1
|
Xu J, Zhang Y, Zheng Y, Wang T, Zhang H, Wang K, Wang Y, Williams GR, Zhu LM. A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm. Carbohydr Polym 2025; 351:123120. [PMID: 39779027 DOI: 10.1016/j.carbpol.2024.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus. In vitro and in vivo assays revelaed that the NPs were able to effectively induce the immunogenic ferroptosis of cancer cells. Under NIR irradiation, EpCAM-CS-co-PNVCL@IR780/IMQ cause cell death in tumors via photothermal therapy. Moreover, IMQ promotes the maturation of dendritic cells (DCs), which then activate cytotoxic T-lymphocytes (CTLs); these T-cells go on to provide immunotherapy of metastatic tumor cells. The metastatic tumor cells can be induced to undergo ferroptosis by the addition of arachidonic acid (AA), which interacts with interferon cytokines (IFN-γ) released from CTLs.
Collapse
Affiliation(s)
- Jianxiang Xu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Yanyan Zhang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Yilu Zheng
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Tong Wang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Huan Zhang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Wang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
2
|
Gunizi OC, Elpek GO. Protein tyrosine phosphatase nonreceptor 2: A New biomarker for digestive tract cancers. World J Gastrointest Oncol 2025; 17:100546. [DOI: 10.4251/wjgo.v17.i2.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025] Open
Abstract
In this editorial, the roles of protein tyrosine phosphatase nonreceptor 2 (PTPN2) in oncogenic transformation and tumor behavior and its potential as a therapeutic target in the context of gastrointestinal (GI) cancers are presented with respect to the article by Li et al published in ninth issue of the World Journal of Gastrointestinal Oncology. PTPN2 is a member of the protein tyrosine phosphatase family of signaling proteins that play crucial roles in the regulation of inflammation and immunity. Accordingly, early findings highlighted the contribution of PTPN2 to the pathogenesis of inflammatory and autoimmune disorders related to its dysfunction. On the other hand, recent studies have indicated that PTPN2 has many different roles in different cancer types, which is associated with the complexity of its regulatory network. PTPN2 dephosphorylates and inactivates EGFR, SRC family kinases, JAK1 and JAK3, and STAT1, STAT3, and STAT5 in cell type- and context-dependent manners, which indicates that PTPN2 can perform either prooncogenic or anti-oncogenic functions depending on the tumor subtype. While PTPN2 has been suggested as a potential therapeutic target in cancer treatment, to the best of ourknowledge, no clear treatment protocol has referred to PTPN2. Although there are only few studies that investigated PTPN2 expression in the GI system cancers, which is a potential limitation, the association of this protein with tumor behavior and the influence of PTPN2 on many therapy-related signaling pathways emphasize that PTPN2 could serve as a new molecular biomarker to predict tumor behavior and as a target for therapeutic intervention against GI cancers. In conclusion, more studies should be performed to better understand the prognostic and therapeutic potential of PTPN2 in GI tumors, especially in tumors resistant to therapy.
Collapse
Affiliation(s)
- Ozlem Ceren Gunizi
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Türkiye
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Türkiye
| |
Collapse
|
3
|
Li SR, Tao SY, Li Q, Hu CY, Sun ZJ. Harnessing nanomaterials for copper-induced cell death. Biomaterials 2025; 313:122805. [PMID: 39250865 DOI: 10.1016/j.biomaterials.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Shi-Yue Tao
- Bathune School of Stomatology, Jilin University, Changchun, 130021, Jilin, PR China
| | - Qian Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China.
| |
Collapse
|
4
|
Guan M, Cheng K, Xie XT, Li Y, Ma MW, Zhang B, Chen S, Chen W, Liu B, Fan JX, Zhao YD. Regulating copper homeostasis of tumor cells to promote cuproptosis for enhancing breast cancer immunotherapy. Nat Commun 2024; 15:10060. [PMID: 39567558 PMCID: PMC11579316 DOI: 10.1038/s41467-024-54469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
Cuproptosis is an emerging mode of programmed cell death for tumor suppression but sometimes gets resisted by tumor cells resist under specific mechanisms. Inhibiting copper transporter ATPase (ATP7A) was found to disrupt copper ion homeostasis, thereby enhancing the effect of cuproptosis and eventually inhibiting tumor invasion and metastasis. In this study, we develop a multifunctional nanoplatfrom based on Cu9S8 (CAPSH), designed to enhance cuproptosis in tumor cells by specifically targeting ATP7A interference, while combining thermodynamic therapy with immune effects. The release of copper ions from CAPSH and the copper homeostasis interference by siRNA cooperatively increases the concentration of copper ions in tumor cells, which induces effectively cuproptosis and activates immune responses for suppressing development and metastasis of tumor. This nanoplatform simultaneously regulates cuproptosis from both principles of onset and development, facilitating the application of cuproptosis in tumor therapy.
Collapse
Affiliation(s)
- Meng Guan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Xiao-Ting Xie
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Yong Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Meng-Wen Ma
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Si Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, Hubei, P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
| |
Collapse
|
5
|
Farasatkia A, Maeso L, Gharibi H, Dolatshahi-Pirouz A, Stojanovic GM, Edmundo Antezana P, Jeong JH, Federico Desimone M, Orive G, Kharaziha M. Design of nanosystems for melanoma treatment. Int J Pharm 2024; 665:124701. [PMID: 39278291 DOI: 10.1016/j.ijpharm.2024.124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Melanoma is a prevalent and concerning form of skin cancer affecting millions of individuals worldwide. Unfortunately, traditional treatments can be invasive and painful, prompting the need for alternative therapies with improved efficacy and patient outcomes. Nanosystems offer a promising solution to these obstacles through the rational design of nanoparticles (NPs) which are structured into nanocomposite forms, offering efficient approaches to cancer treatment procedures. A range of NPs consisting of polymeric, metallic and metal oxide, carbon-based, and virus-like NPs have been studied for their potential in treating skin cancer. This review summarizes the latest developments in functional nanosystems aimed at enhancing melanoma treatment. The fundamentals of these nanosystems, including NPs and the creation of various functional nanosystem types, facilitating melanoma treatment are introduced. Then, the advances in the applications of functional nanosystems for melanoma treatment are summarized, outlining both their benefits and the challenges encountered in implementing nanosystem therapies.
