1
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
2
|
He X, Li G, Huang L, Shi H, Zhong S, Zhao S, Jiao X, Xin J, Yin X, Liu S, He Z, Guo M, Yang C, Jin Z, Guo J, Song X. Nonviral targeted mRNA delivery: principles, progresses, and challenges. MedComm (Beijing) 2025; 6:e70035. [PMID: 39760110 PMCID: PMC11695212 DOI: 10.1002/mco2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025] Open
Abstract
Messenger RNA (mRNA) therapeutics have garnered considerable attention due to their remarkable efficacy in the treatment of various diseases. The COVID-19 mRNA vaccine and RSV mRNA vaccine have been approved on the market. Due to the inherent nuclease-instability and negative charge of mRNA, delivery systems are developed to protect the mRNA from degradation and facilitate its crossing cell membrane to express functional proteins or peptides in the cytoplasm. However, the deficiency in transfection efficiency and targeted biological distribution are still the major challenges for the mRNA delivery systems. In this review, we first described the physiological barriers in the process of mRNA delivery and then discussed the design approach and recent advances in mRNA delivery systems with an emphasis on their tissue/cell-targeted abilities. Finally, we pointed out the existing challenges and future directions with deep insights into the design of efficient mRNA delivery systems. We believe that a high-precision targeted delivery system can greatly improve the therapeutic effects and bio-safety of mRNA therapeutics and accelerate their clinical transformations. This review may provide a new direction for the design of mRNA delivery systems and serve as a useful guide for researchers who are looking for a suitable mRNA delivery system.
Collapse
Affiliation(s)
- Xi He
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
- State Key Laboratory of Quality Research in Chinese MedicineMacau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyTaipaMacauChina
| | - Guohong Li
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Letao Huang
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haixing Shi
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Sha Zhong
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Siyu Zhao
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiangyu Jiao
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jinxiu Xin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiaoling Yin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shengbin Liu
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhongshan He
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengran Guo
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chunli Yang
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhaohui Jin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jun Guo
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiangrong Song
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Jin C, Xue L, Zhang L, Yu L, Wu P, Qian H. Engineered Nanoparticles for Theranostic Applications in Kidney Repair. Adv Healthc Mater 2025; 14:e2402480. [PMID: 39617999 DOI: 10.1002/adhm.202402480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/05/2024] [Indexed: 01/03/2025]
Abstract
Kidney diseases are characterized by their intricate nature and complexity, posing significant challenges in their treatment and diagnosis. Nanoparticles (NPs), which can be further classified as synthetic and biomimetic NPs, have emerged as promising candidates for treating various diseases. In recent years, the development of engineered nanotherapeutics has focused on targeting damaged tissues and serving as drug delivery vehicles. Additionally, these NPs have shown superior sensitivity and specificity in diagnosis and imaging, thus providing valuable insights for the early detection of diseases. This review aims to focus on the application of engineered synthetic and biomimetic NPs in kidney diseases in the aspects of treatment, diagnosis, and imaging. Notably, the current perspectives and challenges are evaluated, which provide inspiration for future research directions, and encourage the clinical application of NPs in this field.
Collapse
Affiliation(s)
- Can Jin
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lingling Xue
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lixia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
4
|
Kumar V, Wahane A, Tham MS, Somlo S, Gupta A, Bahal R. Efficient and selective kidney targeting by chemically modified carbohydrate conjugates. Mol Ther 2024; 32:4383-4400. [PMID: 39532098 PMCID: PMC11638880 DOI: 10.1016/j.ymthe.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
We investigated a renal tubule-targeting carbohydrate (RENTAC) that can selectively deliver small-molecule and nucleic acid analogs to the proximal convoluted tubules of the kidney following systemic delivery in mice. We comprehensively evaluated anti-miR-21-peptide nucleic acid-RENTAC, and fluorophore-RENTAC conjugates in cell culture and in vivo. We established that RENTAC conjugates showed megalin- and cubilin-dependent endocytic uptake in the immortalized kidney cell line. In vivo biodistribution studies confirmed the retention of RENTAC conjugates in the kidneys for several days compared with other organs. Immunofluorescence staining confirmed the selective distribution of the RENTAC conjugates in proximal convoluted tubules. We further demonstrated proximal convoluted tubule targeting features of RENTAC conjugates in a folic acid-induced kidney fibrosis mouse model. As a biological readout, we targeted miR-33 using antisense peptide nucleic acid (PNA) 33-RENTAC conjugates in the fibrotic kidney disease model. The targeted delivery of PNA 33-RENTAC resulted in slower fibrosis progression and decreased collagen deposition. We also confirmed that the RENTAC ligand did not exert any adverse reactions. Thus, we established that the RENTAC ligand can be used for broad clinical applications targeting the kidneys selectively.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ming Shen Tham
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stefan Somlo
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Anisha Gupta
- School of Pharmacy, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
5
|
Zhang R, Zhang X, Zhu X, Li T, Li Y, Zhang P, Chen Y, Li G, Han X. Nanoparticles transfected with plasmid-encoded lncRNA-OIP5-AS1 inhibit renal ischemia-reperfusion injury in mice via the miR-410-3p/Nrf2 axis. Ren Fail 2024; 46:2319327. [PMID: 38419565 PMCID: PMC10906121 DOI: 10.1080/0886022x.2024.2319327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Nanostructures composed of liposomes and polydopamine (PDA) have demonstrated efficacy as carriers for delivering plasmids, effectively alleviating renal cell carcinoma. However, their role in acute kidney injury (AKI) remains unclear. This study aimed to investigate the effects of the plasmid-encoded lncRNA-OIP5-AS1@PDA nanoparticles (POP-NPs) on renal ischemia/reperfusion (RI/R) injury and explore the underlying mechanisms. RI/R or OGD/R models were established in mice and HK-2 cells, respectively. In vivo, vector or POP-NPs were administered (10 nmol, IV) 48 h after RI/R treatment. In the RI/R mouse model, the OIP5-AS1 and Nrf2/HO-1 expressions were down-regulated, while miR-410-3p expression was upregulated. POP-NPs treatment effectively reversed RI/R-induced renal tissue injury, restoring altered levels of blood urea nitrogen, creatinine, malondialdehyde, inflammatory factors (IL-8, IL-6, TNF-α), ROS, apoptosis, miR-410-3p, as well as the suppressed expression of SOD and Nrf2/HO-1 in the model mice. Similar results were obtained in cell models treated with POP-NPs. Additionally, miR-410-3p mimics could reverse the effects of POP-NPs on cellular models, partially counteracted by Nrf2 agonists. The binding relationship between OIP5-AS1 and miR-410-3p, alongside miR-410-3p and Nrf2, has been substantiated by dual-luciferase reporter and RNA pull-down assays. The study revealed that POP-NPs can attenuate RI/R-induced injury through miR-410-3p/Nrf2 axis. These findings lay the groundwork for future targeted therapeutic approaches utilizing nanoparticles for RI/R-induced AKI.
