1
|
Torresan V, Dedroog LM, Deschaume O, Koos E, Lettinga MP, Gandin A, Pelosin M, Zanconato F, Brusatin G, Bartic C. Nanocellulose-collagen composites as advanced biomaterials for 3D in-vitro neuronal model systems. Carbohydr Polym 2025; 348:122901. [PMID: 39567136 DOI: 10.1016/j.carbpol.2024.122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
Studying brain diseases and developing therapies requires versatile in vitro systems for long-term neuronal cultures. SH-SY5Y neuroblastoma cells are ideal for modeling neurodegenerative diseases. Although SH-SY5Y cells are commonly used in 2D cultures, 3D systems offer more physiologically relevant models. Studies have shown 3D culturing up to 7 days, but a simple, reproducible, and tunable system has yet to be identified. Cellulose holds potential to fulfill these needs. Cellulose and its derivatives are sustainable, cytocompatible, and ideal for synthesizing biocompatible hydrogels. Its abundance and ease of chemical modification make it a highly attractive biomaterial. This study explored nanocellulose-based hydrogels for promoting neuronal growth and morphogenesis. To enhance cell adhesion, a small amount of collagen was added to the hydrogel, and the resulting cell morphologies were analyzed and compared with those cultured in collagen and Matrigel. By chemically oxidizing cellulose and adjusting the blend, we developed composites that maintained neuronal viability for over 14 days in 3D cultures. Our findings show that nanocellulose-collagen composites offer superior cytocompatibility, promoting neuronal viability and neurite outgrowth more effectively than Matrigel and collagen. These tunable biomaterials support long-term 3D neuronal cultures, making them valuable for creating standardized models for disease research and drug development.
Collapse
Affiliation(s)
- Veronica Torresan
- Department of Industrial Engineering, University of Padova and INSTM, via Marzolo 9, 35131 Padova, Italy
| | - Lens Martijn Dedroog
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Olivier Deschaume
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Erin Koos
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Minne Paul Lettinga
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium; Biological Information Processing IBI-4, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alessandro Gandin
- Department of Industrial Engineering, University of Padova and INSTM, via Marzolo 9, 35131 Padova, Italy
| | - Margherita Pelosin
- Department of Industrial Engineering, University of Padova and INSTM, via Marzolo 9, 35131 Padova, Italy
| | - Francesca Zanconato
- Department of Molecular Medicine, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giovanna Brusatin
- Department of Industrial Engineering, University of Padova and INSTM, via Marzolo 9, 35131 Padova, Italy.
| | - Carmen Bartic
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Zuurbier KR, Fonseca RS, Arneaud SLB, Wall JM, Kim J, Tatge L, Otuzoglu G, Bali S, Metang P, Douglas PM. Yin Yang 1 and guanine quadruplexes protect dopaminergic neurons from cellular stress via transmissive dormancy. Nat Commun 2024; 15:10592. [PMID: 39632864 PMCID: PMC11618784 DOI: 10.1038/s41467-024-54958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Neurons deploy diverse adaptive strategies to ensure survival and neurotransmission amid cellular stress. When these adaptive pathways are overwhelmed, functional impairment or neurodegeneration follows. Here we show that stressed neurons actively induce a state of transmissive dormancy as a protective measure. Extending observations of neurotrauma in C. elegans and mice, human dopaminergic neurons capable of surviving severe cellular challenges both decrease spontaneous activity and modulate dopamine homeostasis through the transcriptional regulator Yin Yang 1 (YY1). To bolster stress resilience and mitigate dopamine toxicity, YY1 increases expression of the vesicular monoamine transporter 2, vMAT2, while coordinately inhibiting dopamine synthesis through stabilization of a guanine quadruplex in intron 10 of tyrosine hydroxylase, TH. This dopaminergic stress response has the potential to cause circuit inactivation, yet safeguards neurons by minimizing the toxic accumulation of cytosolic dopamine and inducing a state of neuronal dormancy. In essence, neurons appear to actively prioritize viability over functionality.
