1
|
Chen J, Guo Y, Zheng Y, Chen Z, Xu H, Pan S, Liang X, Zhai L, Guan YQ. Oral glucose-responsive nanoparticles loaded with artemisinin induce pancreatic β-cell regeneration for the treatment of type 2 diabetes. J Colloid Interface Sci 2025; 684:769-782. [PMID: 39823951 DOI: 10.1016/j.jcis.2025.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Type 2 diabetes (T2D) is a chronic disease characterized by long-term insulin resistance (IR) and pancreatic β-cell dysfunction. Conventional T2D medication ignores pancreatic β-cell damage. In this study, we designed an oral glucose-responsive nanoparticle for pancreatic β-cell regeneration and treatment of T2D. It was formed by carboxymethyl chitosan (CMC) grafted with 3-aminophenylboronic acid (APBA) as the shell and small-molecule citrus pectin (MCP) spheres encapsulating artemisinin (Art) connected by borate ester bonds. The prepared CMC-APBA wrapped Art-loaded MCP nanoparticles (CAM@Art) had therapeutic effects for the treatment of IR, antioxidant and promotion of pancreatic α-cell differentiation in vitro experiments. In addition, in vivo experiments showed that CAM@Art could reduce blood glucose, oxidative stress and inflammation levels and reverse IR in diabetic rats. Importantly, pancreatic β-cell regeneration was found in islets in vivo. Mechanistically, CAM@Art promotes pancreatic α-cell differentiation by promoting overexpression of the transcription factor Pax4 and ectopic expression of Arx. The results suggest that the present study provides a promising therapeutic strategy for the treatment of diabetic pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Jiapeng Chen
- School of Life Science, South China Normal University, Guangzhou 510631 China
| | - Yiyan Guo
- School of Life Science, South China Normal University, Guangzhou 510631 China
| | - Yuxin Zheng
- School of Life Science, South China Normal University, Guangzhou 510631 China
| | - Zhendong Chen
- School of Life Science, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China
| | - Haoming Xu
- School of Life Science, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China
| | - Shengjun Pan
- School of Life Science, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China
| | - Xuanxi Liang
- School of Life Science, South China Normal University, Guangzhou 510631 China
| | - Limin Zhai
- School of Life Science, South China Normal University, Guangzhou 510631 China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631 China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China.
| |
Collapse
|
2
|
Li L, Xing Z, Wang J, Guo Y, Wu X, Ma Y, Xu Z, Kuang Y, Liao T, Li C. Hyaluronic acid-mediated targeted nano-modulators for activation of pyroptosis for cancer therapy through multichannel regulation of Ca 2+ overload. Int J Biol Macromol 2025; 299:140116. [PMID: 39842602 DOI: 10.1016/j.ijbiomac.2025.140116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/05/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Calcium-based nanomaterials-mediated Ca2+ overload-induced pyroptosis and its application in tumor therapy have received considerable attention. However, the calcium buffering capacity of tumor cells can maintain mitochondrial calcium homeostasis, so it is important to effectively disrupt this homeostasis to activate pyroptosis. Here, a nano-modulator CUR@CaCO3-PArg@HA (CCAH) was developed to regulate calcium overload in multiple channels and activate pyroptosis. Hyaluronic acid (HA)-coated nano-modulators achieve tumor targeting, and under the weakly acidic conditions of the tumor microenvironment (TME), CaCO3 nanoparticles rapidly release curcumin (CUR), inhibit the outflow of intracellular Ca2+, and release exogenous Ca2+. Meanwhile, poly-L-arginine (PArg) reacts with reactive oxygen species (ROS) generated by mitochondrial imbalance, releasing nitric oxide (NO) and stimulating the endoplasmic reticulum to release endogenous Ca2+. The combined action of endogenous and exogenous Ca2+ effectively activates caspase-1, which cleaves gasdermin-D (GSDMD) to produce the active N-terminus (GSDMD-N), effectively activating pyroptosis. Notably, the generated ROS and NO can also generate more oxidizing ONOO-, further exacerbating the imbalance in mitochondrial homeostasis. This work demonstrates that simultaneous modulation of exogenous and endogenous Ca2+ can disrupt mitochondrial Ca2+ homeostasis and effectively activate pyroptosis to treat tumors, which is expected to promote the progression of cancer treatment in the future.
Collapse
Affiliation(s)
- Linwei Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zihan Xing
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jinyu Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yuhao Guo
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaomei Wu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yiming Ma
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ziqiang Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ying Kuang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China.
| | - Tao Liao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China.
| | - Cao Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Zhang Z, Hu Y, Ding Y, Zhang X, Dong X, Xie L, Yang Z, Hu ZW. Dual-Enzyme-Instructed Peptide Self-Assembly to Boost Immunogenic Cell Death by Coordinating Intracellular Calcium Overload and Chemotherapy. ACS NANO 2025; 19:488-503. [PMID: 39754594 DOI: 10.1021/acsnano.4c10119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The concept of immunogenic cell death (ICD) induced by chemotherapy as a potential synergistic modality for cancer immunotherapy has been widely discussed. Unfortunately, most chemotherapeutic agents failed to dictate effective ICD responses due to their defects in inducing potent ICD signaling. Here, we report a dual-enzyme-instructed peptide self-assembly platform of CPMC (CPT-GFFpY-PLGVRK-Caps) that cooperatively utilizes camptothecin (CPT) and capsaicin (Caps) to promote ICD and engage systemic adaptive immunity for tumor rejection. Although CPT and Caps respectively prevent tumor progression by inhibiting type-I DNA topoisomerase and activating transient receptor potential cation channel subfamily V member 1 (TRPV1) for intracellular calcium overload, neither alone effectively stimulates sufficient ICD signaling to meet immunotherapeutic needs. CPMC, sequentially allowing an active Caps derivative of VRK-Caps and CPT to release extracellularly and intracellularly, can synergize two distinct apoptosis pathways stimulated by Caps and CPT to increase tumor immunogenicity and elicit systemic T-cell-based immunity. Consequently, CPMC facilitates the generation of improved tumor-specific cytotoxic T-cell responses and sustained immunological memory, successfully suppressing both primary and distant tumors. Moreover, CPMC can render tumors susceptible to PD-L1 blockade and synergize with an antiprogrammed cell death-ligand 1 (aPDL1) antibody for tumor inhibition. Combining two cancer chemotherapeutic drugs with low ICD-stimulating capacity using a peptide self-assembly strategy was demonstrated to boost ICD responses and potentiate cancer immunotherapy.
Collapse
Affiliation(s)
- Zhenghao Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yuhan Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yinghao Ding
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiao Dong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Limin Xie
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhimou Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Wen Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
4
|
Qi JJ, Liu MH, He L, Wang JX, Zeng XF. A General Strategy for Controllable Preparation of Nano-CaCO 3. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1137-1148. [PMID: 39810354 DOI: 10.1021/acs.langmuir.4c04458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Controllable preparation of inorganic nanomaterials with specific morphology and structure is very important for their applications in various fields. Herein, a general strategy was proposed to controllably synthesize nano-CaCO3 via a water-in-oil microemulsion method in the rotating packed bed reactor. By tuning key parameters, nano-CaCO3 with four primarily analyzed morphologies, including spherical, spindle-like, clustered, or linear formations, can be selectively obtained. The diameters of the nanospheres are adjustable within the range of 4-20 nm, and the lengths of the nanowires can be tuned from 100 to 800 nm. Notably, nano-CaCO3 with four crystal forms, amorphous, vaterite, aragonite, and calcite, can also be controllably synthesized. Importantly, these prepared nano-CaCO3 have excellent dispersity, which can be well-dispersed in dozens of types of liquid media to form transparent or semitransparent nanodispersions. This work provides a general method for producing nanomaterials, enabling precise control over the desired morphology and structure and ensuring commendable dispersibility, which can greatly foster broader preparations and applications of nanomaterials in the fields.
