-life, and poor blood-brain barrier (BBB) penetration. Nanoparticle-based drug delivery systems present distinct advantages, such as small size, enhanced lipophilicity, and modifiability, which can potentially address these limitations. Utilizing nanoparticles for drug delivery in ischemic stroke therapy offers improved drug bioavailability, reduced neurotoxicity, enhanced targeted delivery, prolonged drug half-life, and better dissolution kinetics. This review aims to provide a comprehensive overview of current strategies in preclinical studies for managing or preventing ischemic stroke from a nanomaterial perspective, highlighting the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Qingqing Xu
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Jiahui Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Wanyi Mao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Peng Yan
- Taizhou Second People's Hospital Affiliated to Yangzhou University, Taizhou 225300, China.
| |
Collapse
|
4
|
Zhao Z, Song H, Qi M, Liu Y, Zhang Y, Li S, Zhang H, Sun Y, Sun Y, Gao Z. Brain targeted polymeric micelles as drug carriers for ischaemic stroke treatment. J Drug Target 2024:1-17. [PMID: 39403962 DOI: 10.1080/1061186x.2024.2417190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Ischaemic stroke is a central nervous system disease with high morbidity, recurrence and mortality rates. Thrombolytic and neuroprotective therapies are the main therapeutic strategies for ischaemic stroke, however, the poor delivery efficiency of thrombolytic and neuroprotective drugs to the brain limits their clinical application. So far, the development of nanomedicine has brought opportunities for the above challenges, which can not only realise the effective accumulation of drugs in the target site, but also improve the pharmacokinetic behaviour of the drugs. Among the most rapidly developing nanoparticles, micelles gradually emerging as an effective strategy for ischaemic stroke treatment due to their own unique advantages. This review provided an overview of targeted and response-release micelles based on the physicochemical properties of the ischaemic stroke microenvironment, summarised the targeting strategies for delivering micellar formulations to the thrombus, blood-brain barrier, and brain parenchyma, and finally described the potentials and challenges of polymeric micelles in the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huijia Song
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Mengge Qi
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yurong Liu
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanchao Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Shuo Li
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huimin Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanping Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
5
|
Zhang S, Ran Y, Tuolhen Y, Wang Y, Tian G, Xi J, Feng Z, Su W, Ye L, Liu Z. Curcumin loaded hydrogel with double ROS-scavenging effect regulates microglia polarization to promote poststroke rehabilitation. Mater Today Bio 2024; 28:101177. [PMID: 39211291 PMCID: PMC11357863 DOI: 10.1016/j.mtbio.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cyclodextrins are used to include curcumin to form complex, which is subsequently loaded into a reactive oxygen species (ROS) responsive hydrogel (Cur gel). This gel exhibits a dual ROS scavenging effect. The gel can neutralize extracellular ROS to lead to a ROS-sensitive curcumin release. The released curcumin complex can eliminate intracellular ROS. Furthermore, the Cur gel effectively downregulates the expression of CD16 and IL-1β while upregulating CD206 and TGF-β in oxygen and glucose-deprived (OGD) BV2 cells. Additionally, it restores the expression of synaptophysin and PSD95 in OGD N2a cells. Upon injection into the stroke cavity, the Cur gel reduces CD16 expression and increases CD206 expression in the peri-infarct area of stroke mice, indicating an in vivo anti-inflammatory polarization of microglia. Colocalization studies using PSD95 and VGlut-1 stains, along with Golgi staining, reveal enhanced neuroplasticity. As a result, stroke mice treated with the Cur gel exhibit the most significant motor function recovery. Mechanistic investigations demonstrate that the released curcumin complex scavenges ROS and suppresses the activation of the ROS-NF-κB signaling pathway by inhibiting the translocation of p47-phox and p67-phox to lead to anti-inflammatory microglia polarization. Consequently, the Cur gel exhibits promising potential for promoting post-stroke rehabilitation in clinics.
Collapse
Affiliation(s)
- Shulei Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyuan Ran
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Yerasel Tuolhen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yufei Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Guiqin Tian
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Jianing Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Su
- Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063000, China
| | - Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| |
Collapse
|
6
|
Jiang N, Yang T, Han H, Shui J, Hou M, Wei W, Kumar G, Song L, Ma C, Li X, Ding Z. Exploring Research Trend and Hotspots on Oxidative Stress in Ischemic Stroke (2001-2022): Insights from Bibliometric. Mol Neurobiol 2024; 61:6200-6216. [PMID: 38285289 DOI: 10.1007/s12035-023-03909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Oxidative stress is widely involved in the pathological process of ischemic stroke and ischemia-reperfusion. Several research have demonstrated that eliminating or reducing oxidative stress can alleviate the pathological changes of ischemic stroke. However, current clinical antioxidant treatment did not always perform as expected. This bibliometric research aims to identify research trends, topics, hotspots, and evolution on oxidative stress in the field of ischemic stroke, and to find potentially antioxidant strategies in future clinical treatment. Relevant publications were searched from the Web of Science (WOS) Core Collection databases (2001-2022). VOSviewer was used to visualize and analyze the development trends and hotspots. In the field of oxidative stress and ischemic stroke, the number of publications increased significantly from 2001 to 2022. China and the USA were the leading countries for publication output. The most prolific institutions were Stanford University. Journal of Cerebral Blood Flow and Metabolism and Stroke were the most cited journals. The research topics in this field include inflammation with oxidative stress, mitochondrial damage with oxidative stress, oxidative stress in reperfusion injury, oxidative stress in cognitive impairment and basic research and clinical translation of oxidative stress. Moreover, "NLRP3 inflammasome," "autophagy," "mitophagy," "miRNA," "ferroptosis," and "signaling pathway" are the emerging research hotspots in recent years. At present, multi-target regulation focusing on multi-mechanism crosstalk has progressed across this period, while challenges come from the transformation of basic research to clinical application. New detection technology and new nanomaterials are expected to integrate oxidative stress into the clinical treatment of ischemic stroke better.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Ting Yang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Hongxia Han
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
| | - Jing Shui
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Miaomiao Hou
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030032, Shanxi, China
| | - Wenyue Wei
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, 999077, Hong Kong SAR, China
| | - Lijuan Song
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| | - Xinyi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China.
| | - Zhibin Ding
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
7
|
Liu W, Liu L, Li H, Xie Y, Bai J, Guan J, Qi H, Sun J. Targeted pathophysiological treatment of ischemic stroke using nanoparticle-based drug delivery system. J Nanobiotechnology 2024; 22:499. [PMID: 39164747 PMCID: PMC11337765 DOI: 10.1186/s12951-024-02772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Ischemic stroke poses significant challenges in terms of mortality and disability rates globally. A key obstacle to the successful treatment of ischemic stroke lies in the limited efficacy of administering therapeutic agents. Leveraging the unique properties of nanoparticles for brain targeting and crossing the blood-brain barrier, researchers have engineered diverse nanoparticle-based drug delivery systems to improve the therapeutic outcomes of ischemic stroke. This review provides a concise overview of the pathophysiological mechanisms implicated in ischemic stroke, encompassing oxidative stress, glutamate excitotoxicity, neuroinflammation, and cell death, to elucidate potential targets for nanoparticle-based drug delivery systems. Furthermore, the review outlines the classification of nanoparticle-based drug delivery systems according to these distinct physiological processes. This categorization aids in identifying the attributes and commonalities of nanoparticles that target specific pathophysiological pathways in ischemic stroke, thereby facilitating the advancement of nanomedicine development. The review discusses the potential benefits and existing challenges associated with employing nanoparticles in the treatment of ischemic stroke, offering new perspectives on designing efficacious nanoparticles to enhance ischemic stroke treatment outcomes.
Collapse
Affiliation(s)
- Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hong Li
- Clinical Laboratory, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, 266033, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ju Bai
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jialiang Guan
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Jinping Sun
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
8
|
Shahalaei M, Azad AK, Sulaiman WMAW, Derakhshani A, Mofakham EB, Mallandrich M, Kumarasamy V, Subramaniyan V. A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications. Front Chem 2024; 12:1398979. [PMID: 39206442 PMCID: PMC11351095 DOI: 10.3389/fchem.2024.1398979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Metallic nanoparticles (MNPs) have garnered significant attention due to their ability to improve the therapeutic index of medications by reducing multidrug resistance and effectively delivering therapeutic agents through active targeting. In addition to drug delivery, MNPs have several medical applications, including in vitro and in vivo diagnostics, and they improve the biocompatibility of materials and nutraceuticals. MNPs have several advantages in drug delivery systems and genetic manipulation, such as improved stability and half-life in circulation, passive or active targeting into the desired target selective tissue, and gene manipulation by delivering genetic materials. The main goal of this review is to provide current information on the present issues and prospects of MNPs in drug and gene delivery systems. The current study focused on MNP preparation methods and their characterization by different techniques, their applications to targeted delivery, non-viral vectors in genetic manipulation, and challenges in clinical trial translation.
