1
|
Tohda C. Pharmacological intervention for chronic phase of spinal cord injury. Neural Regen Res 2025; 20:1377-1389. [PMID: 38934397 PMCID: PMC11624870 DOI: 10.4103/nrr.nrr-d-24-00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury-specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research ( in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc (AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide, (-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.
Collapse
Affiliation(s)
- Chihiro Tohda
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Ito K, Shinozaki M, Hashimoto S, Saijo Y, Suematsu Y, Tanaka T, Nishi K, Yagi H, Shibata S, Kitagawa Y, Nakamura M, Okano H, Kohyama J, Nagoshi N. Histological effects of combined therapy involving scar resection, decellularized scaffolds, and human iPSC-NS/PCs transplantation in chronic complete spinal cord injury. Sci Rep 2024; 14:31500. [PMID: 39733145 DOI: 10.1038/s41598-024-82959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation. To mitigate risks such as prion disease associated with spinal cord-derived dECM, we used kidney-derived dECM hydrogel. This material was chosen for its biocompatibility and angiogenic potential. In vitro studies with dorsal root ganglia (DRG) confirmed its ability to support axonal growth. In a chronic SCI rat model, scar resection enhanced the local microenvironment by increasing neuroprotective microglia and macrophages, while reducing inhibitory factors that prevent axonal regeneration. The combination of scar resection and dECM hydrogel further promoted vascular endothelial cell migration. These changes improved the survival of transplanted hNS/PCs and facilitated host axon regeneration. Overall, the integrated approach of scar resection, dECM hydrogel scaffolding, and hNS/PC transplantation has been proven to be a more effective treatment strategy for chronic SCI. However, despite histological improvements, no functional recovery occurred and further research is needed to enhance functional outcomes.
Collapse
Affiliation(s)
- Keitaro Ito
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Keio University Regenerative Medicine Research Center, 3-25-10 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yusuke Saijo
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yu Suematsu
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Tomoharu Tanaka
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kotaro Nishi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Laboratory of Small Animal Internal Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, Niigata, 951-8510, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Keio University Regenerative Medicine Research Center, 3-25-10 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
3
|
Wang J, Huang D, Chen D, Ren H, Zhao Y. Emerging Functional Porous Scaffolds for Liver Tissue Engineering. Adv Healthc Mater 2024:e2403741. [PMID: 39722150 DOI: 10.1002/adhm.202403741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Liver tissue engineering holds promising in synthesizing or regenerating livers, while the design of functional scaffold remains a challenge. Owing to the intricate simulation of extracellular matrix structure and performance, porous scaffolds have demonstrated advantages in creating liver microstructures and sustaining liver functions. Currently, various methods and processes have been employed to fabricate porous scaffolds, manipulating the properties and morphologies of materials to confer them with unique supportive functions. Additionally, scaffolds must also facilitate tissue growth and deliver cells, possessing therapeutic or regenerative effects. In this review, it is initially outline typical procedures for fabricating porous scaffolds and showcase various morphologies of microstructures. Subsequently, it is delved into the forms of cell loading in porous scaffolds, including scaffold-based, scaffold-free, and synergetic or bioassembly approaches. Lastly, the utilization of porous scaffolds in liver diseases, offering significant insights and future implications for liver regeneration research in tissue engineering is explored.
Collapse
Affiliation(s)
- Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Danqing Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Dayu Chen
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
4
|
Wang ZQ, Ran R, Ma CW, Zhao GH, Zhou KS, Zhang HH. Lentivirus-mediated Knockdown of Ski Improves Neurological Function After Spinal Cord Injury in Rats. Neurochem Res 2024; 50:15. [PMID: 39549172 DOI: 10.1007/s11064-024-04261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 11/18/2024]
Abstract
The glial scar that forms at the site of injury after spinal cord injury (SCI) is an important physical and biochemical barrier that prevents axonal regeneration and thus delays functional recovery. Ski is a multifunctional transcriptional co-regulator that is involved in a wide range of physiological and pathological processes in humans. Previous studies by our group found that Ski is significantly upregulated in the spinal cord after in vivo injury and in astrocytes after in vitro activation, suggesting that Ski may be a novel molecule regulating astrocyte activation after spinal cord injury. Further studies revealed that knockdown or overexpression intervention of Ski expression could significantly affect the proliferation and migration of activated astrocytes. To further verify the effect of knockdown of Ski expression in vivo on glial scar formation and neurological function after spinal cord injury, we prepared a rat spinal cord injury model using Allen's percussion method and used lentivirus as a vector to mediate the downregulation of Ski in the injured spinal cord. The results showed that knockdown of Ski expression after spinal cord injury significantly suppressed the expression of glial fibrillary acidic protein (Gfap) and vimentin, hallmark molecules of glial scarring, and increased the expression of neurofilament protein-200 (Nf-200) and growth-associated protein (Gap43), key molecules of axon regeneration, as well as Synaptophysin, a key molecule of synapse formation expression. In addition, knockdown of Ski after spinal cord injury also promoted the recovery of motor function. Taken together, these results suggest that Ski is able to inhibit the expression of key molecules of glial scar formation, and at the same time promotes the expression of molecules that are markers of axonal regeneration and synapse formation after spinal cord injury, making it a potential target for targeted therapy after spinal cord injury.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Rui Ran
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Chun-Wei Ma
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Guang-Hai Zhao
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Kai-Sheng Zhou
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China.