Collapse
Affiliation(s)
- Rongjie Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xin Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xuhui Zhu
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Tao Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yansheng Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Peng Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yuanhao Chen
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Gao Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xiuwu Han
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| |
Collapse
|
6
|
Li J, Duan J, Hua C, Pan S, Li G, Feng Q, Liu D, Liu Z. Nanomedicine embraces the treatment and prevention of acute kidney injury to chronic kidney disease transition: evidence, challenges, and opportunities. BURNS & TRAUMA 2024; 12:tkae044. [PMID: 39678075 PMCID: PMC11645459 DOI: 10.1093/burnst/tkae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 12/17/2024]
Abstract
Acute kidney injury (AKI), a common kidney disease in which renal function decreases rapidly due to various etiologic factors, is an important risk factor for chronic kidney disease (CKD). The pathogenesis of AKI leading to CKD is complex, and effective treatments are still lacking, which seriously affects the prognosis and quality of life of patients with kidney disease. Nanomedicine, a discipline at the intersection of medicine and nanotechnology, has emerged as a promising avenue for treating kidney diseases ranging from AKI to CKD. Increasing evidence has validated the therapeutic potential of nanomedicine in AKI; however, little attention has been paid to its effect on AKI for patients with CKD. In this review, we systematically emphasize the major pathophysiology of the AKI-to-CKD transition and summarize the treatment effects of nanomedicine on this transition. Furthermore, we discuss the key role of nanomedicine in the regulation of targeted drug delivery, inflammation, oxidative stress, ferroptosis, and apoptosis during the transition from AKI to CKD. Additionally, this review demonstrates that the integration of nanomedicine into nephrology offers unprecedented precision and efficacy in the management of conditions ranging from AKI to CKD, including the design and preparation of multifunctional nanocarriers to overcome biological barriers and deliver therapeutics specifically to renal cells. In summary, nanomedicine holds significant potential for revolutionizing the management of AKI-to-CKD transition, thereby providing a promising opportunity for the future treatment of kidney diseases.
Collapse
Affiliation(s)
- Jia Li
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Jiayu Duan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Chaoyang Hua
- Department of Urology, Henan Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, No. 33 Longhu outer Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Guangpu Li
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Henan Province Research Center For Kidney Disease, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China
| |
Collapse
|
7
|
Deng K, Pei M, Li B, Yang N, Wang Z, Wan X, Zhong Z, Yang Z, Chen Y. Signal pathways involved in contrast-induced acute kidney injury. Front Physiol 2024; 15:1490725. [PMID: 39655278 PMCID: PMC11625813 DOI: 10.3389/fphys.2024.1490725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) has emerged as a global public health concern, ranking as the third most prevalent cause of hospital-acquired acute kidney injury, which is related to adverse outcomes. However, its precise pathogenesis remains elusive. Consequently, researchers are dedicated to uncovering CI-AKI's pathophysiology and signaling pathways, including inflammation, oxidative stress, apoptosis, and ferroptosis, to improve prevention and treatment. This review thoroughly analyzes the signaling pathways and their interactions associated with CI-AKI, assesses the impact of various research models on pathway analysis, and explores more precise targeted treatment and prevention approaches. Aims to furnish a robust theoretical foundation for the molecular mechanisms underpinning clinical treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yanling Chen
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|
8
|
Redhwan MAM, Hariprasad MG, Samaddar S, Bafail DA, Hard SAAA, Guha S. Chitosan/siRNA nanoparticles targeting PARP-1 attenuate Neuroinflammation and apoptosis in hyperglycemia-induced oxidative stress in Neuro2a cells. Int J Biol Macromol 2024; 282:136964. [PMID: 39490472 DOI: 10.1016/j.ijbiomac.2024.136964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Hyperglycemia induces an excessive production of superoxide by the mitochondria's electron-transport chain triggers several pathways of injury contributing to the development of diabetic complications. This increase in oxidative and nitrosative stress triggers the activation of PARP-1, a nuclear enzyme, through mechanisms such as DNA damage. siRNA-chitosan nanoparticles were formed based on electrostatic interaction, their particle size, zeta potential, STEM, and cellular uptake were characterized. Neuro2a cells were treated with low glucose (LG) and high glucose (HG) for 24 and 48 h. Neuro2a cells were pre-treated with negative siRNA, naked siRNA, siRNA-Lipofectamine™300, and ChNPs-5. qRT-PCR was used to analyze the expression of regulatory, inflammatory, and apoptotic biomarkers. The siRNA-chitosan complex at the weight ratio 1:3000 were approximately uniform spheres with particle size 150.5 nm and a positive zeta potential of about +41.5 mV. The uptake of FITC-labeled nanoparticles into Neuro2a cells was visualized using fluorescence microscopy with no significant cytotoxicity compared to the control cells. High glucose stimulation of Neuro2a cells increased PARP1 expression, and with siRNA-ChNP (1:3000) treatment, significant inhibition of PARP1 expression is observed that consequently reversed the expression of regulatory genes like SIRT1, FOXO1, FOXO3, and p53. PARP-1 inhibition reduced HG-induced inflammatory response, including NF-kB, IL6, IL1β, TNFα, iNOS, and TGF-β expression, and HG-induced apoptosis response, such as Cas-3, Cas-9, BAK, BAX, and AIF expression. This study highlights the crucial role of siRNA delivery via ChNPs and PARP-1 inhibition in hyperglycemia-induced oxidative stress in Neuro2a cells and PARP-1 inhibition may be a feasible strategy for the treatment of hyperglycemia-induced oxidative stress.
Collapse
Affiliation(s)
- Moqbel Ali Moqbel Redhwan
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - M G Hariprasad
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India.
| | - Suman Samaddar
- Research Institute, BGS Global Institute of Medical Sciences, Bengaluru, Karnataka, India.
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sumaia Abdulbari Ahmed Ali Hard
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India; Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - Sourav Guha
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
9
|
Jogdeo CM, Panja S, Kumari N, Tang W, Kapoor E, Siddhanta K, Das A, Boesen EI, Foster KW, Oupický D. Inulin-based nanoparticles for targeted siRNA delivery in acute kidney injury. J Control Release 2024; 376:577-592. [PMID: 39419450 DOI: 10.1016/j.jconrel.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
RNA interference has emerged as a promising therapeutic strategy to tackle acute kidney injury (AKI). Development of targeted delivery systems is highly desired for selective renal delivery of RNA and improved therapeutic outcomes in AKI. Inulin is a plant polysaccharide traditionally employed to measure glomerular filtration rate. Here, we describe the synthesis of inulin modified with α-cyclam-p-toluic acid (CPTA) to form a novel renal-targeted polymer, Inulin-CPTA (IC), which is capable of selective siRNA delivery to the injured kidneys. We show that conjugating CPTA to inulin imparts IC with targeting properties for cells that overexpress the C-X-C chemokine receptor 4 (CXCR4). Self-assembled IC/siRNA nanoparticles (polyplexes) demonstrated rapid accumulation in the injured kidneys with selective uptake and prolonged retention in injured renal tubules overexpressing the CXCR4 receptor. Tumor-suppressor protein p53 contributes significantly to the pathogenesis of AKI. siRNA-induced silencing of p53 has shown therapeutic potential in several preclinical studies, making it an important target in the treatment of AKI. Systemically administered nanoparticles formulated using IC and siRNA against p53 selectively accumulated in the injured kidneys and potently silenced p53 expression. Selective p53 knockdown led to positive therapeutic outcomes in mice with cisplatin-induced AKI, as seen by reduced tubular cell death, renal injury, inflammation, and overall improved renal function. These findings indicate that IC is a promising new carrier for renal-targeted delivery of RNA for the treatment of AKI.