Collapse
Affiliation(s)
- Kielen R Zuurbier
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rene Solano Fonseca
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sonja L B Arneaud
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jordan M Wall
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Juhee Kim
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lexus Tatge
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gupse Otuzoglu
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sofia Bali
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Patrick Metang
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Peter M Douglas
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine; UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Shuai Y, Zheng M, Kundu SC, Mao C, Yang M. Bioengineered Silk Protein-Based 3D In Vitro Models for Tissue Engineering and Drug Development: From Silk Matrix Properties to Biomedical Applications. Adv Healthc Mater 2024; 13:e2401458. [PMID: 39009465 DOI: 10.1002/adhm.202401458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Indexed: 07/17/2024]
Abstract
3D in vitro model has emerged as a valuable tool for studying tissue development, drug screening, and disease modeling. 3D systems can accurately replicate tissue microstructures and physiological features, mirroring the in vivo microenvironment departing from conventional 2D cell cultures. Various 3D in vitro models utilizing biomacromolecules like collagen and synthetic polymers have been developed to meet diverse research needs and address the complex challenges of contemporary research. Silk proteins, bearing structural and functional similarities to collagen, have been increasingly employed to construct advanced 3D in vitro systems, surpassing the limitations of 2D cultures. This review examines silk proteins' composition, structure, properties, and functions, elucidating their role in 3D in vitro models. Furthermore, recent advances in biomedical applications involving silk-based organoid models are discussed. In particular, the unique physiological attributes of silk matrix constituents in in vitro tissue constructs are highlighted, providing a meticulous evaluation of their importance. Additionally, it outlines the current research hurdles and complexities while contemplating future avenues, thereby paving the way for developing complex and biomimetic silk protein-based microtissues.
Collapse
Affiliation(s)
- Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Meidan Zheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, P. R. China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
4
|
Jones EJ, Skinner BM, Parker A, Baldwin LR, Greenman J, Carding SR, Funnell SGP. An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins. BIOMICROFLUIDICS 2024; 18:054105. [PMID: 39280192 PMCID: PMC11401645 DOI: 10.1063/5.0200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut-brain axis (GBA). Our dual-flow GIT-brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT-brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death.
Collapse
Affiliation(s)
- Emily J Jones
- Food, Microbiome and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Benjamin M Skinner
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Aimee Parker
- Food, Microbiome and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Lydia R Baldwin
- Centre of Biomedical Sciences, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - John Greenman
- Centre of Biomedical Sciences, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | | |
Collapse
|
5
|
Han X, Li B, Wang W, Feng B, Tang Q, Qi Y, Zhao R, Qiu W, Zhao S, Pan Z, Guo X, Du H, Qiu J, Liu H, Li G, Xue H. Cerium Vanadate Nanozyme with pH-Dependent Dual Enzymatic Activity for Glioblastoma Targeted Therapy and Postradiotherapy Damage Protection. ACS NANO 2024; 18. [PMID: 39016679 PMCID: PMC11295195 DOI: 10.1021/acsnano.4c06616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Nanocatalytic therapy is an emerging technology that uses synthetic nanoscale enzyme mimics for biomedical treatment. However, in the field of neuroscience, achieving neurological protection while simultaneously killing tumor cells is a technical challenge. Herein, we synthesized a biomimic and translational cerium vanadate (CeVO4) nanozyme for glioblastoma (GBM) therapy and the repair of brain damage after GBM ionizing radiation (IR). This system exhibited pH dependence: it showed potent Superoxide dismutase (SOD) enzyme activity in a neutral environment and Peroxidase (POD) enzyme activity in an acidic environment. In GBM cells, this system acted in lysosomes, causing cellular damage and reactive oxygen species (ROS) accumulation; in neuronal cells, this nanozyme could undergo lysosomal escape and nanozyme aggregation with mitochondria, reversing the mitochondrial damage caused by IR and restoring the expression level of the antiapoptotic BCL-2 protein. Mechanistically, we believe that this distribution difference is related to the specific uptake internalization mechanism and lysosomal repair pathway in neurons, and ultimately led to the dual effect of tumor killing and nerve repair in the in vivo model. In summary, this study provides insight into the repair of brain damage after GBM radiation therapy.