Collapse
Affiliation(s)
- Mona Shahalaei
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Abul Kalam Azad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Atefeh Derakhshani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Banaee Mofakham
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
9
|
Li Y, Wu C, Yang R, Tang J, Li Z, Yi X, Fan Z. Application and Development of Cell Membrane Functionalized Biomimetic Nanoparticles in the Treatment of Acute Ischemic Stroke. Int J Mol Sci 2024; 25:8539. [PMID: 39126107 PMCID: PMC11313357 DOI: 10.3390/ijms25158539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Ischemic stroke is a serious neurological disease involving multiple complex physiological processes, including vascular obstruction, brain tissue ischemia, impaired energy metabolism, cell death, impaired ion pump function, and inflammatory response. In recent years, there has been significant interest in cell membrane-functionalized biomimetic nanoparticles as a novel therapeutic approach. This review comprehensively explores the mechanisms and importance of using these nanoparticles to treat acute ischemic stroke with a special emphasis on their potential for actively targeting therapies through cell membranes. We provide an overview of the pathophysiology of ischemic stroke and present advances in the study of biomimetic nanoparticles, emphasizing their potential for drug delivery and precision-targeted therapy. This paper focuses on bio-nanoparticles encapsulated in bionic cell membranes to target ischemic stroke treatment. It highlights the mechanism of action and research progress regarding different types of cell membrane-functionalized bi-onic nanoparticles such as erythrocytes, neutrophils, platelets, exosomes, macrophages, and neural stem cells in treating ischemic stroke while emphasizing their potential to improve brain tissue's ischemic state and attenuate neurological damage and dysfunction. Through an in-depth exploration of the potential benefits provided by cell membrane-functionalized biomimetic nanoparticles to improve brain tissue's ischemic state while reducing neurological injury and dysfunction, this study also provides comprehensive research on neural stem cells' potential along with that of cell membrane-functionalized biomimetic nanoparticles to ameliorate neurological injury and dysfunction. However, it is undeniable that there are still some challenges and limitations in terms of biocompatibility, safety, and practical applications for clinical translation.
Collapse
Affiliation(s)
- Ying Li
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Chuang Wu
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Rui Yang
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Jiannan Tang
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Zhanqing Li
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Xue Yi
- Xiamen Key Laboratory of Traditional Chinese Bio-Engineering, Xiamen Medical College, Xiamen 361021, China
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
10
|
Yin N, Wang W, Pei F, Zhao Y, Liu C, Guo M, Zhang K, Zhang Z, Shi J, Zhang Y, Wang Z, Liu J. A Neutrophil Hijacking Nanoplatform Reprograming NETosis for Targeted Microglia Polarizing Mediated Ischemic Stroke Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305877. [PMID: 38444306 PMCID: PMC11077645 DOI: 10.1002/advs.202305877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/02/2024] [Indexed: 03/07/2024]
Abstract
Precise and efficient regulation of microglia is vital for ischemic stroke therapy and prognosis. The infiltration of neutrophils into the brain provides opportunities for regulatory drugs across the blood-brain barrier, while hindered by neutrophil extracellular traps (NETs) and targeted delivery of intracerebral drugs to microglia. This study reports an efficient neutrophil hijacking nanoplatform (referred to as APTS) for targeted A151 (a telomerase repeat sequence) delivery to microglia without the generation of NETs. In the middle cerebral artery occlusion (MCAO) mouse model, the delivery efficiency to ischemic stroke tissues increases by fourfold. APTS dramatically reduces the formation of NETs by 2.2-fold via reprogramming NETosis to apoptosis in neutrophils via a reactive oxygen species scavenging-mediated citrullinated histone 3 inhibition pathway. Noteworthy, A151 within neutrophils is repackaged into apoptotic bodies following the death pattern reprogramming, which, when engulfed by microglia, polarizes microglia to an anti-inflammatory M2 phenotype. After four times treatment, the cerebral infarction area in the APTS group decreases by 5.1-fold. Thus, APTS provides a feasible, efficient, and practical drug delivery approach for reshaping the immune microenvironment and treating brain disorders in the central nervous system.
Collapse
Affiliation(s)
- Na Yin
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| | - Wenya Wang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| | - Fei Pei
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| | - Yuzhen Zhao
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| | - Changhua Liu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| | - Mingming Guo
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| | - Kaixiang Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| | - Yun Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| | - Zhi‐Hao Wang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| | - Junjie Liu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
11
|
Cao Y, Yu Y, Pan L, Han W, Zeng F, Wang J, Mei Q, Liu C. Sulfated Polysaccharide-Based Nanocarrier Drives Microenvironment-Mediated Cerebral Neurovascular Remodeling for Ischemic Stroke Treatment. NANO LETTERS 2024; 24:5214-5223. [PMID: 38649327 DOI: 10.1021/acs.nanolett.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Stroke is a leading cause of global mortality and severe disability. However, current strategies used for treating ischemic stroke lack specific targeting capabilities, exhibit poor immune escape ability, and have limited drug release control. Herein, we developed an ROS-responsive nanocarrier for targeted delivery of the neuroprotective agent rapamycin (RAPA) to mitigate ischemic brain damage. The nanocarrier consisted of a sulfated chitosan (SCS) polymer core modified with a ROS-responsive boronic ester enveloped by a red blood cell membrane shell incorporating a stroke homing peptide. When encountering high levels of intracellular ROS in ischemic brain tissues, the release of SCS combined with RAPA from nanoparticle disintegration facilitates effective microglia polarization and, in turn, maintains blood-brain barrier integrity, reduces cerebral infarction, and promotes cerebral neurovascular remodeling in a mouse stroke model involving transient middle cerebral artery occlusion (tMCAO). This work offers a promising strategy to treat ischemic stroke therapy.
Collapse
Affiliation(s)
- Yinli Cao
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lina Pan
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Weili Han
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Feng Zeng
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qiyong Mei
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
12
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
13
|
Shah H, Paul G, Yadav AK. Surface-Tailored Nanoplatform for the Diagnosis and Management of Stroke: Current Strategies and Future Outlook. Mol Neurobiol 2024; 61:1383-1403. [PMID: 37707740 DOI: 10.1007/s12035-023-03635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Stroke accounts for one of the top leading reasons for neurological mortality and morbidity around the globe. Both ischemic and hemorrhagic strokes lead to local hypoxia and are brought about by the occlusion or rupturing of the blood vessels. The events taking place after the onset of a stroke include membrane ion pump failure, calcium and glutamate-mediated excitotoxicity, increased ROS production causing DNA damage, mitochondrial dysfunction, oxidative stress, development of brain edema, and microvascular dysfunction. To date, tissue plasminogen activator (tPA) therapy and mechanical removal of blood clots are the only clinically available stroke therapies, approved by Food and Drug Administration (FDA). But because of the narrow therapeutic window of around 4.5 h for tPA therapy and complications like systemic bleeding and anaphylaxis, more clinical trials are ongoing in the same field. Therefore, using nanocarriers with diverse physicochemical properties is a promising strategy in treating and diagnosing stroke as they can efficiently bypass the tight blood-brain barrier (BBB) through mechanisms like receptor-mediated transcytosis and help achieve controlled and targeted drug delivery. In this review, we will mainly focus on the pathophysiology of stroke, BBB alterations following stroke, strategies to target BBB for stroke therapies, different types of nanocarriers currently being used for therapeutic intervention of stroke, and biomarkers as well as imaging techniques used for the detection and diagnosis of stroke.
