1
|
Ali M, Namjoshi S, Phan K, Wu X, Prasadam I, Benson HAE, Kumeria T, Mohammed Y. 3D Printed Microneedles for the Transdermal Delivery of NAD + Precursor: Toward Personalization of Skin Delivery. ACS Biomater Sci Eng 2024; 10:7235-7255. [PMID: 39312410 DOI: 10.1021/acsbiomaterials.4c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
3D printing of microneedles (μNDs) for transdermal therapy has the potential to enable patient personalization based on the target disease, site of application, and dosage requirements. To convert this concept to reality, it is necessary that the 3D printing technology can deliver high resolution, an affordable cost, and large print volumes. With the introduction of benchtop 4K and 8K 3D printers, it is now possible to manufacture medical devices like μNDs at sufficient resolution and low cost. In this research, we systematically optimized the 3D printing design parameters such as resin viscosity, print angle, layer height, and curing time to generate customizable μNDs. We have also developed an innovative 3D coating microtank device to optimize the coating method. We have applied this to the development of novel μNDs to deliver an established NAD+ precursor molecule, nicotinamide mononucleotide (NMN). A methacrylate-based polymer photoresin (eSun resin) was diluted with methanol to adjust the resin viscosity. The 3D print layer height of 25 μm yielded a smooth surface, thus reducing edge-ridge mismatches. Printing μNDs at 90° to the print platform yielded 84.28 ± 2.158% (n = 5) of the input height thus increasing the tip sharpness (48.52 ± 10.43 μm, n = 5). The formulation containing fluorescein (model molecule), sucrose (viscosity modifier), and Tween-20 (surface tension modifier) was coated on the μNDs using the custom designed microtank setup, and the amount deposited was determined fluorescently. The dye-coated μND arrays inserted into human skin (in vitro) showed a fluorescence signal at a depth of 150 μm (n = 3) into the skin. After optimization of the 3D printing parameters and coating protocol using fluorescein, NMN was coated onto the μNDs, and its diffusion was assessed in full-thickness human skin in vitro using a Franz diffusion setup. Approximately 189 ± 34.5 μg (5× dipped coated μNDs) of NMN permeated through the skin and 41.2 ± 7.53 μg was left in the skin after 24 h. Multiphoton microscopy imaging of NMN-coated μND treated mouse ear skin ex vivo demonstrated significantly (p < 0.05) increased free-unbound NADPH and reduced fluorescence lifetime of NADPH, both of which are indicative of cellular metabolic rates. Our study demonstrates that low-cost benchtop 3D printers can be used to print high-fidelity μNDs with the ability to rapidly coat and release NMN which consequently caused changes in intracellular NAD+ levels.
Collapse
Affiliation(s)
- Masood Ali
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarika Namjoshi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Khanh Phan
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
2
|
Tunçel E, Tort S, Han S, Yücel Ç, Tırnaksız F. Development and optimization of hydrogel-forming microneedles fabricated with 3d-printed molds for enhanced dermal diclofenac sodium delivery: a comprehensive in vitro, ex vivo, and in vivo study. Drug Deliv Transl Res 2024:10.1007/s13346-024-01728-1. [PMID: 39455506 DOI: 10.1007/s13346-024-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
With the developing manufacturing technologies, the use of 3D printers in microneedle production is becoming widespread. Hydrogel-forming microneedles (HFMs), a variant of microneedles, demonstrate distinctive features such as a high loading capacity and controlled drug release. In this study, the conical microneedle master molds with approximately 500 μm needle height and 250 μm base diameter were created using a Stereolithography (SLA) 3D printer and were utilized to fabricate composite HFMs containing diclofenac sodium. Using Box-Behnken Design, the effects of different polymers on swelling index and mechanical strength of the developed HFMs were evaluated. The optimum HFMs were selected according to experimental design results with the aim of the highest mechanical strength with varying swelling indexes, which was needed to use 20% Gantrez S97 and 0.1% (F22), 0.42% (F23), and 1% (F24) hyaluronic acid. The skin penetration and drug release properties of the optimum formulations were assessed. Ex vivo studies were conducted on formulations to determine drug penetration and accumulation. F24, which has the highest mechanical strength and optimized swelling index, achieved the highest drug accumulation in the skin tissue (17.70 ± 3.66%). All optimum HFMs were found to be non-cytotoxic by the MTT cell viability test (> 70% cell viability). In in vivo studies, the efficacy of the F24 was assessed for the treatment of xylene-induced ear edema by contrasting it to the conventional dosage form. It was revealed that HFMs might be an improved replacement for conventional dosage forms in terms of dermal diseases such as actinic keratosis.
Collapse
Affiliation(s)
- Emre Tunçel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Sevtap Han
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Figen Tırnaksız
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye.
| |
Collapse
|
3
|
Gade L, Boyd BJ, Malmsten M, Heinz A. Stimuli-responsive drug delivery systems for inflammatory skin conditions. Acta Biomater 2024; 187:1-19. [PMID: 39209132 DOI: 10.1016/j.actbio.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory skin conditions highly influence the quality of life of the patients suffering from these disorders. Symptoms include red, itchy and painful skin lesions, which are visible to the rest of the world, causing stigmatization and a significantly lower mental health of the patients. Treatment options are often unsatisfactory, as they suffer from either low patient adherence or the risk of severe side effects. Considering this, there is a need for new treatments, and notably of new ways of delivering the drugs. Stimuli-responsive drug delivery systems are able to deliver their drug cargo in response to a given stimulus and are, thus, promising for the treatment of inflammatory skin conditions. For example, the use of external stimuli such as ultraviolet light, near infrared radiation, or alteration of magnetic field enables drug release to be precisely controlled in space and time. On the other hand, internal stimuli induced by the pathological condition, including pH alteration in the skin or upregulation of reactive oxygen species or enzymes, can be utilized to create drug delivery systems that specifically target the diseased skin to achieve a better efficacy and safety. In the latter context, however, it is of key importance to match the trigger mechanism of the drug delivery system to the actual pathological features of the specific skin condition. Hence, the focus of this article is placed not only on reviewing stimuli-responsive drug delivery systems developed to treat specific inflammatory skin conditions, but also on critically evaluating their efficacy in the context of specific skin diseases. STATEMENT OF SIGNIFICANCE: Skin diseases affect one-third of the world's population, significantly lowering the quality of life of the patients, who deal with symptoms such as painful and itchy skin lesions, as well as stigmatization due to the visibility of their symptoms. Current treatments for inflammatory skin conditions are often hampered by low patient adherence or serious drug side effects. Therefore, more emphasis should be placed on developing innovative formulations that provide better efficacy and safety for patients. Stimuli-responsive drug delivery systems hold considerable promise in this regard, as they can deliver their cargo precisely where and when it is needed, reducing adverse effects and potentially offering better treatment outcomes.
Collapse
Affiliation(s)
- Luna Gade
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Martin Malmsten
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Department of Physical Chemistry 1, Lund University, Lund, Sweden
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
4
|
Chu H, Xue J, Yang Y, Zheng H, Luo D, Li Z. Advances of Smart Stimulus-Responsive Microneedles in Cancer Treatment. SMALL METHODS 2024; 8:e2301455. [PMID: 38148309 DOI: 10.1002/smtd.202301455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Microneedles (MNs) have emerged as a highly promising technology for delivering drugs via the skin. They provide several benefits, including high drug bioavailability, non-invasiveness, painlessness, and high safety. Traditional strategies for intravenous delivery of anti-tumor drugs have risks of systemic toxicity and easy development of drug resistance, while MN technology facilitates precise delivery and on-demand release of drugs in local tissues. In addition, by further combining with stimulus-responsive materials, the construction of smart stimulus-responsive MNs can be achieved, which can respond to specific physical/chemical stimuli from the internal or external environment, thereby further improving the accuracy of tumor treatment and reducing toxicity to surrounding tissues/cells. This review systematically summarizes the classification, materials, and reaction mechanisms of stimulus-responsive MNs, outlines the benefits and challenges of various types of MNs, and details their application and latest progress in cancer treatment. Finally, the development prospects of smart MNs in tumor treatment are also discussed, bringing inspiration for future precision treatment of tumors.