Collapse
Affiliation(s)
- Xiao Han
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
- Department
of Neurosurgery, Children’s Hospital
Affiliated to Shandong University, Jinan Children’s Hospital, Jinan, Shandong 250001, P.R. China
| | - Boyan Li
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Wenhan Wang
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Bowen Feng
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Qilin Tang
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Yanhua Qi
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Rongrong Zhao
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Wei Qiu
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Shulin Zhao
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Ziwen Pan
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Xiaofan Guo
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Hao Du
- Department
of Cell Biology, University of Connecticut
School of Medicine, Farmington, Connecticut 06032, United States
| | - Jichuan Qiu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan, Shandong 250100, P. R. China
| | - Hong Liu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan, Shandong 250100, P. R. China
- Institute
for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Gang Li
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Hao Xue
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
6
|
Li ZL, Ma AX, Liu JQ, Wang K, Zhu BC, Pang DW, Kong DM. A translocation fluorescent probe for analyzing cellular physiological parameters in neurological disease models. J Mater Chem B 2024; 12:4398-4408. [PMID: 38651348 DOI: 10.1039/d4tb00557k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Neurological disorders are closely linked to the alterations in cell membrane permeability (CMP) and mitochondrial membrane potential (MMP). Changes in CMP and MMP may lead to damage and death of nerve cells, thus triggering the onset and progression of neurological diseases. Therefore, monitoring the changes of these two physiological parameters not only benefits the accurate assessment of nerve cell health status, but also enables providing key information for the diagnosis and treatment of neurological diseases. However, the simultaneous monitoring of these two cellular physiological parameters is still challenging. Herein, we design and synthesize two quinolinium-carbazole-derivated fluorescent probes (OQ and PQ). As isomers, the only difference in their chemical structures is the linking position of the carbazole unit in quinoline rings. Strikingly, such a subtle difference endows OQ and PQ with significantly different organelle-staining behaviors. PQ mainly targets at the nucleus, OQ can simultaneously stain cell membranes and mitochondria in normal cells, and performs CMP and MMP-dependent translocation from the cell membrane to mitochondria then to the nucleus, thus holding great promise as an intracellular translocation probe to image the changes of CMP and MMP. After unraveling the intrinsic mechanism of their different translocation abilities by combining experiments with molecular dynamics simulations and density functional theory calculations, we successfully used OQ to monitor the continuous changes of CMP and MMP in three neurological disease-related cell models, including oxidative stress-damaged, Parkinson's disease, and virus-infected ones. Besides providing a validated imaging tool for monitoring cellular physiological parameters, this work paves a promising route for designing intracellular translocation probes to analyze cellular physiological parameters associated with various diseases.
Collapse
Affiliation(s)
- Zi-Lu Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Jing-Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China.
| | - Bao-Cun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China.
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai Province, P. R. China
| |
Collapse
|
7
|
Wu Y, Meng X, Cheng WY, Yan Z, Li K, Wang J, Jiang T, Zhou F, Wong KH, Zhong C, Dong Y, Gao S. Can pluripotent/multipotent stem cells reverse Parkinson's disease progression? Front Neurosci 2024; 18:1210447. [PMID: 38356648 PMCID: PMC10864507 DOI: 10.3389/fnins.2024.1210447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by continuous and selective degeneration or death of dopamine neurons in the midbrain, leading to dysfunction of the nigrostriatal neural circuits. Current clinical treatments for PD include drug treatment and surgery, which provide short-term relief of symptoms but are associated with many side effects and cannot reverse the progression of PD. Pluripotent/multipotent stem cells possess a self-renewal capacity and the potential to differentiate into dopaminergic neurons. Transplantation of pluripotent/multipotent stem cells or dopaminergic neurons derived from these cells is a promising strategy for the complete repair of damaged neural circuits in PD. This article reviews and summarizes the current preclinical/clinical treatments for PD, their efficacies, and the advantages/disadvantages of various stem cells, including pluripotent and multipotent stem cells, to provide a detailed overview of how these cells can be applied in the treatment of PD, as well as the challenges and bottlenecks that need to be overcome in future translational studies.
Collapse
Affiliation(s)
- Yongkang Wu
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiangtian Meng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wai-Yin Cheng
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zhichao Yan
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keqin Li
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianfang Jiang
- Department of Neurology, Shanghai Eighth People’s Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Dong
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Shane Gao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Turan Sorhun D, Kuşoğlu A, Öztürk E. Developing Bovine Brain-Derived Extracellular Matrix Hydrogels: a Screen of Decellularization Methods for Their Impact on Biochemical and Mechanical Properties. ACS OMEGA 2023; 8:36933-36947. [PMID: 37841171 PMCID: PMC10569007 DOI: 10.1021/acsomega.3c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Tissue models that recapitulate the key biochemical and physical aspects of the brain have been highly pursued in neural tissue engineering. Decellularization of native organs offers the advantage of preserving the composition of native extracellular matrix (ECM). Brain ECM has distinct features which play a major role in neural cell behavior. Cell instructive ligands and mechanical properties take part in the regulation of cellular processes in homeostasis and diseases. One of the main challenges in decellularization is maintaining mechanical integrity in reconstituted hydrogels and achieving physiologically relevant stiffness. The effect of the decellularization process on different mechanical aspects, particularly the viscoelasticity of brain-derived hydrogels, has not been addressed. In this study, we developed bovine brain-derived hydrogels for the first time. We pursued seven protocols for decellularization and screened their effect on biochemical content, hydrogel formation, and mechanical characteristics. We show that bovine brain offers an easily accessible alternative for in vitro brain tissue modeling. Our data demonstrate that the choice of decellularization method strongly alters gelation as well as the stiffness and viscoelasticity of the resulting hydrogels. Lastly, we investigated the cytocompatibility of brain ECM hydrogels and the effect of modulated mechanical properties on the growth and morphological features of neuroblastoma cells.