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China.
| |
Collapse
|
5
|
Ralph PC, Choi SW, Baek MJ, Lee SJ. Regenerative medicine approaches for the treatment of spinal cord injuries: Progress and challenges. Acta Biomater 2024; 189:57-72. [PMID: 39424019 DOI: 10.1016/j.actbio.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Spinal cord injury (SCI) is a profound medical condition that significantly hampers motor function, imposing substantial limitations on daily activities and exerting a considerable financial burden on patients and their families. The constrained regenerative capacity of endogenous spinal cord tissue, exacerbated by the inflammatory response following the initial trauma, poses a formidable obstacle to effective therapy. Recent advancements in the field, stem cells, biomaterials, and molecular therapy, show promising outcomes. This review provides a comprehensive analysis of tissue engineering and regenerative medicine approaches for SCI treatment, including cell transplantation, tissue-engineered construct implantation, and other potential therapeutic strategies. Additionally, it sheds light on preclinical animal studies and recent clinical trials incorporating these modalities, providing a glimpse into the evolving landscape of SCI management. STATEMENT OF SIGNIFICANCE: The investigation into spinal cord injury (SCI) treatments focuses on reducing long-term impacts by targeting scar inhibition and enhancing regeneration through stem cells, with or without growth factors. Induced pluripotent stem cells (iPSCs) show promise for autologous use, with clinical trials confirming their safety. Challenges include low cell viability and difficulty in targeted differentiation. Biomaterial scaffolds hold potential for improving cell viability and integration, and extracellular vesicles (EVs) are emerging as a novel therapy. While EV research is in its early stages, stem cell trials demonstrate safety and potential recovery. Advancing tissue engineering approaches with biomaterial scaffolds is crucial for human trials.
Collapse
Affiliation(s)
- Patrick C Ralph
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Sung-Woo Choi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States; Department of Orthopedic Surgery, Soonchunhyang University Hospital Seoul, Seoul 04401, Republic of Korea
| | - Min Jung Baek
- Department of Obstetrics and Gynecology, CHA University Bundang Medical Center, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
6
|
Nagoshi N, Hashimoto S, Okano H, Nakamura M. Regenerative medicine for spinal cord injury using induced pluripotent stem cells: from animals to humans. Pain 2024; 165:S76-S81. [PMID: 39560418 DOI: 10.1097/j.pain.0000000000003306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/05/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Spinal cord injury (SCI) results in permanent neurological dysfunction and neuropathic pain. To address this pathology, we recently conducted a clinical study in which we transplanted neural precursor cells (NPCs) derived from human induced pluripotent stem cells into patients during the subacute phase of SCI. One of the therapeutic mechanisms of cell transplantation is the formation of synaptic connections with the host's neural tissues, which we demonstrated using a chemogenetic tool. In addition, we have developed innovative strategies to enhance the effectiveness of cell transplantation through gene therapy. Moreover, our current study is focused on developing cell therapy for chronic SCI, a more challenging pathology characterized by the formation of cavities and scar tissue. In such situations, transplanting NPCs with neurogenic properties could effectively penetrate scar tissue and form functional synapses with the host neurons. To improve the outcomes of cell transplantation alone, we have found that incorporating rehabilitation is beneficial. In animal models of SCI, we have established an effective rehabilitative training program in which NPCs were transplanted during the chronic phase. Robotic rehabilitation has demonstrated improvements in gait ability and trunk function in clinical situations. Therefore, regenerative medicine shows promise for chronic SCI, particularly when rehabilitation strategies are incorporated.