Collapse
Affiliation(s)
- Hinal Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER) Raebareli (An Institute of National Importance Under Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Gajanan Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER) Raebareli (An Institute of National Importance Under Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER) Raebareli (An Institute of National Importance Under Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
14
|
Meng W, Ma Z, Ye H, Liu L, Han Q, Shi Q. Polyphenolic oligomer-derived multienzyme activity for the treatment of ischemic Stroke through ROS scavenging and blood-brain barrier restoration. J Mater Chem B 2024; 12:2123-2138. [PMID: 38314923 DOI: 10.1039/d3tb02676k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Oxidative stress and blood-brain barrier (BBB) injury are two major stress disorders before and after ischemic stroke (IS) therapy. The intense inflammatory response also causes damage to nerve cells, affecting the repair of brain tissue. In this study, polyphenolic nanoparticles (PPNs) with strong free radical scavenging ability were designed to treat IS multimodally. To investigate the mechanism of polyphenolic polymerization, solid nanoparticles were synthesized using four kinds of polyphenol compounds as the basic unit under the control of temperature. The form of polymerization between monomers with different structures led to changes in the chemical properties of the corresponding nanoparticles as well as the antioxidant capacity at the cellular level. Particularly, PPNs can significantly improve cerebral infarction and penetrate and repair the BBB, and even downregulate levels of inflammatory cytokines. Molecular signaling pathway studies have shown that PPNs can provide comprehensive treatment of IS by promoting the expression of tight junction protein and enhancing the activity of antioxidant enzymes. Therefore, PPNs combined with the antioxidant, anti-inflammatory and BBB repair ability not only provide a perfect therapeutic pathway but also give ideas for the development of natural material carriers that have a wide application prospect.
Collapse
Affiliation(s)
- Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Hongbo Ye
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
15
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
16
|
Meng W, Ye H, Ma Z, Liu L, Zhang T, Han Q, Xiang Z, Xia Y, Ke Y, Guan X, Shi Q, Ataullakhanov FI, Panteleev M. Perfluorocarbon Nanoparticles Incorporating Ginkgolide B: Artificial O 2 Carriers with Antioxidant Activity and Antithrombotic Effect. ChemMedChem 2024; 19:e202300312. [PMID: 37970644 DOI: 10.1002/cmdc.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Ischemic stroke primarily leads to insufficient oxygen delivery in ischemic area. Prompt reperfusion treatment for restoration of oxygen is clinically suggested but mediates more surging reactive oxygen species (ROS) generation and oxidative damage, known as ischemia-reperfusion injury (IRI). Therefore, the regulation of oxygen content is a critical point to prevent cerebral ischemia induced pathological responses and simultaneously alleviate IRI triggered by the sudden oxygen restoration. In this work, we constructed a perfluorocarbon (PFC)-based artificial oxygen nanocarrier (PFTBA-L@GB), using an ultrasound-assisted emulsification method, alleviates the intracerebral hypoxic state in ischemia stage and IRI after reperfusion. The high oxygen solubility of PFC allows high oxygen efficacy. Furthermore, PFC has the adhesion affinity to platelets and prevents the overactivation of platelet. The encapsulated payload, ginkgolide B (GB) exerts its anti-thrombosis by antagonism on platelet activating factor and antioxidant effect by upregulation of antioxidant molecular pathway. The versatility of the present strategy provides a practical approach to build a simple, safe, and relatively effective oxygen delivery agent to alleviate hypoxia, promote intracerebral oxygenation, anti-inflammatory, reduce intracerebral oxidative stress damage and thrombosis and caused by stroke.
Collapse
Affiliation(s)
- Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongbo Ye
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fazly I Ataullakhanov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| |
Collapse
|
17
|
Ereej N, Hameed H, Khan MA, Faheem S, Hameed A. Nanoparticle-based Gene Therapy for Neurodegenerative Disorders. Mini Rev Med Chem 2024; 24:1723-1745. [PMID: 38676491 DOI: 10.2174/0113895575301011240407082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.
Collapse
Affiliation(s)
- Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck 23566 Lubeck, Germany
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan
| |
Collapse
|
18
|
Han D, Wang M, Dong N, Zhang J, Li D, Ma X, Ma Y, Wang S, Zhu Y, Wang C. Selective homing of brain-derived reconstituted lipid nanoparticles to cerebral ischemic area enables improved ischemic stroke treatment. J Control Release 2024; 365:957-968. [PMID: 38104776 DOI: 10.1016/j.jconrel.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Lipid nanoparticles (LNPs) hold great promise as carriers for developing drug delivery systems (DDSs) aimed at managing ischemic stroke (IS). Previous research has highlighted the vital role played by the lipid composition and biophysical characteristics of LNPs, influencing their interactions with cells and tissues. This understanding presents an opportunity to engineer LNPs tailored specifically for enhanced IS treatment. We previously introduced the innovative concept of reconstituted lipid nanoparticles (rLNPs), which not only retain the advantages of conventional LNPs but also incorporate lipids from the originating cell or tissue. Brain-derived rLNPs (B-rLNPs) exhibit significantly superior accumulation within the cerebral ischemic region when compared to liver-derived rLNPs (L-rLNPs). The homing effect of B-rLNPs was then employed to construct 3-n-butylphthalide (NBP) loaded DDS (B-rLNPs/NBP) for the treatment of IS. Our results demonstrated that compared with free NBP, B-rLNPs/NBP can significantly reduce infarct volume, neurological deficits, blood-brain barrier (BBB) leakage rate, brain water content, neutrophil infiltration, alleviate pathological structures, and improve the motor function in MCAO/R model. We also proved that B-rLNPs/NBP showed further reinforced protective effects on the same model than free NBP through the regulation of TLR4/MyD88/NF-κB (anti-inflammation) and Bax/Bcl-2 (anti-apoptosis) pathways. This study offers a promising tool towards improved IS treatment.
Collapse
Affiliation(s)
- Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China
| | - Meihua Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China
| | - Ningyu Dong
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Dingran Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoling Ma
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ying Ma
- Jiangsu Institute for Food and Drug Control, Nanjing, Jiangsu, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
19
|
Chen W, Jiang B, Zhao Y, Yu W, Zhang M, Liang Z, Liu X, Ye B, Chen D, Yang L, Li F. Discovery of benzyloxy benzamide derivatives as potent neuroprotective agents against ischemic stroke. Eur J Med Chem 2023; 261:115871. [PMID: 37852031 DOI: 10.1016/j.ejmech.2023.115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Aberrant activation of N-methyl-d-aspartate receptors (NMDAR) and the resulting neuronal nitric oxide synthase (nNOS) excessive activation play crucial pathogenic roles in neuronal damage caused by stroke. Disrupting postsynaptic density protein 95 (PSD95)-nNOS protein-protein interaction (PPI) has been proposed as a potential therapeutic strategy for ischemic stroke without incurring the unwanted side effects of direct NMDAR antagonism. Based on a specific PSD95-nNOS PPI inhibitor (SCR4026), we conducted a detailed study on structure-activity relationship (SAR) to discover a series of novel benzyloxy benzamide derivatives. Here, our efforts resulted in the best 29 (LY836) with improved neuroprotective activities in primary cortical neurons from glutamate-induced damage and drug-like properties. Whereafter, co-immunoprecipitation experiment demonstrated that 29 significantly blocked PSD95-nNOS association in cultured cortical neurons. Furthermore, 29 displayed good pharmacokinetic properties (T1/2 = 4.26 and 4.08 h after oral and intravenous administration, respectively) and exhibited powerful therapeutic effects in rats subjected to middle cerebral artery occlusion (MCAO) by reducing infarct size and neurological deficit score. These findings suggested that compound 29 may be a promising neuroprotection agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Weilin Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Bo Jiang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yifan Zhao
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Yu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Minyue Zhang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Zhenchu Liang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xing Liu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Binglin Ye
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dongyin Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Lei Yang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Fei Li
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
20
|
Jiang C, Zhou Y, Chen R, Yang M, Zhou H, Tang Z, Shi H, Qin D. Nanomaterial-Based Drug Delivery Systems for Ischemic Stroke. Pharmaceutics 2023; 15:2669. [PMID: 38140010 PMCID: PMC10748360 DOI: 10.3390/pharmaceutics15122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability in the world. At present, reperfusion therapy and neuroprotective therapy, as guidelines for identifying effective and adjuvant treatment methods, are limited by treatment time windows, drug bioavailability, and side effects. Nanomaterial-based drug delivery systems have the characteristics of extending half-life, increasing bioavailability, targeting drug delivery, controllable drug release, and low toxicity, thus being used in the treatment of ischemic stroke to increase the therapeutic effects of drugs. Therefore, this review provides a comprehensive overview of nanomaterial-based drug delivery systems from nanocarriers, targeting ligands and stimulus factors of drug release, aiming to find the best combination of nanomaterial-based drug delivery systems for ischemic stroke. Finally, future research areas on nanomaterial-based drug delivery systems in ischemic stroke and the implications of the current knowledge for the development of novel treatment for ischemic stroke were identified.
Collapse
Affiliation(s)
- Chengting Jiang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.J.); (M.Y.)
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Rong Chen
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| | - Mengjia Yang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.J.); (M.Y.)
