1
|
Hong S, Yu T, Wang Z, Lee CH. Biomaterials for reliable wearable health monitoring: Applications in skin and eye integration. Biomaterials 2025; 314:122862. [PMID: 39357154 PMCID: PMC11787905 DOI: 10.1016/j.biomaterials.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in biomaterials have significantly impacted wearable health monitoring, creating opportunities for personalized and non-invasive health assessments. These developments address the growing demand for customized healthcare solutions. Durability is a critical factor for biomaterials in wearable applications, as they must withstand diverse wearing conditions effectively. Therefore, there is a heightened focus on developing biomaterials that maintain robust and stable functionalities, essential for advancing wearable sensing technologies. This review examines the biomaterials used in wearable sensors, specifically those interfaced with human skin and eyes, highlighting essential strategies for achieving long-lasting and stable performance. We specifically discuss three main categories of biomaterials-hydrogels, fibers, and hybrid materials-each offering distinct properties ideal for use in durable wearable health monitoring systems. Moreover, we delve into the latest advancements in biomaterial-based sensors, which hold the potential to facilitate early disease detection, preventative interventions, and tailored healthcare approaches. We also address ongoing challenges and suggest future directions for research on material-based wearable sensors to encourage continuous innovation in this dynamic field.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ziheng Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA; School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA; School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA; Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Wang K, Liu W, Wu J, Li H, Peng H, Zhang J, Ding K, Wang X, Hou C, Zhang H, Luo Y. Smart Wearable Sensor Fuels Noninvasive Body Fluid Analysis. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39969947 DOI: 10.1021/acsami.4c22054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The advancements in wearable sensor technology have revolutionized noninvasive body fluid monitoring, offering new possibilities for continuous and real-time health assessment. By analyzing body fluids such as sweat, saliva, tears, and interstitial fluid, these technologies provide painless diagnostic alternatives for detecting biomarkers such as glucose, electrolytes, and metabolites. These sensors play a crucial role in early disease detection, chronic condition management, and personalized healthcare. Recent innovations in flexible electronics, microfluidic systems, and biosensing materials have significantly improved the accuracy, reliability, and integration of sensors into everyday textiles. Moreover, the convergence of artificial intelligence and big data analytics has enhanced the precision and personalization of health monitoring systems, transforming wearable sensors into powerful tools for health holographic inspection. Despite significant progress, challenges remain, including improving sensor stability in dynamic environments, achieving real-time data transmission, and covering a broader range of biomarkers. Future research directions focus on enhancing material sustainability through green synthesis, optimizing sampling techniques, and leveraging machine learning to further improve sensor performance. This Review highlights the transformative potential of wearable sensors in medical applications, aiming to bridge gaps in healthcare accessibility and elevate the standards of patient care through noninvasive continuous monitoring technologies.
Collapse
Affiliation(s)
- Kang Wang
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Wenjing Liu
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Jingzhi Wu
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Heng Li
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Hai Peng
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing University Cancer Hospital, Chongqing 400030, P. R. China
| | - Ke Ding
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Xiaoxing Wang
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hong Zhang
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Yang Luo
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| |
Collapse
|
3
|
Li N, Yu X, Yang DP, He J. Natural polysaccharides-based smart sensors for health monitoring, diagnosis and rehabilitation: A review. Int J Biol Macromol 2025; 304:140966. [PMID: 39952503 DOI: 10.1016/j.ijbiomac.2025.140966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
With the rapid growth of multi-level health needs, precise and real-time health sensing systems have become increasingly pivotal in personal health management and disease prevention. Natural polysaccharides demonstrate immense potential in healthcare sensors by leveraging their superior biocompatibility, biodegradability, environmental sustainability, as well as diverse structural designs and surface functionalities. This review begins by introducing a variety of natural polysaccharides, including cellulose, alginates, chitosan, hyaluronic acid, and starch, and analyzing their structural and functional distinctions, which offer extensive possibilities for sensor design and construction. Further, we summarize several principal sensing mechanisms, such as piezoresistivity, piezoelectricity, capacitance, triboelectricity, and hygroelectricity, which provide a theoretical and technological foundation for developing high-performance healthcare sensing devices. Additionally, the review discusses the most recent applications of natural polysaccharide-based sensors in diverse healthcare contexts, including human body motion tracking, respiratory and heartbeat monitoring, electrophysiological signal recording, body temperature variation detection, and biomarker analysis. Finally, prospective development directions are proposed, such as the integration of artificial intelligence for real-time data analysis, the design of multifunctional devices that combine sensing with therapeutic functionalities, and advancements in remote monitoring and smart wearable technologies. This review aims to provide valuable insights into the development of next-generation healthcare sensors and propose novel research directions for personalized medicine and remote health management.