Collapse
Affiliation(s)
- Jia-Jia Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming-Hui Liu
- Petrochemical Research Institute, PetroChina, Beijing 102206, China
| | - Lin He
- Zhejiang Chuangfu Hi-Tech New Material Co., Ltd., Quzhou 324000, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiao-Fei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Yang L, Sun Q, Chen S, Ma D, Qi Y, Liu H, Tan S, Yue Q, Cai L. pH-responsive hydrogel with gambogic acid and calcium nanowires for promoting mitochondrial apoptosis in osteosarcoma. J Control Release 2025; 377:563-577. [PMID: 39603540 DOI: 10.1016/j.jconrel.2024.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Calcium (Ca2+) overload therapy gained significant attention in oncology. However, its therapeutic efficacy remained limited due to insufficient Ca2+ accumulation at the tumor site and suboptimal intracellular Ca2+ influx. In this study, gambogic acid (GA), a natural phenolic compound known to promote Ca2+ influx, was encapsulated within an enzyme-triggered, pH-responsive hydrogel (GM@Lip@CHP-Gel) containing Ca2+ hydrogen phosphate nanowires (CHP) to achieve a synergistic approach for bone tumor therapy. GM@Lip@CHP-Gel selectively responded to the slightly acidic tumor microenvironment, triggering degradation of its 3D network structure and sustaining the release of GA and Ca2+ into tumor cells. GA subsequently stimulated Ca2+ influx in tumor cells, effectively disrupting Ca2+ homeostasis. CHP nanowires served as a continuous Ca2+ source, enhancing GA-mediated Ca2+ overload and promoting mitochondrial apoptosis in tumor cells. The combined strategy resulted in an in vivo tumor suppression rate of 79 % and a lung metastasis inhibition rate of 89.4 %, with a protective effect on bone tissue. The naturally derived, Ca2+-mediated treatment demonstrated physiochemical stability in physiological environments and minimized side effects on healthy organs, positioning it as a promising approach for clinical bone cancer therapy.
Collapse
Affiliation(s)
- Lei Yang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, People's Hospital of Jianyang, Jianyang 641400, China
| | - Qiang Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shiyin Chen
- Department of Orthopedics of Chinese Medicine, Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Dongshen Ma
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yao Qi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qin Yue
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
6
|
Luo M, Wang YM, Zhao FK, Luo Y. Recent Advances in Nanomaterial-Mediated Cell Death for Cancer Therapy. Adv Healthc Mater 2025; 14:e2402697. [PMID: 39498722 DOI: 10.1002/adhm.202402697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Indexed: 11/07/2024]
Abstract
Nanomedicine has shown great anticancer potential by disrupting redox homeostasis and increasing the levels of oxidative stress, but the therapeutic effect is limited by factors including the intrinsic self-protection mechanism of tumors. Cancer cell death can be induced by the exploration of different cell death mechanisms, such as apoptosis, pyroptosis, necroptosis, cuproptosis, and ferroptosis. The merging of nanotechnology with biomedicine has provided tremendous opportunities to construct cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only used for the targeted delivery of cell death inducers, but also as therapeutic components to induce cell death to achieve efficient tumor treatment. This review focuses on seven cell death modalities mediated by nanomaterials, such as apoptosis, pyroptosis, necroptosis, ferroptosis, cuprotosis, immunogenic cell death, and autophagy. The mechanisms of these seven cell death modalities are described in detail, as well as the preparation of nanomaterials that induce them and the mechanisms, they used to exert their effects. Finally, this work describes the potential future development based on the current knowledge related to cell death induced by nanomaterials.
Collapse
Affiliation(s)
- Min Luo
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yuan-Min Wang
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Fu-Kun Zhao
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yong Luo
- Department of Neurology, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| |
Collapse
|
7
|
Zhang L, Hu H, Cai W, Chen S, Sheng P, Fu X. CaCO 3-complexed pH-responsive nanoparticles encapsulating mitoxantrone and celastrol enhance tumor chemoimmunotherapy. Int J Pharm 2024; 667:124860. [PMID: 39461678 DOI: 10.1016/j.ijpharm.2024.124860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Modulating the immunosuppressive tumor microenvironment (TME) while enhancing antitumor immune responses is a promising strategy. In this study, we designed an acid-sensitive nanosystem (MCCaNPs) to demonstrate effective immunotherapy against cancer through the systemic delivery of immune-stimulating chemotherapy combinations. A pH-responsive nanoplatform containing CaCO3 was prepared by the double emulsion method, and mitoxantrone (MIT) and celastrol (CEL) were simultaneously encapsulated as immunogenic cell death (ICD) inducers. Due to the acid responsiveness of CaCO3, the nanoparticles rapidly consume H+ to relieve the acidic tumor microenvironment and explosively release CEL and MIT, showing inherent immunomodulatory activity in collaborative tumor chemoimmunotherapy. MIT and CEL synergistically trigger stronger ICD by inducing tumor cells to release calreticulin (CRT), high mobility group box 1 protein (HMGB1). Following the intravenous administration of MCCaNPs, the local tumor microenvironment(TME) was reprogrammed in mice-bearing tumors. This reprogramming was characterized by a significant increase in the density of tumor-infiltrating cytotoxic T lymphocytes(CTLs), ultimately prolonging survival. Therefore, this research proposes a promising approach to trigger immunogenic cell death collaboratively, aiming to boost the tumor CTLs infiltration for anticancer immunotherapy.
Collapse
Affiliation(s)
- Liang Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Huiqiang Hu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Wan Cai
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Shungen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Ping Sheng
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China.
| | - Xiaomei Fu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; FAN Cuisheng Studio of National Famous TCM, Nanchang 330006, China.
| |
Collapse
|
8
|
Sun J, Wang D, Wei Y, Wang D, Ji Z, Sun W, Wang X, Wang P, Basmadji NP, Larrarte E, Pedraz JL, Ramalingam M, Xie S, Wang R. Capsaicin-induced Ca 2+ overload and ablation of TRPV1-expressing axonal terminals for comfortable tumor immunotherapy. NANOSCALE 2024. [PMID: 39688368 DOI: 10.1039/d4nr04454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
As a common malignancy symptom, cancer pain significantly affects patients' quality of life. Approximately 60%-90% of patients with advanced cancer experience debilitating pain. Therefore, a comprehensive treatment system that combines cancer pain suppression and tumor treatment could provide significant benefits for these patients. Here, we designed a manganese oxide (MnO2)/Bovine serum albumin (BSA)/polydopamine (PDA) composite nanoplatform internally loaded with capsaicin for cancer pain suppression and immunotherapy. MBD&C nanoparticles (NPs) can ablate tumor-innervated sensory nerve fibers via Transient receptor potential vanilloid 1 (TRPV1) channels, thereby reducing the pain caused by various inflammatory mediators. The ablation of TRPV1+ nerve terminals can also decrease the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP) in sensory nerve fibers, thus reducing the tumor pain and inhibit tumor progression. MBD&C can promote calcium influx by activating overexpressed TRPV1 channels on the tumor membrane surface, thereby achieving cancer immunotherapy induced by endogenous Ca2+ overloading. In addition, MnO2 NPs can alleviate tumor hypoxia and mitigate the immunosuppressive tumor microenvironment (TME). Ultimately, this treatment system with dual capabilities of inhibiting tumor growth and relieving cancer pain makes comfortable tumor therapy feasible and paves the way for the development of patient-centered approaches to cancer treatment in the future.
Collapse
Affiliation(s)
- Jian Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Deqiang Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Yiying Wei
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Danyang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Zhengkun Ji
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wanru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Nicola Paccione Basmadji
- TECNALIA, Basque Research & Technology Alliance (BRTA) Miñano, Spain
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Eider Larrarte
- TECNALIA, Basque Research & Technology Alliance (BRTA) Miñano, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma, Development, A Joint Venture of TECNALIA and University of the Basque Country (UPV/EHU), Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Murugan Ramalingam
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma, Development, A Joint Venture of TECNALIA and University of the Basque Country (UPV/EHU), Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
9
|
Xu W, Suo A, Aldai AJM, Wang Y, Fan J, Xia Y, Xu J, Chen Z, Zhao H, Zhang M, Qian J. Hollow Calcium/Copper Bimetallic Amplifier for Cuproptosis/Paraptosis/Apoptosis Cancer Therapy via Cascade Reinforcement of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. ACS NANO 2024; 18:30053-30068. [PMID: 39412236 DOI: 10.1021/acsnano.4c11455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The endoplasmic reticulum (ER) and mitochondria are essential organelles that play crucial roles in maintaining cellular homeostasis. The simultaneous induction of ER stress and mitochondrial dysfunction represents a promising yet challenging strategy for cancer treatment. Herein, a hollow calcium-copper bimetallic nanoplatform is developed as a cascade amplifier to reinforce ER stress and mitochondrial dysfunction for breast cancer treatment. For this purpose, we report a facile method for preparing hollow CaCO3 (HCC) nanoparticles by regulating the dissolution-recrystallization process of amorphous CaCO3, and the amplifier D@HCC-CuTH is meticulously fabricated by sequentially coating disulfiram-loaded HCC nanoparticles with a copper coordination polymer and hyaluronan. In tumor cells, the dithiocarbamate-copper complex generated in situ by liberated disulfiram and Cu2+ inhibits the ubiquitin-proteasome system, causing irreversible ER stress and intracellular Ca2+ redistribution. Meanwhile, the amplifier induces mitochondrial dysfunction via triggering a self-amplifying loop of mitochondrial Ca2+ burst, and reactive oxygen species augment. Additionally, Cu2+ induces dihydrolipoamide S-acetyltransferase oligomerization in mitochondria, further exacerbating mitochondrial damage via cuproptosis. Collectively, ER stress amplification and mitochondrial dysfunction synergistically induce a cuproptosis-paraptosis-apoptosis trimodal cell death pathway, which demonstrates significant efficacy in suppressing tumor growth. This study presents a paradigm for synchronously inducing subcellular organelle disorders to boost cancer multimodal therapy.