Collapse
Affiliation(s)
| | | | - Hideyuki Okano
- Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio University Regenerative Medicine Center, Kawasaki, Japan
| | | |
Collapse
|
7
|
Liu G, Liu L, Zhang Z, Tan R, Wang Y. Development and Validation of a Novel Nomogram for Predicting Mechanical Ventilation After Cervical Spinal Cord Injury. Arch Phys Med Rehabil 2024:S0003-9993(24)01268-1. [PMID: 39384118 DOI: 10.1016/j.apmr.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE To investigate the risk factors relating to the need for mechanical ventilation (MV) in isolated patients with cervical spinal cord injury (cSCI) and to construct a nomogram prediction model. DESIGN Retrospective analysis study. SETTING National Spinal Cord Injury Model System Database (NSCID) observation data were initially collected during rehabilitation hospitalization. PARTICIPANTS A total of 5784 patients (N=5784) who had a cSCI were admitted to the NSCID between 2006 and 2021. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURE(S) A univariate and multivariate logistic regression analysis was used to identify the independent factors affecting the use of MV in patients with cSCI, and these independent influencing factors were used to develop a nomogram prediction model. The area under the receiver operating characteristic curve (AUROC), calibration curve, and decision curve analysis (DCA) were used to evaluate the efficiency and the clinical application value of the model, respectively. RESULTS In a series of 5784 included patients, 926 cases (16.0%) were admitted to spinal cord model system inpatient rehabilitation with the need for MV. Logistic regression analysis demonstrated that associated injury, American Spinal Cord Injury Association Impairment Scale (AIS), the sum of unilateral optimal motor scores for each muscle segment of upper extremities (sUEM), and neurologic level of injury (NLI) were independent predictors for the use of MV (P<.05). The prediction nomogram of MV usage in patients with cSCI was established based on the above independent predictors. The AUROC of the training set, internal verification set, and external verification set were 0.871 (0.857-0.886), 0.867 (0.843-0.891), and 0.850 (0.824-0.875), respectively. The calibration curve and DCA results showed that the model had good calibration and clinical practicability. CONCLUSIONS The nomograph prediction model based on sUEM, NLI, associated injury, and AIS can accurately and effectively predict the risk of MV in patients with cSCI, to help clinicians screen high-risk patients and formulate targeted intervention measures.
Collapse
Affiliation(s)
- Guozhen Liu
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China; Southeast University, Nanjing, Jiang Su Province, China
| | - Lei Liu
- Southeast University, Nanjing, Jiang Su Province, China; Department of Spine Surgery, the Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiang Su Province, China
| | - Ze Zhang
- Department of Orthopedic, Yancheng Third People's Hospital, Yancheng, Jiang Su Province, China
| | - Rui Tan
- Department of Neurosurgery Tianjin Medical University General Hospital, Tianjin, China
| | - Yuntao Wang
- Southeast University, Nanjing, Jiang Su Province, China; Department of Spine Surgery, the Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiang Su Province, China.
| |
Collapse
|
8
|
Zhu S, Ma H, Hou M, Li H, Ning G. Schwann Cell-Derived Exosomes Induced Axon Growth after Spinal Cord Injury by Decreasing PTP-σ Activation on CSPGs via the Rho/ROCK Pathway. Neurochem Res 2024; 49:2120-2130. [PMID: 38819695 DOI: 10.1007/s11064-024-04166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Spinal cord injury (SCI) is a severe neurological condition that involves a lengthy pathological process. This process leads to the upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia, which impedes repair and regeneration in the spinal cord. The role of the CSPG-specific receptor protein tyrosine phosphatase-sigma (PTP-σ) in post-SCI remains largely unexplored. Exosomes have great potential in the diagnosis, prognosis, and treatment of SCI due to their ability to easily cross the blood‒brain barrier. Schwann cell-derived exosomes (SCDEs) promote functional recovery in mice post-SCI by decreasing CSPG deposition. However, the mechanism by which SCDEs decrease CSPGs after SCI remains unknown. Herein, we observed elevated levels of PTP-σ and increased CSPG deposition during glial scar formation after SCI in vivo. After SCDEs were injected into SCI mice, CSPG deposition decreased in scar tissue at the injury site, the expression of PTP-σ increased during axonal growth around the injury site, and motor function subsequently recovered. Additionally, we demonstrated that the use of both Rho/ROCK inhibitors and SCDEs inhibited the reparative effects of SCDEs on scar tissue after SCI. In conclusion, our study revealed that treatment with SCDEs targeting the Rho/ROCK signaling pathway reduced PTP-σ activation in the CSPG post-SCI, which inhibited scar tissue formation.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Mengfan Hou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hailiang Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
- Department of Orthopedics, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China.