Collapse
Affiliation(s)
- Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashish Das
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erika I Boesen
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
10
|
Qin W, Huang J, Zhang M, Xu M, He J, Liu Q. Nanotechnology-Based Drug Delivery Systems for Treating Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:6078-6096. [PMID: 39226188 PMCID: PMC11480945 DOI: 10.1021/acsbiomaterials.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Acute kidney injury (AKI) is a disease that is characterized by a rapid decline in renal function and has a relatively high incidence in hospitalized patients. Sepsis, renal hypoperfusion, and nephrotoxic drug exposure are the main causes of AKI. The major therapy measures currently include supportive treatment, symptomatic treatment, and kidney transplantation. These methods are supportive treatments, and their results are not satisfactory. Fortunately, many new treatments that markedly improve the AKI therapy efficiency are emerging. These include antioxidant therapy, ferroptosis therapy, anti-inflammatory therapy, autophagy therapy, and antiapoptotic therapy. In addition, the development of nanotechnology has further promoted therapeutic effects on AKI. In this review, we highlight recent advances in the development of nanocarriers for AKI drug delivery. Emphasis has been placed on the latest developments in nanocarrier modification and design. We also summarize the applications of different nanocarriers in AKI treatment. Finally, the advantages and challenges of nanocarrier applications in AKI are summarized, and several nanomedicines that have been approved for clinical trials to treat diverse kidney diseases are listed.
Collapse
Affiliation(s)
- Wanbing Qin
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Jiaqi Huang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Manting Zhang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Mingwei Xu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Junbing He
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Qinghua Liu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
- Department
of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
- NHC Key
Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong
Provincial Key Laboratory of Nephrology, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
11
|
Gu XR, Tai YF, Liu Z, Zhang XY, Liu K, Zhou LY, Yin WJ, Deng YX, Kong DL, Midgley AC, Zuo XC. Layer-by-Layer Assembly of Renal-Targeted Polymeric Nanoparticles for Robust Arginase-2 Knockdown and Contrast-Induced Acute Kidney Injury Prevention. Adv Healthc Mater 2024; 13:e2304675. [PMID: 38688026 DOI: 10.1002/adhm.202304675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/27/2024] [Indexed: 05/02/2024]
Abstract
The mitochondrial enzyme arginase-2 (Arg-2) is implicated in the pathophysiology of contrast-induced acute kidney injury (CI-AKI). Therefore, Arg-2 represents a candid target for CI-AKI prevention. Here, layer-by-layer (LbL) assembled renal-targeting polymeric nanoparticles are developed to efficiently deliver small interfering RNA (siRNA), knockdown Arg-2 expression in renal tubules, and prevention of CI-AKI is evaluated. First, near-infrared dye-loaded poly(lactic-co-glycolic acid) (PLGA) anionic cores are electrostatically coated with cationic chitosan (CS) to facilitate the adsorption and stabilization of Arg-2 siRNA. Next, nanoparticles are coated with anionic hyaluronan (HA) to provide protection against siRNA leakage and shielding against early clearance. Sequential electrostatic layering of CS and HA improves loading capacity of Arg-2 siRNA and yields LbL-assembled nanoparticles. Renal targeting and accumulation is enhanced by modifying the outermost layer of HA with a kidney targeting peptide (HA-KTP). The resultant kidney-targeting and siRNA loaded nanoparticles (PLGA/CS/HA-KTP siRNA) exhibit proprietary accumulation in kidneys and proximal tubular cells at 24 h post-tail vein injection. In iohexol-induced in vitro and in vivo CI-AKI models, PLGA/CS/HA-KTP siRNA delivery alleviates oxidative and nitrification stress, and rescues mitochondrial dysfunction while reducing apoptosis, thereby demonstrating a robust and satisfactory therapeutic effect. Thus, PLGA/CS/HA-KTP siRNA nanoparticles offer a promising candidate therapy to protect against CI-AKI.
Collapse
Affiliation(s)
- Xu-Rui Gu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yi-Fan Tai
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhen Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin-Yan Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kun Liu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ling-Yun Zhou
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wen-Jun Yin
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yi-Xuan Deng
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - De-Ling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
12
|
Yu HP, Liu FC, Chung YK, Alalaiwe A, Sung CT, Fang JY. Nucleic acid-based nanotherapeutics for treating sepsis and associated organ injuries. Theranostics 2024; 14:4411-4437. [PMID: 39113804 PMCID: PMC11303080 DOI: 10.7150/thno.98487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In recent years, gene therapy has been made possible with the success of nucleic acid drugs against sepsis and its related organ dysfunction. Therapeutics based on nucleic acids such as small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNAs (mRNAs), and plasmid DNAs (pDNAs) guarantee to treat previously undruggable diseases. The advantage of nucleic acid-based therapy against sepsis lies in the development of nanocarriers, achieving targeted and controlled gene delivery for improved efficacy with minimal adverse effects. Entrapment into nanocarriers also ameliorates the poor cellular uptake of naked nucleic acids. In this study, we discuss the current state of the art in nanoparticles for nucleic acid delivery to treat hyperinflammation and apoptosis associated with sepsis. The optimized design of the nanoparticles through physicochemical property modification and ligand conjugation can target specific organs-such as lung, heart, kidney, and liver-to mitigate multiple sepsis-associated organ injuries. This review highlights the nanomaterials designed for fabricating the anti-sepsis nanosystems, their physicochemical characterization, the mechanisms of nucleic acid-based therapy in working against sepsis, and the potential for promoting the therapeutic efficiency of the nucleic acids. The current investigations associated with nanoparticulate nucleic acid application in sepsis management are summarized in this paper. Noteworthily, the potential application of nanotherapeutic nucleic acids allows for a novel strategy to treat sepsis. Further clinical studies are required to confirm the findings in cell- and animal-based experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for commercialization. It is expected that numerous anti-sepsis possibilities will be investigated for nucleic acid-based nanotherapeutics in the future.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Kuo Chung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Calvin T. Sung
- Department of Dermatology, University of California, Irvine, United States
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
13
|