Collapse
Affiliation(s)
- Na Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Xiao Yu
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Da-Peng Yang
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Jintao He
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China; College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Malode SJ, Alshehri MA, Shetti NP. Revolutionizing human healthcare with wearable sensors for monitoring human strain. Colloids Surf B Biointerfaces 2025; 246:114384. [PMID: 39579495 DOI: 10.1016/j.colsurfb.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
With the rapid advancements in wearable sensor technology, healthcare is witnessing a transformative shift towards personalized and continuous monitoring. Wearable sensors designed for tracking human strain offer promising applications in rehabilitation, athletic performance, occupational health, and early disease detection. Recent advancements in the field have centered on the design optimization and miniaturization of wearable biosensors. Wireless communication technologies have facilitated the simultaneous, non-invasive detection of multiple analytes with high sensitivity and selectivity through wearable biosensors, significantly enhancing diagnostic accuracy. This review meticulously chronicles noteworthy advancements in wearable sensors tailored for healthcare and biomedical applications, spanning the current market landscape, challenges faced, and prospective trends, including multifunctional smart wearable sensors and integrated decision-support systems. The domain of flexible electronics has witnessed substantial progress over the past decade, particularly in flexible strain sensors, which are crucial for contemporary wearable and implantable devices. These innovations have broadened the scope of applications in human health monitoring and diagnostics. Continuous advancements in novel materials and device architectural methodologies aim to expand the utility of these sensors while meeting the increasingly stringent demands for enhanced sensing performance. This review explores the diverse array of wearable sensors-from piezoelectric, piezoresistive, and capacitive sensors to advanced optical and bioimpedance sensors-each distinguished by unique material properties and functionalities. We analyzed these technologies' sensitivity, accuracy, and response time, which were crucial for reliably capturing strain metrics in dynamic, real-world conditions. Quantitative performance comparisons across various sensor types highlighted their relative effectiveness, strengths, and limitations regarding detection precision, durability, and user comfort. Additionally, we discussed the current challenges in wearable sensor design, including energy efficiency, data transmission, and integration with machine learning models for enhanced data interpretation. Ultimately, this review emphasized the revolutionary potential of wearable strain sensors in advancing preventative healthcare and enabling proactive health management, ushering in an era where real-time health insights could lead to more timely interventions and improved health outcomes.
Collapse
Affiliation(s)
- Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India.
| | | | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India.
| |
Collapse
|
5
|
Li Y, Xu C, Liao Y, Chen X, Chen J, Yang F, Gao M. Bio-energy-powered microfluidic devices. BIOMICROFLUIDICS 2024; 18:061303. [PMID: 39734663 PMCID: PMC11672206 DOI: 10.1063/5.0227248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024]
Abstract
Bio-microfluidic technologies offer promising applications in diagnostics and therapy, yet they face significant technical challenges, particularly in the need for external power sources, which limits their practicality and user-friendliness. Recent advancements have explored innovative methods utilizing body fluids, motion, and heat to power these devices, addressing the power supply issue effectively. Among these, body-motion and body-heat-powered systems stand out for their potential to create self-sustaining, wearable, and implantable devices. In this Perspective, we focus on the principles and applications of hydrovoltaic cells, biofuel cells, and piezoelectric and triboelectric nanogenerators. Recent strides in energy conversion efficiency, coupled with the development of biocompatible and durable materials, are driving innovation in bio-integrated electronics. Integration with bio-microfluidic platforms further enhances the linkage to the human body and the potential of these devices for personalized healthcare applications. Ongoing research into these areas promises to deliver sustainable and user-friendly solutions for continuous monitoring, diagnostics, and therapy, potentially revolutionizing the landscape of healthcare delivery.