Collapse
Affiliation(s)
- Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | | | - Yaping Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingjing Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuxiang Xia
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxuan Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhexi Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huichen Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Zhang W, Li J, Yue L, Ji C. Targeted Delivery of Celastrol by GA-Modified Liposomal Calcium Carbonate Nanoparticles to Enhance Antitumor Efficacy Against Breast Cancer. Pharmaceutics 2024; 16:1382. [PMID: 39598506 PMCID: PMC11597737 DOI: 10.3390/pharmaceutics16111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Breast cancer, a leading health threat affecting millions worldwide, requires effective therapeutic interventions. Celastrol (CEL), despite its antitumor potential, is limited by poor solubility and stability. This study aimed to enhance CEL's efficacy by encapsulating it within glycyrrhizic acid (GA)-modified lipid calcium carbonate (LCC) nanoparticles for targeted breast cancer therapy. METHODS The 4T1 mouse breast cancer cells were used for the study. GA-LCC-CEL nanoparticles were prepared using a gas diffusion method and a thin-film dispersion method. GA-LCC-CEL were characterized using the zeta-potential, dynamic light scattering and transmission electron microscope (TEM). The in vitro release behavior of nanoparticles was assessed using the in vitro dialysis diffusion method. Cellular uptake was examined using flow cytometry and confocal microscopy. Intracellular ROS and Rhodamine 123 levels were observed under fluorescence microscopy. MTT and colony formation assays assessed cytotoxicity and proliferation, and apoptosis was analyzed by Annexin V-FITC/PI staining. Wound healing and transwell assays evaluated migration, and Western blotting confirmed protein expression changes related to apoptosis and migration. RESULTS GA-LCC-CEL nanoparticles displayed a well-defined core-shell structure with a uniform size distribution. They showed enhanced anti-proliferative and pro-apoptotic effects against 4T1 cells and significantly reduced breast cancer cell invasion and migration. Additionally, GA-LCC-CEL modulated epithelial-mesenchymal transition (EMT) protein expression, downregulating Snail and ZEB1, and upregulating E-cadherin. CONCLUSIONS GA-LCC-CEL nanoparticles represent a promising targeted drug delivery approach for breast cancer, enhancing CEL's antitumor efficacy and potentially inhibiting cancer progression by modulating EMT-related proteins.
Collapse
Affiliation(s)
- Wei Zhang
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150028, China;
| | - Jiping Li
- School of Public Health, Qiqihar Medical University, Qiqihar 161006, China;
| | - Liling Yue
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China;
| | - Chenfeng Ji
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150028, China;
| |
Collapse
|
11
|
Rajaram J, Kuthati Y. Metal Peroxide Nanoparticles for Modulating the Tumor Microenvironment: Current Status and Recent Prospects. Cancers (Basel) 2024; 16:3581. [PMID: 39518022 PMCID: PMC11545372 DOI: 10.3390/cancers16213581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: The significant expansion of nanobiotechnology and nanomedicine has led to the development of innovative and effective techniques to combat various pathogens, demonstrating promising results with fewer adverse effects. Metal peroxide nanoparticles stand out among the crucial yet often overlooked types of nanomaterials, including metals. These nanoparticles are key in producing oxygen (O2) and hydrogen peroxide (H2O2) through simple chemical reactions, which are vital in treating various diseases. These compounds play a crucial role in boosting the effectiveness of different treatment methods and also possess unique properties due to the addition of metal ions. Methods: This review discusses and analyzes some of the most common metal peroxide nanoparticles, including copper peroxide (CuO2), calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), barium peroxide (BaO2), and titanium peroxide (TiOx) nanosystems. These nanosystems, characterized by their greater potential and treatment efficiency, are primarily needed in nanomedicine to combat various harmful pathogens. Researchers have extensively studied the effects of these peroxides in various treatments, such as catalytic nanotherapeutics, photodynamic therapy, radiation therapy, and some combination therapies. The tumor microenvironment (TME) is particularly unique, making the impact of nanomedicine less effective or even null. The presence of high levels of reactive oxygen species (ROS), hypoxia, low pH, and high glutathione levels makes them competitive against nanomedicine. Controlling the TME is a promising approach to combating cancer. Results: Metal peroxides with low biodegradability, toxicity, and side effects could reduce their effectiveness in treating the TME. It is important to consider the distribution of metal peroxides to effectively target cancer cells while avoiding harm to nearby normal cells. As a result, modifying the surface of metal peroxides is a key strategy to enhance their delivery to the TME, thereby improving their therapeutic benefits. Conclusions: This review discussed the various aspects of the TME and the importance of modifying the surface of metal peroxides to enhance their therapeutic advantages against cancer, as well as address safety concerns. Additionally, this review covered the current challenges in translating basic research findings into clinical applications of therapies based on metal peroxide nanoparticles.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan
| |
Collapse
|
12
|
Zheng L, Ding Y, Fang S, Yang W, Chen J, Ma J, Wang M, Wang J, Zhang F, Guo X, Zhang K, Shu GF, Weng Q, Wu F, Zhao Z, Chen M, Jiansong J. Potentiated Calcium Carbonate with Enhanced Calcium Overload Induction and Acid Neutralization Capabilities to Boost Chemoimmunotherapy against Liver Cancer. ACS NANO 2024; 18:27597-27616. [PMID: 39342637 DOI: 10.1021/acsnano.4c08690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Unfavorable phenotypes characterized by low immunogenicity and acidity within the tumor microenvironment (TME) contribute to immunosuppression and therapeutic resistance. Herein, we rationally synthesized a multifunctional nanoregulator by encapsulating DOX and erianin into calcium carbonate (CaCO3)-based nanoparticles using a modified double emulsion method. The DOX and erianin-loaded CaCO3-based nanoparticles, termed DECaNPs, could effectively induce the calcium overload by triggering calcium influx and absorbing CaCO3 nanoparticles. Additionally, DECaNPs also neutralize the acidic TME by interacting with extracellular protons and limiting lactic acid production, a result of metabolic remodeling in cancer cells. As a result, DECaNPs elicit cellular oxidative stress damage, which mediates the activation of ferroptosis/apoptosis hybrid pathways, and profound immunogenic cell death. Treatment with DECaNPs could inhibit the growth of tumors by promoting oxidative stress, acid neutralization, metabolic remodeling, and protective antitumor immunity in vivo. In addition, DECaNPs could synergistically amplify the antitumor effects of αPD-L1 in a bilateral tumor model by eliciting systemic immune responses. In all, our work presents the preparation of CaCO3-based nanoregulators designed to reverse the unfavorable TME and enhance αPD-L1 immunotherapy through multiple mechanisms.
Collapse
Affiliation(s)
- Liyun Zheng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yiming Ding
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Wenjing Yang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Jiale Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Ji Ma
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Mengyuan Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiaoli Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Feng Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xiaoju Guo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Kun Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Gao-Feng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Qiaoyou Weng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Ji Jiansong
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, China
| |
Collapse
|
13
|
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, Dos Santos MR, Pereira CM, Santos HA. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv Transl Res 2024; 14:2845-2916. [PMID: 39003425 PMCID: PMC11385056 DOI: 10.1007/s13346-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Several efforts have been extensively accomplished for the amelioration of the cancer treatments using different types of new drugs and less invasives therapies in comparison with the traditional therapeutic modalities, which are widely associated with numerous drawbacks, such as drug resistance, non-selectivity and high costs, restraining their clinical response. The application of natural compounds for the prevention and treatment of different cancer cells has attracted significant attention from the pharmaceuticals and scientific communities over the past decades. Although the use of nanotechnology in cancer therapy is still in the preliminary stages, the application of nanotherapeutics has demonstrated to decrease the various limitations related to the use of natural compounds, such as physical/chemical instability, poor aqueous solubility, and low bioavailability. Despite the nanotechnology has emerged as a promise to improve the bioavailability of the natural compounds, there are still limited clinical trials performed for their application with various challenges required for the pre-clinical and clinical trials, such as production at an industrial level, assurance of nanotherapeutics long-term stability, physiological barriers and safety and regulatory issues. This review highlights the most recent advances in the nanocarriers for natural compounds secreted from plants, bacteria, fungi, and marine organisms, as well as their role on cell signaling pathways for anticancer treatments. Additionally, the clinical status and the main challenges regarding the natural compounds loaded in nanocarriers for clinical applications were also discussed.