Noh MR, Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of accidental and programmed cell death. Am J Physiol Renal Physiol 2024; 327:F4-F20. [PMID: 38660714 PMCID: PMC11390133 DOI: 10.1152/ajprenal.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The involvement of cell death in acute kidney injury (AKI) is linked to multiple factors including energy depletion, electrolyte imbalance, reactive oxygen species, inflammation, mitochondrial dysfunction, and activation of several cell death pathway components. Since our review in 2003, discussing the relative contributions of apoptosis and necrosis, several other forms of cell death have been identified and are shown to contribute to AKI. Currently, these various forms of cell death can be fundamentally divided into accidental cell death and regulated or programmed cell death based on functional aspects. Several death initiator and effector molecules switch molecules that may act as signaling components triggering either death or protective mechanisms or alternate cell death pathways have been identified as part of the machinery. Intriguingly, several of these cell death pathways share components and signaling pathways suggesting complementary or compensatory functions. Thus, defining the cross talk between distinct cell death pathways and identifying the unique molecular effectors for each type of cell death may be required to develop novel strategies to prevent cell death. Furthermore, depending on the multiple forms of cell death simultaneously induced in different AKI settings, strategies for combination therapies that block multiple cell death pathways need to be developed to completely prevent injury, cell death, and renal function. This review highlights the various cell death pathways, cross talk, and interactions between different cell death modalities in AKI.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Babu J Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
14
|
Yu P, Gu T, Rao Y, Liang W, Zhang X, Jiang H, Lu J, She J, Guo J, Yang W, Liu Y, Tu Y, Tang L, Zhou X. A novel marine-derived anti-acute kidney injury agent targeting peroxiredoxin 1 and its nanodelivery strategy based on ADME optimization. Acta Pharm Sin B 2024; 14:3232-3250. [PMID: 39027260 PMCID: PMC11252462 DOI: 10.1016/j.apsb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 07/20/2024] Open
Abstract
Insufficient therapeutic strategies for acute kidney injury (AKI) necessitate precision therapy targeting its pathogenesis. This study reveals the new mechanism of the marine-derived anti-AKI agent, piericidin glycoside S14, targeting peroxiredoxin 1 (PRDX1). By binding to Cys83 of PRDX1 and augmenting its peroxidase activity, S14 alleviates kidney injury efficiently in Prdx1-overexpression (Prdx1-OE) mice. Besides, S14 also increases PRDX1 nuclear translocation and directly activates the Nrf2/HO-1/NQO1 pathway to inhibit ROS production. Due to the limited druggability of S14 with low bioavailability (2.6%) and poor renal distribution, a pH-sensitive kidney-targeting dodecanamine-chitosan nanoparticle system is constructed to load S14 for precise treatment of AKI. l-Serine conjugation to chitosan imparts specificity to kidney injury molecule-1 (Kim-1)-overexpressed cells. The developed S14-nanodrug exhibits higher therapeutic efficiency by improving the in vivo behavior of S14 significantly. By encapsulation with micelles, the AUC0‒t , half-life time, and renal distribution of S14 increase 2.5-, 1.8-, and 3.1-fold, respectively. The main factors contributing to the improved druggability of S14 nanodrugs include the lower metabolic elimination rate and UDP-glycosyltransferase (UGT)-mediated biotransformation. In summary, this study identifies a new therapeutic target for the marine-derived anti-AKI agent while enhancing its ADME properties and druggability through nanotechnology, thereby driving advancements in marine drug development for AKI.
Collapse
Affiliation(s)
- Ping Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tanwei Gu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yueyang Rao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weimin Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xi Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huanguo Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jindi Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jianmin Guo
- Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Wei Yang
- Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Kim S, Kim K, Koh MY, Do M, Lee MS, Ryu JH, Lee H. Coagulant Protein-Free Blood Coagulation Using Catechol-Conjugated Adhesive Chitosan/Gelatin Double Layer. Adv Healthc Mater 2024; 13:e2304004. [PMID: 38334241 DOI: 10.1002/adhm.202304004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Since the discovery of polyphenolic underwater adhesion in marine mussels, researchers strive to emulate this natural phenomenon in the development of adhesive hemostatic materials. In this study, bio-inspired hemostatic materials that lead to pseudo-active blood coagulation, utilizing traditionally passive polymer matrices of chitosan and gelatin are developed. The two-layer configuration, consisting of a thin, blood-clotting catechol-conjugated chitosan (CHI-C) layer and a thick, barrier-functioning gelatin (Geln) ad-layer, maximizes hemostatic capability and usability. The unique combination of coagulant protein-free condition with CHI-C showcases not only coagulopathy-independent blood clotting properties (efficacy) but also exceptional clinical potential, meeting all necessary biocompatibility evaluation (safety) without inclusion of conventional coagulation triggering proteins such as thrombin or fibrinogen. As a result, the CHI-C/Geln is approved by the Ministry of Food and Drug Safety (MFDS, Republic of Korea) as a class II medical device. Hemostatic efficacy observed in multiple animal models further demonstrates the superiority of CHI-C/Geln sponges in achieving quick hemostasis compared to standard treatments. This study not only enriches the growing body of research on mussel-inspired materials but also emphasizes the potential of biomimicry in developing advanced medical materials, contributing a promising avenue toward development of readily accessible and affordable hemostatic materials.
Collapse
Affiliation(s)
- Soomi Kim
- R&D Center, InnoTherapy Inc., 25 Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul, 07282, Republic of Korea
| | - Keumyeon Kim
- R&D Center, InnoTherapy Inc., 25 Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul, 07282, Republic of Korea
| | - Mi-Young Koh
- R&D Center, InnoTherapy Inc., 25 Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul, 07282, Republic of Korea
| | - Minjae Do
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Moon Sue Lee
- R&D Center, InnoTherapy Inc., 25 Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul, 07282, Republic of Korea
| | - Ji Hyun Ryu
- Department of Carbon Convergence Engineering, Smart Convergence Materials Analysis Center, Wonkwang University, 460 Iksan-daero, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
16
|
Vasylaki A, Ghosh P, Jaimes EA, Williams RM. Targeting the Kidneys at the Nanoscale: Nanotechnology in Nephrology. KIDNEY360 2024; 5:618-630. [PMID: 38414130 PMCID: PMC11093552 DOI: 10.34067/kid.0000000000000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Kidney diseases, both acute and chronic, are a substantial burden on individual and public health, and they continue to increase in frequency. Despite this and an intense focus on the study of disease mechanisms, few new therapeutic approaches have extended to the clinic. This is in part due to poor pharmacology of many, if not most, therapeutics with respect to the sites of kidney disease within the glomerulus or nephron. Considering this, within the past decade, and more pointedly over the past 2 years, there have been substantial developments in nanoparticle systems to deliver therapeutics to the sites of kidney disease. Here, we provide a broad overview of the various classes of nanomaterials that have been developed to improve therapeutic development for kidney diseases, the strategy used to provide kidney accumulation, and briefly the disease models they focused on, if any. We then focus on one specific system, polymeric mesoscale nanoparticles, which has broadly been used over 13 publications, demonstrating targeting of the tubular epithelium with 26-fold specificity compared with other organs. While there have been several nanomedicines that have advanced to the clinic in the past several decades, including mRNA-based coronavirus disease vaccines and others, none have focused on kidney diseases specifically. In total, we are confident that the rapid advancement of nanoscale-based kidney targeting and a concerted focus by clinicians, scientists, engineers, and other stakeholders will push one or more of these technologies into clinical trials over the next decade.