Collapse
Affiliation(s)
- Yuhan Li
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Chuangyi Xu
- School of Traffic & Transportation Engineering, Central South University, Changsha 410000, China
| | - Yifan Liao
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | | | - Jiang Chen
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Fan Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingyuan Gao
- Author to whom correspondence should be addressed:
| |
Collapse
|
6
|
Isgor PK, Abbasiasl T, Das R, Istif E, Yener UC, Beker L. Paper integrated microfluidic contact lens for colorimetric glucose detection. SENSORS & DIAGNOSTICS 2024; 3:1743-1748. [PMID: 39247807 PMCID: PMC11377917 DOI: 10.1039/d4sd00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024]
Abstract
Contact lenses offer a simple, cost-effective, and non-invasive method for in situ real-time analysis of various biomarkers. Electro-chemical sensors are integrated into contact lenses for analysis of various biomarkers. However, they suffer from rigid electronic components and connections, leading to eye irritation and biomarker concentration deviation. Here, a flexible and microfluidic integrated paper-based contact lens for colorimetric analysis of glucose was implemented. Facilitating a three-dimensional (3D) printer for lens fabrication eliminates cumbersome cleanroom processes and provides a simple, batch compatible process. Due to the capillary force of the filter paper, the sample was routed to detection chambers inside microchannels, and it allowed further colorimetric detection. The paper-embedded microfluidic contact lens successfully detects glucose down to 2 mM within ∼10 s. The small dimension of the microfluidic system enables detection of glucose levels as low as 5 μl. The results show the potential of the presented approach to analyze glucose concentration in a rapid manner. It is demonstrated that the fabricated contact lens can successfully detect glucose levels of diabetic patients.
Collapse
Affiliation(s)
- Pelin Kubra Isgor
- Department of Biomedical Sciences and Engineering, Koç University Rumelifeneri Yolu Sarıyer Istanbul 34450 Turkey
| | - Taher Abbasiasl
- Department of Biomedical Sciences and Engineering, Koç University Rumelifeneri Yolu Sarıyer Istanbul 34450 Turkey
| | - Ritu Das
- Department of Mechanical Engineering, Koç University Rumelifeneri Yolu Sarıyer Istanbul 34450 Turkey
| | - Emin Istif
- Faculty of Engineering and Natural Sciences, Kadir Has University Cibali Mah., Kadir Has Cad., Fatih Istanbul 34083 Turkey
| | - Umut Can Yener
- Department of Mechanical Engineering, Koç University Rumelifeneri Yolu Sarıyer Istanbul 34450 Turkey
| | - Levent Beker
- Department of Biomedical Sciences and Engineering, Koç University Rumelifeneri Yolu Sarıyer Istanbul 34450 Turkey
- Department of Mechanical Engineering, Koç University Rumelifeneri Yolu Sarıyer Istanbul 34450 Turkey
- Koç University Research Center for Translational Research (KUTTAM), Koç University Rumelifeneri Yolu Sarıyer Istanbul 34450 Turkey
| |
Collapse
|
7
|
Kim TY, De R, Choi I, Kim H, Hahn SK. Multifunctional nanomaterials for smart wearable diabetic healthcare devices. Biomaterials 2024; 310:122630. [PMID: 38815456 DOI: 10.1016/j.biomaterials.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Wearable diabetic healthcare devices have attracted great attention for real-time continuous glucose monitoring (CGM) using biofluids such as tears, sweat, saliva, and interstitial fluid via noninvasive ways. In response to the escalating global demand for CGM, these devices enable proactive management and intervention of diabetic patients with incorporated drug delivery systems (DDSs). In this context, multifunctional nanomaterials can trigger the development of innovative sensing and management platforms to facilitate real-time selective glucose monitoring with remarkable sensitivity, on-demand drug delivery, and wireless power and data transmission. The seamless integration into wearable devices ensures patient's compliance. This comprehensive review evaluates the multifaceted roles of these materials in wearable diabetic healthcare devices, comparing their glucose sensing capabilities with conventionally available glucometers and CGM devices, and finally outlines the merits, limitations, and prospects of these devices. This review would serve as a valuable resource, elucidating the intricate functions of nanomaterials for the successful development of advanced wearable devices in diabetes management.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Ranjit De
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
8
|
Zhou Y, Li L, Tong J, Chen X, Deng W, Chen Z, Xiao X, Yin Y, Zhou Q, Gao Y, Hu X, Wang Y. Advanced nanomaterials for electrochemical sensors: application in wearable tear glucose sensing technology. J Mater Chem B 2024; 12:6774-6804. [PMID: 38920094 DOI: 10.1039/d4tb00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In the last few decades, tear-based biosensors for continuous glucose monitoring (CGM) have provided new avenues for the diagnosis of diabetes. The tear CGMs constructed from nanomaterials have been extensively demonstrated by various research activities in this field and are gradually witnessing their most prosperous period. A timely and comprehensive review of the development of tear CGMs in a compartmentalized manner from a nanomaterials perspective would greatly broaden this area of research. However, to our knowledge, there is a lack of specialized reviews and comprehensive cohesive reports in this area. First, this paper describes the principles and development of electrochemical glucose sensors. Then, a comprehensive summary of various advanced nanomaterials recently reported for potential applications and construction strategies in tear CGMs is presented in a compartmentalized manner, focusing on sensing properties. Finally, the challenges, strategies, and perspectives used to design tear CGM materials are emphasized, providing valuable insights and guidance for the construction of tear CGMs from nanomaterials in the future.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiale Tong