Collapse
Affiliation(s)
- Asal Farasatkia
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Hamidreza Gharibi
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Goran M Stojanovic
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Pablo Edmundo Antezana
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jee-Heon Jeong
- Laboratory of Drug Delivery and Cell Therapy (LDDCT). Department of Precision Medicine. School of Medicine, Sungkyunkwan University. South Korea
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain.
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
6
|
Tang H, Zhang X, Bao Y, Shen H, Fan M, Wang Y, Xiang S, Ran X. Nucleic acid-functionalized gold nanoparticles as intelligent photothermal therapy agents for precise cancer treatment. NANOTECHNOLOGY 2024; 35:465101. [PMID: 39146957 DOI: 10.1088/1361-6528/ad6fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
We present an intelligent photothermal therapy agents by functionalizing gold nanoparticles with specific nucleic acid sequences. Hairpin nucleic acids are modified to the nanoparticles, forming AuNPs-1 and AuNPs-2. Upon infiltrating cancer cells, these nanoparticles undergo catalytic hairpin assembly in the presence of target miRNA, leading to aggregation and subsequent photothermal conversion. Under near-infrared laser irradiation, aggregated gold nanoparticles exhibit efficient photothermal conversion, selectively damaging cancer cells. This approach offers heightened selectivity, as nanoparticles only aggregate in environments with cancer biomarkers present, sparing normal cells. Cytotoxicity assays confirm minimal toxicity to normal cells. In vivo studies on mice bearing solid tumors validate the system's efficacy in tumor regression. Overall, this study highlights the potential of nucleic acid-functionalized gold nanoparticles in intelligent and selective cancer photothermal therapy, offering insights for targeted diagnosis and treatment development.
Collapse
Affiliation(s)
- Hongmei Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Xuetao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Yuyan Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Huazhen Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Minglan Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Yangchen Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Siyun Xiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
7
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
8
|
Song W, He Y, Feng Y, Wang Y, Li X, Wu Y, Zhang S, Zhong L, Yan F, Sun L. Image-Guided Photothermal and Immune Therapy of Tumors via Melanin-Producing Genetically Engineered Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305764. [PMID: 38368252 DOI: 10.1002/smll.202305764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Photothermal therapy (PTT) is a new treatment modality for tumors. However, the efficient delivery of photothermal agents into tumors remains difficult, especially in hypoxic tumor regions. In this study, an approach to deliver melanin, a natural photothermal agent, into tumors using genetically engineered bacteria for image-guided photothermal and immune therapy is developed. An Escherichia coli MG1655 is transformed with a recombinant plasmid harboring a tyrosinase gene to produce melanin nanoparticles. Melanin-producing genetically engineered bacteria (MG1655-M) are systemically administered to 4T1 tumor-bearing mice. The tumor-targeting properties of MG1655-M in the hypoxic environment integrate the properties of hypoxia targeting, photoacoustic imaging, and photothermal therapeutic agents in an "all-in-one" manner. This eliminates the need for post-modification to achieve image-guided hypoxia-targeted cancer photothermal therapy. Tumor growth is significantly suppressed by irradiating the tumor with an 808 nm laser. Furthermore, strong antitumor immunity is triggered by PTT, thereby producing long-term immune memory effects that effectively inhibit tumor metastasis and recurrence. This work proposes a new photothermal and immune therapy guided by an "all-in-one" melanin-producing genetically engineered bacteria, which can offer broad potential applications in cancer treatment.
Collapse
Affiliation(s)
- Weijian Song
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Yaling He
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yanan Feng
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P. R. China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaoying Li
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Yingnan Wu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Shanxin Zhang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Lin Zhong
- School of Public Health, Nanchang University, Nanchang, Jiangxi, 330019, P. R. China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| |
Collapse
|
9
|
Abdolmaleki S, Aliabadi A, Khaksar S. Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review. J Cancer Res Clin Oncol 2024; 150:213. [PMID: 38662225 PMCID: PMC11045632 DOI: 10.1007/s00432-024-05641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/03/2024] [Indexed: 04/26/2024]
Abstract
Copper is a necessary micronutrient for maintaining the well-being of the human body. The biological activity of organic ligands, especially their anticancer activity, is often enhanced when they coordinate with copper(I) and (II) ions. Copper and its compounds are capable of inducing tumor cell death through various mechanisms of action, including activation of apoptosis signaling pathways by reactive oxygen species (ROS), inhibition of angiogenesis, induction of cuproptosis, and paraptosis. Some of the copper complexes are currently being evaluated in clinical trials for their ability to map tumor hypoxia in various cancers, including locally advanced rectal cancer and bulky tumors. Several studies have shown that copper nanoparticles can be used as effective agents in chemodynamic therapy, phototherapy, hyperthermia, and immunotherapy. Despite the promising anticancer activity of copper-based compounds, their use in clinical trials is subject to certain limitations. Elevated copper concentrations may promote tumor growth, angiogenesis, and metastasis by affecting cellular processes.