Collapse
Affiliation(s)
- Tatiana Andreani
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Centre & Inov4Agro, Department of Biology, Faculty of Sciences of University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Khalil Elbadri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Claudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Thacilla Menezes
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mayara R Dos Santos
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
14
|
Jiang H, Jia YK, Wang YQ, Liu X, Li W, Liu ZP, Wang JD. Construction of a Bifunctional Nanoelectrode for Intracellular Natural Product Delivery and Monitoring Anticancer Efficiency in Single Cells. ACS Sens 2024; 9:4956-4962. [PMID: 39283684 DOI: 10.1021/acssensors.4c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Natural products play a significant role in new drug discovery and anticancer therapy, making the evaluation of their anticancer efficiency crucial for clinical application. However, delivering natural products to single cells and in situ monitoring of induced signaling molecule fluctuation to evaluate anticancer efficiency remain significant challenges. Hence, we proposed a universal and straightforward strategy to construct a bifunctional nanoelectrode that integrates drug loading and monitoring of signal molecule fluctuations at the single-cell level. Platinum (Pt) nanoparticles/reduced graphene oxide (rGO) composites were first electrochemically deposited on the carbon fiber nanoelectrode (CFNE@Pt/rGO) to serve as electrocatalytic materials for the monitoring of natural-product-induced reactive oxygen species (ROS) generation. The GO/natural product complex, formed by π-π stacking and hydrophobic interactions, was further electrochemically reduced on the surface of CFNE@Pt/rGO to enable the CFNE drug-loading function. Using this bifunctional functional nanoelectrode, a series of natural products (such as capsaicin, curcumin, and chrysin) were delivered into single cancer cells, and their anticancer efficiency was evaluated by measuring ROS generation. The results showed that intracellular ROS production induced by chrysin was 1.5-fold greater than that of curcumin and 2.1-fold greater than that of capsaicin. This work proposes an effective tool to evaluate the anticancer efficiency of various natural products. Additionally, this nanotool can be expanded to monitor the fluctuation of other biomolecules (such as RNS, GSH, NADH, etc.) by replacing Pt nanoparticles with other electrocatalytic materials, which is significant for comprehensively exploring the anticancer efficiency of new drugs and for the clinical treatment of various diseases.
Collapse
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yu-Kang Jia
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ya-Qin Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiao Liu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Wei Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhao-Peng Liu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ji-Dong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
15
|
Gao Y, Wang J, Zhang W, Ge F, Li W, Xu F, Cui T, Li X, Yang K, Tao Y. Application of capsaicin and calcium phosphate-loaded MOF system for tumor therapy involving calcium overload. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102759. [PMID: 38851440 DOI: 10.1016/j.nano.2024.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Calcium overload therapy refers to the condition of intracellular Ca2+ overload, which causes mitochondrial damage and leads to the uncontrolled release of apoptotic factors into the cytoplasm through the open mitochondrial permeability pore. Based on this, it is playing an increasingly important role in the field of oncology due to its good efficacy and small side effects. However, the regulation of calcium homeostasis by cancer cells themselves, insufficient calcium ions (Ca2+) in tumor sites and low efficiency of calcium entering tumor have limited its efficacy, resulting in unsatisfactory therapeutic effect. Therefore, a novel CAP/BSA@TCP-ZIF-8 nanoparticle drug carrier system was constructed that can provide Ca2+ from exogenous sources for pH-controlled degradation and drug release at the same time. Both in vivo and in vitro experiments have proved that the nanomaterial can activate TRPV1 channels and provide exogenous Ca2+ to cause Ca2+ overload and apoptosis, thus achieving anti-tumor effects.
Collapse
Affiliation(s)
- Yuan Gao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Feiyang Xu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Ting Cui
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Xing Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| |
Collapse
|
16
|
Yang LJ, Han T, Liu RN, Shi SM, Luan SY, Meng SN. Plant-derived natural compounds: A new frontier in inducing immunogenic cell death for cancer treatment. Biomed Pharmacother 2024; 177:117099. [PMID: 38981240 DOI: 10.1016/j.biopha.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Immunogenic cell death (ICD) can activate adaptive immune response in the host with normal immune system. Some synthetic chemotherapeutic drugs and natural compounds have shown promising results in cancer treatment by triggering the release of damage-associated molecules (DAMPs) to trigger ICD. However, most chemotherapeutic drugs exhibit non-selective cytotoxicity and may also induce and promote metastasis, thereby significantly reducing their clinical efficacy. Among the natural compounds that can induce ICD, plant-derived compounds account for the largest proportion, which are of increasing value in the treatment of cancer. Understanding which plant-derived natural compounds can induce ICD and how they induce ICD is crucial for developing strategies to improve chemotherapy outcomes. In this review, we focus on the recent findings regarding plant-derived natural compounds that induce ICD according to the classification of flavonoids, alkaloids, glycosides, terpenoids and discuss the potential mechanisms including endoplasmic reticulum (ER) stress, DNA damage, apoptosis, necroptosis autophagy, ferroptosis. In addition, plant-derived natural compounds that can enhance the ICD induction ability of conventional therapies for cancer treatment is also elaborated. The rational use of plant-derived natural compounds to induce ICD is helpful for the development of new cancer treatment methods.
Collapse
Affiliation(s)
- Li-Juan Yang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ting Han
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ruo-Nan Liu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shu-Ming Shi
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shi-Yun Luan
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Sheng-Nan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
17
|
Petran EM, Periferakis A, Troumpata L, Periferakis AT, Scheau AE, Badarau IA, Periferakis K, Caruntu A, Savulescu-Fiedler I, Sima RM, Calina D, Constantin C, Neagu M, Caruntu C, Scheau C. Capsaicin: Emerging Pharmacological and Therapeutic Insights. Curr Issues Mol Biol 2024; 46:7895-7943. [PMID: 39194685 DOI: 10.3390/cimb46080468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Capsaicin, the most prominent pungent compound of chilli peppers, has been used in traditional medicine systems for centuries; it already has a number of established clinical and industrial applications. Capsaicin is known to act through the TRPV1 receptor, which exists in various tissues; capsaicin is hepatically metabolised, having a half-life correlated with the method of application. Research on various applications of capsaicin in different formulations is still ongoing. Thus, local capsaicin applications have a pronounced anti-inflammatory effect, while systemic applications have a multitude of different effects because their increased lipophilic character ensures their augmented bioavailability. Furthermore, various teams have documented capsaicin's anti-cancer effects, proven both in vivo and in vitro designs. A notable constraint in the therapeutic effects of capsaicin is its increased toxicity, especially in sensitive tissues. Regarding the traditional applications of capsaicin, apart from all the effects recorded as medicinal effects, the application of capsaicin in acupuncture points has been demonstrated to be effective and the combination of acupuncture and capsaicin warrants further research. Finally, capsaicin has demonstrated antimicrobial effects, which can supplement its anti-inflammatory and anti-carcinogenic actions.
Collapse
Affiliation(s)
- Elena Madalina Petran
- Department of Biochemistry, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children's Hospital, 011743 Bucharest, Romania
| | - Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Romina-Marina Sima
- Department of Obstetrics and Gynecology, The "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- The "Bucur" Maternity, "Saint John" Hospital, 040294 Bucharest, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
18
|
Wang D, Jia H, Cao H, Hou X, Wang Q, Lin J, Liu J, Yang L, Liu J. A Dual-Channel Ca 2+ Nanomodulator Induces Intracellular Ca 2+ Disorders via Endogenous Ca 2+ Redistribution for Tumor Radiosensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401222. [PMID: 38690593 DOI: 10.1002/adma.202401222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Tumor cells harness Ca2+ to maintain cellular homeostasis and withstand external stresses from various treatments. Here, a dual-channel Ca2+ nanomodulator (CAP-P-NO) is constructed that can induce irreversible intracellular Ca2+ disorders via the redistribution of tumor-inherent Ca2+ for disrupting cellular homeostasis and thus improving tumor radiosensitivity. Stimulated by tumor-overexpressed acid and glutathione, capsaicin and nitric oxide are successively escaped from CAP-P-NO to activate the transient receptor potential cation channel subfamily V member 1 and the ryanodine receptor for the influx of extracellular Ca2+ and the release of Ca2+ in the endoplasmic reticulum, respectively. The overwhelming level of Ca2+ in tumor cells not only impairs the function of organelles but also induces widespread changes in the gene transcriptome, including the downregulation of a set of radioresistance-associated genes. Combining CAP-P-NO treatment with radiotherapy achieves a significant suppression against both pancreatic and patient-derived hepatic tumors with negligible side effects. Together, the study provides a feasible approach for inducing tumor-specific intracellular Ca2+ overload via endogenous Ca2+ redistribution and demonstrates the great potential of Ca2+ disorder therapy in enhancing the sensitivity for tumor radiotherapy.
