1
|
Demetrius LA. Directionality theory and the origin of life. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230623. [PMID: 39539501 PMCID: PMC11558456 DOI: 10.1098/rsos.230623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/16/2023] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
The origin of cellular life can be described in terms of the transition from inorganic matter to the emergence of cooperative assemblies of organic matter: DNA and proteins, capable of replication and metabolism. Directionality theory is a mathematical theory of the collective behaviour of networks of organic matter: activated macromolecules, cells and higher organisms. Evolutionary entropy, a generalization of the thermodynamic entropy of Boltzmann, is a statistical measure of the cooperativity of the biotic components. The cornerstone of Directionality theory is the Entropic Principle of Evolution: evolutionary entropy increases in systems driven by a stable energy source, and decreases in systems subject to a fluctuating energy source. This article invokes the Entropic Principle of Evolution-an extension to biological systems of the Second Law of Thermodynamics-to provide an adaptive rationale for the following sequence of transformations that define the emergence of cellular life: (i) the self-assembly of activated macromolecules from inorganic matter; (ii) the emergence of an RNA world, defined by RNA molecules with catalytic and replicative properties; and (iii) the origin of cellular life, the integration of the three carbon-based polymers-DNA, proteins and lipids, to generate a metabolic and replicative unit.
Collapse
Affiliation(s)
- Lloyd A. Demetrius
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, Cambridge, MA02138, USA
| |
Collapse
|
2
|
Samanta D, Rauniyar S, Saxena P, Sani RK. From genome to evolution: investigating type II methylotrophs using a pangenomic analysis. mSystems 2024; 9:e0024824. [PMID: 38695578 PMCID: PMC11237726 DOI: 10.1128/msystems.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024] Open
Abstract
A comprehensive pangenomic approach was employed to analyze the genomes of 75 type II methylotrophs spanning various genera. Our investigation revealed 256 exact core gene families shared by all 75 organisms, emphasizing their crucial role in the survival and adaptability of these organisms. Additionally, we predicted the functionality of 12 hypothetical proteins. The analysis unveiled a diverse array of genes associated with key metabolic pathways, including methane, serine, glyoxylate, and ethylmalonyl-CoA (EMC) metabolic pathways. While all selected organisms possessed essential genes for the serine pathway, Methylooceanibacter marginalis lacked serine hydroxymethyltransferase (SHMT), and Methylobacterium variabile exhibited both isozymes of SHMT, suggesting its potential to utilize a broader range of carbon sources. Notably, Methylobrevis sp. displayed a unique serine-glyoxylate transaminase isozyme not found in other organisms. Only nine organisms featured anaplerotic enzymes (isocitrate lyase and malate synthase) for the glyoxylate pathway, with the rest following the EMC pathway. Methylovirgula sp. 4MZ18 stood out by acquiring genes from both glyoxylate and EMC pathways, and Methylocapsa sp. S129 featured an A-form malate synthase, unlike the G-form found in the remaining organisms. Our findings also revealed distinct phylogenetic relationships and clustering patterns among type II methylotrophs, leading to the proposal of a separate genus for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129. This pangenomic study unveils remarkable metabolic diversity, unique gene characteristics, and distinct clustering patterns of type II methylotrophs, providing valuable insights for future carbon sequestration and biotechnological applications. IMPORTANCE Methylotrophs have played a significant role in methane-based product production for many years. However, a comprehensive investigation into the diverse genetic architectures across different genera of methylotrophs has been lacking. This study fills this knowledge gap by enhancing our understanding of core hypothetical proteins and unique enzymes involved in methane oxidation, serine, glyoxylate, and ethylmalonyl-CoA pathways. These findings provide a valuable reference for researchers working with other methylotrophic species. Furthermore, this study not only unveils distinctive gene characteristics and phylogenetic relationships but also suggests a reclassification for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129 into separate genera due to their unique attributes within their respective genus. Leveraging the synergies among various methylotrophic organisms, the scientific community can potentially optimize metabolite production, increasing the yield of desired end products and overall productivity.