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.
| |
Collapse
|
9
|
Jeon J, Park SH, Choi J, Han SM, Kim HW, Shim SR, Hyun JK. Association between neural stem/progenitor cells and biomaterials in spinal cord injury therapies: A systematic review and network meta-analysis. Acta Biomater 2024; 183:50-60. [PMID: 38871200 DOI: 10.1016/j.actbio.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Spinal cord injury (SCI) is associated with substantial healthcare challenges, frequently resulting in enduring sensory and motor deficits alongside various chronic complications. While advanced regenerative therapies have shown promise in preclinical research, their translation into clinical application has been limited. In response, this study utilized a comprehensive network meta-analysis to evaluate the effectiveness of neural stem/progenitor cell (NSPC) transplantation across animal models of SCI. We analyzed 363 outcomes from 55 distinct studies, categorizing the treatments into NSPCs alone (cell only), NSPCs with scaffolds (cell + scaffold), NSPCs with hydrogels (cell + hydrogel), standalone scaffolds (scaffold), standalone hydrogels (hydrogel), and control groups. Our analysis demonstrated significant enhancements in motor recovery, especially in gait function, within the NSPC treatment groups. Notably, the cell only group showed considerable improvements (standardized mean difference [SMD], 2.05; 95 % credible interval [CrI]: 1.08 to 3.10, p < 0.01), as did the cell + scaffold group (SMD, 3.73; 95 % CrI: 2.26 to 5.22, p < 0.001) and the cell + hydrogel group (SMD, 3.37; 95 % CrI: 1.02 to 5.78, p < 0.05) compared to controls. These therapeutic combinations not only reduced lesion cavity size but also enhanced neuronal regeneration, outperforming the cell only treatments. By integrating NSPCs with supportive biomaterials, our findings pave the way for refining these regenerative strategies to optimize their potential in clinical SCI treatment. Although there is no overall violation of consistency, the comparison of effect sizes between individual treatments should be interpreted in light of the inconsistency. STATEMENT OF SIGNIFICANCE: This study presents a comprehensive network meta-analysis exploring the efficacy of neural stem cell (NSC) transplantation, with and without biomaterials, in animal models of spinal cord injury (SCI). We demonstrate that NSCs, particularly when combined with biomaterials like scaffolds or hydrogels, significantly enhance motor and histological recovery post-SCI. These findings underscore the potential of NSC-based therapies, augmented with biomaterials, to advance SCI treatment, offering new insights into regenerative strategies that could significantly impact clinical practices.
Collapse
Affiliation(s)
- Jooik Jeon
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | | | - Jonghyuk Choi
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Sun Mi Han
- Medical record team, Konyang University Hospital, Daejeon 35365, Republic of Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Ryul Shim
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea.
| | - Jung Keun Hyun
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Wiregene, Co. Ltd., Osong 28160, Republic of Korea; Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
10
|
Hashimoto S, Nagoshi N, Nakamura M, Okano H. Clinical application and potential pluripotent effects of hepatocyte growth factor in spinal cord injury regeneration. Expert Opin Investig Drugs 2024; 33:713-720. [PMID: 38783527 DOI: 10.1080/13543784.2024.2360191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a condition in which the spinal cord parenchyma is damaged by various factors. The mammalian central nervous system has been considered unable to regenerate once damaged, but recent progress in basic research has gradually revealed that injured neural cells can indeed regenerate. Drug therapy using novel agents is being actively investigated as a new treatment for SCI. One notable treatment method is regeneration therapy using hepatocyte growth factors (HGF). AREA COVERED HGF has pluripotent neuroregenerative actions, as indicated by its neuroprotective and regenerative effects on the microenvironment and damaged cells, respectively. This review examines these effects in various phases of SCI, from basic research to clinical studies, and the application of this treatment to other diseases. EXPERT OPINION In regenerative medicine for SCI, drug therapies have tended to be more likely to be developed compared to cell replacement treatment. Nevertheless, there are still challenges to be addressed for these clinical applications due to a wide variety of pathology and animal experimental models of basic study, but HGF could be an effective treatment for SCI with expanded application.
Collapse
Affiliation(s)
- Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
11
|
Wang Z, Li J, Xu T, Guo B, Xie Z, Li M. The Efficacy of Different Material Scaffold-Guided Cell Transplantation in the Treatment of Spinal Cord Injury in Rats: A Systematic Review and Network Meta-analysis. Cell Mol Neurobiol 2024; 44:43. [PMID: 38703332 PMCID: PMC11069479 DOI: 10.1007/s10571-024-01465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/23/2024] [Indexed: 05/06/2024]
Abstract
Cell transplantation is a promising treatment option for spinal cord injury (SCI). However, there is no consensus on the choice of carrier scaffolds to host the cells. This study aims to evaluate the efficacy of different material scaffold-mediated cell transplantation in treating SCI in rats. According to PRISMA's principle, Embase, PubMed, Web of Science, and Cochrane databases were searched, and relevant literature was referenced. Only original research on cell transplantation plus natural or synthetic scaffolds in SCI rats was included. Direct and indirect evidence for improving hind limb motor function was pooled through meta-analysis. A subgroup analysis of some factors that may affect the therapeutic effect was conducted to understand the results fully. In total, 25 studies met the inclusion criteria, in which 293 rats received sham surgery, 78 rats received synthetic material scaffolds, and 219 rats received natural materials scaffolds. The network meta-analysis demonstrated that although synthetic scaffolds were slightly inferior to natural scaffolds in terms of restoring motor function in cell transplantation of SCI rats, no statistical differences were observed between the two (MD: -0.35; 95% CI -2.6 to 1.9). Moreover, the subgroup analysis revealed that the type and number of cells may be important factors in therapeutic efficacy (P < 0.01). Natural scaffolds and synthetic scaffolds are equally effective in cell transplantation of SCI rats without significant differences. In the future, the findings need to be validated in multicenter, large-scale, randomized controlled trials in clinical practice. Trial registration: Registration ID CRD42024459674 (PROSPERO).