Collapse
Affiliation(s)
- Dianyu Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Haixue Jia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hongmei Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Qian Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jia Lin
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jinjian Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Lijun Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
19
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
20
|
Wang Y, Zhou X, Yao L, Hu Q, Liu H, Zhao G, Wang K, Zeng J, Sun M, Lv C. Capsaicin Enhanced the Efficacy of Photodynamic Therapy Against Osteosarcoma via a Pro-Death Strategy by Inducing Ferroptosis and Alleviating Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306916. [PMID: 38221813 DOI: 10.1002/smll.202306916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Ferroptosis, a novel form of nonapoptotic cell death, can effectively enhance photodynamic therapy (PDT) performance by disrupting intracellular redox homeostasis and promoting apoptosis. However, the extremely hypoxic tumor microenvironment (TME) together with highly expressed hypoxia-inducible factor-1α (HIF-1α) presents a considerable challenge for clinical PDT against osteosarcoma (OS). Hence, an innovative nanoplatform that enhances antitumor PDT by inducing ferroptosis and alleviating hypoxia is fabricated. Capsaicin (CAP) is widely reported to specifically activate transient receptor potential vanilloid 1 (TRPV1) channel, trigger an increase in intracellular Ca2+ concentration, which is closely linked with ferroptosis, and participate in decreased oxygen consumption by inhibiting HIF-1α in tumor cells, potentiating PDT antitumor efficiency. Thus, CAP and the photosensitizer IR780 are coencapsulated into highly biocompatible human serum albumin (HSA) to construct a nanoplatform (CI@HSA NPs) for synergistic tumor treatment under near-infrared (NIR) irradiation. Furthermore, the potential underlying signaling pathways of the combination therapy are investigated. CI@HSA NPs achieve real-time dynamic distribution monitoring and exhibit excellent antitumor efficacy with superior biosafety in vivo. Overall, this work highlights a promising NIR imaging-guided "pro-death" strategy to overcome the limitations of PDT for OS by promoting ferroptosis and alleviating hypoxia, providing inspiration and support for future innovative tumor therapy approaches.
Collapse
Affiliation(s)
- Yang Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Xueru Zhou
- West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China
| | - Li Yao
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Qin Hu
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, P. R. China
| | - Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, P. R. China
| | - Guosheng Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Kai Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Jun Zeng
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Mingwei Sun
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Chuanzhu Lv
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, P. R. China
| |
Collapse
|
21
|
Yang X, Sun Y, Zhang H, Liu F, Chen Q, Shen Q, Kong Z, Wei Q, Shen JW, Guo Y. CaCO 3 nanoplatform for cancer treatment: drug delivery and combination therapy. NANOSCALE 2024; 16:6876-6899. [PMID: 38506154 DOI: 10.1039/d3nr05986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.
Collapse
Affiliation(s)
- Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yue Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fengrui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhe Kong
- Center for Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
22
|
Zhou X, Wang Q, Lei Z, Zhang K, Zhen S, Yao H, Zu Y. Calcium Carbonate-Based Nanoplatforms for Cancer Therapeutics: Current State of Art and Future Breakthroughs. ACS OMEGA 2024; 9:12539-12552. [PMID: 38524488 PMCID: PMC10955594 DOI: 10.1021/acsomega.3c09987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
With the rapid development of nanotechnology, nanomaterials have shown immense potential for antitumor applications. Nanosized calcium carbonate (CaCO3) materials exhibit excellent biocompatibility and degradability, and have been utilized to develop platform technologies for cancer therapy. These materials can be engineered to carry anticancer drugs and functional groups that specifically target cancer cells and tissues, thereby enhancing therapeutic efficacy. Additionally, their physicochemical properties can be tailored to enable stimuli-responsive therapy and precision drug delivery. This Review consolidates recent literatures focusing on the synthesis, physicochemical properties, and multimodal antitumor therapies of CaCO3-based nanoplatforms (CBN). We also explore the current challenges and potential breakthroughs in the development of CBN for antitumor applications, providing a valuable reference for researchers in the field.
Collapse
Affiliation(s)
- Xiaoting Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Qihui Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Zipeng Lei
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- Clinical
College of the Third Medical Center of Chinese PLA General Hospital, The Fifth Clinical Medical College of Anhui Medical
University, Hefei 230032, Anhui China
| | - Ke Zhang
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Shuxue Zhen
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Huiqin Yao
- College
of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Zu
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Liu X, Zhang M, He C, Jia S, Xiang R, Xu Y, Zhao M. Research focus and thematic trends of transient receptor potential vanilloid member 1 research: a bibliometric analysis of the global publications (1990-2023). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1327-1346. [PMID: 37695335 DOI: 10.1007/s00210-023-02709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Recently, various studies have been devoted to the study of transient receptor potential vanilloid member 1 (TRPV1)-related diseases, potential drugs, and related mechanisms. The objective of this investigation was to examine the significant areas and cutting-edge developments in TRPV1 study within recent decades. Articles or reviews were obtained from the Web of Science Core Collection. VOSviewer 1.6.18 and CiteSpace 6.1 R2 software were utilized to examine publication growth, distribution by country/region, institution, journal, authorship, references, and keywords. The software identified keywords with a high citation burstiness to determine emerging topics. From 1990 to 2023, the annual global publications increased by 62,000%, from 1 to 621. Journal of neuroscience published the most manuscripts and Nature produced the highest citations. The USA, Seoul National University and Di marzo V were the most productive and impactful institution, country, and author, respectively. "TRPV1," "Capsaicin receptor," "Activation," and "Pain" are the most important keywords. The burst keywords "TRPV1 channel," "Oxidative stress," "TRPV1 structure," and "Cancer" are supposed to be the research frontiers. The present study offers valuable insights into the understanding of TRPV1 and pain-related conditions. The research on TRPV1 has demonstrated a steady increase in studies related to pain-related diseases in the past few decades. The significance of TRPV1 in cancer pathogenesis and the resolution of its structure will emerge as a new academic trend in this field, providing direction for more widespread and comprehensive studies in the future.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Mengying Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Chongyang He
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Shubing Jia
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rongwu Xiang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
24
|
Lin C, Akhtar M, Li Y, Ji M, Huang R. Recent Developments in CaCO 3 Nano-Drug Delivery Systems: Advancing Biomedicine in Tumor Diagnosis and Treatment. Pharmaceutics 2024; 16:275. [PMID: 38399329 PMCID: PMC10893456 DOI: 10.3390/pharmaceutics16020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Calcium carbonate (CaCO3), a natural common inorganic material with good biocompatibility, low toxicity, pH sensitivity, and low cost, has a widespread use in the pharmaceutical and chemical industries. In recent years, an increasing number of CaCO3-based nano-drug delivery systems have been developed. CaCO3 as a drug carrier and the utilization of CaCO3 as an efficient Ca2+ and CO2 donor have played a critical role in tumor diagnosis and treatment and have been explored in increasing depth and breadth. Starting from the CaCO3-based nano-drug delivery system, this paper systematically reviews the preparation of CaCO3 nanoparticles and the mechanisms of CaCO3-based therapeutic effects in the internal and external tumor environments and summarizes the latest advances in the application of CaCO3-based nano-drug delivery systems in tumor therapy. In view of the good biocompatibility and in vivo therapeutic mechanisms, they are expected to become an advancing biomedicine in the field of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Chenteng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Yingjie Li
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Min Ji
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| |
Collapse
|
25
|
Feng Y, Wang J, Cao J, Cao F, Chen X. Manipulating calcium homeostasis with nanoplatforms for enhanced cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230019. [PMID: 38854493 PMCID: PMC10867402 DOI: 10.1002/exp.20230019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/28/2023] [Indexed: 06/11/2024]
Abstract
Calcium ions (Ca2+) are indispensable and versatile metal ions that play a pivotal role in regulating cell metabolism, encompassing cell survival, proliferation, migration, and gene expression. Aberrant Ca2+ levels are frequently linked to cell dysfunction and a variety of pathological conditions. Therefore, it is essential to maintain Ca2+ homeostasis to coordinate body function. Disrupting the balance of Ca2+ levels has emerged as a potential therapeutic strategy for various diseases, and there has been extensive research on integrating this approach into nanoplatforms. In this review, the current nanoplatforms that regulate Ca2+ homeostasis for cancer therapy are first discussed, including both direct and indirect approaches to manage Ca2+ overload or inhibit Ca2+ signalling. Then, the applications of these nanoplatforms in targeting different cells to regulate their Ca2+ homeostasis for achieving therapeutic effects in cancer treatment are systematically introduced, including tumour cells and immune cells. Finally, perspectives on the further development of nanoplatforms for regulating Ca2+ homeostasis, identifying scientific limitations and future directions for exploitation are offered.