Collapse
Affiliation(s)
- Duygu Turan Sorhun
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Alican Kuşoğlu
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ece Öztürk
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Department
of Medical Biology, School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
9
|
Liaudanskaya V, Fiore NJ, Zhang Y, Milton Y, Kelly MF, Coe M, Barreiro A, Rose VK, Shapiro MR, Mullis AS, Shevzov-Zebrun A, Blurton-Jones M, Whalen MJ, Symes AJ, Georgakoudi I, Nieland TJF, Kaplan DL. Mitochondria dysregulation contributes to secondary neurodegeneration progression post-contusion injury in human 3D in vitro triculture brain tissue model. Cell Death Dis 2023; 14:496. [PMID: 37537168 PMCID: PMC10400598 DOI: 10.1038/s41419-023-05980-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
Traumatic Brain injury-induced disturbances in mitochondrial fission-and-fusion dynamics have been linked to the onset and propagation of neuroinflammation and neurodegeneration. However, cell-type-specific contributions and crosstalk between neurons, microglia, and astrocytes in mitochondria-driven neurodegeneration after brain injury remain undefined. We developed a human three-dimensional in vitro triculture tissue model of a contusion injury composed of neurons, microglia, and astrocytes and examined the contributions of mitochondrial dysregulation to neuroinflammation and progression of injury-induced neurodegeneration. Pharmacological studies presented here suggest that fragmented mitochondria released by microglia are a key contributor to secondary neuronal damage progression after contusion injury, a pathway that requires astrocyte-microglia crosstalk. Controlling mitochondrial dysfunction thus offers an exciting option for developing therapies for TBI patients.
Collapse
Affiliation(s)
- Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Nicholas J Fiore
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Yuka Milton
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Marilyn F Kelly
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Marly Coe
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Ariana Barreiro
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Victoria K Rose
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Matthew R Shapiro
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Adam S Mullis
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Michael J Whalen
- Department of Pediatrics, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
10
|
Zhang S, Zhang J, Wu L, Chen L, Niu P, Li J. Glutamine supplementation reverses manganese neurotoxicity by eliciting the mitochondrial unfolded protein response. iScience 2023; 26:107136. [PMID: 37408687 PMCID: PMC10318524 DOI: 10.1016/j.isci.2023.107136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Excessive exposure to manganese (Mn) can cause neurological abnormalities, but the mechanism of Mn neurotoxicity remains unclear. Previous studies have shown that abnormal mitochondrial metabolism is a crucial mechanism underlying Mn neurotoxicity. Therefore, improving neurometabolic in neuronal mitochondria may be a potential therapy for Mn neurotoxicity. Here, single-cell sequencing revealed that Mn affected mitochondrial neurometabolic pathways and unfolded protein response in zebrafish dopaminergic neurons. Metabolomic analysis indicated that Mn inhibited the glutathione metabolic pathway in human neuroblastoma (SH-SY5Y) cells. Mechanistically, Mn exposure inhibited glutathione (GSH) and mitochondrial unfolded protein response (UPRmt). Furthermore, supplementation with glutamine (Gln) can effectively increase the concentration of GSH and triggered UPRmt which can alleviate mitochondrial dysfunction and counteract the neurotoxicity of Mn. Our findings highlight that UPRmt is involved in Mn-induced neurotoxicity and glutathione metabolic pathway affects UPRmt to reverse Mn neurotoxicity. In addition, Gln supplementation may have potential therapeutic benefits for Mn-related neurological disorders.