Collapse
Affiliation(s)
- Anastasiia Vasylaki
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Pratyusha Ghosh
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Edgar A. Jaimes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Ryan M. Williams
- Department of Biomedical Engineering, The City College of New York, New York, New York
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, New York
| |
Collapse
|
17
|
Karthik S, Mohan S, Magesh I, Bharathy A, Kolipaka R, Ganesamoorthi S, Sathiya K, Shanmugavadivu A, Gurunathan R, Selvamurugan N. Chitosan nanocarriers for non-coding RNA therapeutics: A review. Int J Biol Macromol 2024; 263:130361. [PMID: 38395284 DOI: 10.1016/j.ijbiomac.2024.130361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Non-coding RNA (ncRNA)-based therapies entail delivering ncRNAs to cells to regulate gene expression and produce proteins that combat infections, cancer, neurological diseases, and bone abnormalities. Nevertheless, the therapeutic potential of these ncRNAs has been limited due to the difficulties in delivering them to specific cellular targets within the body. Chitosan (CS), a biocompatible cationic polymer, interacts with negatively charged RNA molecules to form stable complexes. It is a promising biomaterial to develop nanocarriers for ncRNA delivery, overcoming several disadvantages of traditional delivery systems. CS-based nanocarriers can protect ncRNAs from degradation and target-specific delivery by surface modifications and intracellular release profiles over an extended period. This review briefly summarizes the recent developments in CS nanocarriers' synthesis and design considerations and their applications in ncRNA therapeutics for treating various diseases. We also discuss the challenges and limitations of CS-based nanocarriers for ncRNA therapeutics and potential strategies for overcoming these challenges.
Collapse
Affiliation(s)
- S Karthik
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sahithya Mohan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Induja Magesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ashok Bharathy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Rushil Kolipaka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Srinidhi Ganesamoorthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - K Sathiya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Raghav Gurunathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
18
|
Ba X, Ye T, Shang H, Tong Y, Huang Q, He Y, Wu J, Deng W, Zhong Z, Yang X, Wang K, Xie Y, Zhang Y, Guo X, Tang K. Recent Advances in Nanomaterials for the Treatment of Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12117-12148. [PMID: 38421602 DOI: 10.1021/acsami.3c19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute kidney injury (AKI) is a serious clinical syndrome with high morbidity, elevated mortality, and poor prognosis, commonly considered a "sword of Damocles" for hospitalized patients, especially those in intensive care units. Oxidative stress, inflammation, and apoptosis, caused by the excessive production of reactive oxygen species (ROS), play a key role in AKI progression. Hence, the investigation of effective and safe antioxidants and inflammatory regulators to scavenge overexpressed ROS and regulate excessive inflammation has become a promising therapeutic option. However, the unique physiological structure and complex pathological alterations in the kidneys render traditional therapies ineffective, impeding the residence and efficacy of most antioxidant and anti-inflammatory small molecule drugs within the renal milieu. Recently, nanotherapeutic interventions have emerged as a promising and prospective strategy for AKI, overcoming traditional treatment dilemmas through alterations in size, shape, charge, and surface modifications. This Review succinctly summarizes the latest advancements in nanotherapeutic approaches for AKI, encompassing nanozymes, ROS scavenger nanomaterials, MSC-EVs, and nanomaterials loaded with antioxidants and inflammatory regulator. Following this, strategies aimed at enhancing biocompatibility and kidney targeting are introduced. Furthermore, a brief discussion on the current challenges and future prospects in this research field is presented, providing a comprehensive overview of the evolving landscape of nanotherapeutic interventions for AKI.
Collapse
Affiliation(s)
- Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yanlong Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
19
|
Zhang H, Liu Z, Lihe H, Lu L, Zhang Z, Yang S, Meng N, Xiong Y, Fan X, Chen Z, Lu W, Xie C, Liu M. Intranasal G5-BGG/pDNA Vaccine Elicits Protective Systemic and Mucosal Immunity against SARS-CoV-2 by Transfecting Mucosal Dendritic Cells. Adv Healthc Mater 2024; 13:e2303261. [PMID: 37961920 DOI: 10.1002/adhm.202303261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Indexed: 11/15/2023]
Abstract
Infectious disease pandemics, including the coronavirus disease 2019 pandemic, have heightened the demand for vaccines. Although parenteral vaccines induce robust systemic immunity, their effectiveness in respiratory mucosae is limited. Considering the crucial role of nasal-associated lymphoid tissue (NALT) in mucosal immune responses, in this study, the intranasal complex composed of G5-BGG and antigen-expressing plasmid DNA (pSP), named G5-BGG/pSP complex, is developed to activate NALT and to promote both systemic and mucosal immune defense. G5-BGG/pSP could traverse mucosal barriers and deliver DNA to the target cells because of its superior nasal retention and permeability characteristics. The intranasal G5-BGG/pSP complex elicits robust antigen-specific immune responses, such as the notable production of IgG antibody against several virus variants. More importantly, it induces elevated levels of antigen-specific IgA antibody and a significant expansion of the lung-resident T lymphocyte population. Notably, the intranasal G5-BGG/pSP complex results in antigen expression and maturation of dendritic cells in nasal mucosae. These findings exhibit the potential of G5-BGG, a novel cationic material, as an effective gene carrier for intranasal vaccines to obtain robust systemic and mucosal immunity.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zezhong Liu
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hongye Lihe
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 201203, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, China
| | - Zongxu Zhang
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shengmin Yang
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Nana Meng
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yin Xiong
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xingyan Fan
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhikai Chen
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Shanghai Engineering Technology Research Center for Pharmaceutica Intelligent Equipment, Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA Institute for Frontier Medical Technology Shanghai University of Engineering Science, Shanghai, 201203, China
- Shanghai Tayzen Pharmlab Co., Ltd., Shanghai, 201203, China
| | - Cao Xie
- Shanghai Tayzen Pharmlab Co., Ltd., Shanghai, 201203, China
| | - Min Liu
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
20
|
Li S, Chen Y, Cao X, Yang C, Li W, Shen B. The application of nanotechnology in kidney transplantation. Nanomedicine (Lond) 2024; 19:413-429. [PMID: 38275168 DOI: 10.2217/nnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Kidney transplantation is a crucial treatment option for end-stage renal disease patients, but challenges related to graft function, rejection and immunosuppressant side effects persist. This review highlights the potential of nanotechnology in addressing these challenges. Nanotechnology offers innovative solutions to enhance organ preservation, evaluate graft function, mitigate ischemia-reperfusion injury and improve drug delivery for immunosuppressants. The integration of nanotechnology holds promise for improving outcomes in kidney transplantation.