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Street, Nanchang, 330006, Jiangxi Province, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Street, Nanchang, 330006, Jiangxi Province, China
- Department of the Second Clinical Medical College of Nanchang University, No.460, BaYi Street, Nanchang, 330006, Jiangxi Province, China
| | - Tianqi Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Street, Nanchang, 330006, Jiangxi Province, China
- Department of the Second Clinical Medical College of Nanchang University, No.460, BaYi Street, Nanchang, 330006, Jiangxi Province, China
| | - Boyu Guo
- Department of the First Clinical Medical College of Nanchang University, No.460, BaYi Street, Nanchang, 330006, Jiangxi Province, China
| | - Zhiping Xie
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang, 330006, Jiangxi Province, China.
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi Province, China.
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Street, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
12
|
Hashimoto S, Nagoshi N, Nakamura M, Okano H. Regenerative medicine strategies for chronic complete spinal cord injury. Neural Regen Res 2024; 19:818-824. [PMID: 37843217 PMCID: PMC10664101 DOI: 10.4103/1673-5374.382230] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 10/17/2023] Open
Abstract
Spinal cord injury is a condition in which the parenchyma of the spinal cord is damaged by trauma or various diseases. While rapid progress has been made in regenerative medicine for spinal cord injury that was previously untreatable, most research in this field has focused on the early phase of incomplete injury. However, the majority of patients have chronic severe injuries; therefore, treatments for these situations are of fundamental importance. The reason why the treatment of complete spinal cord injury has not been studied is that, unlike in the early stage of incomplete spinal cord injury, there are various inhibitors of neural regeneration. Thus, we assumed that it is difficult to address all conditions with a single treatment in chronic complete spinal cord injury and that a combination of several treatments is essential to target severe pathologies. First, we established a combination therapy of cell transplantation and drug-releasing scaffolds, which contributes to functional recovery after chronic complete transection spinal cord injury, but we found that functional recovery was limited and still needs further investigation. Here, for the further development of the treatment of chronic complete spinal cord injury, we review the necessary approaches to the different pathologies based on our findings and the many studies that have been accumulated to date and discuss, with reference to the literature, which combination of treatments is most effective in achieving functional recovery.
Collapse
Affiliation(s)
- Shogo Hashimoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances. Brain 2024; 147:766-793. [PMID: 37975820 DOI: 10.1093/brain/awad392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a leading cause of lifelong disabilities. Permanent sensory, motor and autonomic impairments after SCI are substantially attributed to degeneration of spinal cord neurons and axons, and disintegration of neural network. To date, minimal regenerative treatments are available for SCI with an unmet need for new therapies to reconstruct the damaged spinal cord neuron-glia network and restore connectivity with the supraspinal pathways. Multipotent neural precursor cells (NPCs) have a unique capacity to generate neurons, oligodendrocytes and astrocytes. Due to this capacity, NPCs have been an attractive cell source for cellular therapies for SCI. Transplantation of NPCs has been extensively tested in preclinical models of SCI in the past two decades. These studies have identified opportunities and challenges associated with NPC therapies. While NPCs have the potential to promote neuroregeneration through various mechanisms, their low long-term survival and integration within the host injured spinal cord limit the functional benefits of NPC-based therapies for SCI. To address this challenge, combinatorial strategies have been developed to optimize the outcomes of NPC therapies by enriching SCI microenvironment through biomaterials, genetic and pharmacological therapies. In this review, we will provide an in-depth discussion on recent advances in preclinical NPC-based therapies for SCI. We will discuss modes of actions and mechanism by which engrafted NPCs contribute to the repair process and functional recovery. We will also provide an update on current clinical trials and new technologies that have facilitated preparation of medical-grade human NPCs suitable for transplantation in clinical studies.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ben Borys
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
14
|