Collapse
Affiliation(s)
- Sara Abdolmaleki
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samad Khaksar
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| |
Collapse
|
10
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
11
|
Han J, Zheng J, Li Q, Hong H, Yao J, Wang J, Zhao RC. An Antibody-directed and Immune Response Modifier-augmented Photothermal Therapy Strategy Relieves Aging via Rapid Immune Clearance of Senescent Cells. Aging Dis 2024; 15:787-803. [PMID: 38447216 PMCID: PMC10917526 DOI: 10.14336/ad.2023.0628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/28/2023] [Indexed: 03/08/2024] Open
Abstract
Cellular senescence is an irreversible and multifaceted process inducing tissue dysfunction and organismal aging, and thus the clearance of senescent cells can prevent or delay the onset of aging-related pathologies. Herein, we developed an augmented photothermal therapy strategy integrated with an antibody against β2-microglobulin (aB2MG) and an immune adjuvant imiquimod (R837) to effectively accelerate senescent cell apoptosis and clearance under a near-infrared light. With this strategy, the designed CroR@aB2MG enables the targeting of senescent cells and the application of photothermal therapy concomitantly, the initiation of immune clearance subsequently, and finally the realization of protective effects against senescence. Our results showed that the photo-induced heating effect caused senescent cells to quickly undergo apoptosis and the synchronous immune response accelerated the clearance of senescent cells in vitro and in vivo. Therefore, this photoactivated speedy clearing strategy may provide an efficient way for the treatment of senescence-related diseases by eliminating senescent cells with biomaterials.
Collapse
Affiliation(s)
- Jiamei Han
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Qian Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
- Cell Energy Life Sciences Group Co. LTD, Qingdao, Shandong, China.
| | - Huanle Hong
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Jing Yao
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| |
Collapse
|
12
|
Qu S, Ji Y, Fan L, Yan T, Zhu G, Song H, Yang K, Han X. Light-Enhanced Hypoxia-Responsive Gene Editing for Hypoxia-Resistant Photodynamic and Immunotherapy. Adv Healthc Mater 2024; 13:e2302615. [PMID: 38117037 DOI: 10.1002/adhm.202302615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/26/2023] [Indexed: 12/21/2023]
Abstract
Hypoxia is a key hallmark of solid tumors and can cause resistance to various treatments such as photodynamics and immunotherapy. Microenvironment-responsive gene editing provides a powerful tool to overcome hypoxia resistance and remodel hypoxic microenvironments for enhanced tumor therapy. Here, a light-enhanced hypoxia-responsive multifunctional nanocarrier is developed to perform spatiotemporal specific dual gene editing for enhanced photodynamic and immunotherapy in breast cancer. As a gated molecule of nanocarrier, the degradation of azobenzene moieties under hypoxic conditions triggers controllable release of Cas9 ribonucleoprotein in hypoxic site of the tumor. Hyaluronic acid is conjugated with chloramine e6 to coat mesoporous silica nanoparticles for targeted delivery in tumors and generation of high levels of reactive oxygen species, which can result in increased hypoxia levels for effective cleavage of azobenzene bonds to improve gene editing efficiency and reduce toxic side effects with light irradiation. Moreover, dual targeting HIF-1α and PD-L1 in the anoxic microenvironments can overcome hypoxia resistance and remodel immune microenvironments, which reduces tumor plasticity and resistance to photodynamic and immunotherapy. In summary, a light-enhanced hypoxia responsive nanocomposite is developed for controllable gene editing which holds great promise for synergistic hypoxia-resistant photodynamic and immunotherapy.
Collapse
Affiliation(s)
- Suchen Qu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Ji
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liansheng Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Gaoshuang Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongxiu Song
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kaiyong Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
13
|
Chan WJ, Urandur S, Li H, Goudar VS. Recent advances in copper sulfide nanoparticles for phototherapy of bacterial infections and cancer. Nanomedicine (Lond) 2023; 18:2185-2204. [PMID: 38116732 DOI: 10.2217/nnm-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Copper sulfide nanoparticles (CuS NPs) have attracted growing interest in biomedical research due to their remarkable properties, such as their high photothermal and thermodynamic capabilities, which are ideal for anticancer and antibacterial applications. This comprehensive review focuses on the current state of antitumor and antibacterial applications of CuS NPs. The initial section provides an overview of the various approaches to synthesizing CuS NPs, highlighting the size, shape and composition of CuS NPs fabricated using different methods. In this review, the mechanisms underlying the antitumor and antibacterial activities of CuS NPs in medical applications are discussed and the clinical challenges associated with the use of CuS NPs are also addressed.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sandeep Urandur
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
14
|
Wang J, Ma J, Tai Z, Li L, Zhang T, Cheng T, Yu J, Zhu Q, Bao L, Chen Z. Nanocarrier-Mediated Immunogenic Cell Death for Melanoma Treatment. Int J Nanomedicine 2023; 18:7149-7172. [PMID: 38059000 PMCID: PMC10697015 DOI: 10.2147/ijn.s434582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Melanoma, a highly aggressive skin tumor, exhibits notable features including heterogeneity, a high mutational load, and innate immune escape. Despite advancements in melanoma treatment, current immunotherapies fail to fully exploit the immune system's maximum potential. Activating immunogenic cell death (ICD) holds promise in enhancing tumor cell immunogenicity, stimulating immune amplification response, improving drug sensitivity, and eliminating tumors. Nanotechnology-enabled ICD has emerged as a compelling therapeutic strategy for augmenting cancer immunotherapy. Nanoparticles possess versatile attributes, such as prolonged blood circulation, stability, and tumor-targeting capabilities, rendering them ideal for drug delivery. In this review, we elucidate the mechanisms underlying ICD induction and associated therapeutic strategies. Additionally, we provide a concise overview of the immune stress response associated with ICD and explore the potential synergistic benefits of combining ICD induction methods with the utilization of nanocarriers.