Collapse
Affiliation(s)
- Shixuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Nutrition, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Junrou Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Luli Wu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
11
|
Fabbri R, Cacopardo L, Ahluwalia A, Magliaro C. Advanced 3D Models of Human Brain Tissue Using Neural Cell Lines: State-of-the-Art and Future Prospects. Cells 2023; 12:1181. [PMID: 37190089 PMCID: PMC10136913 DOI: 10.3390/cells12081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Human-relevant three-dimensional (3D) models of cerebral tissue can be invaluable tools to boost our understanding of the cellular mechanisms underlying brain pathophysiology. Nowadays, the accessibility, isolation and harvesting of human neural cells represents a bottleneck for obtaining reproducible and accurate models and gaining insights in the fields of oncology, neurodegenerative diseases and toxicology. In this scenario, given their low cost, ease of culture and reproducibility, neural cell lines constitute a key tool for developing usable and reliable models of the human brain. Here, we review the most recent advances in 3D constructs laden with neural cell lines, highlighting their advantages and limitations and their possible future applications.
Collapse
Affiliation(s)
- Rachele Fabbri
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Department of Information Engineering (DII), University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Ludovica Cacopardo
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Department of Information Engineering (DII), University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Italy
| | - Arti Ahluwalia
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Department of Information Engineering (DII), University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Italy
| | - Chiara Magliaro
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Department of Information Engineering (DII), University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Italy
| |
Collapse
|
12
|
Susceptibility of Ovine Bone Marrow-Derived Mesenchymal Stem Cell Spheroids to Scrapie Prion Infection. Animals (Basel) 2023; 13:ani13061043. [PMID: 36978584 PMCID: PMC10044354 DOI: 10.3390/ani13061043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
In neurodegenerative diseases, including prion diseases, cellular in vitro models appear as fundamental tools for the study of pathogenic mechanisms and potential therapeutic compounds. Two-dimensional (2D) monolayer cell culture systems are the most used cell-based assays, but these platforms are not able to reproduce the microenvironment of in vivo cells. This limitation can be surpassed using three-dimensional (3D) culture systems such as spheroids that more effectively mimic in vivo cell interactions. Herein, we evaluated the effect of scrapie prion infection in monolayer-cultured ovine bone marrow-derived mesenchymal stem cells (oBM-MSCs) and oBM-MSC-derived spheroids in growth and neurogenic conditions, analyzing their cell viability and their ability to maintain prion infection. An MTT assay was performed in oBM-MSCs and spheroids subjected to three conditions: inoculated with brain homogenate from scrapie-infected sheep, inoculated with brain homogenate from healthy sheep, and non-inoculated controls. The 3D conditions improved the cell viability in most cases, although in scrapie-infected spheroids in growth conditions, a decrease in cell viability was observed. The levels of pathological prion protein (PrPSc) in scrapie-infected oBM-MSCs and spheroids were measured by ELISA. In neurogenic conditions, monolayer cells and spheroids maintained the levels of PrPSc over time. In growth conditions, however, oBM-MSCs showed decreasing levels of PrPSc throughout time, whereas spheroids were able to maintain stable PrPSc levels. The presence of PrPSc in spheroids was also confirmed by immunocytochemistry. Altogether, these results show that a 3D culture microenvironment improves the permissiveness of oBM-MSCs to scrapie infection in growth conditions and maintains the infection ability in neurogenic conditions, making this model of potential use for prion studies.
Collapse
|
13
|
Morello G, De Iaco G, Gigli G, Polini A, Gervaso F. Chitosan and Pectin Hydrogels for Tissue Engineering and In Vitro Modeling. Gels 2023; 9:132. [PMID: 36826302 PMCID: PMC9957157 DOI: 10.3390/gels9020132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Hydrogels are fascinating biomaterials that can act as a support for cells, i.e., a scaffold, in which they can organize themselves spatially in a similar way to what occurs in vivo. Hydrogel use is therefore essential for the development of 3D systems and allows to recreate the cellular microenvironment in physiological and pathological conditions. This makes them ideal candidates for biological tissue analogues for application in the field of both tissue engineering and 3D in vitro models, as they have the ability to closely mimic the extracellular matrix (ECM) of a specific organ or tissue. Polysaccharide-based hydrogels, because of their remarkable biocompatibility related to their polymeric constituents, have the ability to interact beneficially with the cellular components. Although the growing interest in the use of polysaccharide-based hydrogels in the biomedical field is evidenced by a conspicuous number of reviews on the topic, none of them have focused on the combined use of two important polysaccharides, chitosan and pectin. Therefore, the present review will discuss the biomedical applications of polysaccharide-based hydrogels containing the two aforementioned natural polymers, chitosan and pectin, in the fields of tissue engineering and 3D in vitro modeling.
Collapse
Affiliation(s)
- Giulia Morello
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Gianvito De Iaco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Polini
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Gervaso
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|