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| | - Haimei Zhou
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| | - Zhengxiu Tang
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.J.); (M.Y.)
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| |
Collapse
|
21
|
Wang Y, Su R, Chen J, Liu X, Luo J, Lao Y, Huang P, Shi J, Jiang C, Liao L, Zhang J. Synthesis of 1,3,5-triphenyl-1,2,4-triazole derivatives and their neuroprotection by anti-oxidative stress and anti-inflammation and protecting BBB. Eur J Med Chem 2023; 260:115742. [PMID: 37651874 DOI: 10.1016/j.ejmech.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Acute ischemic stroke (AIS) is a serious cardiovascular and cerebrovascular disease; Oxidative stress and neuroinflammation are important factors which destroy blood-brain barrier (BBB) in AIS. In the study, a series of 1,3,5-triphenyl-1,2,4-triazole derivatives were designed and synthesized; the optimal compound 9 was obtained by screening their anti-oxidant and anti-inflammatory effects; the neuroprotection effect of compound 9 was evaluated with a rat middle cerebral artery occlusion (MCAO) model. Subsequently, the mechanism of neuroprotection were explored via Western blot. The results prompt compound 9 maybe exert anti-AIS neuroprotection by inhibiting oxidative stress and neuroinflammation inhibition by inhibiting Keap1, COX-2 and iNOS. At the same time, it can protect BBB by reducing glycocalyx degradation and matrix metallopeptidase-9 levels. Its LD50 > 1000 mg/kg on mice and hERG channel inhibition IC50 > 30 μM, which lower acute toxicity and hERG channel inhibition would make compound 9 a promising stroke treatment candidate.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ruiqi Su
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xuan Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingning Luo
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ping Huang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Caibao Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Liping Liao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
22
|
Wu D, Zhou J, Zheng Y, Zheng Y, Zhang Q, Zhou Z, Chen X, Chen Q, Ruan Y, Wang Y, Chen Z. Pathogenesis-adaptive polydopamine nanosystem for sequential therapy of ischemic stroke. Nat Commun 2023; 14:7147. [PMID: 37932306 PMCID: PMC10628287 DOI: 10.1038/s41467-023-43070-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Ischemic stroke is lethal cerebrovascular disease, and reperfusion as the main strategy of blood supply restoration can cause severe ischemic brain damage. Considered as the major obstacle in medication for stroke, neuroinflammation after reperfusion undergoes dynamic progression, making precision treatment for stroke a Herculean task. In this work, we report a pathogenesis-adaptive polydopamine nanosystem for sequential therapy of ischemic stroke. Intrinsic free radical scavenging and tailored mesostructure of the nanosystem can attenuate oxidative stress at the initial stage. Upon microglial overactivation at the later stage, minocycline-loaded nanosystem can timely reverse the pro-inflammatory transition in response to activated matrix metalloproteinase-2, providing on-demand regulation. Further in vivo stroke study demonstrates a higher survival rate and improved brain recovery of the sequential strategy, compared with mono-therapy and combined therapy. Complemented with satisfactory biosafety results, this adaptive nanosystem for sequential and on-demand regulation of post-stroke neuroinflammation is a promising approach to ischemic stroke therapy.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jing Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
23
|
Pan J, Wang Z, Huang X, Xue J, Zhang S, Guo X, Zhou S. Bacteria-Derived Outer-Membrane Vesicles Hitchhike Neutrophils to Enhance Ischemic Stroke Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301779. [PMID: 37358255 DOI: 10.1002/adma.202301779] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Indexed: 06/27/2023]
Abstract
The treatment of reperfusion injury after ischemic stroke remains unsatisfactory since the blood-brain barrier (BBB) prevents most neuroprotective agents from entering the brain. Here, a strategy is proposed based on bacteria-derived outer-membrane vesicle (OMV) hitchhiking on the neutrophils for enhanced brain delivery of pioglitazone (PGZ) to treat ischemic stroke. By encapsulating PGZ into OMV, the resulting OMV@PGZ nanoparticles inherit the functions associated with the bacterial outer membrane, making them ideal decoys for neutrophil uptake. The results show that OMV@PGZ simultaneously inhibits the activation of nucleotide oligomerization-like receptor protein 3 (NLRP3) inflammasomes and ferroptosis and reduces the reperfusion injury to exert a neuroprotective effect. Notably, the transcription factors Pou2f1 and Nrf1 of oligodendrocytes are identified for the first time to be involved in this process and promoted neural repair by single-nucleus RNA sequencing (snRNA-seq).
Collapse
Affiliation(s)
- Jingmei Pan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Zhenhua Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xuehui Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Juan Xue
- Shanghai OE Biotech Co., Ltd, Shanghai, 201114, P. R. China
| | - Suling Zhang
- Shanghai OE Biotech Co., Ltd, Shanghai, 201114, P. R. China
| | - Xing Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
24
|
Filippov AG, Alexandrin VV, Ivanov AV, Paltsyn AA, Sviridkina NB, Virus ED, Bulgakova PO, Burmiy JP, Kubatiev AA. Neuroprotective Effect of Platinum Nanoparticles Is Not Associated with Their Accumulation in the Brain of Rats. J Funct Biomater 2023; 14:348. [PMID: 37504843 PMCID: PMC10381480 DOI: 10.3390/jfb14070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Platinum nanoparticles (nPts) have neuroprotective/antioxidant properties, but the mechanisms of their action in cerebrovascular disease remain unclear. We investigated the brain bioavailability of nPts and their effects on brain damage, cerebral blood flow (CBF), and development of brain and systemic oxidative stress (OS) in a model of cerebral ischemia (hemorrhage + temporary bilateral common carotid artery occlusion, tBCAO) in rats. The nPts (0.04 g/L, 3 ± 1 nm diameter) were administered to rats (N = 19) intraperitoneally at the start of blood reperfusion. Measurement of CBF via laser Doppler flowmetry revealed that the nPts caused a rapid attenuation of postischemic hypoperfusion. The nPts attenuated the apoptosis of hippocampal neurons, the decrease in reduced aminothiols level in plasma, and the glutathione redox status in the brain, which were induced by tBCAO. The content of Pt in the brain was extremely low (≤1 ng/g). Thus, nPts, despite the extremely low brain bioavailability, can attenuate the development of brain OS, CBF dysregulation, and neuronal apoptosis. This may indicate that the neuroprotective effects of nPts are due to indirect mechanisms rather than direct activity in the brain tissue. Research on such mechanisms may offer a promising trend in the treatment of acute disorders of CBF.
Collapse
Affiliation(s)
| | | | | | - Alexander Alexandrovich Paltsyn
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia
- Russian Medical Academy for Continuing Professional Education, Barricadnaya St., 2/1 b. 1, 125993 Moscow, Russia
| | | | | | | | - Joanna Petrovna Burmiy
- Institute of Microelectronic Technology and Ultra-High-Purity Materials, Akademika Osip'yana Str., 6, 142432 Chernogolovka, Russia
| | - Aslan Amirkhanovich Kubatiev
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia
- Russian Medical Academy for Continuing Professional Education, Barricadnaya St., 2/1 b. 1, 125993 Moscow, Russia
| |
Collapse
|
25
|
Tang Z, Meng S, Song Z, Yang X, Li X, Guo H, Du M, Chen J, Zhu YZ, Wang X. Neutrophil membrane fusogenic nanoliposomal leonurine for targeted ischemic stroke therapy via remodeling cerebral niche and restoring blood-brain barrier integrity. Mater Today Bio 2023; 20:100674. [PMID: 37273794 PMCID: PMC10238753 DOI: 10.1016/j.mtbio.2023.100674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Ischemic stroke (IS) constitutes the leading cause of global morbidity and mortality. Neuroprotectants are essential to ameliorate the clinical prognosis, but their therapeutic outcomes are tremendously compromised by insufficient delivery to the ischemic lesion and intricate pathogenesis associated with neuronal damage, oxidative stress, inflammation responses, blood-brain barrier (BBB) dysfunction, etc. Herein, a biomimetic nanosystem (Leo@NM-Lipo) composed of neutrophil membrane-fused nanoliposomal leonurine (Leo) is constructed, which can not only efficiently penetrate and repair the disrupted BBB but also robustly remodel the harsh cerebral microenvironment to reverse ischemia-reperfusion (I/R) injury. More specifically, the neutrophil membrane inherits the BBB penetrating, infarct core targeting, inflammation neutralization, and immune evasion properties of neutrophils, while Leo, a naturally occurring neuroprotectant, exerts pleiotropic effects to attenuate brain damage. Remarkably, comprehensive investigations disclose the critical factors influencing the targetability and therapeutic performances of biomimetic nanosystems. Leo@NM-Lipo with a low membrane protein-to-lipid ratio of 1:10 efficiently targets the ischemic lesion and rescues the injured brain by alleviating neuronal apoptosis, oxidative stress, neuroinflammation, and restoring BBB integrity in transient middle cerebral artery occlusion (tMCAO) rats. Taken together, our study provides a neutrophil-mimetic nanoplatform for targeted IS therapy and sheds light on the rational design of biomimetic nanosystems favoring wide medical applications.