Collapse
Affiliation(s)
- Jiandong Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Tingting Cheng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Junxia Yu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| |
Collapse
|
15
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
16
|
Chen Z, Yue Z, Yang K, Shen C, Cheng Z, Zhou X, Li S. Four Ounces Can Move a Thousand Pounds: The Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2300882. [PMID: 37539730 DOI: 10.1002/adhm.202300882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, nanomaterials have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current work aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy.
Collapse
Affiliation(s)
- Ziyin Chen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Congrong Shen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 110042, Shenyang, P. R. China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, 110042, China
| |
Collapse
|
17
|
Ma J, Li N, Wang J, Liu Z, Han Y, Zeng Y. In vivo synergistic tumor therapies based on copper sulfide photothermal therapeutic nanoplatforms. EXPLORATION (BEIJING, CHINA) 2023; 3:20220161. [PMID: 37933283 PMCID: PMC10582616 DOI: 10.1002/exp.20220161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Tumor cells may be eliminated by increasing their temperature. This is achieved via photothermal therapy (PTT) by penetrating the tumor tissue with near-infrared light and converting light energy into heat using photothermal agents. Copper sulfide nanoparticles (CuS NPs) are commonly used as PTAs in PTT. In this review, we aimed to discuss the synergism between tumor PTT with CuS NPs and other therapies such as chemotherapy, radiotherapy, dynamic therapies (photodynamic, chemodynamic, and sonodynamic therapy), immunotherapy, gene therapy, gas therapy, and magnetic hyperthermia. Furthermore, we summarized the results obtained with a combination of two treatments and at least two therapies, with PTT as one of the included therapies. Finally, we summarized the benefits and drawbacks of various therapeutic options and state of the art CuS-based PTT and provided future directions for such therapies.
Collapse
Affiliation(s)
- Jingwen Ma
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Na Li
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Jingjian Wang
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Zhe Liu
- Department of PathologyNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Yulong Han
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Yun Zeng
- School of Life Science and TechnologyXidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of EducationXi'anShaanxi ProvinceP. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans‐Scale Life Information, School of Life Science and TechnologyXidian UniversityXi'anShaanxi ProvinceP. R. China
| |
Collapse
|
18
|
Xiong Y, Rao Y, Hu J, Luo Z, Chen C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305140. [PMID: 37561994 DOI: 10.1002/adma.202305140] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Rapid advancements in materials science and nanotechnology, intertwined with oncology, have positioned photothermal therapy (PTT) as a promising noninvasive treatment strategy for cancer. The breast's superficial anatomical location and aesthetic significance render breast cancer a particularly pertinent candidate for the clinical application of PTT following melanoma. This review comprehensively explores the research conducted on the various types of nanoparticles employed in PTT for breast cancer and elaborates on their specific roles and mechanisms of action. The integration of PTT with existing clinical therapies for breast cancer is scrutinized, underscoring its potential for synergistic outcomes. Additionally, the mechanisms underlying PTT and consequential modifications to the tumor microenvironment after treatment are elaborated from a medical perspective. Future research directions are suggested, with an emphasis on the development of integrative platforms that combine multiple therapeutic approaches and the optimization of nanoparticle synthesis for enhanced treatment efficacy. The goal is to push the boundaries of PTT toward a comprehensive, clinically applicable treatment for breast cancer.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, Hubei, 430000, P. R. China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
19
|
Zheng Q, Wang W, Zhou Y, Mo J, Chang X, Zha Z, Zha L. Synthetic nanoparticles for the delivery of CRISPR/Cas9 gene editing system: classification and biomedical applications. Biomater Sci 2023; 11:5361-5389. [PMID: 37381725 DOI: 10.1039/d3bm00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Gene editing has great potential in biomedical research including disease diagnosis and treatment. Clustered regularly interspaced short palindromic repeats (CRISPR) is the most straightforward and cost-effective method. The efficient and precise delivery of CRISPR can impact the specificity and efficacy of gene editing. In recent years, synthetic nanoparticles have been discovered as effective CRISPR/Cas9 delivery vehicles. We categorized synthetic nanoparticles for CRISPR/Cas9 delivery and discribed their advantages and disadvantages. Further, the building blocks of different kinds of nanoparticles and their applications in cells/tissues, cancer and other diseases were described in detail. Finally, the challenges encountered in the clinical application of CRISPR/Cas9 delivery materials were discussed, and potential solutions were provided regarding efficiency and biosafety issues.