Collapse
Affiliation(s)
- Huaqing Chu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
5
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
6
|
Kang W, Xu Z, Lu H, Liu S, Li J, Ding C, Lu Y. Advances in biomimetic nanomaterial delivery systems: harnessing nature's inspiration for targeted drug delivery. J Mater Chem B 2024; 12:7001-7019. [PMID: 38919030 DOI: 10.1039/d4tb00565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The properties of nanomaterials make them promising and advantageous for use in drug delivery systems, but challenges arise from the immune system's recognition of exogenous nanoparticles, leading to their clearance and reduced targeting efficiency. Drawing inspiration from nature, this paper explores biomimetic strategies to transform recognizable nanomaterials into a "camouflaged state." The focal point of this paper is the exploration of bionic nanoparticles, with a focus on cell membrane-coated nanoparticles. These biomimetic structures, particularly those mimicking red blood cells (RBCs), white blood cells (WBCs), platelets, and cancer cells, demonstrate enhanced drug delivery efficiency and prolonged circulation. This article underscores the versatility of these biomimetic structures across diverse diseases and explores the use of hybrid cell membrane-coated nanoparticles as a contemporary trend. This review also investigated exosomes and protein bionic nanoparticles, emphasizing their potential for specific targeting, immune evasion, and improved therapeutic outcomes. We expect that this continued development based on biomimetic nanomaterials will contribute to the efficiency and safety of disease treatment.
Collapse
Affiliation(s)
- Weiqi Kang
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Zhe Xu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Haiying Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Siwei Liu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yongping Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| |
Collapse
|
7
|
Lee JS, Oh E, Oh H, Kim S, Ok S, Sa J, Lee JH, Shin YC, Bae YS, Choi CY, Lee S, Kwon HK, Yang S, Choi WI. Tacrolimus-loaded chitosan-based nanoparticles as an efficient topical therapeutic for the effective treatment of atopic dermatitis symptoms. Int J Biol Macromol 2024; 273:133005. [PMID: 38866268 DOI: 10.1016/j.ijbiomac.2024.133005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Atopic dermatitis (AD) is a chronic cutaneous disease with a complex underlying mechanism, and it cannot be completely cured. Thus, most treatment strategies for AD aim at relieving the symptoms. Although corticosteroids are topically applied to alleviate AD, adverse side effects frequently lead to the withdrawal of AD therapy. Tacrolimus (TAC), a calcineurin inhibitor, has been used to treat AD, but its high molecular weight and insolubility in water hinder its skin permeability. Herein, we developed and optimized TAC-loaded chitosan-based nanoparticles (TAC@CNPs) to improve the skin permeability of TAC by breaking the tight junctions in the skin. The prepared nanoparticles were highly loadable and efficient and exhibited appropriate characteristics for percutaneous drug delivery. TAC@CNP was stable for 4 weeks under physiological conditions. CNP released TAC in a controlled manner, with enhanced skin penetration observed. In vitro experiments showed that CNP was non-toxic to keratinocyte (HaCaT) cells, and TAC@CNP dispersed in an aqueous solution was as anti-proliferative as TAC solubilized in a good organic solvent. Importantly, an in vivo AD mouse model revealed that topical TAC@CNP containing ~1/10 of the dose of TAC found in commercially used Protopic® Ointment exhibited similar anti-inflammatory activity to that of the commercial product. TAC@CNP represents a potential therapeutic strategy for the management of AD.
Collapse
Affiliation(s)
- Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro, 123, Buk-gu, Gwangju 61005, Republic of Korea
| | - Eunjeong Oh
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro, 123, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sunghyun Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Subin Ok
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junseo Sa
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Yong Chul Shin
- SKINMED Co Ltd., Daejeon 34028, Republic of Korea; Amicogen Inc, 64 Dongburo 1259, Jinsung, Jinju 52621, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
8
|
Cong J, Zheng Z, Fu Y, Chang Z, Chen C, Wu C, Pan X, Huang Z, Quan G. Spatiotemporal fate of nanocarriers-embedded dissolving microneedles: the impact of needle dissolving rate. Expert Opin Drug Deliv 2024; 21:965-974. [PMID: 38962819 DOI: 10.1080/17425247.2024.2375385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Dissolving microneedles (DMNs) have shown great potential for transdermal drug delivery due to their excellent skin-penetrating ability and combination with nanocarriers (NCs) can realize targeted drug delivery. The objective of this study was to investigate the impact of microneedle dissolving rate on the in vivo fate of NC-loaded DMNs, which would facilitate the clinical translation of such systems. METHODS Solid lipid nanoparticles (SLNs) were selected as the model NC for loading in DMNs, which were labeled by P4 probes with aggregation-quenching properties. Sodium hyaluronate acid (HA) and chitosan (CS), with different aqueous dissolving rates, were chosen as model tip materials. The effects of needle dissolving rate on the in vivo fate of NC-loaded DMNs was investigated by tracking the distribution of fluorescence signals after transdermal exposure. RESULTS P4 SLNs achieved a deeper diffusion depth of 180 μm in DMN-HA with a faster dissolution rate, while the diffusion depth in DMN-CS with a slower dissolution rate was lower (140 μm). The in vivo experiments demonstrated that P4 SLNs had a T1/2 value of 12.14 h in DMN-HA, whilst a longer retention time was found in DMN-CS, with a T1/2 of 13.12 h. CONCLUSIONS This study confirmed that the in vivo diffusion rate of NC-loaded DMNs was determined by the dissolving rate of DMNs materials and provided valuable guidance for the design and development of NC-loaded DMNs in the future.
Collapse
Affiliation(s)
- Jinghang Cong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ziyang Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yanping Fu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ziyao Chang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuangxin Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Shah SA, Oakes RS, Jewell CM. Advancing immunotherapy using biomaterials to control tissue, cellular, and molecular level immune signaling in skin. Adv Drug Deliv Rev 2024; 209:115315. [PMID: 38670230 PMCID: PMC11111363 DOI: 10.1016/j.addr.2024.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Immunotherapies have been transformative in many areas, including cancer treatments, allergies, and autoimmune diseases. However, significant challenges persist in extending the reach of these technologies to new indications and patients. Some of the major hurdles include narrow applicability to patient groups, transient efficacy, high cost burdens, poor immunogenicity, and side effects or off-target toxicity that results from lack of disease-specificity and inefficient delivery. Thus, there is a significant need for strategies that control immune responses generated by immunotherapies while targeting infection, cancer, allergy, and autoimmunity. Being the outermost barrier of the body and the first line of host defense, the skin presents a unique immunological interface to achieve these goals. The skin contains a high concentration of specialized immune cells, such as antigen-presenting cells and tissue-resident memory T cells. These cells feature diverse and potent combinations of immune receptors, providing access to cellular and molecular level control to modulate immune responses. Thus, skin provides accessible tissue, cellular, and molecular level controls that can be harnessed to improve immunotherapies. Biomaterial platforms - microneedles, nano- and micro-particles, scaffolds, and other technologies - are uniquely capable of modulating the specialized immunological niche in skin by targeting these distinct biological levels of control. This review highlights recent pre-clinical and clinical advances in biomaterial-based approaches to target and modulate immune signaling in the skin at the tissue, cellular, and molecular levels for immunotherapeutic applications. We begin by discussing skin cytoarchitecture and resident immune cells to establish the biological rationale for skin-targeting immunotherapies. This is followed by a critical presentation of biomaterial-based pre-clinical and clinical studies aimed at controlling the immune response in the skin for immunotherapy and therapeutic vaccine applications in cancer, allergy, and autoimmunity.