Nishijima T, Okuyama K, Shibata S, Kimura H, Shinozaki M, Ouchi T, Mabuchi Y, Ohno T, Nakayama J, Hayatsu M, Uchiyama K, Shindo T, Niiyama E, Toita S, Kawada J, Iwamoto T, Nakamura M, Okano H, Nagoshi N. Novel artificial nerve transplantation of human iPSC-derived neurite bundles enhanced nerve regeneration after peripheral nerve injury. Inflamm Regen 2024; 44:6. [PMID: 38347645 PMCID: PMC10863150 DOI: 10.1186/s41232-024-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Severe peripheral nerve damage always requires surgical treatment. Autologous nerve transplantation is a standard treatment, but it is not sufficient due to length limitations and extended surgical time. Even with the available artificial nerves, there is still large room for improvement in their therapeutic effects. Novel treatments for peripheral nerve injury are greatly expected. METHODS Using a specialized microfluidic device, we generated artificial neurite bundles from human iPSC-derived motor and sensory nerve organoids. We developed a new technology to isolate cell-free neurite bundles from spheroids. Transplantation therapy was carried out for large nerve defects in rat sciatic nerve with novel artificial nerve conduit filled with lineally assembled sets of human neurite bundles. Quantitative comparisons were performed over time to search for the artificial nerve with the therapeutic effect, evaluating the recovery of motor and sensory functions and histological regeneration. In addition, a multidimensional unbiased gene expression profiling was carried out by using next-generation sequencing. RESULT After transplantation, the neurite bundle-derived artificial nerves exerted significant therapeutic effects, both functionally and histologically. Remarkably, therapeutic efficacy was achieved without immunosuppression, even in xenotransplantation. Transplanted neurite bundles fully dissolved after several weeks, with no tumor formation or cell proliferation, confirming their biosafety. Posttransplant gene expression analysis highlighted the immune system's role in recovery. CONCLUSION The combination of newly developed microfluidic devices and iPSC technology enables the preparation of artificial nerves from organoid-derived neurite bundles in advance for future treatment of peripheral nerve injury patients. A promising, safe, and effective peripheral nerve treatment is now ready for clinical application.
Collapse
Affiliation(s)
- Takayuki Nishijima
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kentaro Okuyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan.
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan.
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Hiroo Kimura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Orthopaedic Surgery, Kitasato Institute Hospital, 9-1, Shirokane 5-Chome, Minato-Ku, Tokyo, 108-8642, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Yo Mabuchi
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Floor 4, Haneda Innovation City Zone A, 1-1-4, Hanedakuko, Ota-Ku, Tokyo, 144-0041, Japan
| | - Tatsukuni Ohno
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Junpei Nakayama
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Keiko Uchiyama
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Tomoko Shindo
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Eri Niiyama
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Jiksak Bioengineering, Inc, Cybernics Medical Innovation Base-A Room 322, 3-25-16 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-0821, Japan
| | - Sayaka Toita
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Jiksak Bioengineering, Inc, Cybernics Medical Innovation Base-A Room 322, 3-25-16 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-0821, Japan
- Present address: Faculty of Materials for Energy, Graduate School of Natural Science and Technology, Shimane University, Matsue, Shimane, Japan
| | - Jiro Kawada
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Jiksak Bioengineering, Inc, Cybernics Medical Innovation Base-A Room 322, 3-25-16 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-0821, Japan
| | - Takuji Iwamoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
15
|
Yoshida T, Tashiro S, Nagoshi N, Shinozaki M, Shibata T, Inoue M, Ogawa S, Shibata S, Tsuji T, Okano H, Nakamura M. Chronic Spinal Cord Injury Regeneration with Combined Therapy Comprising Neural Stem/Progenitor Cell Transplantation, Rehabilitation, and Semaphorin 3A Inhibitor. eNeuro 2024; 11:ENEURO.0378-23.2024. [PMID: 38262737 PMCID: PMC10866332 DOI: 10.1523/eneuro.0378-23.2024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
Spinal cord injury (SCI) often results in various long-term sequelae, and chronically injured spinal cords exhibit a refractory feature, showing a limited response to cell transplantation therapies. To our knowledge, no preclinical studies have reported a treatment approach with results surpassing those of treatment comprising rehabilitation alone. In this study of rats with SCI, we propose a novel combined therapy involving a semaphorin 3A inhibitor (Sema3Ai), which enhances axonal regeneration, as the third treatment element in combination with neural stem/progenitor cell transplantation and rehabilitation. This comprehensive therapeutic strategy achieved significant improvements in host-derived neuronal and oligodendrocyte differentiation at the SCI epicenter and promoted axonal regeneration even in the chronically injured spinal cord. The elongated axons established functional electrical connections, contributing to significant enhancements in locomotor mobility when compared with animals treated with transplantation and rehabilitation. As a result, our combined transplantation, Sema3Ai, and rehabilitation treatment have the potential to serve as a critical step forward for chronic SCI patients, improving their ability to regain motor function.