Collapse
Affiliation(s)
- Zhuang Tang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Shiyu Meng
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Zhiling Song
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Xiaoxue Yang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Xinzhi Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Meirong Du
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jun Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
26
|
Drabecki M, Toczyłowski E, Pieńkosz K, Honisz G, Kułak K. Multi-criteria assignment problems for optimising the emergency medical services (EMS), considering non-homogeneous speciality of the emergency departments and EMS crews. Sci Rep 2023; 13:7496. [PMID: 37161017 PMCID: PMC10170167 DOI: 10.1038/s41598-023-33831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023] Open
Abstract
Dispatching of the EMS crews (ambulances) to awaiting patients and then directing the patients, that are already onboard, to appropriate Emergency Departments (ED), is a nontrivial decision problem. In many emergency medical systems it is handled by the Medical Dispatcher using various strategies-sometimes preferring the closest unit. However, applying a wrong strategy may result in transferring acute-state patients, who require very specialised medical aid, to low-speciality EDs with insufficient treatment capabilities. Then, they would need to be re-transferred to referential units, prolonging substantially the time to receive treatment. In some cases such a delay might make the treatment less effective or even impossible. In this work we propose two multi-criteria mathematical optimisation problems-the first one allows us to calculate the ambulance-to-patient assignment, the second one-to establish the patient-to-hospital assignment. These problems not only take the time-to-support criterion into consideration but also optimise for the speciality of care received by each patient. The ED dispatching problem proposed allows both for direct transfers of patients to referential units and for re-transferring them from non-referential EDs. The performance of the proposed approach is tested in simulations with real-life emergency cases from the NEMSIS data set and compared with classic assignment strategies. The tests showed the proposed approach is able to produce better and more fit-for-purpose dispatching results than other strategies tested. Additionally, we propose a framework for embedding the proposed optimisation problems in the current EMS/ED dispatching process.
Collapse
Affiliation(s)
- Mariusz Drabecki
- Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw, Poland.
- Order of Malta Poland, Maltese Medical Service, Katowice, Poland.
| | - Eugeniusz Toczyłowski
- Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Krzysztof Pieńkosz
- Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Grzegorz Honisz
- Silesian Centre for Heart Deseases in Zabrze, Zabrze, Poland
- Order of Malta Poland, Maltese Medical Service, Katowice, Poland
| | - Klaudia Kułak
- Faculty of Medicine, Lazarski University Warsaw, Warsaw, Poland
| |
Collapse
|
27
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
28
|
Zhou Z, Dun L, Yang Q, Tao J, Yu P, Xu H, Zhao N, Zheng N, An H, Yi P. Tongqiao Huoxue decoction alleviates neurological impairment following ischemic stroke via the PTGS2/NF-kappa B axis. Brain Res 2023; 1805:148247. [PMID: 36669713 DOI: 10.1016/j.brainres.2023.148247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Traditional Chinese medicine has emerged as promising targets for ischemic stroke (IS) therapy, yet the mechanism remains elusive. The current study was performed with an aim to investigate the action and mechanism of Tongqiao Huoxue decoction (TQHXD) affecting the neurological impairment secondary to IS based on network pharmacology. Based on network pharmacology and bioinformatics analysis, target genes and pathways involved in the treatment of TQHXD against IS were predicted. Serum containing TQHXD was prepared through blood collection from C57BL/6 mice after intragastric administration of TQHXD. The main results exhibited that Prostaglandin-endoperoxide synthase 2 (PTGS2) exhibited an abundance in IS and enrichment in the NF-kappa B signaling pathway, holding the potential as targets related to TQHXD treatment for IS. TQHXD was found to rescue cell viability, inhibit apoptosis, and alleviate inflammation under oxygen and glucose deprivation and reoxygenation (OGD/R) exposure. Furthermore, our in vivo experiment validated the protective function of TQHXD in ischemic brain damage stimulated by middle cerebral artery occlusion (MCAO). This protective action of TQHXD could be attenuated by overexpressing nuclear factor (NF)-kappa B, which was dependent on PTGS2. Collectively, TQHXD was demonstrated to ameliorate IS-induced neurological impairment by blocking the NF-kappa B signaling pathway and down-regulating PTGS2.
Collapse
Affiliation(s)
- Zheyi Zhou
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Linglu Dun
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Qian Yang
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Jingrui Tao
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Peishan Yu
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Hong Xu
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Na Zhao
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Na Zheng
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Hongwei An
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Ping Yi
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China.
| |
Collapse
|
29
|
Yang Q, Pu W, Hu K, Hu Y, Feng Z, Cai J, Li C, Li L, Zhou Z, Zhang J. Reactive Oxygen Species-Responsive Transformable and Triple-Targeting Butylphthalide Nanotherapy for Precision Treatment of Ischemic Stroke by Normalizing the Pathological Microenvironment. ACS NANO 2023; 17:4813-4833. [PMID: 36802489 DOI: 10.1021/acsnano.2c11363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
High potency and safe therapies are still required for ischemic stroke, which is a leading cause of global death and disability. Herein, a reactive oxygen species (ROS)-responsive, transformable, and triple-targeting dl-3-n-butylphthalide (NBP) nanotherapy was developed for ischemic stroke. To this end, a ROS-responsive nanovehicle (OCN) was first constructed using a cyclodextrin-derived material, which showed considerably enhanced cellular uptake in brain endothelial cells due to notably reduced particle size, morphological transformation, and surface chemistry switching upon triggering via pathological signals. Compared to a nonresponsive nanovehicle, this ROS-responsive and transformable nanoplatform OCN exhibited a significantly higher brain accumulation in a mouse model of ischemic stroke, thereby affording notably potentiated therapeutic effects for the nanotherapy derived from NBP-containing OCN. For OCN decorated with a stroke-homing peptide (SHp), we found significantly increased transferrin receptor-mediated endocytosis, in addition to the previously recognized targeting capability to activated neurons. Consistently, the engineered transformable and triple-targeting nanoplatform, i.e., SHp-decorated OCN (SON), displayed a more efficient distribution in the injured brain in mice with ischemic stroke, showing considerable localization in endothelial cells and neurons. Furthermore, the finally formulated ROS-responsive transformable and triple-targeting nanotherapy (NBP-loaded SON) demonstrated highly potent neuroprotective activity in mice, which outperformed the SHp-deficient nanotherapy at a 5-fold higher dose. Mechanistically, our bioresponsive, transformable, and triple-targeting nanotherapy attenuated the ischemia/reperfusion-induced endothelial permeability and improved dendritic remodeling and synaptic plasticity of neurons in the injured brain tissue, thereby promoting much better functional recovery, which were achieved by efficiently enhancing NBP delivery to the ischemic brain tissue, targeting injured endothelial cells and activated neurons/microglial cells, and normalizing the pathological microenvironment. Moreover, preliminary studies indicated that the ROS-responsive NBP nanotherapy displayed a good safety profile. Consequently, the developed triple-targeting NBP nanotherapy with desirable targeting efficiency, spatiotemporally controlled drug release performance, and high translational potential holds great promise for precision therapy of ischemic stroke and other brain diseases.
Collapse
Affiliation(s)
- Qinghua Yang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kaiyao Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhiqiang Feng
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiajun Cai
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Lab of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
30
|
Chen YL, Chen YC, Xiong LA, Huang QY, Gong TT, Chen Y, Ma LF, Fang L, Zhan ZJ. Discovery of phenylcarbamoyl xanthone derivatives as potent neuroprotective agents for treating ischemic stroke. Eur J Med Chem 2023; 251:115251. [PMID: 36921528 DOI: 10.1016/j.ejmech.2023.115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Compounds of natural sources are widespread discovered in the treatment of ischemic stroke. Alpha-mangostin, a natural prenylated xanthone, has been found to display a therapeutic potential to treat ischemic stroke. However, the direct application of α-mangostin is limited due to its cytotoxicity and relatively low efficacy. Herein, structural modification of α-mangostin was necessary to improve its drug-ability. Currently, 34 α-mangostin phenylcarbamoyl derivatives were synthesized and evaluated for their neuroprotective activities by glutamate-induced excitotoxicity and H2O2-induced oxidative damage models in vitro. The results showed that compound 2 had the most therapeutic potential in both models. Whereafter, 2 has been proved to have powerful therapeutic effects by the MCAO ischemic stroke model in rats, which might be due to inhibition of inflammatory reaction and free radical accumulation. Besides, acute toxicity assay in rats showed that compound 2 had excellent safety. Overall, 2 could be a promising neuroprotective agent for the treatment of ischemic stroke deserving further investigations.