Collapse
Affiliation(s)
- Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jianlin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Agency for Science, Technology, and Research (A*STAR)Institute of Molecular and Cell BiologySingaporeSingapore
| |
Collapse
|
26
|
Li Y, Wang D, Sun J, Hao Z, Tang L, Sun W, Zhang X, Wang P, Ruiz-Alonso S, Pedraz JL, Kim HW, Ramalingam M, Xie S, Wang R. Calcium Carbonate/Polydopamine Composite Nanoplatform Based on TGF-β Blockade for Comfortable Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3187-3201. [PMID: 38206677 DOI: 10.1021/acsami.3c16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Cancer pain seriously reduces the quality of life of cancer patients. However, most research about cancer focuses solely on inhibiting tumor growth, neglecting the issue of cancer pain. Therefore, the development of therapeutic agents with both tumor suppression and cancer pain relief is crucial to achieve human-centered treatment. Here, the work reports curcumin (CUR) and ropivacaine (Ropi) coincorporating CaCO3/PDA nanoparticles (CaPNMCUR+Ropi) that realized efficient tumor immunotherapy and cancer pain suppression. The therapeutic efficiency and mechanism are revealed in vitro and in vivo. The results indicate that CaPNMCUR+Ropi underwent tumor microenvironment-responsive degradation and realized rapid release of calcium ions, Ropi, and CUR. The excessive intracellular calcium triggered the apoptosis of tumor cells, and the transient pain caused by the tumor injection was relieved by Ropi. Simultaneously, CUR reduced the levels of immunosuppressive factor (TGF-β) and inflammatory factor (IL-6, IL-1β, and TNF-α) in the tumor microenvironment, thereby continuously augmenting the immune response and alleviating inflammatory pain of cancer animals. Meanwhile, the decrease of TGF-β leads to the reduction of transient receptor potential vanilloid 1 (TRPV1) expression, thereby alleviating hyperalgesia and achieving long-lasting analgesic effects. The design of the nanosystem provides a novel idea for human-centered tumor treatment in the future.
Collapse
Affiliation(s)
- Yunmeng Li
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Deqiang Wang
- Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Jian Sun
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Zhaokun Hao
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Letian Tang
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wanru Sun
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Xuehua Zhang
- Department of Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng 252000, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Murugan Ramalingam
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara 06830, Turkey
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
| |
Collapse
|
27
|
Zhao L, Chen J, Bai B, Song G, Zhang J, Yu H, Huang S, Wang Z, Lu G. Topical drug delivery strategies for enhancing drug effectiveness by skin barriers, drug delivery systems and individualized dosing. Front Pharmacol 2024; 14:1333986. [PMID: 38293666 PMCID: PMC10825035 DOI: 10.3389/fphar.2023.1333986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Topical drug delivery is widely used in various diseases because of the advantages of not passing through the gastrointestinal tract, avoiding gastrointestinal irritation and hepatic first-pass effect, and reaching the lesion directly to reduce unnecessary adverse reactions. The skin helps the organism to defend itself against a huge majority of external aggressions and is one of the most important lines of defense of the body. However, the skin's strong barrier ability is also a huge obstacle to the effectiveness of topical medications. Allowing the bioactive, composition in a drug to pass through the stratum corneum barrier as needed to reach the target site is the most essential need for the bioactive, composition to exert its therapeutic effect. The state of the skin barrier, the choice of delivery system for the bioactive, composition, and individualized disease detection and dosing planning influence the effectiveness of topical medications. Nowadays, enhancing transdermal absorption of topically applied drugs is the hottest research area. However, enhancing transdermal absorption of drugs is not the first choice to improve the effectiveness of all drugs. Excessive transdermal absorption enhances topical drug accumulation at non-target sites and the occurrence of adverse reactions. This paper introduces topical drug delivery strategies to improve drug effectiveness from three perspectives: skin barrier, drug delivery system and individualized drug delivery, describes the current status and shortcomings of topical drug research, and provides new directions and ideas for topical drug research.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bai Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guili Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Gai Y, Bai C, Zhang W, Xiao H, Xu J, Hou J, Ge X. Nootkatone attenuates airway inflammation in asthmatic mice through repressing ROS-induced NLRP3 inflammasome activation. Biochem Cell Biol 2023; 101:513-522. [PMID: 37466343 DOI: 10.1139/bcb-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Nootkatone (NKT) exhibits potential pharmacological activities including anti-oxidation and anti-inflammation. Nevertheless, little is known about the roles of NKT in asthmatic airway inflammation. In the study, mice were sensitized and challenged with ovalbumin (OVA) to establish experimental allergic asthma model. After treatment with NKT, lung tissues, peripheral blood, and bronchoalveolar lavage fluid (BALF) were collected to assess inflammatory cytokines, oxidative stress, and pathological alternations. The effects of NKT on regulating reactive oxygen species (ROS)-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation was assessed in IL-13-treated BEAS-2B cell model. We found that NKT treatment decreased the production of Th2 inflammatory cytokines (IL-4, IL-5, and IL-13) in BALF and IgE levels in serum, and alleviated inflammatory cell penetration, goblet cell proliferation, collagen accumulation, and mucus hypersecretion in lung tissues. NKT treatment mitigated oxidative stress and NLRP3 inflammasome activation in asthmatic mice. IL-13 treatment induced oxidative stress and NLRP3-mediated pyroptosis in BEAS-2B bronchial epithelial cells, whereas these effects were blocked by NKT. NKT protected against airway remodeling, as indicated by decreased epithelial-mesenchymal transition. Taken together, these results demonstrate that NKT mitigates asthmatic airway inflammation by inhibiting ROS-triggered NLRP3 activation and may be a potential agent for treating asthma.
Collapse
Affiliation(s)
- Yun Gai
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Datong Road, Shanghai 200137, People's Republic of China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University, Changhai Road, Shanghai 200433, People's Republic of China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shu Guang Hospital of Shanghai University of TCM, Shanghai 201203, People's Republic of China
| | - Hua Xiao
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Datong Road, Shanghai 200137, People's Republic of China
| | - Jing Xu
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Datong Road, Shanghai 200137, People's Republic of China
| | - Jia Hou
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, People's Republic of China
| | - Xiahui Ge
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Datong Road, Shanghai 200137, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Luo W, Li Z, Zhang L, Xie X. Polyethylenimine-CO2 adduct templated CaCO3 nanoparticles as anticancer drug carrier. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Abstract
Background
Due to their porous structure and capability to degrade under acidic conditions, CaCO3 nanoparticles in vaterite form can be used as carriers to effectively deliver drugs to low-pH sites such as tumors. The usually used intravenous administration requires long-term vaterite phase and colloidal stability for storage and blood circulation. While passive accumulation in tumors can be achieved via the enhanced permeation and retention effect, active accumulation requires reactive groups on vaterite nanoparticles to conjugate targeting molecules. Both requirements are hard to achieve in one simple and economical vaterite formulation. Herein, we used polyethylenimine (PEI)-based CO2 adduct as both a CO2 source and a template for vaterite mineralization to generate PEI-CO2@CaCO3 colloidal particles, with reactive amino groups from the PEI template.
Results
The obtained nanoparticles with a hydrodynamic diameter of 200–300 nm have a vaterite phase and colloidal stability in an aqueous solution for over 8 months. These nanoparticles could effectively load anticancer drug doxorubicin via coprecipitation and be surface-modified with polyethylene glycol (PEG) and folic acid for long-term blood circulation and tumor targeting purposes, respectively. After being endocytosed, the PEI-CO2 adduct accelerates the dissolution of drug-loaded nanoparticles to generate CO2 bubbles to break the lysosomes, leading to rapid doxorubicin delivery inside tumor cells. The degradation of PEI-CO2 in the CaCO3 nanoparticles could also release PEI and CO2 and may contribute to the disruption of normal cellular functions. As a result, the drug-loaded PEI-CO2@CaCO3 nanoparticles strongly suppressed tumor growth in mice with HeLa tumor xenografts.
Conclusions
A new and effective vaterite drug carrier for anticancer therapy has been developed using PEI-CO2 adduct as both a CO2 source and vaterite template for CaCO3 mineralization. This delivery system illustrates an application of CO2 generation materials in drug delivery and has the potential for further development.
Collapse
|
30
|
Xu P, Shao RR, He Y. Bibliometric analysis of recent research on the association between TRPV1 and inflammation. Channels (Austin) 2023; 17:2189038. [PMID: 36919561 PMCID: PMC10026872 DOI: 10.1080/19336950.2023.2189038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
TRPV1 channel is a sensitive ion channel activated by some noxious stimuli and has been reported to change many physiological functions after its activation. In this paper, we present a scientometric approach to explore the trends of the association between TRPV1 channel and inflammation and our goal is to provide creative directions for future research. The related literature was retrieved from Web of Science Core Collection and then analyzed by CiteSpace and VOSviewer. A total of 1533 documents were screened. The most productive country, institution, journal, author, cited journal, cited author, and references were the United States, University of California, San Francisco, Pain, Lu-yuan Lee, Nature, Michael J. Caterina, and Caterina MJ (Science, 2000), respectively. The most influential country and institution were Switzerland and University of California, San Francisco, respectively. The cooperation among countries or institutions was extensive. Amounts of documents were distributed in molecular, biology, genetics. TRPV1-associated neurons, neuropeptides, neuropathic pain, neuroinflammation, and neurogenic inflammation were mainly hotspots in this field. The research has presented valuable data about previous studies in the link of TRPV1 channel and inflammation.