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xiaoli Chen
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yong Yin
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yongli Gao
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
9
|
Wu KY, Dave A, Carbonneau M, Tran SD. Smart Contact Lenses in Ophthalmology: Innovations, Applications, and Future Prospects. MICROMACHINES 2024; 15:856. [PMID: 39064367 PMCID: PMC11279085 DOI: 10.3390/mi15070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Smart contact lenses represent a breakthrough in the intersection of medical science and innovative technology, offering transformative potential in ophthalmology. This review article delves into the technological underpinnings of smart contact lenses, emphasizing the current landscape and advancements in biosensors, power supply, biomaterials, and the transmission of ocular information. This review further applies new innovations to their emerging role in the diagnosis, monitoring, and management of various ocular conditions. Moreover, we explore the impact of technical innovations on the application of smart contact lenses in monitoring glaucoma, managing postoperative care, and dry eye syndrome, further elucidating the non-invasive nature of these devices in continuous ocular health monitoring. The therapeutic potential of smart contact lenses such as treatment through targeted drug delivery and the monitoring of inflammatory biomarkers is also highlighted. Despite promising advancements, the implementation of smart contact lenses faces technical, regulatory, and patient compliance challenges. This review synthesizes the recent advances to provide an outlook on the state of smart contact lens technology. Furthermore, we discuss future directions, focusing on potential technological enhancements and new applications within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Archan Dave
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marjorie Carbonneau
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
10
|
Hisham M, Butt H. Vat photopolymerization printing of functionalized hydrogels on commercial contact lenses. Sci Rep 2024; 14:13860. [PMID: 38879685 PMCID: PMC11180191 DOI: 10.1038/s41598-024-63846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Contact lenses are widely used for vision correction and cosmetic purposes. Smart contact lenses offer further opportunities as functionalized non-invasive devices capable of simultaneous vision correction, real-time health monitoring and patient specific drug delivery. Herein, a low-cost vat photopolymerization technique is developed for directly 3D printing functionalized structures on commercially available contact lenses. The process enables controlled deposition of functionalized hydrogels, in customizable patterns, on the commercial contact lens surface with negligible optical losses. Multi-functional contact lenses can also be 3D printed with multiple materials deposited at different regions of the contact lens. Herein, the functionalities of colour blindness correction and real-time UV monitoring are demonstrated, by employing three suitable dyes incorporated into 2-hydroxyethyl methacrylate (HEMA) hydrogel structures printed on contact lenses. The results suggest that 3D printing can pave the way towards simple production of low-cost patient specific smart contact lenses.
Collapse
Affiliation(s)
- Muhammed Hisham
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| | - Haider Butt
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| |
Collapse
|
11
|
Shen D, Yu H, Wang L, Wang Y, Feng J, Li C. Electrostatic-Interaction-Aided Microneedle Patch for Enhanced Glucose-Responsive Insulin Delivery and Three-Meal-Per-Day Blood-Glucose Regulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4449-4461. [PMID: 38252958 DOI: 10.1021/acsami.3c16540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The phenylborate-ester-cross-linked hydrogel microneedle patch (MNP) was promising in the diabetic field for the glucose-responsive insulin-delivering property and simple fabrication process. However, the unfit design of the charging microneedle network limited the improvement of blood-glucose regulating performances. In this work, insulin-loaded phenylborate-ester-cross-linked MNPs, with the polyzwitterion property, were constructed based on the modified ε-polylysine and poly(vinyl alcohol). The relationship between the charging nature of the MNP network and insulin release was verified by regulating the content of postprotonated positively charged amino groups. The elaborately designed MNP possessed improved glucose-responsive insulin-delivering performance. The in vivo study revealed the satisfactory results on blood-glucose regulation by the optimized MNP under the mimic three-meal-per-day mode. Moreover, the insulin bioactivity in the MNP could be maintained for 2 weeks under 25 °C. In summary, this work developed an effective strategy to improve the glucose-responsive phenylborate-ester-cross-linked MNP and enhance its potential for clinical transformation.