Collapse
Affiliation(s)
- Yi-Li Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yu-Chen Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lin-An Xiong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Qu-Yang Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Ting-Ting Gong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yan Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, PR China.
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
31
|
Tang L, Fu C, Zhang A, Li X, Cao Y, Feng J, Liu H, Dong H, Wang W. Harnessing nanobiotechnology for cerebral ischemic stroke management. Biomater Sci 2023; 11:791-812. [PMID: 36545758 DOI: 10.1039/d2bm01790c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cerebral ischemic stroke remains one of the most serious neurological disorders that pose threats to human health, causing a large amount of long-term disability or even death throughout the world. Based on its physiologic and pathological features, there are limited available therapeutic options for effective ischemic stroke management. Encouragingly, a rapid advancement of nanobiotechnology is bringing new insights into exploring more alternative strategies against cerebral ischemic stroke, which can cleverly overcome the limitations related to conventional treatment methods. Therefore, this review focuses on the recent achievements of nanobiotechnology for ischemic stroke management, which emphasizes diverse targeted delivery strategies using various nanoplatforms including liposomes, micelles, polymeric nanoparticles, nanogels, inorganic nanomaterials, and cell-derived nano-vectors based on the pathophysiological features of ischemic stroke. Moreover, different therapeutic approaches against ischemic stroke such as neuroprotection, anti-inflammation, thrombolysis, increased blood-brain barrier penetration and reactive oxygen species scavenging are highlighted. Meanwhile, this review discusses how these versatile nanoplatforms were designed to assist in the treatment of ischemic stroke. Based on this, challenges, opportunities, and future perspectives using nanobiotechnology through rational design for effective ischemic stroke management are revealed.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Xiyue Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jingwen Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, 210009 Nanjing, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
32
|
Ye H, Ma Z, Liu L, Zhang T, Han Q, Xiang Z, Xia Y, Ke Y, Guan X, Shi Q, Ataullakhanov FI, Panteleev M. Thrombus Inhibition and Neuroprotection for Ischemic Stroke Treatment through Platelet Regulation and ROS Scavenging. ChemMedChem 2022; 17:e202200317. [PMID: 36220787 DOI: 10.1002/cmdc.202200317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Indexed: 01/14/2023]
Abstract
Ischemic stroke is caused by cerebrovascular stenosis or occlusion. Excessive reactive oxygen species (ROS) are the focus-triggering factor of irreversible injury in ischemic regions, which result in harmful cascading effects to brain tissue, such as inflammation and microthrombus formation. In the present work, we designed nanodelivery systems (NDSs) based on MnO2 loaded with Ginkgolide B (GB) for restoring the intracerebral microenvironment in ischemic stroke, such as ROS scavenging, O2 elevation, thrombus inhibition and damage repair. GB can activate the endogenous antioxidant defense of cells by enhancing the nuclear factor-E2-related factor 2 (Nrf2) signalling pathway, thus protecting brain tissue from oxidative damage. However, the blood-brain barrier (BBB) is also a therapeutic obstacle for the delivery of these agents to ischemic regions. MnO2 nanoparticles have an inherent BBB penetration effect, which enhances the delivery of therapeutic agents within brain tissue. MnO2 , with mimicking enzymatic activity, can catalyze the decomposition of overproduced H2 O2 in the ischemic microenvironment to O2 , meanwhile releasing platelet-antagonizing GB molecules, thus alleviating cerebral hypoxia, oxidative stress damage, and microthrombus generation. This study may provide a promising therapeutic route for regulating the microenvironment of ischemic stroke through a combined function of ROS scavenging, microthrombus inhibition, and BBB penetration.
Collapse
Affiliation(s)
- Hongbo Ye
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Zhifang Ma
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Lei Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tianci Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qiaoyi Han
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zehong Xiang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Xia
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yue Ke
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinghua Guan
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Qiang Shi
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Fazly I Ataullakhanov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| |
Collapse
|
33
|
Li X, Han Z, Wang T, Ma C, Li H, Lei H, Yang Y, Wang Y, Pei Z, Liu Z, Cheng L, Chen G. Cerium oxide nanoparticles with antioxidative neurorestoration for ischemic stroke. Biomaterials 2022; 291:121904. [PMID: 36403323 DOI: 10.1016/j.biomaterials.2022.121904] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022]
Abstract
Oxidative stress and mitochondrial damage are the main mechanisms of ischemia-reperfusion injury in ischemic stroke. Herein, cerium oxide nanoparticles with powerful free radical scavenging ability were used as carriers to load dl-3-n-butylphthalide (NBP-CeO2 NPs) for the combined treatment of ischemic stroke. NBP-CeO2 NPs could eliminate reactive oxygen species (ROS) in mouse brain microvascular endothelial cells and hippocampal neurons after oxygen-glucose deprivation/reoxygenation (OGD/R), and also save mitochondrial membrane potential, morphology, and function, thus alleviating the in vitro blood brain barrier (BBB) disruption and neuronal apoptosis. In the middle cerebral artery embolization/recanalization (MCAO/R) mouse model, the NBP-CeO2 NPs also possessed superior ROS scavenging ability, protected mitochondria, and preserved BBB integrity, thereby reducing cerebral infarction and cerebral edema and inhibiting neuroinflammation and neuronal apoptosis. The long-term neurobehavioral tests indicated that the NBP-CeO2 NPs significantly improved sensorimotor function and spatial learning ability by promoting angiogenesis after ischemic stroke. Therefore, the NBP-CeO2 NPs provided a novel therapeutic approach for ischemic stroke by combining antioxidant and neurovascular repair abilities, highlighting its wide application in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yuanjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
34
|
Yu H, Xie Y, Dai M, Pan Y, Xie C. SMAD3 interacts with vitamin D receptor and affects vitamin D-mediated oxidative stress to ameliorate cerebral ischaemia-reperfusion injury. Eur J Neurosci 2022; 56:6055-6068. [PMID: 36161391 DOI: 10.1111/ejn.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 12/29/2022]
Abstract
Cerebral ischaemia/reperfusion (I/R) injury is caused by blood flow restoration after an ischaemic insult, and effective treatments targeting I/R injury are still insufficient. Oxidative stress plays a critical role in the pathogenesis of cerebral I/R injury. This study investigated whether vitamin D receptor (VDR) could inhibit oxidative stress caused by cerebral I/R injury and explored the detailed mechanism. VDR was highly expressed in brain tissues of mice with cerebral I/R injury. Pretreatment with the active vitamin D calcitriol and synthetic vitamin D analogue paricalcitol (PC) reduced autophagy and apoptosis, improved neurological deficits and decreased infarct size in mice after cerebral I/R. Calcitriol or PC upregulated VDR expression to prevent cerebral I/R injury by affecting oxidative stress. Silencing of VDR reversed the protective effects of calcitriol or PC on brain tissues in mice with cerebral I/R. The bioinformatics analysis revealed that VDR interacted with SMAD family member 3 (SMAD3). It was validated through the chromatin immunoprecipitation assay that SMAD3 can bind to the VDR promoter and VDR can bind to the SMAD3 promoter. Collectively, these findings provide evidence that reciprocal activation between SMAD3 and VDR transcription factors defines vitamin D-mediated oxidative stress to prevent cerebral I/R injury.
Collapse
Affiliation(s)
- Hang Yu
- Department of Critical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yuxiang Xie
- Department of Critical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Mingming Dai
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yuxiang Pan
- Department of Critical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chengzhi Xie
- Department of Critical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
35
|
Advancements in Hydrogel Application for Ischemic Stroke Therapy. Gels 2022; 8:gels8120777. [PMID: 36547301 PMCID: PMC9778209 DOI: 10.3390/gels8120777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability worldwide. There is almost no effective treatment for this disease. Therefore, developing effective treatment for ischemic stroke is urgently needed. Efficient delivery of therapeutic drugs to ischemic sites remained a great challenge for improved treatment of strokes. In recent years, hydrogel-based strategies have been widely investigated for new and improved therapies. They have the advantage of delivering therapeutics in a controlled manner to the poststroke sites, aiming to enhance the intrinsic repair and regeneration. In this review, we discuss the pathophysiology of stroke and the development of injectable hydrogels in the application of both stroke treatment and neural tissue engineering. We also discuss the prospect and the challenges of hydrogels in the treatment of ischemic strokes.