Collapse
Affiliation(s)
- Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Khairnar P, Phatale V, Shukla S, Tijani AO, Hedaoo A, Strauss J, Verana G, Vambhurkar G, Puri A, Srivastava S. Nanocarrier-Integrated Microneedles: Divulging the Potential of Novel Frontiers for Fostering the Management of Skin Ailments. Mol Pharm 2024; 21:2118-2147. [PMID: 38660711 DOI: 10.1021/acs.molpharmaceut.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The various kinds of nanocarriers (NCs) have been explored for the delivery of therapeutics designed for the management of skin manifestations. The NCs are considered as one of the promising approaches for the skin delivery of therapeutics attributable to sustained release and enhanced skin penetration. Despite the extensive applications of the NCs, the challenges in their delivery via skin barrier (majorly stratum corneum) have persisted. To overcome all the challenges associated with the delivery of NCs, the microneedle (MN) technology has emerged as a beacon of hope. Programmable drug release, being painless, and its minimally invasive nature make it an intriguing strategy to circumvent the multiple challenges associated with the various drug delivery systems. The integration of positive traits of NCs and MNs boosts therapeutic effectiveness by evading stratum corneum, facilitating the delivery of NCs through the skin and enhancing their targeted delivery. This review discusses the barrier function of skin, the importance of MNs, the types of MNs, and the superiority of NC-loaded MNs. We highlighted the applications of NC-integrated MNs for the management of various skin ailments, combinational drug delivery, active targeting, in vivo imaging, and as theranostics. The clinical trials, patent portfolio, and marketed products of drug/NC-integrated MNs are covered. Finally, regulatory hurdles toward benchtop-to-bedside translation, along with promising prospects needed to scale up NC-integrated MN technology, have been deliberated. The current review is anticipated to deliver thoughtful visions to researchers, clinicians, and formulation scientists for the successful development of the MN-technology-based product by carefully optimizing all the formulation variables.
Collapse
Affiliation(s)
- Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Gabrielle Verana
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
11
|
Xu P, Xiao W, Xu K, He Y, Miao X, Dong Y, Sun L. Potential strategy of microneedle-based transdermal drug delivery system for effective management of skin-related immune disorders. Eur J Pharm Biopharm 2024; 195:114148. [PMID: 37995878 DOI: 10.1016/j.ejpb.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Skin-related immune disorders are a category of diseases that lead to the dysregulation of the body's immune response due to imbalanced immune regulation. These disorders exhibit diverse clinical manifestations and complicated pathogenesis. The long-term use of corticosteroids, anti-inflammatory drugs, and immunosuppressants as traditional treatment methods for skin-related immune disorders frequently leads to adverse reactions in patients. In addition, the effect of external preparations is not ideal in some cases due to the compacted barrier function of the stratum corneum (SC). Microneedles (MNs) are novel transdermal drug delivery systems that have theapparent advantages ofpenetrating the skin barrier, such as long-term and controlled drug delivery, less systemic exposure, and painless and minimally invasive targeted delivery. These advantages make it a good candidate formulation for the treatment of skin-related immune disorders and a hotspot for research in this field. This paper updates the classification, preparation, evaluation strategies, materials, and related applications of five types of MNs. Specific information, including the mechanical properties, dimensions, stability, and in vitro and in vivo evaluations of MNs in the treatment of skin-related immune disorders, is also discussed. This review provides an overview of the advances and applications of MNs in the effective treatment of skin-related immune disorders and their emerging trends.
Collapse
Affiliation(s)
- Peng Xu
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Wei Xiao
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Kun Xu
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Yuan He
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China
| | - Yan Dong
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Lin Sun
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| |
Collapse
|
12
|
Zhao L, Chen J, Bai B, Song G, Zhang J, Yu H, Huang S, Wang Z, Lu G. Topical drug delivery strategies for enhancing drug effectiveness by skin barriers, drug delivery systems and individualized dosing. Front Pharmacol 2024; 14:1333986. [PMID: 38293666 PMCID: PMC10825035 DOI: 10.3389/fphar.2023.1333986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Topical drug delivery is widely used in various diseases because of the advantages of not passing through the gastrointestinal tract, avoiding gastrointestinal irritation and hepatic first-pass effect, and reaching the lesion directly to reduce unnecessary adverse reactions. The skin helps the organism to defend itself against a huge majority of external aggressions and is one of the most important lines of defense of the body. However, the skin's strong barrier ability is also a huge obstacle to the effectiveness of topical medications. Allowing the bioactive, composition in a drug to pass through the stratum corneum barrier as needed to reach the target site is the most essential need for the bioactive, composition to exert its therapeutic effect. The state of the skin barrier, the choice of delivery system for the bioactive, composition, and individualized disease detection and dosing planning influence the effectiveness of topical medications. Nowadays, enhancing transdermal absorption of topically applied drugs is the hottest research area. However, enhancing transdermal absorption of drugs is not the first choice to improve the effectiveness of all drugs. Excessive transdermal absorption enhances topical drug accumulation at non-target sites and the occurrence of adverse reactions. This paper introduces topical drug delivery strategies to improve drug effectiveness from three perspectives: skin barrier, drug delivery system and individualized drug delivery, describes the current status and shortcomings of topical drug research, and provides new directions and ideas for topical drug research.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bai Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guili Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Kenchegowda M, Hani U, Al Fatease A, Haider N, Ramesh KVRNS, Talath S, Gangadharappa HV, Kiran Raj G, Padmanabha SH, Osmani RAM. Tiny titans- unravelling the potential of polysaccharides and proteins based dissolving microneedles in drug delivery and theranostics: A comprehensive review. Int J Biol Macromol 2023; 253:127172. [PMID: 37793514 DOI: 10.1016/j.ijbiomac.2023.127172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
In recent years, microneedles (MNs) have emerged as a promising alternative to traditional drug delivery systems in transdermal drug delivery. The use of MNs has demonstrated significant potential in improving patient acceptance and convenience while avoiding the invasiveness of traditional injections. Dissolving, solid, hollow, coated, and hydrogel microneedles are among the various types studied for drug delivery. Dissolving microneedles (DMNs), in particular, have gained attention for their safety, painlessness, patient convenience, and high delivery efficiency. This comprehensive review primarily focuses on different types of microneedles, fabrication methods, and materials used in fabrication of DMNs such as hyaluronic acid, chitosan, alginate, gelatin, collagen, silk fibroin, albumin, cellulose and starch, to list a few. The review also provides an exhaustive discussion on the applications of DMNs, including the delivery of vaccines, cosmetic agents, contraceptives, hormone and genes, and other therapeutic applications like for treating cancer, skin diseases, and diabetes, among others, are covered in this review. Additionally, this review highlights some of the DMN systems that are presently undergoing clinical trials. Finally, the review discusses current advances and trends in DMNs, as well as future prospective directions for this ground-breaking technology in drug delivery.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Hosahalli V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - G Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Sharath Honganoor Padmanabha
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
14
|
Rahbari R, Francis L, Guy OJ, Sharma S, Von Ruhland C, Xia Z. Microneedle-Assisted Transfersomes as a Transdermal Delivery System for Aspirin. Pharmaceutics 2023; 16:57. [PMID: 38258069 PMCID: PMC10819469 DOI: 10.3390/pharmaceutics16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Transdermal drug delivery systems offer several advantages over conventional oral or hypodermic administration due to the avoidance of first-pass drug metabolism and gastrointestinal degradation as well as patients' convenience due to a minimally invasive and painless approach. A novel transdermal drug delivery system, comprising a combination of transfersomes with either solid silicon or solid polycarbonate microneedles has been developed for the transdermal delivery of aspirin. Aspirin was encapsulated inside transfersomes using a "thin-film hydration sonication" technique, yielding an encapsulation efficiency of approximately 67.5%. The fabricated transfersomes have been optimised and fully characterised in terms of average size distribution and uniformity, surface charge and stability (shelf-life). Transdermal delivery, enhanced by microneedle penetration, allows the superior permeation of transfersomes into perforated porcine skin and has been extensively characterised using optical coherence tomography (OCT) and transmission electron microscopy (TEM). In vitro permeation studies revealed that transfersomes enhanced the permeability of aspirin by more than four times in comparison to the delivery of unencapsulated "free" aspirin. The microneedle-assisted delivery of transfersomes encapsulating aspirin yielded 13-fold and 10-fold increases in permeation using silicon and polycarbonate microneedles, respectively, in comparison with delivery using only transfersomes. The cytotoxicity of different dose regimens of transfersomes encapsulating aspirin showed that encapsulated aspirin became cytotoxic at concentrations of ≥100 μg/mL. The results presented demonstrate that the transfersomes could resolve the solubility issues of low-water-soluble drugs and enable their slow and controlled release. Microneedles enhance the delivery of transfersomes into deeper skin layers, providing a very effective system for the systemic delivery of drugs. This combined drug delivery system can potentially be utilised for numerous drug treatments.