Collapse
Affiliation(s)
- Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingyi Feng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Chengjiang Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| |
Collapse
|
12
|
Park S, Nam DY, Jeon HJ, Han JH, Jang D, Hwang J, Park YS, Han YG, Choy YB, Lee DY. Chromophoric cerium oxide nanoparticle-loaded sucking disk-type strip sensor for optical measurement of glucose in tear fluid. Biomater Res 2023; 27:135. [PMID: 38111009 PMCID: PMC10729336 DOI: 10.1186/s40824-023-00469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Noninvasive monitoring of tear glucose levels can be convenient for patients to manage their diabetes mellitus. However, there are issues with monitoring tear glucose levels, such as the invasiveness of some methods, the miniaturization, inaccuracy, or the high cost of wearable devices. To overcome the issues, we newly designed a sucking disk-type (SD) strip biosensor that can quickly suck tear fluid and contains cerium oxide nanoparticle (CNP) that causes a unique color change according to the glucose level of the tear without complicated electronic components. METHODS The SD strip biosensor composed of three distinct parts (tip, channel, and reaction chamber) was designed to contain the sensing paper, onto which tear fluid can be collected and delivered. The sensing paper treated with CNP/APTS (aminopropyltriethoxysilane) /GOx (glucose oxidase) was characterized. Then we carried out the reliability of the SD strip biosensor in the diabetic rabbit animals. We quantitatively analyzed the color values of the SD strip biosensor through the colorimetric analysis algorithm. RESULTS We contacted the inferior palpebral conjunctiva (IPC) of a diabetic rabbit eye using an SD strip biosensor to collect tears without eye irritation and successfully verified the performance and quantitative efficacy of the sensor. An image processing algorithm that can optimize measurement accuracy is developed for accurate color change measurement of SD strip biosensors. The validation tests show a good correlation between glucose concentrations measured in the tear and blood. CONCLUSION Our findings demonstrate that the CNP-embedded SD strip biosensor and the associated image processing can simply monitor tear glucose to manage diabetes mellitus.
Collapse
Affiliation(s)
- Sijin Park
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Dong Yeon Nam
- College of Engineering, Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Hee-Jae Jeon
- Department of Mechanical and Biomedical Engineering, Kangwon National University, 1 Gangwondaehak-Gil, Chuncheon, 24341, Republic of Korea
| | - Jae Hoon Han
- College of Engineering, Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Dawon Jang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Juil Hwang
- Department of Physics, College of Natural Sciences, Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Yeong-Seo Park
- Department of Mechanical and Biomedical Engineering, Kangwon National University, 1 Gangwondaehak-Gil, Chuncheon, 24341, Republic of Korea
| | - Young-Geun Han
- Department of Physics, College of Natural Sciences, Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Young Bin Choy
- College of Engineering, Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea.
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea.
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology (INST) and Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Elixir Pharmatech Inc, 222 Wangsimni-Ro Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
13
|
Kazanskiy NL, Khonina SN, Butt MA. Smart Contact Lenses-A Step towards Non-Invasive Continuous Eye Health Monitoring. BIOSENSORS 2023; 13:933. [PMID: 37887126 PMCID: PMC10605521 DOI: 10.3390/bios13100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
According to the age-old adage, while eyes are often considered the gateway to the soul, they might also provide insights into a more pragmatic aspect of our health: blood sugar levels. This potential breakthrough could be realized through the development of smart contact lenses (SCLs). Although contact lenses were first developed for eyesight correction, new uses have recently become available. In the near future, it might be possible to monitor a variety of ocular and systemic disorders using contact lens sensors. Within the realm of glaucoma, SCLs present a novel prospect, offering a potentially superior avenue compared to traditional management techniques. These lenses introduce the possibility of non-invasive and continuous monitoring of intraocular pressure (IOP) while also enabling the personalized administration of medication as and when needed. This convergence holds great promise for advancing glaucoma care. In this review, recent developments in SCLs, including their potential applications, such as IOP and glucose monitoring, are briefly discussed.
Collapse
Affiliation(s)
- Nikolay L. Kazanskiy
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Svetlana N. Khonina
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | | |
Collapse
|