Collapse
|
36
|
Jiang Y, Liu Z, Liao Y, Sun S, Dai Y, Tang Y. Ischemic stroke: From pathological mechanisms to neuroprotective strategies. Front Neurol 2022; 13:1013083. [PMID: 36438975 PMCID: PMC9681807 DOI: 10.3389/fneur.2022.1013083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Ischemic stroke (IS) has complex pathological mechanisms, and is extremely difficult to treat. At present, the treatment of IS is mainly based on intravenous thrombolysis and mechanical thrombectomy, but they are limited by a strict time window. In addition, after intravenous thrombolysis or mechanical thrombectomy, damaged neurons often fail to make ideal improvements due to microcirculation disorders. Therefore, finding suitable pathways and targets from the pathological mechanism is crucial for the development of neuroprotective agents against IS. With the hope of making contributions to the development of IS treatments, this review will introduce (1) how related targets are found in pathological mechanisms such as inflammation, excitotoxicity, oxidative stress, and complement system activation; and (2) the current status and challenges in drug development.
Collapse
Affiliation(s)
- Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyong Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Dai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Zhuang J, Zhang X, Liu Q, Zhu M, Huang X. Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Am J Cancer Res 2022; 12:6223-6241. [PMID: 36168632 PMCID: PMC9475455 DOI: 10.7150/thno.73421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemic diseases, the leading cause of disability and death, are caused by the restriction or blockage of blood flow in specific tissues, including ischemic cardiac, ischemic cerebrovascular and ischemic peripheral vascular diseases. The regeneration of functional vasculature network in ischemic tissues is essential for treatment of ischemic diseases. Direct delivery of pro-angiogenesis factors, such as VEGF, has demonstrated the effectiveness in ischemic disease therapy but suffering from several obstacles, such as low delivery efficacy in disease sites and uncontrolled modulation. In this review, we summarize the molecular mechanisms of inducing vascular regeneration, providing the guidance for designing the desired nanomedicines. We also introduce the delivery of various nanomedicines to ischemic tissues by passive or active targeting manner. To achieve the efficient delivery of nanomedicines in various ischemic diseases, we highlight targeted delivery of nanomedicines and controllable modulation of disease microenvironment using nanomedicines.
Collapse
Affiliation(s)
- Jie Zhuang
- School of Medicine, Nankai University, Tianjin 300071, China.,Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingsheng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Blanco S, Martínez-Lara E, Siles E, Peinado MÁ. New Strategies for Stroke Therapy: Nanoencapsulated Neuroglobin. Pharmaceutics 2022; 14:pharmaceutics14081737. [PMID: 36015363 PMCID: PMC9412405 DOI: 10.3390/pharmaceutics14081737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023] Open
Abstract
Stroke is a global health and socio-economic problem. However, no efficient preventive and/or palliative treatments have yet been found. Neuroglobin (Ngb) is an endogen neuroprotective protein, but it only exerts its beneficial action against stroke after increasing its basal levels. Therefore, its systemic administration appears to be an efficient therapy applicable to stroke and other neurodegenerative pathologies. Unfortunately, Ngb cannot cross the blood-brain barrier (BBB), making its direct pharmacological use unfeasible. Thus, the association of Ngb with a drug delivery system (DDS), such as nanoparticles (NPs), appears to be a good strategy for overcoming this handicap. NPs are a type of DDS which efficiently transport Ngb and increase its bioavailability in the infarcted area. Hence, we previously built hyaluronate NPS linked to Ngb (Ngb-NPs) as a therapeutic tool against stroke. This nanoformulation induced an improvement of the cerebral infarct prognosis. However, this innovative therapy is still in development, and a more in-depth study focusing on its long-lasting neuroprotectant and neuroregenerative capabilities is needed. In short, this review aims to update the state-of-the-art of stroke therapies based on Ngb, paying special attention to the use of nanotechnological drug-delivering tools.
Collapse
|
39
|
Zhang Y, Zou Z, Liu S, Miao S, Liu H. Nanogels as Novel Nanocarrier Systems for Efficient Delivery of CNS Therapeutics. Front Bioeng Biotechnol 2022; 10:954470. [PMID: 35928954 PMCID: PMC9343834 DOI: 10.3389/fbioe.2022.954470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Nanogels have come out as a great potential drug delivery platform due to its prominently high colloidal stability, high drug loading, core-shell structure, good permeation property and can be responsive to environmental stimuli. Such nanoscopic drug carriers have more excellent abilities over conventional nanomaterials for permeating to brain parenchyma in vitro and in vivo. Nanogel-based system can be nanoengineered to bypass physiological barriers via non-invasive treatment, rendering it a most suitable platform for the management of neurological conditions such as neurodegenerative disorders, brain tumors, epilepsy and ischemic stroke, etc. Therapeutics of central nervous system (CNS) diseases have shown marked limited site-specific delivery of CNS by the poor access of various drugs into the brain, due to the presences of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Hence, the availability of therapeutics delivery strategies is considered as one of the most major challenges facing the treatment of CNS diseases. The primary objective of this review is to elaborate the newer advances of nanogel for CNS drugs delivery, discuss the early preclinical success in the field of nanogel technology and highlight different insights on its potential neurotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Haiyan Liu
- Department of Anatomy, College of Basic Medicine Sciences, Jilin University, Changchun, China
| |
Collapse
|
40
|
Neag MA, Mitre AO, Burlacu CC, Inceu AI, Mihu C, Melincovici CS, Bichescu M, Buzoianu AD. miRNA Involvement in Cerebral Ischemia-Reperfusion Injury. Front Neurosci 2022; 16:901360. [PMID: 35757539 PMCID: PMC9226476 DOI: 10.3389/fnins.2022.901360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia reperfusion injury is a debilitating medical condition, currently with only a limited amount of therapies aimed at protecting the cerebral parenchyma. Micro RNAs (miRNAs) are small, non-coding RNA molecules that via the RNA-induced silencing complex either degrade or prevent target messenger RNAs from being translated and thus, can modulate the synthesis of target proteins. In the neurological field, miRNAs have been evaluated as potential regulators in brain development processes and pathological events. Following ischemic hypoxic stress, the cellular and molecular events initiated dysregulate different miRNAs, responsible for long-terming progression and extension of neuronal damage. Because of their ability to regulate the synthesis of target proteins, miRNAs emerge as a possible therapeutic strategy in limiting the neuronal damage following a cerebral ischemic event. This review aims to summarize the recent literature evidence of the miRNAs involved in signaling and modulating cerebral ischemia-reperfusion injuries, thus pointing their potential in limiting neuronal damage and repair mechanisms. An in-depth overview of the molecular pathways involved in ischemia reperfusion injury and the involvement of specific miRNAs, could provide future perspectives in the development of neuroprotective agents targeting these specific miRNAs.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carina Mihu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen-Stanca Melincovici
- Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius Bichescu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
41
|
Jiang Y, Kang Y, Liu J, Yin S, Huang Z, Shao L. Nanomaterials alleviating redox stress in neurological diseases: mechanisms and applications. J Nanobiotechnology 2022; 20:265. [PMID: 35672765 PMCID: PMC9171999 DOI: 10.1186/s12951-022-01434-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Overproduced reactive oxygen and reactive nitrogen species (RONS) in the brain are involved in the pathogenesis of several neurological diseases, such as Alzheimer's disease, Parkinson's disease, traumatic brain injury, and stroke, as they attack neurons and glial cells, triggering cellular redox stress. Neutralizing RONS, and, thus, alleviating redox stress, can slow down or stop the progression of neurological diseases. Currently, an increasing number of studies are applying nanomaterials (NMs) with anti-redox activity and exploring the potential mechanisms involved in redox stress-related neurological diseases. In this review, we summarize the anti-redox mechanisms of NMs, including mimicking natural oxidoreductase activity and inhibiting RONS generation at the source. In addition, we propose several strategies to enhance the anti-redox ability of NMs and highlight the challenges that need to be resolved in their application. In-depth knowledge of the mechanisms and potential application of NMs in alleviating redox stress will help in the exploration of the therapeutic potential of anti-redox stress NMs in neurological diseases.