Collapse
Affiliation(s)
- Raha Rahbari
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Lewis Francis
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Owen J. Guy
- Department of Chemistry, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK;
| | - Sanjiv Sharma
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Christopher Von Ruhland
- Electron Microscopy Unit, Central Biotechnology Services, Institute for Translation, Innovation, Methodology and Engagement, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK;
| | - Zhidao Xia
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| |
Collapse
|
15
|
Guo P, Huang C, Yang Q, Zhong G, Zhang J, Qiu M, Zeng R, Gou K, Zhang C, Qu Y. Advances in Formulations of Microneedle System for Rheumatoid Arthritis Treatment. Int J Nanomedicine 2023; 18:7759-7784. [PMID: 38144510 PMCID: PMC10743780 DOI: 10.2147/ijn.s435251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic joint inflammation, eventually leading to severe disability and premature death. At present, the treatment of RA is mainly to reduce inflammation, swelling, and pain. Commonly used drugs are non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and disease-modifying anti-rheumatic drugs (DMARDs). These drugs lack specificity and require long-term, high-dose administration, which can cause serious adverse effects. In addition, the oral, intravenous, and intra-articular injections will reduce patient compliance, resulting in high cost and low bioavailability. Due to these limitations, microneedles (MNs) have emerged as a new strategy to efficiently localize the drugs in inflamed joints for the treatment of RA. MNs can overcome the cuticle barrier of the skin without stimulating nerves and blood vessels. Which can increase patient compliance, improve bioavailability, and avoid systemic circulation. This review summarizes and evaluates the application of MNs in RA, especially dissolving MNs (DMNs). We encourage the use of MNs to treat RA, by describing the general properties of MNs, materials, preparation technology, drug release mechanism, and advantages. Furthermore, we discussed the biological safety, development prospects, and future challenges of MNs, hoping to provide a new strategy for the treatment of RA.
Collapse
Affiliation(s)
- Peng Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Chi Huang
- Department of Pharmacy, Jiang’an Hospital of Traditional Chinese Medicine, Yibin, 644200, People’s Republic of China
| | - Qin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Rui Zeng
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Kaijun Gou
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| |
Collapse
|
16
|
Dai P, Ge X, Sun C, Jiang H, Zuo W, Wu P, Liu C, Deng S, Yang J, Dai J, Ju Y. A Novel Methacryloyl Chitosan Hydrogel Microneedles Patch with Sustainable Drug Release Property for Effective Treatment of Psoriasis. Macromol Biosci 2023; 23:e2300194. [PMID: 37534769 DOI: 10.1002/mabi.202300194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Psoriasis is a chronic and recurrent skin disease that often requires long-term treatment, and topical transdermal drug delivery can reduce systemic side effects. However, it is still a challenge in efficient transdermal drug delivery for psoriasis treatment due to low penetration efficiency of most drugs and the abnormal skin conditions of psoriasis patients. Here, a safe and effective methacryloyl chitosan hydrogel microneedles (CSMA hMNs) patch is developed and served as a sustained drug release platform for the treatment of psoriasis. By systematically optimizing the CSMA preparation, CSMA hMNs with excellent morphological characteristics and strong mechanical properties (0.7 N needle-1 ) are prepared with a concentration of only 3% (w/v) CSMA. As a proof-of-concept, methotrexate (MTX) and nicotinamide (NIC) are loaded into CSMA hMNs patch, which can produce a sustained drug release of 80% within 24 h in vitro. In vivo experiments demonstrated that the CSMA hMNs patch can effectively inhibit the skin thickening and spleen enlargement of psoriatic mice and has a good biosafety profile at sufficient therapeutic doses. This study provides a new idea for the preparation of hMN systems using modified CS or other biocompatible materials and offers an effective therapeutic option for psoriasis treatment.
Collapse
Affiliation(s)
- Panpan Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xing Ge
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Caixia Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, 210038, China
| | - Wanchao Zuo
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Pengcheng Wu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Cong Liu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuyue Deng
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing, 210038, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- College of Life Science and Technology, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) and State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Laboratory of Animal Bacteriology (Ministry of Agriculture), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
17
|
Edwards C, Shah SA, Gebhardt T, Jewell CM. Exploiting Unique Features of Microneedles to Modulate Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302410. [PMID: 37380199 PMCID: PMC10753036 DOI: 10.1002/adma.202302410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Microneedle arrays (MNAs) are small patches containing hundreds of short projections that deliver signals directly to dermal layers without causing pain. These technologies are of special interest for immunotherapy and vaccine delivery because they directly target immune cells concentrated in the skin. The targeting abilities of MNAs result in efficient immune responses-often more protective or therapeutic-compared to conventional needle delivery. MNAs also offer logistical benefits, such as self-administration and transportation without refrigeration. Thus, numerous preclinical and clinical studies are exploring these technologies. Here the unique advantages of MNA, as well as critical challenges-such as manufacturing and sterility issues-the field faces to enable widespread deployment are discussed. How MNA design parameters can be exploited for controlled release of vaccines and immunotherapies, and the application to preclinical models of infection, cancer, autoimmunity, and allergies are explained. Specific strategies are also discussed to reduce off-target effects compared to conventional vaccine delivery routes, and novel chemical and manufacturing controls that enable cargo stability in MNAs across flexible intervals and temperatures. Clinical research using MNAs is then examined. Drawbacks of MNAs and the implications, and emerging opportunities to exploit MNAs for immune engineering and clinical use are concluded.
Collapse
Affiliation(s)
- Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Thomas Gebhardt
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC, 3000, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
18
|
Juhaščik M, Štarmanová K, Brandejsová M, Večeřová P, Hermannová M, Exnerová A, Vagnerová H, Štrympl O, Nešporová K, Kováčik A, Velebný V, Huerta-Ángeles G. Synthesis and self-assembling of hyaluronan grafted with ceramide NP for topical drug delivery. Carbohydr Polym 2023; 321:121283. [PMID: 37739524 DOI: 10.1016/j.carbpol.2023.121283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
In this work, amphiphilic hyaluronan was synthesized by grafting succinylated N-oleoyl-phytosphingosine via esters bonds. Succinylated N-oleoyl-phytosphingosine (sCER) was first prepared by esterification of hydroxyl moieties of the ceramide with succinic anhydride. The esterification of hyaluronan was governed by crowding effect. The oligomeric HA-sCER derivatives exhibited a strong self-aggregation as evidenced by a very low critical aggregation concentration (1.9 μg mL-1), higher pyrene binding constant (KB), and the smallest particle size (30 nm) in solution. The self-aggregation properties demonstrated to be a function of the substitution degree and molecular weight of HA. The prepared derivatives were non-cytotoxic towards cell lines NIH-3T3. Nanoparticles prepared using oligomeric HA-sCER derivatives improved the penetration of Nile red dye through the stratum corneum due to their smaller size (≤50 nm). The fluorescence intensity localized at the stratum corneum was higher for oligomeric HA-sCER. A significant inhibition of the pro-inflammatory cytokine interleukin-6 production was observed in vitro in macrophages differentiated from THP-1 cells. These findings showed that HA-sCER constituted a promising active ingredient for cosmetics use.