Collapse
Affiliation(s)
- Qi Zheng
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Weitao Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Yuhang Zhou
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Jiayin Mo
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Xinyue Chang
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Lisha Zha
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| |
Collapse
|
20
|
Dai Y, Li X, Xue Y, Chen K, Jiao G, Zhu L, Li M, Fan Q, Dai Y, Zhao Q, Shen Q. Self-delivery of metal-coordinated NIR-II nanoadjuvants for multimodal imaging-guided photothermal-chemodynamic amplified immunotherapy. Acta Biomater 2023; 166:496-511. [PMID: 37230439 DOI: 10.1016/j.actbio.2023.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The effectiveness of phototheranostics induced immunotherapy is still hampered by limited light penetration depth, the complex immunosuppressive tumor microenvironment (TME) and the low efficiency of immunomodulator drug delivery. Herein, self-delivery and TME responsive NIR-II phototheranostic nanoadjuvants (NAs) were fabricated to suppress the growth and metastasis of melanoma through the integration of photothermal-chemodynamic therapy (PTT-CDT) and immune remodeling. The NAs were constructed by the self-assembly of ultrasmall NIR-II semiconducting polymer dots and the toll-like receptor agonist resiquimod (R848) utilizing manganese ions (Mn2+) as coordination nodes. Under acidic TME, the NAs responsively disintegrated and released therapeutic components, which enable NIR-II fluorescence/photoacoustic/magnetic resonance imaging-guided tumor PTT-CDT. Moreover, the synergistic treatment of PTT-CDT could induce significant tumor immunogenic cell death and evoke highly efficacious cancer immunosurveillance. The released R848 stimulated the maturation of dendritic cells, which both amplified the antitumor immune response by modulating and remodeling the TME. The NAs present a promising integration strategy of polymer dot-metal ion coordination and immune adjuvants for precise diagnosis and amplified anti-tumor immunotherapy against deep-seated tumors. STATEMENT OF SIGNIFICANCE: The efficiency of phototheranostics induced immunotherapy is still limited by insufficient light penetration depth, low immune response and the complex immunosuppressive tumor microenvironment (TME). In order to improve the efficacy of immunotherapy, self-delivery NIR-II phototheranostic nanoadjuvants (PMR NAs) were successfully fabricated via the facile coordination self-assembly of ultra-small NIR-II semiconducting polymer dots and toll-like receptor agonist resiquimod (R848) utilizing manganese ions (Mn2+) as coordination nodes. PMR NAs not only enable TME responsive cargo release and NIR-II fluorescence/photoacoustic/magnetic resonance imaging mediated precise localization of tumors, but also achieve synergistic photothermal-chemodynamic therapy, evoking an effective anti-tumor immune response by ICD effect. The responsively released R848 could further amplify the efficiency of immunotherapy by reversing and remodeling the immunosuppressive tumor microenvironment, thereby effectively inhibiting tumor growth and lung metastasis.
Collapse
Affiliation(s)
- Yeneng Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Xiangyu Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yuwen Xue
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Kai Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Guanda Jiao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Lipeng Zhu
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; School of Life Sciences, Central South University, Changsha 410013, China
| | - Meixing Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yunlu Dai
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China.
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
21
|
Zhang JY, Gao WD, Lin JY, Xu S, Zhang LJ, Lu XC, Luan X, Peng JQ, Chen Y. Nanotechnology-based photo-immunotherapy: a new hope for inhibition of melanoma growth and metastasis. J Drug Target 2023:1-14. [PMID: 37216425 DOI: 10.1080/1061186x.2023.2216402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023]
Abstract
Melanoma is the most aggressive form of skin cancer and there is a need for the development of effective anti-melanoma therapies as it shows high metastatic ability and low response rate. In addition, it has been identified that traditional phototherapy could trigger immunogenic cell death (ICD) to activate antitumor immune response, which could not only effectively arrest primary tumor growth, but also exhibit superior effects in terms of anti-metastasis, anti-recurrence for metastatic melanoma treatment However, the limited tumor accumulation of photosensitizers/photothermal agents and immunosuppressive tumor microenvironment severely weaken the immune effects. The application of nanotechnology facilitates a higher accumulation of photosensitizers/photothermal agents at the tumor site, which can thus improve the antitumor effects of photo-immunotherapy (PIT). In this review, we summarize the basic principles of nanotechnology-based PIT and highlight novel nanotechnologies that are expected to enhance the antitumor immune response for improved therapeutic efficacy.
Collapse
Affiliation(s)
- Ji-Yuan Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Dong Gao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Chen Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Qing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
22
|
Aishajiang R, Liu Z, Wang T, Zhou L, Yu D. Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy. Molecules 2023; 28:molecules28052303. [PMID: 36903549 PMCID: PMC10005215 DOI: 10.3390/molecules28052303] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Copper serves as a vital microelement which is widely present in the biosystem, functioning as multi-enzyme active site, including oxidative stress, lipid oxidation and energy metabolism, where oxidation and reduction characteristics are both beneficial and lethal to cells. Since tumor tissue has a higher demand for copper and is more susceptible to copper homeostasis, copper may modulate cancer cell survival through reactive oxygen species (ROS) excessive accumulation, proteasome inhibition and anti-angiogenesis. Therefore, intracellular copper has attracted great interest that multifunctional copper-based nanomaterials can be exploited in cancer diagnostics and antitumor therapy. Therefore, this review explains the potential mechanisms of copper-associated cell death and investigates the effectiveness of multifunctional copper-based biomaterials in the field of antitumor therapy.
Collapse
Affiliation(s)
- Reyida Aishajiang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
| | - Zhongshan Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
| | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (L.Z.); (D.Y.)
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (T.W.); (L.Z.); (D.Y.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (L.Z.); (D.Y.)
| |
Collapse
|
23
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
24
|
Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems. Biomed Pharmacother 2023; 157:114065. [PMID: 36481408 DOI: 10.1016/j.biopha.2022.114065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine has emerged as a promising platform for disease treatment and much progress has been achieved in the clinical translation for cancer treatment. Several types of nanomedicines have been approved for therapeutic application. However, many nanoparticles still suffer from challenges in the translation from bench to bedside. Currently, nanoparticle-based delivery systems have been developed to explore their functions in targeted gene silencing and cancer therapy. This review describes the research progress of different nano-carriers in targeted gene editing, and the recent progress in co-delivery of anticancer drugs and small ribonucleic acid. We also summarize the strategies for improving the specificity of carrier systems. Finally, we discuss the functions of targeted nano-carriers in overcoming chemotherapeutic drug resistance in cancer therapy. As research continues to advance, a better understanding of the safety including long-term toxicity, immunogenicity, and body metabolism may impel nanoparticle translation.