Collapse
Affiliation(s)
- Shengzhou Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Yiming Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Wei Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, 200433, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
- Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| |
Collapse
|
21
|
Yu B, Jin Q, Ji J. Natural products applied in acute kidney injury treatment: polymer matters. Biomater Sci 2024; 12:621-633. [PMID: 38131274 DOI: 10.1039/d3bm01772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Acute kidney injury (AKI) is a global health threat due to its high morbidity and mortality. There is still a lack of effective therapeutic methods to deal with AKI clinically. Natural products with outstanding accessibility and bioactivity are potential candidates for AKI treatment. Natural product-based prodrugs or nano-structures with improved properties are frequently fabricated for maximizing bioavailability and decreasing side effects, in which natural polymers are selected as carriers, or natural drugs are loaded as cargos on designed polymers. In this review, the etiologies of AKI are briefly presented, and emerging natural products delivered rationally for AKI therapy, as either carriers or cargos, are both introduced. Moreover, the challenges of the future development of nature-based nanodrugs or prodrugs for AKI have also been discussed.
Collapse
Affiliation(s)
- Bo Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
22
|
Dong L, Li Y, Cong H, Yu B, Shen Y. A review of chitosan in gene therapy: Developments and challenges. Carbohydr Polym 2024; 324:121562. [PMID: 37985064 DOI: 10.1016/j.carbpol.2023.121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Gene therapy, as a revolutionary treatment, has been gaining more and more attention. The key to gene therapy is the selection of suitable vectors for protection of exogenous nucleic acid molecules and enabling their specific release in target cells. While viral vectors have been widely used in researches, non-viral vectors are receiving more attention due to its advantages. Chitosan (CS) has been widely used as non-viral organic gene carrier because of its good biocompatibility and its ability to load large amounts of nucleic acids. This paper summarizes and evaluates the potential of chitosan and its derivatives as gene delivery vector materials, along with factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and the current main research development directions. Additionally, it provides an outlook on its future prospects.
Collapse
Affiliation(s)
- Liang Dong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Wang Y, Chen L, Wang Y, Wang X, Qian D, Yan J, Sun Z, Cui P, Yu L, Wu J, He Z. Marine biomaterials in biomedical nano/micro-systems. J Nanobiotechnology 2023; 21:408. [PMID: 37926815 PMCID: PMC10626837 DOI: 10.1186/s12951-023-02112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Marine resources in unique marine environments provide abundant, cost-effective natural biomaterials with distinct structures, compositions, and biological activities compared to terrestrial species. These marine-derived raw materials, including polysaccharides, natural protein components, fatty acids, and marine minerals, etc., have shown great potential in preparing, stabilizing, or modifying multifunctional nano-/micro-systems and are widely applied in drug delivery, theragnostic, tissue engineering, etc. This review provides a comprehensive summary of the most current marine biomaterial-based nano-/micro-systems developed over the past three years, primarily focusing on therapeutic delivery studies and highlighting their potential to cure a variety of diseases. Specifically, we first provided a detailed introduction to the physicochemical characteristics and biological activities of natural marine biocomponents in their raw state. Furthermore, the assembly processes, potential functionalities of each building block, and a thorough evaluation of the pharmacokinetics and pharmacodynamics of advanced marine biomaterial-based systems and their effects on molecular pathophysiological processes were fully elucidated. Finally, a list of unresolved issues and pivotal challenges of marine-derived biomaterials applications, such as standardized distinction of raw materials, long-term biosafety in vivo, the feasibility of scale-up, etc., was presented. This review is expected to serve as a roadmap for fundamental research and facilitate the rational design of marine biomaterials for diverse emerging applications.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Yuanzheng Wang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China.
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Zeyu Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jun Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| |
Collapse
|
24
|
Sahu A, Min K, Jeon SH, Kwon K, Tae G. Self-assembled hemin-conjugated heparin with dual-enzymatic cascade reaction activities for acute kidney injury. Carbohydr Polym 2023; 316:121088. [PMID: 37321716 DOI: 10.1016/j.carbpol.2023.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Nanozymes have prominent catalytic activities with high stability as a substitute for unstable and expensive natural enzymes. However, most nanozymes are metal/inorganic nanomaterials, facing difficulty in clinical translation due to their unproven biosafety and limited biodegradability issues. Hemin, an organometallic porphyrin, was newly found to possess superoxide dismutase (SOD) mimetic activity along with previously known catalase (CAT) mimetic activity. However, hemin has poor bioavailability due to its low water solubility. Therefore, a highly biocompatible and biodegradable organic-based nanozyme system with SOD/CAT mimetic cascade reaction activity was developed by conjugating hemin to heparin (HepH) or chitosan (CS-H). Between them, Hep-H formed a smaller (<50 nm) and more stable self-assembled nanostructure and even possessed much higher and more stable SOD and CAT activities as well as the cascade reaction activity compared to CS-H and free hemin. Hep-H also showed a better cell protection effect against reactive oxygen species (ROS) compared to CS-H and hemin in vitro. Furthermore, Hep-H was selectively delivered to the injured kidney upon intravenous administration at the analysis time point (24 h) and exhibited excellent therapeutic effects on an acute kidney injury model by efficiently removing ROS, reducing inflammation, and minimizing structural and functional damage to the kidney.
Collapse
Affiliation(s)
- Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kiyoon Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The pathophysiological understanding of kidney-related disorders has profoundly increased; however, tissue-specific and cell-specific treatments in this field remain scarce. Advances in nanomedicine enable alteration of pharmacokinetics and targeted treatments improving efficiency and reducing toxicity. This review addresses recent developments of nanocarriers used for various purposes in the broad field of kidney disease, which may pave a path to new therapeutic and diagnostic solutions employing nanomedicine. RECENT FINDINGS Controlled delivery of antiproliferative medications enables improved treatment of polycystic kidney disease and fibrosis. Directed anti-inflammatory treatment mitigated glomerulonephritis and tubulointerstitial nephritis. Multiple injury pathways in AKI have been targeted, with therapeutic solutions for oxidative stress, mitochondrial dysfunction, local inflammation and improving self-repair mechanisms. In addition to such treatment development, noninvasive early detection methods (minutes after ischemic insult) have been demonstrated as well. Sustained release of therapies that reduce ischemia-reperfusion injury as well as new aspects for immunosuppression bring hope to improving kidney transplant outcomes. The latest breakthroughs in gene therapy are made achievable by engineering the targeted delivery of nucleic acids for new treatments of kidney disease. SUMMARY Recent advances in nanotechnology and pathophysiological understanding of kidney diseases show potential for translatable therapeutic and diagnostic interventions in multiple etiologies of kidney disease.