Collapse
Affiliation(s)
- Martin Juhaščik
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | | | | | - Petra Večeřová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Andrea Exnerová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Hana Vagnerová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Ondřej Štrympl
- Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavová 2030/8, 128 40 Prague 2, Czech Republic
| | | | - Andrej Kováčik
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Vladimir Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Gloria Huerta-Ángeles
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nam. 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
19
|
Zhang M, Qin X, Gao Y, Liang J, Xiao D, Zhang X, Zhou M, Lin Y. Transcutaneous Immunotherapy for RNAi: A Cascade-Responsive Decomposable Nanocomplex Based on Polyphenol-Mediated Framework Nucleic Acid in Psoriasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303706. [PMID: 37797168 PMCID: PMC10667853 DOI: 10.1002/advs.202303706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/09/2023] [Indexed: 10/07/2023]
Abstract
Skin is the first barrier against external threats, and skin immune dysfunction leads to multiple diseases. Psoriasis is an inflammatory, chronic, common, immune-related skin disease that affects more than 125 million people worldwide. RNA interference (RNAi) therapy is superior to traditional therapies, but rapid degradation and poor cell uptake are the greatest obstacles to its clinical transformation. The transdermal delivery of siRNA and controllable assembly/disassembly of nanodrug delivery systems can maximize the therapeutic effect. Tetrahedral framework nucleic acid (tFNA) is undoubtedly the best carrier for the transdermal transport of genes due to its excellent noninvasive transdermal effect and editability. The authors combine acid-responsive tannic acid (TA), RNase H-responsive sequences, siRNA, and tFNA into a novel transdermal RNAi drug with controllable assembly and disassembly: STT. STT has heightened resistance to enzyme, serum, and lysosomal degradation, and its size is similar to that of tFNA, enabling easy transdermal transport. After transdermal administration, STT can specifically silence nuclear factor kappa-B (NF-κB) p65, thereby maintaining the stability of the skin's microenvironment and reshaping normal skin immune defense. This work demonstrates the advantages of STT in RNAi therapy and the potential for future treatment of skin-related diseases.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Jiale Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xiaolin Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Mi Zhou
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
20
|
Gao X, Zhang F, Huang Y, Hu W, Chen Y, Jiang L, Pan X, Wu C, Lu C, Peng T. Site-Specifically Launched Microneedles for the Combined Treatment of Psoriasis-Diabetic Comorbidity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46613-46625. [PMID: 37782836 DOI: 10.1021/acsami.3c08358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Psoriasis and diabetes are both common comorbidities for each other, where inflammation and insulin resistance act in a vicious cycle, driving the progression of disease through the activation of the NF-κB signaling pathway. Therefore, disrupting the linkage between inflammation and insulin resistance by inhibiting the NF-κB pathway presents a promising therapeutic strategy for addressing psoriasis-diabetic comorbidity. Herein, an open-loop therapy was developed by integrating microneedle-mediated short- and long-range missiles to target psoriasis and diabetes, respectively. The short-range missile (curcumin nanoparticle) could be stationed in the psoriatic skin for topical and prolonged antipsoriasis therapy, while the long-range missile (metformin) is capable of penetrating transdermal barriers to induce a systemic hypoglycemic effect. More attractively, the short- and long-range missiles could join hands to inhibit the NF-κB signaling pathway and diminish inflammation, effectively disrupting the crosstalk between inflammation and insulin resistance. Pharmacodynamic studies showed that this microneedle-mediated combination, possessing dual anti-inflammatory and antihyperglycemic properties, proves to be highly efficacious in alleviating typical symptoms and inflammatory response in both nondiabetic and diabetic mice with imiquimod (IMQ)-induced psoriasis models. Hence, the microneedle-mediated open-loop therapy shows great potential in the management of psoriasis-diabetes comorbidity.
Collapse
Affiliation(s)
- Xinyi Gao
- College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China
| | - Fapeng Zhang
- Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yao Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wanshan Hu
- College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China
| | - Yangyan Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ling Jiang
- Shantou University Medical College, Shantou 515041, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China
| | - Chao Lu
- College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China
| | - Tingting Peng
- College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China
| |
Collapse
|
21
|
Wang M, Yang F, Luo H, Jiang Y, Zhuang K, Tan L. Photocuring and Gelatin-Based Antibacterial Hydrogel for Skin Care. Biomacromolecules 2023; 24:4218-4228. [PMID: 37579244 DOI: 10.1021/acs.biomac.3c00536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The development of moisturizing, antibacterial, and biocompatible multifunctional hydrogels is essential to protect skin and promote skin defects recovery. Gelatin has admired potential to be applied for skin care as a hydrogel in virtue of its hydrophilic biocompatible and biodegradable properties. In this study, triclosan-grafted gelatin and photo-cross-linkable methacrylated gelatin were synthesized and then combined to construct the semi-interpenetrating network and antibacterial hydrogels with the aid of a visible blue light. The antimicrobial test demonstrated that the resulting hydrogel obtained excellent inactivation capacity against E. coli, S. aureus, T. rubrum, and C. albicans with sterilizing rates of 99.998%, 99.998%, 99.19%, and 99.64%, respectively. In addition, the cytotoxicity, hemolysis, skin irritation, and rat skin wound healing experiments proved the good biocompatibility of the hydrogel. Therefore, this investigation sheds light on the development of multifunctional hydrogels in skin care.