Collapse
Affiliation(s)
- Pan Xu
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Ru-Ru Shao
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuan He
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
31
|
Qian R, Yi X, Liu T, Chen H, Wang Y, Hu L, Guo L, Yang K, Deng H. Regulation of Ion Homeostasis for Enhanced Tumor Radio-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304092. [PMID: 37740415 PMCID: PMC10646238 DOI: 10.1002/advs.202304092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Indexed: 09/24/2023]
Abstract
Intra/extracellular ion content affects the growth and metastasis of tumor cells, as well as the efficacy of various antitumor therapies. Herein, a carbonic anhydrase inhibitor (CAI) is loaded onto pH-responsive calcium carbonate (CaCO3 ) nanoparticles and then modify theses nanoparticles with liposomes to obtain biocompatible CaCO3 /CAI@Lipsome (CCL) for enhance tumor radio-immunotherapy. CCL can specially decompose in tumor microenvironment, releasing calcium ion (Ca2+ ) and CAI, as well as increasing the pH value of extracellular fluid. CAI restrains the flow of hydrogen ion (H+ ) inside and outside the tumor cells, resulting in the reversal of tumor acidic microenvironment and the increase of intracellular H+ , both of which can improve the sensitivity of tumor to radiotherapy. Afterward, the increased intracellular H+ together with radiotherapy-causes reactive oxygen species promotes calcium influx, leading to cellular calcium overload. Moreover, the CCL-tailored content of H+ and Ca2+ strengthens radiotherapy-induced immunogenic cell death and dendritic cell maturation, amplifying systemic anti-tumor adaptive immunity. Meanwhile, macrophages in the CCL-treated tumors are polarized from pro-tumor M2 to anti-tumor M1 under X-ray exposure, owing to the neutralization of tumor acidic microenvironment and enhances Ca2+ content. Therefore, multi-directional regulation of the intra/extra tumor cell pH/calcium by simple nano-preparation would provide a powerful way to improve the efficacy of radio-immunotherapy.
Collapse
Affiliation(s)
- Rui Qian
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510000China
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug TargetsNantong UniversityNantongJiangsu226001China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
| | - Hua Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215005China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215005China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
- Department of Pathology, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215005China
| | - Haijun Deng
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510000China
| |
Collapse
|
32
|
Liang T, Feng Z, Zhang X, Li T, Yang T, Yu L. Research progress of calcium carbonate nanomaterials in cancer therapy: challenge and opportunity. Front Bioeng Biotechnol 2023; 11:1266888. [PMID: 37811375 PMCID: PMC10551635 DOI: 10.3389/fbioe.2023.1266888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer has keeping the main threat to the health of human being. Its overall survival rate has shown rare substantial progress in spite of the improving diagnostic and treatment techniques for cancer in recent years. Indeed, such classic strategies for malignant tumor as surgery, radiation and chemotherapy have been developed and bring more hope to the patients, but still been accompanied by certain limitations, which include the challenge of managing large wound sizes, systemic toxic side effects, and harmful to the healthy tissues caused by imprecise alignment with tumors in radiotherapy. Furthermore, immunotherapy exhibits a limited therapeutic effect in advanced tumors which is reported only up to 25%-30%. The combination of nanomaterials and cancer treatment offers new hope for cancer patients, demonstrating strong potential in the field of medical research. Among the extensively utilized nanomaterials, calcium carbonate nanomaterials (CCNM) exhibit a broad spectrum of biomedical applications due to their abundant availability, cost-effectiveness, and exceptional safety profile. CCNM have the potential to elevate intracellular Ca2+ levels in tumor cells, trigger the mitochondrial damage and ultimately lead to tumor cell death. Moreover, compared with other types of nanomaterials, CCNM exhibit remarkable advantages as delivery systems owing to their high loading capacity, biocompatibility and biodegradability. The purpose of this review is to provide an overview of CCNM synthesis, focusing on summarizing its diverse roles in cancer treatment and the benefits and challenges associated with CCNM in cancer therapy. Hoping to present the significance of CCNM as for the clinical application, and summarize information for the design of CCNM and other types of nanomaterials in the future.
Collapse
Affiliation(s)
- Tiantian Liang
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Zongqi Feng
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Xiao Zhang
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Tianfang Li
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Tingyu Yang
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Lan Yu
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
33
|
Zhao S, Wang J, Lu SY, Wang J, Chen Z, Sun Y, Xu T, Liu Y, He L, Chen C, Ouyang Y, Tan Y, Chen Y, Zhou B, Cao Y, Liu H. Facile Synthesis of Basic Copper Carbonate Nanosheets for Photoacoustic Imaging-Guided Tumor Apoptosis and Ferroptosis and the Extension Exploration of the Synthesis Method. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42317-42328. [PMID: 37640060 DOI: 10.1021/acsami.3c09785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Elimination of tumor cells using carbonate nanomaterials with tumor microenvironment-responsive capacity has been explored as an effective strategy. However, their therapeutic outcomes are always compromised by the relatively low intratumoral accumulation and limited synthesis method. Herein, a novel kind of basic copper carbonate nanosheets was designed and prepared using a green synthesis method for photoacoustic imaging-guided tumor apoptosis and ferroptosis therapy. These nanosheets were synthesized with the assistance of dopamine and ammonium bicarbonate (NH4HCO3) and the loading of glucose oxidase (GOx). NH4HCO3 could not only provide an alkaline environment for the polymerization of dopamine but also supply carbonates for the growth of nanosheets. The formed nanosheets displayed good acid and near-infrared light responsiveness. After intercellular uptake, they could be degraded to release Cu2+ and GOx, generating hydroxyl radicals through a Cu+-mediated Fenton-like reaction, consuming glucose, up-regulating H2O2 levels, and down-regulating GSH levels. Tumor elimination could be achieved by hydroxyl radical-induced apoptosis and ferroptosis. More amusingly, this synthesis method can be extended to several kinds of mono-element and multi-element carbonate nanomaterials (e.g., Fe, Mn, and Co), showing great potential for further tumor theranostics.
Collapse
Affiliation(s)
- Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jianxin Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shi-Yu Lu
- College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jingjing Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ziqun Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yihao Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Ting Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yanqing Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Liang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chunmei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yi Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yixin Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yan Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Benqing Zhou
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
34
|
Chen X, He H, Guo X, Hou M, Zhang X, Li S, Wang C, Zhao G, Li W, Zhang X, Hong W. Calcium Orthophosphate in Liposomes for Co-Delivery of Doxorubicin Hydrochloride/Paclitaxel in Breast Cancer. Mol Pharm 2023; 20:3914-3924. [PMID: 37384449 DOI: 10.1021/acs.molpharmaceut.3c00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Nanoparticles (NPs) show great advantages in cancer treatment by enabling controlled and targeted delivery of payloads to tumor sites through the enhanced permeability and retention (EPR) effect. In this study, highly effective pH-responsive and biodegradable calcium orthophosphate@liposomes (CaP@Lip) NPs with a diameter of 110 ± 20 nm were designed and fabricated. CaP@Lip NPs loaded with hydrophobic paclitaxel and hydrophilic doxorubicin hydrochloride achieved excellent drug loading efficiencies of 70 and 90%, respectively. Under physiological conditions, the obtained NPs are negatively charged. However, they switched to positively charged when exposed to weak acidic environments by which internalization can be promoted. Furthermore, the CaP@Lip NPs exhibit an obvious structural collapse under acid conditions (pH 5.5), which confirms their excellent biodegradability. The "proton expansion" effect in endosomes and the pH-responsiveness of the NPs facilitate the release of encapsulated drugs from individual channels. The effectiveness and safety of the drug delivery systems were demonstrated through in vitro and in vivo experiments, with a 76% inhibition of tumor growth. These findings highlight the high targeting ability of the drug-loaded NPs to tumor sites through the EPR effect, effectively suppressing tumor growth and metastasis. By combining CaP NPs and liposomes, this study not only resolves the toxicity of CaP but also enhances the stability of liposomes. The CaP@Lip NPs developed in this study have significant implications for biomedical applications and inspire the development of intelligent and smart drug nanocarriers and release systems for clinical use.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Huayu He
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xinyu Guo
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Mingyi Hou
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xinzhong Zhang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Shengnan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Guodong Zhao
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing 100000, P. R. China
| | - Wenting Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xiuping Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing 100000, P. R. China
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| |
Collapse
|
35
|
Zheng P, Ding B, Zhu G, Lin J, Li C. Usnea Acid-Incorporated Ca 2+ /Mn 2+ Ions Reservoirs for Elevated Ion-Interference Therapy through Synergetic Biocatalysis and Osmolarity Imbalance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300370. [PMID: 37029698 DOI: 10.1002/smll.202300370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Ion-interference therapy (IIT) utilizes ions to disturb intracellular biological processes and has been received increasing attention in tumor treatments recently. However, the low therapeutic efficiency still hinders its further biological applications. Herein, via a simple and one-pot gas diffusion process, polyethylene glycol (PEG)-modified Mn2+ ions and usnic acid (UA)-incorporated CaCO3 nanomaterials (PEG CaMnUA) as Ca2+ /Mn2+ ions reservoirs are prepared for magnetic resonance imaging (MRI)-guided UA-elevated IIT. Among PEG CaMnUA, UA not only increases cytoplasmic Ca2+ ions to amplify Ca2+ overload caused by CaCO3 decomposition, but also enhances Mn2+ ions-participated Fenton-like biocatalysis by intracellular H2 O2 generation and glutathione consumption. Then increasing the intracellular oxidative stress and decreasing the triphosadenine supply induce apoptosis together, resulting in UA-boosted IIT. The simple and efficient design of the dual ions reservoirs will contribute to improve the antitumor activity of IIT and further development of calcium-based nanomaterials in the future.