Collapse
Affiliation(s)
- Takashi Yoshida
- Departments of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Syoichi Tashiro
- Departments of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahiro Shibata
- Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuhiro Inoue
- Regenerative and Cellular Medicine Kobe Center, Sumitomo Pharma, Kobe, Hyogo 650-0047, Japan
| | - Shoji Ogawa
- Formulation Research & Development Laboratories, Sumitomo Pharma, Suita, Osaka 564-0053, Japan
| | - Shinsuke Shibata
- Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata-shi, Niigata 951-8510, Japan
| | - Tetsuya Tsuji
- Departments of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
16
|
Xu L, Zhao H, Yang Y, Xiong Y, Zhong W, Jiang G, Yu X. The application of stem cell sheets for neuronal regeneration after spinal cord injury: a systematic review of pre-clinical studies. Syst Rev 2023; 12:225. [PMID: 38037129 PMCID: PMC10688065 DOI: 10.1186/s13643-023-02390-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Stem cell sheet implantation offers a promising avenue for spinal cord injury (SCI) and is currently under investigation in pre-clinical in vivo studies. Nevertheless, a systematic review of the relevant literature is yet to be performed. Thus, this systematic review aims to explore the efficacy of stem cell sheet technology in treating SCI, as indicated by experimental animal model studies. METHODS We searched PubMed, EMBASE, and Web of Science. Manuscripts that did not pertain to in vivo pre-clinical studies and those published in non-English languages were excluded. A risk assessment for bias was performed using the SYRCLE tool. Extracted data were synthesized only qualitatively because the data were not suitable for conducting the meta-analysis. RESULTS Among the 847 studies retrieved from electronic database searches, seven met the inclusion criteria. Six of these studies employed a complete transection model, while one utilized a compression model. Stem cell sources included bone marrow mesenchymal stem cells, stem cells from human exfoliated deciduous teeth, and adipose-derived mesenchymal stem cells. In all included studies, stem cell sheet application significantly improved motor and sensory functional scores compared to intreated SCI rats. This functional recovery correlated with histological improvements at the injury site. All studies are at low risk of bias but certain domains were not reported by some or all of the studies. CONCLUSION The results of our systematic review suggest that stem cell sheets may be a feasible therapeutic approach for the treatment of SCI. Future research should be conducted on stem cell sheets in various animal models and types of SCI, and careful validation is necessary before translating stem cell sheets into clinical studies.
Collapse
Affiliation(s)
- Luchun Xu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - He Zhao
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China.
| | - Yongdong Yang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yang Xiong
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Wenqing Zhong
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Guozheng Jiang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Xing Yu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China.
| |
Collapse
|
17
|
Ji R, Hao Z, Wang H, Li X, Duan L, Guan F, Ma S. Application of Injectable Hydrogels as Delivery Systems in Spinal Cord Injury. Gels 2023; 9:907. [PMID: 37998998 PMCID: PMC10670785 DOI: 10.3390/gels9110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Spinal cord injury (SCI) is a severe neurological injury caused by traffic accidents, trauma, or falls, which leads to significant loss of sensory, motor, and autonomous functions and seriously affects the patient's life quality. Although considerable progress has been made in mitigating secondary injury and promoting the regeneration/repair of SCI, the therapeutic effects need to be improved due to drug availability. Given their good biocompatibility, biodegradability, and low immunogenicity, injectable hydrogels can be used as delivery systems to achieve controlled release of drugs and other substances (cells and proteins, etc.), offering new hope for SCI repair. In this article, we summarized the types of injectable hydrogels, analyzed their application as delivery systems in SCI, and further discussed the mechanisms of hydrogels in the treatment of SCI, such as anti-inflammatory, antioxidant, anti-apoptosis, and pro-neurogenesis. Moreover, we highlighted the potential benefits of hydrogels in the treatment of SCI in combination with therapies, including the recent advances and achievements of these promising tools. Our review may offer new strategies for the development of SCI treatments based on injectable hydrogels as delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| |
Collapse
|
18
|
Zeng CW. Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative Medicine. Int J Mol Sci 2023; 24:14349. [PMID: 37762654 PMCID: PMC10532158 DOI: 10.3390/ijms241814349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injuries (SCIs) can lead to significant neurological deficits and lifelong disability, with far-reaching physical, psychological, and economic consequences for affected individuals and their families. Current treatments for SCIs are limited in their ability to restore function, and there is a pressing need for innovative therapeutic approaches. Stem cell therapy has emerged as a promising strategy to promote the regeneration and repair of damaged neural tissue following SCIs. This review article comprehensively discusses the potential of different stem cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and neural stem/progenitor cells (NSPCs), in SCI treatment. We provide an in-depth analysis of the unique advantages and challenges associated with each stem cell type, as well as the latest advancements in the field. Furthermore, we address the critical challenges faced in stem cell therapy for SCIs, including safety concerns, ethical considerations, standardization of protocols, optimization of transplantation parameters, and the development of effective outcome measures. We also discuss the integration of novel technologies such as gene editing, biomaterials, and tissue engineering to enhance the therapeutic potential of stem cells. The article concludes by emphasizing the importance of collaborative efforts among various stakeholders in the scientific community, including researchers, clinicians, bioengineers, industry partners, and patients, to overcome these challenges and realize the full potential of stem cell therapy for SCI patients. By fostering such collaborations and advancing our understanding of stem cell biology and regenerative medicine, we can pave the way for the development of groundbreaking therapies that improve the lives of those affected by SCIs.