Collapse
Affiliation(s)
- Min Wang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Feng Yang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Hao Luo
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yuanzhang Jiang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Kaiwen Zhuang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Wang J, Ni R, Jiang T, Peng D, Ming Y, Cui H, Liu Y. The applications of functional materials-based nano-formulations in the prevention, diagnosis and treatment of chronic inflammation-related diseases. Front Pharmacol 2023; 14:1222642. [PMID: 37593176 PMCID: PMC10427346 DOI: 10.3389/fphar.2023.1222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Chronic inflammation, in general, refers to systemic immune abnormalities most often caused by the environment or lifestyle, which is the basis for various skin diseases, autoimmune diseases, cardiovascular diseases, liver diseases, digestive diseases, cancer, and so on. Therapeutic strategies have focused on immunosuppression and anti-inflammation, but conventional approaches have been poor in enhancing the substantive therapeutic effect of drugs. Nanomaterials continue to attract attention for their high flexibility, durability and simplicity of preparation, as well as high profitability. Nanotechnology is used in various areas of clinical medicine, such as medical diagnosis, monitoring and treatment. However, some related problems cannot be ignored, including various cytotoxic and worsening inflammation caused by the nanomaterials themselves. This paper provides an overview of functional nanomaterial formulations for the prevention, diagnosis and treatment of chronic inflammation-related diseases, with the intention of providing some reference for the enhancement and optimization of existing therapeutic approaches.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| | - Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Tingting Jiang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Zhou J, Wang L, Gong W, Wang B, Yu DG, Zhu Y. Integrating Chinese Herbs and Western Medicine for New Wound Dressings through Handheld Electrospinning. Biomedicines 2023; 11:2146. [PMID: 37626643 PMCID: PMC10452315 DOI: 10.3390/biomedicines11082146] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
In this nanotechnology era, nanostructures play a crucial role in the investigation of novel functional nanomaterials. Complex nanostructures and their corresponding fabrication techniques provide powerful tools for the development of high-performance functional materials. In this study, advanced micro-nanomanufacturing technologies and composite micro-nanostructures were applied to the development of a new type of pharmaceutical formulation, aiming to achieve rapid hemostasis, pain relief, and antimicrobial properties. Briefly, an approach combining a electrohydrodynamic atomization (EHDA) technique and reversed-phase solvent was employed to fabricate a novel beaded nanofiber structure (BNS), consisting of micrometer-sized particles distributed on a nanoscale fiber matrix. Firstly, Zein-loaded Yunnan Baiyao (YB) particles were prepared using the solution electrospraying process. Subsequently, these particles were suspended in a co-solvent solution containing ciprofloxacin (CIP) and hydrophilic polymer polyvinylpyrrolidone (PVP) and electrospun into hybrid structural microfibers using a handheld electrospinning device, forming the EHDA product E3. The fiber-beaded composite morphology of E3 was confirmed through scanning electron microscopy (SEM) images. Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis revealed the amorphous state of CIP in the BNS membrane due to the good compatibility between CIP and PVP. The rapid dissolution experiment revealed that E3 exhibits fast disintegration properties and promotes the dissolution of CIP. Moreover, in vitro drug release study demonstrated the complete release of CIP within 1 min. Antibacterial assays showed a significant reduction in the number of adhered bacteria on the BNS, indicating excellent antibacterial performance. Compared with the traditional YB powders consisting of Chinese herbs, the BNS showed a series of advantages for potential wound dressing. These advantages include an improved antibacterial effect, a sustained release of active ingredients from YB, and a convenient wound covering application, which were resulted from the integration of Chinese herbs and Western medicine. This study provides valuable insights for the development of novel multiscale functional micro-/nano-composite materials and pioneers the developments of new types of medicines from the combination of herbal medicines and Western medicines.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (W.G.)
| | - Liangzhe Wang
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China; (L.W.); (B.W.)
| | - Wenjian Gong
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (W.G.)
| | - Bo Wang
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China; (L.W.); (B.W.)
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (W.G.)
| | - Yuanjie Zhu
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China; (L.W.); (B.W.)
| |
Collapse
|
24
|
Qu X, Guo X, Zhu T, Zhang Z, Wang W, Hao Y. Microneedle patches containing mesoporous polydopamine nanoparticles loaded with triamcinolone acetonide for the treatment of oral mucositis. Front Bioeng Biotechnol 2023; 11:1203709. [PMID: 37214298 PMCID: PMC10196213 DOI: 10.3389/fbioe.2023.1203709] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Oral mucositis (OM) is the most common disease of the oral mucosa, which affects people's daily production and life. Triamcinolone ointment is the common clinical drug for OM treatment. However, the hydrophobic properties of triamcinolone acetonide (TA) and the complex microenvironment of the oral cavity led to its low bioavailability and unstable therapeutic effects on ulcer wounds. Herein, dissolving microneedle patches (MNs) composed of mesoporous polydopamine nanoparticles (MPDA) loaded with TA (TA@MPDA), sodium hyaluronic acid (HA), and Bletilla striata polysaccharide (BSP) are prepared as the transmucosal delivery system. The prepared TA@MPDA-HA/BSP MNs exhibit well-arranged microarrays, high mechanical strength and fast solubility (<3 min) properties. In addition, the hybrid structure improves the biocompatibility of TA@MPDA and expedites oral ulcer healing in the SD rat model through the synergistic anti-inflammatory and pro-healing effects of microneedle ingredients (hormones, MPDA and Chinese herbs extracts), with 90% less amount of TA compared with Ning Zhi Zhu®. TA@MPDA-HA/BSP MNs are shown to be their great potential as novel ulcer dressings for OM management.
Collapse
Affiliation(s)
- Xiaoying Qu
- Department of Stomatology, School of Stomatology of Weifang Medical University, Weifang, China
| | - Xiaoli Guo
- School of Stomatology of Qingdao University, Qingdao, China
| | - Tingting Zhu
- School of Stomatology of Qingdao University, Qingdao, China
| | - Zhe Zhang
- School of Stomatology of Qingdao University, Qingdao, China
| | | | | |
Collapse
|
25
|
Guillot AJ, Martínez-Navarrete M, Zinchuk-Mironova V, Melero A. Microneedle-assisted transdermal delivery of nanoparticles: Recent insights and prospects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1884. [PMID: 37041036 DOI: 10.1002/wnan.1884] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
Transdermal delivery of drugs offers an interesting alternative for the administration of molecules that present certain troubles when delivered by the oral route. It can produce systemic effects or perform a local action when the formulation exerts an optimal controlled drug release or a targeted delivery to the specific cell type or site. It also avoids several inconveniences of the oral administration such as the hepatic first pass effect, gastric pH-induced hydrolysis, drug malabsorption because of certain diseases or surgeries, and unpleasant organoleptic properties. Nanomedicine and microneedle array patches (MAPs) are two of the trendiest delivery systems applied to transdermal research nowadays. However, the skin is a protective barrier and nanoparticles (NPs) cannot pass through the intact stratum corneum. The association of NPs and MAPs (NPs@MAPs) work synergistically, since MAPs assist NPs to bypass the outer skin layers, and NPs contribute to the system providing controlled drug release and targeted delivery. Vaccination and tailored therapies have been proposed as fields where both NPs and MAPs have great potential due to inherent characteristics. MAPs conception and easy use could allow self-administration and therefore facilitate mass vaccination campaigns in undeveloped areas with weak healthcare services. Additionally, nanomedicine is being explored as a platform to personalize therapies in such an important field as oncology. In this work we show recent insights that prove the benefits of NPs@MAPs association and analyze the prospects and the discrete interest of the industry in NPs@MAPs, evaluating different limiting steps that restricts NPs@MAPs translation to the clinical practice. This article is categorized under: Nanotechnology Approaches to Biology > NA Therapeutic Approaches and Drug Discovery > NA.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Valeria Zinchuk-Mironova
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| |
Collapse
|
26
|
Microneedles as a momentous platform for psoriasis therapy and diagnosis: A state-of-the-art review. Int J Pharm 2023; 632:122591. [PMID: 36626973 DOI: 10.1016/j.ijpharm.2023.122591] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Psoriasis is a chronic, autoimmune, and non-communicable skin disease with a worldwide prevalence rate of 2-3%, creating an economic burden on global health. Some significant risk factors associated with psoriasis include genetic predisposition, pathogens, stress, medications, etc. In addition, most patients with psoriasis should also deal with comorbidities such as psoriatic arthritis, inflammatory bowel diseases, cardiovascular diseases, and psychological conditions, including suicidal thoughts. Based on its severity, the treatment approach for psoriasis is categorised into three types, i.e., topical therapy, systemic therapy, and phototherapy. Topical therapy for mild-to-moderate psoriasis faces several issues, such as poor skin permeability, low skin retention of drug formulation, greasy texture of topical vehicle, lack of controlled release, and so on. On the other arrow, systemic therapy via an oral or parenteral route of drug administration involves numerous drawbacks, including first-pass hepatic metabolism, hepatotoxicity, gastrointestinal disturbances, needle pain and phobia, and requirement of healthcare professional to administer the drug. To overcome these limitations, researchers devised a microneedle-based drug delivery system for treating mild-to-moderate and moderate-to-severe psoriasis. A single microneedle system can deliver the anti-psoriatic drugs either locally (topical) or systemically (transdermal) by adjusting the needle height without involving any pain. In this contemplate, the current review provides concise information on the pathophysiology, risk factors, and comorbidities of psoriasis, followed by their current treatment approaches and limitations. Further, it meticulously discusses the potential of microneedles in psoriasis therapy and diagnosis, along with descriptions of their patents and clinical trials.