Collapse
Affiliation(s)
- Pan Zheng
- Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130 022, China
| | - Guoqing Zhu
- Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130 022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230 026, China
| | - Chunxia Li
- Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
36
|
Ahmady AR, Solouk A, Saber-Samandari S, Akbari S, Ghanbari H, Brycki BE. Capsaicin-loaded alginate nanoparticles embedded polycaprolactone-chitosan nanofibers as a controlled drug delivery nanoplatform for anticancer activity. J Colloid Interface Sci 2023; 638:616-628. [PMID: 36774875 DOI: 10.1016/j.jcis.2023.01.139] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Nanocarrier-based drug delivery systems have been designed into various structures that can effectively prevent cancer progression and improve the therapeutic cancer index. However, most of these delivery systems are designed to be simple nanostructures with several limitations, including low stability and burst drug release features. A nano-in-nano delivery technique is explored to address the aforementioned concerns. Accordingly, this study investigated the release behavior of a novel nanoparticles-in-nanofibers delivery system composed of capsaicin-loaded alginate nanoparticles embedded in polycaprolactone-chitosan nanofiber mats. First, alginate nanoparticles were prepared with different concentrations of cationic gemini surfactant and using nanoemulsion templates. The optimized formulation of alginate nanoparticles was utilized for loading capsaicin and exhibited a diameter of 19.42 ± 1.8 nm and encapsulation efficiency of 98.7 % ± 0.6 %. Likewise, blend polycaprolactone-chitosan nanofibers were prepared with different blend ratios of their solutions (i.e., 100:0, 80:20, 60:40) by electrospinning method. After the characterization of electrospun mats, the optimal nanofibers were employed for embedding capsaicin-loaded alginate nanoparticles. Our findings revealed that embedding capsaicin-loaded alginate nanoparticles in polycaprolactone-chitosan nanofibers, prolonged capsaicin release from 120 h to more than 500 h. Furthermore, the results of in vitro analysis demonstrated that the designed nanoplatform could effectively inhibit the proliferation of MCF-7 human breast cells while being nontoxic to human dermal fibroblasts (HDF). Collectively, the prepared nanocomposite drug delivery platform might be promising for the long-term and controlled release of capsaicin for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Azin Rashidy Ahmady
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Saeed Saber-Samandari
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran.
| | - Somaye Akbari
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hadi Ghanbari
- ENT and Head and Neck Research Center, Department of Otolaryngology, Head and Neck Surgery, The Five Senses Institute, Hazrat Rasoul Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bogumil E Brycki
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| |
Collapse
|
37
|
Li B, Li N, Wang N, Li C, Liu X, Cao Z, Xing C, Wang S. Targeting ROS-sensitive TRP ion channels for relieving oxidative stress-related diseases based on nanomaterials. MATERIALS TODAY ADVANCES 2023; 17:100335. [DOI: 10.1016/j.mtadv.2022.100335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Cheng P, Wu J, Zong G, Wang F, Deng R, Tao R, Qian C, Shan Y, Wang A, Zhao Y, Wei Z, Lu Y. Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver. Pharmacol Res 2023; 188:106643. [PMID: 36608780 DOI: 10.1016/j.phrs.2022.106643] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Dietary factors are fundamental in tumorigenesis throughout our lifetime. A spicy diet has been ambiguous on the development of cancers, especially in the study of colon cancer metastasis. Here, we utilized a mouse metastasis model to test the potential role of capsaicin in influencing metastasis. Long-term continuous administration of capsaicin diet (300 mg/kg) to mice promotes the formation of liver pre-metastatic niche to facilitate the metastasis of colon cancer cells. Bacteria translocation to liver is clearly observed. Capsaicin increases intestinal barrier permeability and disrupts gut vascular barrier by altering the composition of gut microbiota. Capsaicin not only changes the abundance of mucin-related bacteria like Akkermanisa and Muribaculaceae, but also bacteria involved in bile acids metabolism. Dysregulated bile acids profile is related to the recruitment of natural killer T (NKT) cells in pre-metastatic niche, primary bile acid α-Muricholic acid can enhance the recruitment of NKT cells, while secondary bile acids Glycoursodeoxycholic acid and Taurohyodeoxycholic acid impair the recruitment of NKT cells. These findings reveal long term consumption of capsaicin increases the risk of cancer metastasis through modulating the gut microbiota. Capsaicin (300 mg/kg) disrupts gut barrier and promotes the translocation of bacteria to liver, while altered bile acids metabolism affects the recruitment of NKT cells in liver, forming a pre-metastatic niche and promoting cancer metastasis.
Collapse
Affiliation(s)
- Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiawei Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feihui Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
39
|
Mbugua SN. Targeting Tumor Microenvironment by Metal Peroxide Nanoparticles in Cancer Therapy. Bioinorg Chem Appl 2022; 2022:5041399. [PMID: 36568636 PMCID: PMC9788889 DOI: 10.1155/2022/5041399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Solid tumors have a unique tumor microenvironment (TME), which includes hypoxia, low acidity, and high hydrogen peroxide and glutathione (GSH) levels, among others. These unique factors, which offer favourable microenvironments and nourishment for tumor development and spread, also serve as a gateway for specific and successful cancer therapies. A good example is metal peroxide structures which have been synthesized and utilized to enhance oxygen supply and they have shown great promise in the alleviation of hypoxia. In a hypoxic environment, certain oxygen-dependent treatments such as photodynamic therapy and radiotherapy fail to respond and therefore modulating the hypoxic tumor microenvironment has been found to enhance the antitumor impact of certain drugs. Under acidic environments, the hydrogen peroxide produced by the reaction of metal peroxides with water not only induces oxidative stress but also produces additional oxygen. This is achieved since hydrogen peroxide acts as a reactive substrate for molecules such as catalyse enzymes, alleviating tumor hypoxia observed in the tumor microenvironment. Metal ions released in the process can also offer distinct bioactivity in their own right. Metal peroxides used in anticancer therapy are a rapidly evolving field, and there is good evidence that they are a good option for regulating the tumor microenvironment in cancer therapy. In this regard, the synthesis and mechanisms behind the successful application of metal peroxides to specifically target the tumor microenvironment are highlighted in this review. Various characteristics of TME such as angiogenesis, inflammation, hypoxia, acidity levels, and metal ion homeostasis are addressed in this regard, together with certain forms of synergistic combination treatments.
Collapse
Affiliation(s)
- Simon Ngigi Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| |
Collapse
|
40
|
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12:4011-4039. [PMID: 36386472 PMCID: PMC9643300 DOI: 10.1016/j.apsb.2022.08.022] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Natural products, and especially the active ingredients found in traditional Chinese medicine (TCM), have a thousand-year-long history of clinical use and a strong theoretical basis in TCM. As such, traditional remedies provide shortcuts for the development of original new drugs in China, and increasing numbers of natural products are showing great therapeutic potential in various diseases. This paper reviews the molecular mechanisms of action of natural products from different sources used in the treatment of inflammatory diseases and cancer, introduces the methods and newly emerging technologies used to identify and validate the targets of natural active ingredients, enumerates the expansive list of TCM used to treat inflammatory diseases and cancer, and summarizes the patterns of action of emerging technologies such as single-cell multiomics, network pharmacology, and artificial intelligence in the pharmacological studies of natural products to provide insights for the development of innovative natural product-based drugs. Our hope is that we can make use of advances in target identification and single-cell multiomics to obtain a deeper understanding of actions of mechanisms of natural products that will allow innovation and revitalization of TCM and its swift industrialization and internationalization.
Collapse
Affiliation(s)
- Yuyu Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Jiaojiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|