Collapse
|
25
|
Ran J, Liu T, Song C, Wei Z, Tang C, Cao Z, Zou H, Zhang X, Cai Y, Han W. Rhythm Mild-Temperature Photothermal Therapy Enhancing Immunogenic Cell Death Response in Oral Squamous Cell Carcinoma. Adv Healthc Mater 2023; 12:e2202360. [PMID: 36401600 DOI: 10.1002/adhm.202202360] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Indexed: 11/20/2022]
Abstract
The low antitumor efficiency and unexpected thermo-tolerance activation of mild-temperature photothermal therapy (mPTT) severely impede the therapeutic efficacy, thereby the implementation of reasonable mPTT procedure to improve antitumor efficiency is of great significance for clinical transformation. Herein, a rhythm mPTT with organic photothermal nanoparticles (PBDB-T NPs) is demonstrated, synergistically increasing tumor elimination and intense immunogenic cancer cell death (ICD) to elicit tumor-specific immune responses for tumor treatment. Specifically, PBDB-T NPs are characterized by favorable biocompatibility, excellent and controllable photothermal properties, exhibit the properties of noninvasive diagnostic imaging, and effective mPTT against oral squamous cell carcinoma (OSCC). Encouragingly, a temperature-dependent release of damage-associated molecular patterns (DAMPs) is discovered during the mPTT-induced ICD. Meanwhile, orchestrated rhythm mPTT referring to radiotherapy procedure amplifies and balances antitumor efficiency and abundant DAMPs generation to gain optimal immune activation within clinical-recommended hyperthermia temperature compared with conventional PTT. The in vitro and in vivo results show that the rhythm mPTT unites the killing effect and ICD induction, generating strong mPTT efficacy and active tumor-specific adaptive immune responses. The study offers a promising strategy and a new opportunity for the clinical application of mPTT.
Collapse
Affiliation(s)
- Jianchuan Ran
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Tao Liu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Chuanhui Song
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zheng Wei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Chuanchao Tang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zichen Cao
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Huihui Zou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xinyu Zhang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yu Cai
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Wei Han
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| |
Collapse
|
26
|
Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
27
|
Qiu S, Wu X, Li Z, Xu X, Wang J, Du Y, Pan W, Huang R, Wu Y, Yang Z, Zhou Q, Zhou B, Gao X, Xu Y, Cui W, Gao F, Geng D. A Smart Nanoreactor Based on an O 2-Economized Dual Energy Inhibition Strategy Armed with Dual Multi-stimuli-Responsive "Doorkeepers" for Enhanced CDT/PTT of Rheumatoid Arthritis. ACS NANO 2022; 16:17062-17079. [PMID: 36153988 DOI: 10.1021/acsnano.2c07338] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Activated fibroblast-like synovial (FLS) cells are regarded as an important target for rheumatoid arthritis (RA) treatment via starvation therapy mediated by glucose oxidase (GOx). However, the hypoxic RA-FLS environment greatly reduces the oxidation process of glucose and leads to a poor therapeutic effect of the GOx-based starvation therapy. In this work, we designed a hollow mesoporous copper sulfide nanoparticles (CuS NPs)-based smart GOx/atovaquone (ATO) codelivery system (named as V-HAGC) targeting RA-FLS cells to realize a O2-economized dual energy inhibition strategy to solve the limitation of GOx-based starvation therapy. V-HAGC armed with dual multi-stimuli-responsive "doorkeepers" can guard drugs intelligently. Once under the stimulation of photothermal and acidic conditions at the targeted area, the dual intelligent responsive "doors" would orderly open to realize the controllable release of drugs. Besides, the efficacy of V-HAGC would be much improved by the additional chemodynamic therapy (CDT) and photothermal therapy (PTT) stimulated by CuS NPs. Meanwhile, the upregulated H2O2 and acid levels by starvation therapy would promote the Fenton-like reaction of CuS NPs under O2-economized dual energy inhibition, which could enhance the PTT and CDT efficacy as well. In vitro and in vivo evaluations revealed V-HAGC with much improved efficacy of this combination therapy for RA. In general, the smart V-HAGC based on the O2-economized dual energy inhibition strategy combined with enhanced CDT and PTT has the potential to be an alternative methodology in the treatment of RA.
Collapse
Affiliation(s)
- Shang Qiu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou 215006, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Xiunan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Xinyu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Wenzhen Pan
- Department of Orthopedics, Pingyin People's Hospital, Shandong Jinan 250000, P.R. China
| | - Ruqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Yafei Wu
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Zhi Yang
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Qi Zhou
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Bing Zhou
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Xuren Gao
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou 215006, P.R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou 215006, P.R. China
| |
Collapse
|
28
|
Zhang H, Tang W, Gong Q, Yang X, Sun Y, Dai Z, Hu Z, Zheng X. A dual gate-controlled intelligent nanoreactor enables collaborative precise treatment for cancer nanotherapy. NANOSCALE 2022; 14:13113-13122. [PMID: 36052962 DOI: 10.1039/d2nr03676b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, disulfiram (DSF), approved by the FDA as an anti-alcoholic drug, has been proved as an effective antitumor drug after chelating with Cu2+. To overcome the shortage of intracellular Cu2+, we have constructed a dual gate-controlled intelligent nanoreactor (HA-DSF@HCuS@FePtMn, HDHF) via the ingenious combination of hollow copper sulfide (HCuS) nanoparticles, DSF and FePtMn nanocrystals. HDHF has a NIR-actuated gate and enzyme-actuated gate that could be opened in the hyaluronidase-abundant tumor microenvironment with NIR laser irradiation to trigger drug (DSF/FePtMn) release and synergistic therapy. Moreover, the FePtMn nanocrystals could continuously release Fe2+, which could catalyze H2O2 into highly cytotoxic hydroxyl radicals (˙OH), triggering chemodynamic therapy (CDT). When exposed to NIR laser, HCuS could collapse and release Cu2+, which could immediately chelate with DSF, forming the effective anticancer drug (Cu(DTC)2) and enabling DSF-based chemotherapy. More importantly, the efficient photothermal therapy (PTT) effect of HCuS could accelerate the FePtMn-based CDT and the release of Cu2+/DSF, improving tumor treatment efficiency. Thus, this study represents a distinctive paradigm of a dual gate-controlled intelligent nanoreactor enabled PTT-augmented DSF-based chemotherapy and FePtMn-based CDT for cancer nanotherapy.