Collapse
|
27
|
Guo X, Zhu T, Yu X, Yi X, Li L, Qu X, Zhang Z, Hao Y, Wang W. Betamethasone-loaded dissolvable microneedle patch for oral ulcer treatment. Colloids Surf B Biointerfaces 2023; 222:113100. [PMID: 36577344 DOI: 10.1016/j.colsurfb.2022.113100] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Oral inflammatory disease (OID) is among the most common oral lesions, affecting people's quality of life and even leading to oral cancer. Oral ulcers are the most common OID. However, the pain and fear caused by the localized injection of hormones hinder the clinical treatment of oral ulcers. To address this problem, soluble hyaluronic acid (HA) microneedle patches (BSP-BDP@HAMN) containing betamethasone 21-phosphate sodium (BSP) and betamethasone 17,21-dipropionate (BDP) were fabricated for potential application in oral ulcers. BSP-BDP@HAMNs had the sufficient mechanical strength to penetrate the rat tongue abdomen mucosa with an insertion depth of approximately 207 ± 3 µm. The rapidly solubilized HA microneedle carrier released BSP and BDP into the ulcer base within 3 min of entering the mucosa. Cellular assays have shown that BDP@HAMNs have wound healing-promoting and anti-inflammatory effects. Compared with topical injections and creams, BSP-BDP@HAMNs not only penetrated the ulcer surface painlessly but also worked deep in the ulcer for a long time. In conclusion, the proposed BSP-BDP@HAMN patch can improve the comfort and efficacy of oral ulcer treatment, thus providing a new prospect for oral ulcer treatment.
Collapse
Affiliation(s)
- Xiaoli Guo
- School of Stomatology of Qingdao University, Qingdao 266003, China.
| | - Tingting Zhu
- School of Stomatology of Qingdao University, Qingdao 266003, China.
| | - Xixi Yu
- Qingdao Stomatological Hospital, Qingdao 266001, China
| | - Xin Yi
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Longhao Li
- Department of Stomatology, School of Stomatology of Weifang Medical University, Weifang 261053, China
| | - Xiaoying Qu
- Department of Stomatology, School of Stomatology of Weifang Medical University, Weifang 261053, China
| | - Zhe Zhang
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Yuanping Hao
- Qingdao Stomatological Hospital, Qingdao 266001, China.
| | - Wanchun Wang
- School of Stomatology of Qingdao University, Qingdao 266003, China; Qingdao Stomatological Hospital, Qingdao 266001, China.
| |
Collapse
|
28
|
Tripathi D, Srivastava M, Rathour K, Rai AK, Wal P, Sahoo J, Tiwari RK, Pandey P. A Promising Approach of Dermal Targeting of Antipsoriatic Drugs via Engineered Nanocarriers Drug Delivery Systems for Tackling Psoriasis. DRUG METABOLISM AND BIOANALYSIS LETTERS 2023; 16:89-104. [PMID: 37534794 DOI: 10.2174/2949681016666230803150329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023]
Abstract
Psoriasis is a complex autoimmune skin condition with a significant genetic component. It causes skin inflammation and is characterized by flaky, silvery reddish spots that can worsen with age. This condition results from an impaired immunological response of T-cells and affects 2-5% of the global population. The severity of the illness determines the choice of treatment. Topical treatments are commonly used to treat psoriasis, but they can have several adverse effects. Biological therapy is another option for treating specific types of psoriasis. Recently, new nanoformulations have revolutionized psoriasis treatment. Various nanocarriers, such as liposomes, nanostructured lipid nanoparticles, niosomes, and nanoemulsions, have been developed and improved for drug delivery. The use of nanocarriers enhances patient compliance, precise drug delivery, and drug safety. This review aims to suggest new nanocarrier-based drug delivery systems for treating psoriasis. It discusses the importance of nanocarriers and compares them to traditional treatments. Anti-psoriatic drugs have also been investigated for cutaneous delivery using nanocarriers. The review also covers various factors that influence dermal targeting. By highlighting several relevant aspects of psoriasis treatment, the review emphasizes the current potential of nanotechnology. Using nanocarriers as a drug delivery technique may be a promising alternative treatment for psoriasis.
Collapse
Affiliation(s)
- Devika Tripathi
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Mansi Srivastava
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Krislay Rathour
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Awani Kumar Rai
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Jagannath Sahoo
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, India
| | - Ritesh Kumar Tiwari
- Department of Pharmacy, Shri Ram Murti Smarak College of Engineering and Technology, Bareilly, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
29
|
Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches. Pharmaceutics 2022; 14:pharmaceutics14122818. [PMID: 36559311 PMCID: PMC9785322 DOI: 10.3390/pharmaceutics14122818] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The delivery of drugs via transdermal routes is an attractive approach due to ease of administration, bypassing of the first-pass metabolism, and the large skin surface area. However, a major drawback is an inability to surmount the skin's stratum corneum (SC) layer. Therefore, techniques reversibly modifying the stratum corneum have been a classical approach. Surmounting the significant barrier properties of the skin in a well-organised, momentary, and harmless approach is still challenging. Chemical permeation enhancers (CPEs) with higher activity are associated with certain side effects restricting their advancement in transdermal drug delivery. Furthermore, complexity in the interaction of CPEs with the skin has led to difficulty in elucidating the mechanism of action. Nevertheless, CPEs-aided transdermal drug delivery will accomplish its full potential due to advancements in analytical techniques, synthetic chemistry, and combinatorial studies. This review focused on techniques such as drug-vehicle interaction, vesicles and their analogues, and novel CPEs such as lipid synthesis inhibitors (LSIs), cell-penetrating peptides (CPPs), and ionic liquids (ILs). In addition, different types of microneedles, including 3D-printed microneedles, have been focused on in this review.