Collapse
Affiliation(s)
- Bishop Boaz
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Swagat Sharma
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Simpson Quarry Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
26
|
Yadav K, Sahu KK, Sucheta, Gnanakani SPE, Sure P, Vijayalakshmi R, Sundar VD, Sharma V, Antil R, Jha M, Minz S, Bagchi A, Pradhan M. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications. Int J Biol Macromol 2023; 241:124582. [PMID: 37116843 DOI: 10.1016/j.ijbiomac.2023.124582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
In the past few decades, substantial advancement has been made in nucleic acid (NA)-based therapies. Promising treatments include mRNA, siRNA, miRNA, and anti-sense DNA for treating various clinical disorders by modifying the expression of DNA or RNA. However, their effectiveness is limited due to their concentrated negative charge, instability, large size, and host barriers, which make widespread application difficult. The effective delivery of these medicines requires safe vectors that are efficient & selective while having non-pathogenic qualities; thus, nanomaterials have become an attractive option with promising possibilities despite some potential setbacks. Nanomaterials possess ideal characteristics, allowing them to be tuned into functional bio-entity capable of targeted delivery. In this review, current breakthroughs in the non-viral strategy of delivering NAs are discussed with the goal of overcoming challenges that would otherwise be experienced by therapeutics. It offers insight into a wide variety of existing NA-based therapeutic modalities and techniques. In addition to this, it provides a rationale for the use of non-viral vectors and a variety of nanomaterials to accomplish efficient gene therapy. Further, it discusses the potential for biomedical application of nanomaterials-based gene therapy in various conditions, such as cancer therapy, tissue engineering, neurological disorders, and infections.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | | | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - V D Sundar
- Department of Pharmaceutical Technology, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - Versha Sharma
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Ruchita Antil
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, England, United Kingdom of Great Britain and Northern Ireland
| | - Megha Jha
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, M.P., 484887, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | | |
Collapse
|
27
|
Campeiro JD, Dam WA, Hayashi MAF, van den Born J. Crotamine/siRNA Nanocomplexes for Functional Downregulation of Syndecan-1 in Renal Proximal Tubular Epithelial Cells. Pharmaceutics 2023; 15:1576. [PMID: 37376025 DOI: 10.3390/pharmaceutics15061576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Proteinuria drives progressive tubulointerstitial fibrosis in native and transplanted kidneys, mainly through the activation of proximal tubular epithelial cells (PTECs). During proteinuria, PTEC syndecan-1 functions as a docking platform for properdin-mediated alternative complement activation. Non-viral gene delivery vectors to target PTEC syndecan-1 could be useful to slow down alternative complement activation. In this work, we characterize a PTEC-specific non-viral delivery vector composed of the cell-penetrating peptide crotamine complexed with a syndecan-1 targeting siRNA. Cell biological characterization was performed in the human PTEC HK2 cell line, using confocal microscopy, qRT-PCR, and flow cytometry. PTEC targeting in vivo was carried out in healthy mice. Crotamine/siRNA nanocomplexes are positively charged, about 100 nm in size, resistant to nuclease degradation, and showed in vitro and in vivo specificity and internalization into PTECs. The efficient suppression of syndecan-1 expression in PTECs mediated by these nanocomplexes significantly reduced properdin binding (p < 0.001), as well as the subsequent complement activation by the alternative complement pathway (p < 0.001), as observed in either normal or activated tubular conditions. To conclude, crotamine/siRNA-mediated downregulation of PTEC syndecan-1 reduced the activation of the alternative complement pathway. Therefore, we suggest that the present strategy opens new venues for targeted proximal tubular gene therapy in renal diseases.
Collapse
Affiliation(s)
- Joana D'Arc Campeiro
- Department Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, De Brug, 4th Floor, AA53, 9713 GZ Groningen, The Netherlands
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed. INFAR, 3rd Floor, São Paulo 04044-020, Brazil
| | - Wendy A Dam
- Department Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, De Brug, 4th Floor, AA53, 9713 GZ Groningen, The Netherlands
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed. INFAR, 3rd Floor, São Paulo 04044-020, Brazil
| | - Jacob van den Born
- Department Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, De Brug, 4th Floor, AA53, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
28
|
Zeng C, Tan Y, Sun L, Long Y, Zeng F, Wu S. Renal-Clearable Probe with Water Solubility and Photostability for Biomarker-Activatable Detection of Acute Kidney Injuries via NIR-II Fluorescence and Optoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17664-17674. [PMID: 37011134 DOI: 10.1021/acsami.3c00956] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Acute kidney injuries (AKI) have serious short-term or long-term complications with high morbidity and mortality rate, thus posing great health threats. Developing high-performance NIR-II probes for noninvasive in situ detection of AKI via NIR-II fluorescent and optoacoustic dual-mode imaging is of great significance. Yet NIR-II chromophores often feature long conjugation and hydrophobicity, which prevent them from being renal clearable, thus limiting their applications in the detection and imaging of kidney diseases. To fully exploit the advantageous features of heptamethine cyanine dye, while overcoming its relatively poor photostability, and to strive to design a NIR-II probe for the detection and imaging of AKI with dual-mode imaging, herein, we have developed the probe PEG3-HC-PB, which is renal clearable, water soluble, and biomarker activatable and has good photostability. As for the probe, its fluorescence (900-1200 nm) is quenched due to the existence of the electron-pulling phenylboronic group (responsive element), and it exhibits weak absorption with a peak at 830 nm. Meanwhile, in the presence of the overexpressed H2O2 in the renal region in the case of AKI, the phenylboronic group is converted to the phenylhydroxy group, which enhances NIR-II fluorescent emission (900-1200 nm) and absorption (600-900 nm) and eventually produces conspicuous optoacoustic signals and NIR-II fluorescent emission for imaging. This probe enables detection of contrast-agent-induced and ischemia/reperfusion-induced AKI in mice using real-time 3D-MSOT and NIR-II fluorescent dual-mode imaging via response to the biomarker H2O2. Hence, this probe can be used as a practicable tool for detecting AKI; additionally, its design strategy could provide insight into the design of other large-conjugation NIR-II probes with multifarious biological applications.
Collapse
Affiliation(s)
- Cheng Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Yunyan Tan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Yi Long
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| |
Collapse
|
29
|
Jogdeo CM, Panja S, Kanvinde S, Kapoor E, Siddhanta K, Oupický D. Advances in Lipid-Based Codelivery Systems for Cancer and Inflammatory Diseases. Adv Healthc Mater 2023; 12:e2202400. [PMID: 36453542 PMCID: PMC10023350 DOI: 10.1002/adhm.202202400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Indexed: 12/03/2022]
Abstract
Combination therapy targeting multiple therapeutic targets is a favorable strategy to achieve better therapeutic outcomes in cancer and inflammatory diseases. Codelivery is a subfield of drug delivery that aims to achieve combined delivery of diverse therapeutic cargoes within the same delivery system, thereby ensuring delivery to the same site and providing an opportunity to tailor the release kinetics as desired. Among the wide range of materials being investigated in the design of codelivery systems, lipids have stood out on account of their low toxicity, biocompatibility, and ease of formulation scale-up. This review highlights the advances of the last decade in lipid-based codelivery systems focusing on the codelivery of drug-drug, drug-nucleic acid, nucleic acid-nucleic acid, and protein therapeutic-based combinations for targeted therapy in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Chinmay M. Jogdeo
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Sudipta Panja
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Shrey Kanvinde
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Ekta Kapoor
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - David Oupický
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| |
Collapse
|
30
|
Liu Y, Guan X, Shao Y, Zhou J, Huang Y. The Molecular Mechanism and Therapeutic Strategy of Cardiorenal Syndrome Type 3. Rev Cardiovasc Med 2023; 24:52. [PMID: 39077418 PMCID: PMC11273121 DOI: 10.31083/j.rcm2402052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 07/31/2024] Open
Abstract
Cardiorenal syndrome type 3 (CRS3) is defined as acute kidney injury (AKI)-induced acute cardiac dysfunction, characterized by high morbidity and mortality. CRS3 often occurs in elderly patients with AKI who need intensive care. Approximately 70% of AKI patients develop into CRS3. CRS3 may also progress towards chronic kidney disease (CKD) and chronic cardiovascular disease (CVD). However, there is currently no effective treatment. Although the major intermediate factors that can mediate cardiac dysfunction remain elusive, recent studies have summarized the AKI biomarkers, identified direct mechanisms, including mitochondrial dysfunction, inflammation, oxidative stress, apoptosis and activation of the sympathetic nervous system (SNS) and renin-angiotensin-aldosterone system (RAAS), inflammasome, as well as indirect mechanisms such as fluid overload, electrolyte imbalances, acidemia and uremic toxins, which are involved in the pathophysiological changes of CRS3. This study reviews the main pathological characteristics, underlying molecular mechanisms, and potential therapeutic strategies of CRS3. Mitochondrial dysfunction and inflammatory factors have been identified as the key initiators and abnormal links between the impaired heart and kidney, which contribute to the formation of a vicious circle, ultimately accelerating the progression of CRS3. Therefore, targeting mitochondrial dysfunction, antioxidants, Klotho, melatonin, gene therapy, stem cells, exosomes, nanodrugs, intestinal microbiota and Traditional Chinese Medicine may serve as promising therapeutic approaches against CRS3.