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
19
|
Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. MedComm (Beijing) 2023; 4:e291. [PMID: 37337579 PMCID: PMC10276889 DOI: 10.1002/mco2.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/21/2023] Open
Abstract
Regeneration is a complex process affected by many elements independent or combined, including inflammation, proliferation, and tissue remodeling. Stem cells is a class of primitive cells with the potentiality of differentiation, regenerate with self-replication, multidirectional differentiation, and immunomodulatory functions. Stem cells and their cytokines not only inextricably linked to the regeneration of ectodermal and skin tissues, but also can be used for the treatment of a variety of chronic wounds. Stem cells can produce exosomes in a paracrine manner. Stem cell exosomes play an important role in tissue regeneration, repair, and accelerated wound healing, the biological properties of which are similar with stem cells, while stem cell exosomes are safer and more effective. Skin and bone tissues are critical organs in the body, which are essential for sustaining life activities. The weak repairing ability leads a pronounced impact on the quality of life of patients, which could be alleviated by stem cell exosomes treatment. However, there are obstacles that stem cells and stem cells exosomes trough skin for improved bioavailability. This paper summarizes the applications and mechanisms of stem cells and stem cells exosomes for skin and bone healing. We also propose new ways of utilizing stem cells and their exosomes through different nanoformulations, liposomes and nanoliposomes, polymer micelles, microspheres, hydrogels, and scaffold microneedles, to improve their use in tissue healing and regeneration.
Collapse
Affiliation(s)
- Ye Jin
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Shuangyang Li
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Qixuan Yu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Tianli Chen
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Da Liu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| |
Collapse
|
20
|
Shibata T, Tashiro S, Nakamura M, Okano H, Nagoshi N. A Review of Treatment Methods Focusing on Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation for Chronic Spinal Cord Injury. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1235. [PMID: 37512047 PMCID: PMC10384869 DOI: 10.3390/medicina59071235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Cell transplantation therapy using human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) has attracted attention as a regenerative therapy for spinal cord injury (SCI), and its efficacy in treating the subacute phase of SCI has been reported in numerous studies. However, few studies have focused on treatment in the chronic phase, which accounts for many patients, suggesting that there are factors that are difficult to overcome in the treatment of chronic SCI. The search for therapeutic strategies that focus on chronic SCI is fraught with challenges, and the combination of different therapies is thought to be the key to a solution. In addition, many issues remain to be addressed, including the investigation of therapeutic approaches for more severe injury models of chronic SCI and the acquisition of practical motor function. This review summarizes the current progress in regenerative therapy for SCI and discusses the prospects for regenerative medicine, particularly in animal models of chronic SCI.
Collapse
Affiliation(s)
- Takahiro Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Syoichi Tashiro
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
21
|
Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration. Cells 2023; 12:cells12060853. [PMID: 36980193 PMCID: PMC10046908 DOI: 10.3390/cells12060853] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Spinal cord injury (SCI) is a complex tissue injury resulting in permanent and degenerating damage to the central nervous system (CNS). Detrimental cellular processes occur after SCI, including axonal degeneration, neuronal loss, neuroinflammation, reactive gliosis, and scar formation. The glial scar border forms to segregate the neural lesion and isolate spreading inflammation, reactive oxygen species, and excitotoxicity at the injury epicenter to preserve surrounding healthy tissue. The scar border is a physicochemical barrier composed of elongated astrocytes, fibroblasts, and microglia secreting chondroitin sulfate proteoglycans, collogen, and the dense extra-cellular matrix. While this physiological response preserves viable neural tissue, it is also detrimental to regeneration. To overcome negative outcomes associated with scar formation, therapeutic strategies have been developed: the prevention of scar formation, the resolution of the developed scar, cell transplantation into the lesion, and endogenous cell reprogramming. This review focuses on cellular/molecular aspects of glial scar formation, and discusses advantages and disadvantages of strategies to promote regeneration after SCI.
Collapse
|