Collapse
Affiliation(s)
- Huimin Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Weina Tang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Qi Gong
- School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Xinyi Yang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Yunqiang Sun
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Zhichao Dai
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Zunfu Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| |
Collapse
|
29
|
Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology 2022; 20:354. [PMID: 35918694 PMCID: PMC9344766 DOI: 10.1186/s12951-022-01570-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022] Open
Abstract
The CRISPR-Cas9 technology has changed the landscape of genome editing and has demonstrated extraordinary potential for treating otherwise incurable diseases. Engineering strategies to enable efficient intracellular delivery of CRISPR-Cas9 components has been a central theme for broadening the impact of the CRISPR-Cas9 technology. Various non-viral delivery systems for CRISPR-Cas9 have been investigated given their favorable safety profiles over viral systems. Many recent efforts have been focused on the development of stimuli-responsive non-viral CRISPR-Cas9 delivery systems, with the goal of achieving efficient and precise genome editing. Stimuli-responsive nanoplatforms are capable of sensing and responding to particular triggers, such as innate biological cues and external stimuli, for controlled CRISPR-Cas9 genome editing. In this Review, we overview the recent advances in stimuli-responsive nanoformulations for CRISPR-Cas9 delivery, highlight the rationale of stimuli and formulation designs, and summarize their biomedical applications.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.,School of Nursing, Tianjin Medical University, Tianjin, China
| | - Mysha Ibnat
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada. .,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
30
|
Moore EK, Strazza M, Mor A. Combination Approaches to Target PD-1 Signaling in Cancer. Front Immunol 2022; 13:927265. [PMID: 35911672 PMCID: PMC9330480 DOI: 10.3389/fimmu.2022.927265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer remains the second leading cause of death in the US, accounting for 25% of all deaths nationwide. Immunotherapy techniques bolster the immune cells' ability to target malignant cancer cells and have brought immense improvements in the field of cancer treatments. One important inhibitory protein in T cells, programmed cell death protein 1 (PD-1), has become an invaluable target for cancer immunotherapy. While anti-PD-1 antibody therapy is extremely successful in some patients, in others it fails or even causes further complications, including cancer hyper-progression and immune-related adverse events. Along with countless translational studies of the PD-1 signaling pathway, there are currently close to 5,000 clinical trials for antibodies against PD-1 and its ligand, PD-L1, around 80% of which investigate combinations with other therapies. Nevertheless, more work is needed to better understand the PD-1 signaling pathway and to facilitate new and improved evidence-based combination strategies. In this work, we consolidate recent discoveries of PD-1 signaling mediators and their therapeutic potential in combination with anti-PD-1/PD-L1 agents. We focus on the phosphatases SHP2 and PTPN2; the kinases ITK, VRK2, GSK-3, and CDK4/6; and the signaling adaptor protein PAG. We discuss their biology both in cancer cells and T cells, with a focus on their role in relation to PD-1 to determine their potential in therapeutic combinations. The literature discussed here was obtained from a search of the published literature and ClinicalTrials.gov with the following key terms: checkpoint inhibition, cancer immunotherapy, PD-1, PD-L1, SHP2, PTPN2, ITK, VRK2, CDK4/6, GSK-3, and PAG. Together, we find that all of these proteins are logical and promising targets for combination therapy, and that with a deeper mechanistic understanding they have potential to improve the response rate and decrease adverse events when thoughtfully used in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Emily K. Moore
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Marianne Strazza
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
31
|
Yang L, Zhu Y, Liang L, Wang C, Ning X, Feng X. Self-Assembly of Intelligent Nanoplatform for Endogenous H 2S-Triggered Multimodal Cascade Therapy of Colon Cancer. NANO LETTERS 2022; 22:4207-4214. [PMID: 35532346 DOI: 10.1021/acs.nanolett.2c01131] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The specific in situ generation and activation of therapeutic agents with high spatiotemporal precision is expected to revolutionize cancer treatment. Here, we develop an intelligent nanoplatform (termed as NP-Cu), which is constructed by assembling photosensitizer chlorin e6 (Ce6), hypoxia-responsive prodrug banoxantrone (AQ4N) with clickable dibenzocyclooctyne (DIBO) functionalized lysine (D-K), and cyclen-Cu2+ complex, for improving combination anticancer therapy. Cyclen-Cu2+ complex-induced photodynamic therapy (PDT) quenching in NP-Cu can be effectively and selectively activated by tumor-overproduced hydrogen sulfide (H2S). More importantly, the reaction of endogenous H2S with Cu2+ can generate photothermal agent copper sulfide (CuS) for photothermal therapy (PTT). Furthermore, with the activation of PTT and PDT, intracellular hypoxic stress is amplified to trigger AQ4N-associated chemodynamic therapy (CDT), leading to light-enhanced cascade therapy of PDT, PTT and CDT. Therefore, we present a simple and practical strategy for developing pathological stimuli responsive combination therapy, which has the potential of advancing precision cancer medicine.