Collapse
Affiliation(s)
- Yong Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| | - Xu Guan
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| | - Yuming Shao
- Medical Division, Xinqiao Hospital, Army Medical University, 400037 Chongqing, China
| | - Jie Zhou
- Department of Oncology, Southwest Cancer Center, Southwest Hospital, Army Medical University, 400038 Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| |
Collapse
|
31
|
Wang Y, Pu M, Yan J, Zhang J, Wei H, Yu L, Yan X, He Z. 1,2-Bis(2-aminophenoxy)ethane- N, N, N', N'-tetraacetic Acid Acetoxymethyl Ester Loaded Reactive Oxygen Species Responsive Hyaluronic Acid-Bilirubin Nanoparticles for Acute Kidney Injury Therapy via Alleviating Calcium Overload Mediated Endoplasmic Reticulum Stress. ACS NANO 2023; 17:472-491. [PMID: 36574627 DOI: 10.1021/acsnano.2c08982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Calcium overload is one of the early determinants of the core cellular events that contribute to the pathogenesis of acute kidney injury (AKI), which include oxidative stress, ATP depletion, calcium overload, and inflammatory response with self-amplifying and interactive feedback loops that ultimately lead to cellular injury and renal failure. Excluding adjuvant therapy, there are currently no approved pharmacotherapies for the treatment of AKI. Using an adipic dihydride linker, we modified the hyaluronic acid polymer chain with a potent antioxidant, bilirubin, to produce an amphiphilic conjugate. Subsequently, we developed a kidney-targeted and reactive oxygen species (ROS)-responsive drug delivery system based on the flash nanocomplexation method to deliver a well-known intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM, BA), with the goal of rescuing renal cell damage via rapidly scavenging of intracellularly overloaded Ca2+. In the ischemia-reperfusion (I/R) induced AKI rat model, a single dose of as-prepared formulation (BA 100 μg·kg-1) 6 h post-reperfusion significantly reduced renal function indicators by more than 60% within 12 h, significantly alleviated tissular pathological changes, ameliorated tissular oxidative damage, significantly inhibited apoptosis of renal tubular cells and the expression of renal tubular marker kidney injury molecule 1, etc., thus greatly reducing the risk of kidney failure. Mechanistically, the treatment with BA-loaded NPs significantly inhibited the activation of the ER stress cascade response (IRE1-TRAF2-JNK, ATF4-CHOP, and ATF6 axis) and regulated the downstream apoptosis-related pathway while also reducing the inflammatory response. The BA-loaded NPs hold great promise as a potential therapy for I/R injury-related diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Minju Pu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Jingwen Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Huichao Wei
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| |
Collapse
|
32
|
Lan T, Guo H, Lu X, Geng K, Wu L, Luo Y, Zhu J, Shen X, Guo Q, Wu S. Dual-Responsive Curcumin-Loaded Nanoparticles for the Treatment of Cisplatin-Induced Acute Kidney Injury. Biomacromolecules 2022; 23:5253-5266. [PMID: 36382792 DOI: 10.1021/acs.biomac.2c01083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acute kidney injury (AKI) has been a global public health concern leading to high patient morbidity and mortality in the world. Nanotechnology-mediated antioxidative therapy has facilitated the treatment of AKI. Herein, a hierarchical curcumin-loaded nanodrug delivery system (NPS@Cur) was fabricated for antioxidant therapy to ameliorate AKI. The nanoplatform could respond to subacidic and reactive oxygen species (ROS) microenvironments. The subacidic microenvironment led to a smaller size (from 140.9 to 99.36 nm) and positive charge (from -4.9 to 12.6 mV), contributing to the high accumulation of nanoparticles. An excessive ROS microenvironment led to nanoparticle degradation and drug release. In vitro assays showed that NPS@Cur could scavenge excessive ROS and relieve oxidative stress in H2O2-induced HK-2 cells through reduced apoptosis, activated autophagy, and decreased endoplasmic reticulum stress. Results from cisplatin-induced AKI models revealed that NPS@Cur could effectively alleviate mitochondria injury and protect kidneys via antioxidative protection, activated autophagy, decreased endoplasmic reticulum stress, and reduced apoptosis. NPS@Cur showed excellent biocompatibility and low toxicity to primary tissues in mice. These results revealed that NPS@Cur may be a potential therapeutic strategy for efficiently treating cisplatin or other cause-induced AKI.
Collapse
Affiliation(s)
- Tianyu Lan
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou510640, China.,The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Honglei Guo
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing210029, China
| | - Xin Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Kedui Geng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Lin Wu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing210029, China
| | - Yongjun Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Jingfeng Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing210029, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou510640, China
| |
Collapse
|
33
|
Aghbashlo M, Amiri H, Moosavi Basri SM, Rastegari H, Lam SS, Pan J, Gupta VK, Tabatabaei M. Tuning chitosan’s chemical structure for enhanced biological functions. Trends Biotechnol 2022; 41:785-797. [PMID: 36535818 DOI: 10.1016/j.tibtech.2022.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Chitosan, an amino polysaccharide mostly derived from crustaceans, has been recently highlighted for its biological activities that depend on its molecular weight (MW), degree of deacetylation (DD), and acetylation pattern (AP). More importantly, for some advanced biomaterials, the homogeneity of the chitosan structure is an important factor in determining its biological activity. Here we review emerging enzymes and cell factories, respectively, for in vitro and in vivo preparation of chitosan oligosaccharides (COSs), focusing on advances in the analysis of the AP and structural modification of chitosan to tune its functions. By 'mapping' current knowledge on chitosan's in vitro and in vivo activity with its MW and AP, this work could pave the way for future studies in the field.
Collapse
Affiliation(s)
- Mortaza Aghbashlo
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|