Collapse
Affiliation(s)
- Yanping Jiang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Suhan Yin
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Zhendong Huang
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
42
|
Lv W, Liu Y, Li S, Lv L, Lu H, Xin H. Advances of nano drug delivery system for the theranostics of ischemic stroke. J Nanobiotechnology 2022; 20:248. [PMID: 35641956 PMCID: PMC9153106 DOI: 10.1186/s12951-022-01450-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
From the global perspective, stroke refers to a highly common cause of disability and death. Ischemic stroke (IS), attributed to blood vessel blockage, preventing the flow of blood to brain, acts as the most common form of stroke. Thus far, thrombolytic therapy is the only clinical treatment for IS with the approval from the FDA. Moreover, the physiology barrier complicates therapeutically and diagnostically related intervention development of IS. Accordingly, developing efficient and powerful curative approaches for IS diagnosis and treatment is urgently required. The advent of nanotechnology has brought dawn and hope to better curative and imaging forms for the management of IS. This work reviews the recent advances and challenges correlated with the nano drug delivery system for IS therapy and diagnosis. The overview of the current knowledge of the important molecular pathological mechanisms in cerebral ischemia and how the drugs cross the blood brain barrier will also be briefly summarized.
Collapse
Affiliation(s)
- Wei Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Yijiao Liu
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Shengnan Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Lingyan Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Hongdan Lu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| | - Hongliang Xin
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
43
|
Burlacu CC, Neag MA, Mitre AO, Sirbu AC, Badulescu AV, Buzoianu AD. The Role of miRNAs in Dexmedetomidine's Neuroprotective Effects against Brain Disorders. Int J Mol Sci 2022; 23:5452. [PMID: 35628263 PMCID: PMC9141783 DOI: 10.3390/ijms23105452] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
There are limited neuroprotective strategies for various central nervous system conditions in which fast and sustained management is essential. Neuroprotection-based therapeutics have become an intensively researched topic in the neuroscience field, with multiple novel promising agents, from natural products to mesenchymal stem cells, homing peptides, and nanoparticles-mediated agents, all aiming to significantly provide neuroprotection in experimental and clinical studies. Dexmedetomidine (DEX), an α2 agonist commonly used as an anesthetic adjuvant for sedation and as an opioid-sparing medication, stands out in this context due to its well-established neuroprotective effects. Emerging evidence from preclinical and clinical studies suggested that DEX could be used to protect against cerebral ischemia, traumatic brain injury (TBI), spinal cord injury, neurodegenerative diseases, and postoperative cognitive disorders. MicroRNAs (miRNAs) regulate gene expression at a post-transcriptional level, inhibiting the translation of mRNA into functional proteins. In vivo and in vitro studies deciphered brain-related miRNAs and dysregulated miRNA profiles after several brain disorders, including TBI, ischemic stroke, Alzheimer's disease, and multiple sclerosis, providing emerging new perspectives in neuroprotective therapy by modulating these miRNAs. Experimental studies revealed that some of the neuroprotective effects of DEX are mediated by various miRNAs, counteracting multiple mechanisms in several disease models, such as lipopolysaccharides induced neuroinflammation, β-amyloid induced dysfunction, brain ischemic-reperfusion injury, and anesthesia-induced neurotoxicity models. This review aims to outline the neuroprotective mechanisms of DEX in brain disorders by modulating miRNAs. We address the neuroprotective effects of DEX by targeting miRNAs in modulating ischemic brain injury, ameliorating the neurotoxicity of anesthetics, reducing postoperative cognitive dysfunction, and improving the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Codrin-Constantin Burlacu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandru-Constantin Sirbu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andrei-Vlad Badulescu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
44
|
Chen J, Jin J, Li K, Shi L, Wen X, Fang F. Progresses and Prospects of Neuroprotective Agents-Loaded Nanoparticles and Biomimetic Material in Ischemic Stroke. Front Cell Neurosci 2022; 16:868323. [PMID: 35480961 PMCID: PMC9035592 DOI: 10.3389/fncel.2022.868323] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Ischemic stroke remains the leading cause of death and disability, while the main mechanisms of dominant neurological damage in stroke contain excitotoxicity, oxidative stress, and inflammation. The clinical application of many neuroprotective agents is limited mainly due to their inability to cross the blood-brain barrier (BBB), short half-life and low bioavailability. These disadvantages can be better eliminated/reduced by nanoparticle as the carrier of these drugs. This review expounded the currently hot researched nanomedicines from the perspective of the mechanism of ischemic stroke. In addition, this review describes the bionic nanomedicine delivery strategies containing cells, cell membrane vesicles and exosomes that can effectively avoid the risk of clearance by the reticuloendothelial system. The potential challenges and application prospect for clinical translation of these delivery platforms were also discussed.
Collapse
Affiliation(s)
- Junfa Chen
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lin Shi
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xuehua Wen
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xuehua Wen,
| | - Fuquan Fang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Fuquan Fang,
| |
Collapse
|
45
|
Yang Y, Yin N, Gu Z, Zhao Y, Liu C, Zhou T, Zhang K, Zhang Z, Liu J, Shi J. Engineered biomimetic drug-delivery systems for ischemic stroke therapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
46
|
Gene Differential Expression and Interaction Networks Illustrate the Biomarkers and Molecular Mechanisms of Atherosclerotic Cerebral Infarction. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3912697. [PMID: 35070236 PMCID: PMC8769835 DOI: 10.1155/2022/3912697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022]
Abstract
Atherosclerotic cerebral infarction (ACI) seriously threatens the health of the senile patients, and the strategies are urgent for the diagnosis and treatment of ACI. This study investigated the mRNA profiling of the patients with ischemic stroke and atherosclerosis via excavating the datasets in the GEO database and attempted to reveal the biomarkers and molecular mechanism of ACI. In this study, GES16561 and GES100927 were obtained from Gene Expression Omnibus (GEO) database, and the related differentially expressed genes (DEGs) were analyzed with R language. Furthermore, the DEGs were analyzed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Besides, the protein-protein interaction (PPI) network of DEGs was analyzed by STRING database and Cytoscape. The results showed that 133 downregulated DEGs and 234 upregulated DEGs were found in GES16561, 25 downregulated DEGs and 104 upregulated DEGs were found in GSE100927, and 6 common genes were found in GES16561 and GES100927. GO enrichment analysis showed that the functional models of the common genes were involved in neutrophil activation, neutrophil degranulation, neutrophil activation, and immune response. KEGG enrichment analysis showed that the DEGs in both GSE100927 and GSE16561 were connected with the pathways including Cell adhesion molecules (CAMs), Cytokine-cytokine receptor interaction, Phagosome, Antigen processing and presentation, and Staphylococcus aureus infection. The PPI network analysis showed that 9 common DEGs were found in GSE100927 and GSE16561, and a cluster with 6 nodes and 12 edges was also identified by PPI network analysis. In conclusion, this study suggested that FCGR3A and MAPK pathways were connected with ACI.
Collapse
|
47
|
Guan Q, Dou H. Thrombus-Targeting Polymeric Nanocarriers and Their Biomedical Applications in Thrombolytic Therapy. Front Physiol 2021; 12:763085. [PMID: 34916956 PMCID: PMC8669757 DOI: 10.3389/fphys.2021.763085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
Due to the high morbidity and mortality of cardiovascular diseases, there is an urgent need for research on antithrombotic strategies. In view of the short half-life, insufficient drug penetration, poor targeting capabilities, and hemorrhagic side-effects of traditional thrombus treatment methods, the combination of thrombolytic therapy and nanocarriers brought by the development of nanotechnology in recent years may provide effective solutions for these undesirable side-effects caused by insufficient targeting. Polymeric nanocarriers, based on macromolecules and various functional groups, can connect specific targeting molecules together through chemical modification to achieve the protection and targeted delivery of thrombolytic drugs. However, simple chemical molecular modifications may be easily affected by the physiological environment encountered in the circulatory system. Therefore, the modification of nanocarriers with cell membranes can provide camouflage to these platforms and help to extend their circulation time while also imparting them with the biological functions of cell membranes, thus providing them with precise targeting capabilities, among which the most important is the biological modification of platelet membranes. In addition, some nanoparticles with their own therapeutic functions have also been developed, such as polypyrrole, which can exhibit a photothermal effect to induce thrombolysis. Herein, combined with the mechanism of thrombosis and thrombolysis, we outline the recent advances achieved with thrombus-targeting nanocarriers with regard to thrombosis treatment. On this basis, the design considerations, advantages, and challenges of these thrombolytic therapies in clinical transformation are discussed.
Collapse
Affiliation(s)
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|