Collapse
Affiliation(s)
- Lan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Yupeng Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Liuqing Liang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P.R. China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| |
Collapse
|
32
|
Ge J, Chen L, Huang B, Gao Y, Zhou D, Zhou Y, Chen C, Wen L, Li Q, Zeng J, Zhong Z, Gao M. Anchoring Group-Mediated Radiolabeling of Inorganic Nanoparticles─A Universal Method for Constructing Nuclear Medicine Imaging Nanoprobes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8838-8846. [PMID: 35133124 DOI: 10.1021/acsami.1c23907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclear medicine imaging has aroused great interest in the design and synthesis of versatile radioactive nanoprobes, while most of the methods developed for radiolabeling nanoprobes are difficult to satisfy the criteria of clinical translation, including easy operation, mild labeling conditions, high efficiency, and high radiolabeling stability. Herein, we demonstrated the universality of a simple but efficient radiolabeling method recently developed for constructing nuclear imaging nanoprobes, that is, ligand anchoring group-mediated radiolabeling (LAGMERAL). In this method, a diphosphonate-polyethylene glycol (DP-PEG) decorating on the surface of inorganic nanoparticles plays an essential role. In principle, owing to the strong binding affinity to a great variety of metal ions, it can not only endow the underlying nanoparticles containing metal ions including some main group metal ions, transition metal ions, and lanthanide metal ions with excellent colloidal stability and biocompatibility but also enable efficient radiolabeling through the diphosphonate group. Based on this assumption, inorganic nanoparticles such as Fe3O4 nanoparticles, NaGdF4:Yb,Tm nanoparticles, and Cu2-xS nanoparticles, as representatives of functional inorganic nanoparticles suitable for different imaging modalities including magnetic resonance imaging (MRI), upconversion luminescence imaging (UCL), and photoacoustic imaging (PAI), respectively, were chosen to be radiolabeled with different kinds of radionuclides such as SPECT nuclides (e.g., 99mTc), PET nuclides (e.g., 68Ga), and therapeutic SPECT nuclides (e.g., 177Lu) to demonstrate the reliability of the LAGMERAL approach. The experimental results showed that the obtained nanoprobes exhibited high radiolabeling stability, and the whole radiolabeling process had negligible impacts on the physical and chemical properties of the initial nanoparticles. Through passive targeting SPECT/MRI of glioma tumor, active targeting SPECT/UCL of colorectal cancer, and SPECT/PAI of lymphatic metastasis, the outstanding potentials of the resulting radioactive nanoprobes for sensitive tumor diagnosis were demonstrated, manifesting the feasibility and efficiency of LAGMERAL.
Collapse
Affiliation(s)
- Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Baoxing Huang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yi Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ling Wen
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215000, China
| | - Qing Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- College of Chemistry, Chemical Engineering and Materials Science of Soochow University, Soochow University, Suzhou 215123, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215000, China
| |
Collapse
|
33
|
Ji Y, Liansheng F, Suchen Q, Han X. Stimuli-Responsive Delivery Strategies for Controllable Gene Editing in Tumor Therapeutics. J Mater Chem B 2022; 10:7694-7707. [DOI: 10.1039/d2tb01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CRISPR system has attracted significant interest due to its great potential in tumour therapy. Developing effective, precise and safe delivery vectors is a prerequisite for CRISPR applications. Some disease-related biological...
Collapse
|
34
|
Chen Q, Zhang L, Li L, Tan M, Liu W, Liu S, Xie Z, Zhang W, Wang Z, Cao Y, Shang T, Ran H. Cancer cell membrane-coated nanoparticles for bimodal imaging-guided photothermal therapy and docetaxel-enhanced immunotherapy against cancer. J Nanobiotechnology 2021; 19:449. [PMID: 34952587 PMCID: PMC8710014 DOI: 10.1186/s12951-021-01202-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mono-therapeutic modality has limitations in combating metastatic lesions with complications. Although emerging immunotherapy exhibits preliminary success, solid tumors are usually immunosuppressive, leading to ineffective antitumor immune responses and immunotherapeutic resistance. The rational combination of several therapeutic modalities may potentially become a new therapeutic strategy to effectively combat cancer. RESULTS Poly lactic-co-glycolic acid (PLGA, 50 mg) nanospheres were constructed with photothermal transduction agents (PTAs)-Prussian blue (PB, 2.98 mg) encapsulated in the core and chemotherapeutic docetaxel (DTX, 4.18 mg)/ immune adjuvant-imiquimod (R837, 1.57 mg) loaded in the shell. Tumor cell membranes were further coated outside PLGA nanospheres (designated "M@P-PDR"), which acted as "Nano-targeted cells" to actively accumulate in tumor sites, and were guided/monitored by photoacoustic (PA)/ magnetic resonance (MR) imaging. Upon laser irradiation, photothermal effects were triggered. Combined with DTX, PTT induced in situ tumor eradication. Assisted by the immune adjuvant R837, the maturation rate of DCs increased by 4.34-fold compared with that of the control. In addition, DTX polarized M2-phenotype tumor-associated macrophages (TAMs) to M1-phenotype, relieving the immunosuppressive TME. The proportion of M2-TAMs decreased from 68.57% to 32.80%, and the proportion of M1-TAMs increased from 37.02% to 70.81%. Integrating the above processes, the infiltration of cytotoxic T lymphocytes (CTLs) increased from 17.33% (control) to 35.5%. Primary tumors and metastasis were significantly inhibited when treated with "Nano-targeted cells"-based cocktail therapy. CONCLUSION "Nano-targeted cells"-based therapeutic cocktail therapy is a promising approach to promote tumor regression and counter metastasis/recurrence.
Collapse
Affiliation(s)
- Qiaoqi Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.,Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Lin Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Mixiao Tan
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Shuling Liu
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Zhuoyan Xie
- Chongqing General Hospital, University of Chinese Academy of Sciences, No.114 Longshan Road, Yubei District, Chongqing, 401121, People's Republic of China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Tingting Shang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|