Collapse
|
30
|
Mei R, Wang Y, Shi S, Zhao X, Zhang Z, Wang X, Shen D, Kang Q, Chen L. Highly Sensitive and Reliable Internal-Standard Surface-Enhanced Raman Scattering Microneedles for Determination of Bacterial Metabolites as Infection Biomarkers in Skin Interstitial Fluid. Anal Chem 2022; 94:16069-16078. [DOI: 10.1021/acs.analchem.2c03208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rongchao Mei
- Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, College of Chemistry, Ministry of Education, Shandong Normal University, Jinan 250014, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shang Shi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Dazhong Shen
- Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, College of Chemistry, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qi Kang
- Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, College of Chemistry, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
31
|
Xu G, Mao Y, Jiang T, Gao B, He B. Structural design strategies of microneedle-based vaccines for transdermal immunity augmentation. J Control Release 2022; 351:907-922. [DOI: 10.1016/j.jconrel.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
|
32
|
Shen P, Jia Y, Shi S, Sun J, Han X. Analytical and biomedical applications of microfluidics in traditional Chinese medicine research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Xu J, Chen H, Qian H, Wang F, Xu Y. Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies. J Nanobiotechnology 2022; 20:448. [PMID: 36242051 PMCID: PMC9569062 DOI: 10.1186/s12951-022-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) at supraphysiological concentration have a determinate role in contributing to immuno-metabolic disorders in the epithelial immune microenvironment (EIME) of psoriatic lesions. With an exclusive focus on the gene-oxidative stress environment interaction in the EIME, a comprehensive strategy based on ROS-regulating nanomedicines is greatly anticipated to become the mainstay of anti-psoriasis treatment. This potential therapeutic modality could inhibit the acceleration of psoriasis via remodeling the redox equilibrium and reshaping the EIME. Herein, we present a marked overview of the current progress in the pathomechanisms of psoriasis, with particular concerns on the potential pathogenic role of ROS, which significantly dysregulates redox metabolism of keratinocytes (KCs) and skin-resident or -infiltrating cells. Meanwhile, the emergence of versatile nanomaterial-guided evolution for transdermal drug delivery has been attractive for the percutaneous administration of antipsoriatic therapies in recent years. We emphasize the underlying molecular mechanism of ROS-based nanoreactors for improved therapeutic outcomes against psoriasis and summarize up-to-date progress relating to the advantages and limitations of nanotherapeutic application for transdermal administration, as well as update an insight into potential future directions for nanotherapies in ROS-related skin diseases.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.,Department of Dermatology and Rheumatology Immunology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hao Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Fei Wang
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yunsheng Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
34
|
Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Cancers (Basel) 2022; 14:cancers14194568. [PMID: 36230492 PMCID: PMC9559313 DOI: 10.3390/cancers14194568] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Reprogramming of glucose metabolism is a hallmark of cancer and can be targeted by therapeutic agents. Some metabolism regulators, such as ivosidenib and enasidenib, have been approved for cancer treatment. Currently, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Furthermore, some natural products have shown efficacy in killing tumor cells by regulating glucose metabolism, offering novel therapeutic opportunities in cancer. However, most of them have failed to be translated into clinical applications due to low selectivity, high toxicity, and side effects. Recent studies suggest that combining glucose metabolism modulators with chemotherapeutic drugs, immunotherapeutic drugs, and other conventional anticancer drugs may be a future direction for cancer treatment. Abstract Reprogramming of glucose metabolism provides sufficient energy and raw materials for the proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development. Although several glucose metabolism modulators have been approved for cancer treatment in recent years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects. With the rapid development of medicinal chemicals, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Additionally, several studies have found that some natural products can suppress cancer progression by regulating glucose metabolism enzymes. In this review, we summarize the mechanisms underlying the reprogramming of glucose metabolism and present enzymes that could serve as therapeutic targets. In addition, we systematically review the existing drugs targeting glucose metabolism enzymes, including small-molecule modulators and natural products. Finally, the opportunities and challenges for glucose metabolism enzyme-targeted anticancer drugs are also discussed. In conclusion, combining glucose metabolism modulators with conventional anticancer drugs may be a promising cancer treatment strategy.
Collapse
|
35
|
Men Z, Su T, Tang Z, Liang J, Shen T. Tacrolimus nanocrystals microneedle patch for plaque psoriasis. Int J Pharm 2022; 627:122207. [PMID: 36122614 DOI: 10.1016/j.ijpharm.2022.122207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
Abstract
Plaque psoriasis is characterized by an abnormal thickening of the epidermis, which causes great difficulties for traditional topical drug delivery. Microneedles can pierce the thickened epidermis and deliver drugs to the skin for psoriasis treatment. Tacrolimus is a poorly water-soluble immunosuppressant used for the treatment of psoriasis. In this study, tacrolimus (TAC) nanocrystals (NCs) were produced using a bottom-up technique that dispersed TAC into a sodium hyaluronate-based microneedle patch (MNP), and its therapeutic efficacy was evaluated. The average particle size of the TAC NCs was 259.6 ± 2.3 nm. The mechanical strength of the microneedles was 0.41 ± 0.06 N/needle, which was sufficient to penetrate psoriatic skin. Microneedles were detached from the substrate 10 min after insertion into the psoriasis skin with an insertion depth of 258.8 ± 14.4 μm. The intradermal retention of the MNP (8.40 ± 0.33 μg/cm2) was six times that of the commercial ointment (1.40 ± 0.12 μg/cm2). In pharmacodynamic experiments, results indicated improvement in the phenotypic and histopathological features and reduction in the level of TNF-α, IL-17A, and IL-23 of psoriatic skin treated with TAC NCs MNP. Therefore, MNP loaded with TAC NCs may be a promising approach for psoriasis treatment.
Collapse
Affiliation(s)
- Zening Men
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China
| | - Tong Su
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China
| | - Zequn Tang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Teng Shen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, People's Republic of China.
| |
Collapse
|
36
|
Imran M, Akhileshwar Jha L, Hasan N, Shrestha J, Pangeni R, Parvez N, Mohammed Y, Kumar Jha S, Raj Paudel K. “Nanodecoys”- Future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm 2022; 621:121790. [DOI: 10.1016/j.ijpharm.2022.121790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
|
37
|
Ting T, Yiwen C, Jianquan C, Chao L, Shengjing X, Min Z, Fang C. PP2Acα regulates epidermal cell proliferation via the EGFR/AKT/mTOR pathway in psoriasis-like skin lesions caused by PPP2CA deficiency. Exp Dermatol 2022; 31:1154-1164. [PMID: 35298048 DOI: 10.1111/exd.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
Psoriasis, a common skin disease, endangers human physiological and mental health; however, its pathogenesis remains unclear. Keratinocyte proliferation is a typical pathological characteristic of psoriasis. Serine/threonine protein phosphatase 2A (PP2A) is one of the most important phosphatases for maintaining normal phosphorylation levels in humans. PP2Acα is the alpha subtype of the PP2A C subunit (encoded by PPP2CA), which maintains the catalytic functions of PP2A. Epidermal growth factor receptor (EGFR) is activated by phosphorylation (p-EGFR) to regulate the downstream signaling pathway to promote epidermal cell proliferation. Previous studies have found that PPP2CA induced epidermal hyperplasia, keratinization, and other pathological phenomena similar to those in mouse models of psoriasis. The present study showed that PP2Acα negatively regulated EGFR phosphorylation and epidermal cell proliferation, and EGFR inhibitors could alleviate PP2Acα by inhibiting epidermal cell proliferation. This study further examined the effect of mechanisms on epidermal cell proliferation and the downstream signaling pathway of EGFR using molecular technological methods to explore new ideas for treating psoriasis.
Collapse
Affiliation(s)
- Tao Ting
- Department of Spleen and Stomach, Jiangsu Province Hospital of Chinese Medicine
| | - Chen Yiwen
- Department of Dermatology, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| | - Chen Jianquan
- Central Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| | - Lian Chao
- Central Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| | - Xu Shengjing
- Department of Dermatology, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| | - Zhang Min
- Department of Dermatology, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| | - Chao Fang
- Department of Dermatology, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China.,Central Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University District, Nanjing City, China
| |
Collapse
|
38
|
Chen R, Zhai YY, Sun L, Wang Z, Xia X, Yao Q, Kou L. Alantolactone-loaded chitosan/hyaluronic acid nanoparticles suppress psoriasis by deactivating STAT3 pathway and restricting immune cell recruitment. Asian J Pharm Sci 2022; 17:268-283. [PMID: 35582636 PMCID: PMC9091614 DOI: 10.1016/j.ajps.2022.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
|
39
|
Kaur K, Singh A, Sharma H, Punj S, Bedi N. Formulation Strategies and Therapeutic Applications of Shikonin and Related Derivatives. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:55-67. [PMID: 35236278 DOI: 10.2174/2667387816666220302112201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Shikonin and its derivatives are excellent representatives of biologically active naphthoquinones. A wide range of investigations carried out in the last few decades validated their pharmacological efficacy. Besides having magnificent therapeutic potential, shikonin and its derivatives suffer from various pharmacokinetic, toxicity, and stability issues like poor bioavailability, nephrotoxicity, photodegradation, etc. Recently, various research groups have developed an extensive range of formulations to tackle these issues to ease their path to clinical practice. The latest formulation approaches have been focused on exploiting the unique features of novel functional excipients, which in turn escalate the therapeutic effect of shikonin. Moreover, the codelivery approach in various drug delivery systems has been taken into consideration in a recent while to reduce toxicity associated with shikonin and its derivatives. This review sheds light on the essential reports and patents published related to the array of formulations containing shikonin and its derivatives.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Hamayal Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sanha Punj
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|