Collapse
Affiliation(s)
- Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| |
Collapse
|
3
|
Saha R, Poduval P, Baratam K, Nagesh J, Srivastava A. Membrane Catalyzed Formation of Nucleotide Clusters and Their Role in the Origins of Life: Insights from Molecular Simulations and Lattice Modeling. J Phys Chem B 2024; 128:3121-3132. [PMID: 38518175 DOI: 10.1021/acs.jpcb.3c08061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
One of the mysteries in studying the molecular "Origin of Life" is the emergence of RNA and RNA-based life forms, where nonenzymatic polymerization of nucleotides is a crucial hypothesis in formation of large RNA chains. The nonenzymatic polymerization can be mediated by various environmental settings, such as cycles of hydration and dehydration, temperature variations, and proximity to a variety of organizing matrices, such as clay, salt, fatty acids, lipid membrane, and mineral surface. In this work, we explore the influence of different phases of the lipid membrane toward nucleotide organization and polymerization in a simulated prebiotic setting. Our molecular simulations quantify the localization propensity of a mononucleotide, uridine monophosphate (UMP), in distinct membrane settings. We perform all-atom molecular dynamics (MD) simulations to estimate the role of the monophasic and biphasic membranes in modifying the behavior of UMPs localization and their clustering mechanism. Based on the interaction energy of mononucleotides with the membrane and their diffusion profile from our MD calculations, we developed a lattice-based model to explore the thermodynamic limits of the observations made from the MD simulations. The mathematical model substantiates our hypothesis that the lipid layers can act as unique substrates for "catalyzing" polymerization of mononucleotides due to the inherent spatiotemporal heterogeneity and phase change behavior.
Collapse
Affiliation(s)
- Rajlaxmi Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | - Prathyush Poduval
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Krishnakanth Baratam
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Jayashree Nagesh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
4
|
Schoenmakers LLJ, Reydon TAC, Kirschning A. Evolution at the Origins of Life? Life (Basel) 2024; 14:175. [PMID: 38398684 PMCID: PMC10890241 DOI: 10.3390/life14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The role of evolutionary theory at the origin of life is an extensively debated topic. The origin and early development of life is usually separated into a prebiotic phase and a protocellular phase, ultimately leading to the Last Universal Common Ancestor. Most likely, the Last Universal Common Ancestor was subject to Darwinian evolution, but the question remains to what extent Darwinian evolution applies to the prebiotic and protocellular phases. In this review, we reflect on the current status of evolutionary theory in origins of life research by bringing together philosophy of science, evolutionary biology, and empirical research in the origins field. We explore the various ways in which evolutionary theory has been extended beyond biology; we look at how these extensions apply to the prebiotic development of (proto)metabolism; and we investigate how the terminology from evolutionary theory is currently being employed in state-of-the-art origins of life research. In doing so, we identify some of the current obstacles to an evolutionary account of the origins of life, as well as open up new avenues of research.
Collapse
Affiliation(s)
- Ludo L. J. Schoenmakers
- Konrad Lorenz Institute for Evolution and Cognition Research (KLI), 3400 Klosterneuburg, Austria
| | - Thomas A. C. Reydon
- Institute of Philosophy, Centre for Ethics and Law in the Life Sciences (CELLS), Leibniz University Hannover, 30159 Hannover, Germany;
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany;
| |
Collapse
|
5
|
Igamberdiev AU. Toward the Relational Formulation of Biological Thermodynamics. ENTROPY (BASEL, SWITZERLAND) 2023; 26:43. [PMID: 38248169 PMCID: PMC10814957 DOI: 10.3390/e26010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
Classical thermodynamics employs the state of thermodynamic equilibrium, characterized by maximal disorder of the constituent particles, as the reference frame from which the Second Law is formulated and the definition of entropy is derived. Non-equilibrium thermodynamics analyzes the fluxes of matter and energy that are generated in the course of the general tendency to achieve equilibrium. The systems described by classical and non-equilibrium thermodynamics may be heuristically useful within certain limits, but epistemologically, they have fundamental problems in the application to autopoietic living systems. We discuss here the paradigm defined as a relational biological thermodynamics. The standard to which this refers relates to the biological function operating within the context of particular environment and not to the abstract state of thermodynamic equilibrium. This is defined as the stable non-equilibrium state, following Ervin Bauer. Similar to physics, where abandoning the absolute space-time resulted in the application of non-Euclidean geometry, relational biological thermodynamics leads to revealing the basic iterative structures that are formed as a consequence of the search for an optimal coordinate system by living organisms to maintain stable non-equilibrium. Through this search, the developing system achieves the condition of maximization of its power via synergistic effects.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1C 5S7, Canada
| |
Collapse
|
6
|
Zimmermann J, Mayer RJ, Moran J. A single phosphorylation mechanism in early metabolism - the case of phosphoenolpyruvate. Chem Sci 2023; 14:14100-14108. [PMID: 38098731 PMCID: PMC10717536 DOI: 10.1039/d3sc04116f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Phosphorylation is thought to be one of the fundamental reactions for the emergence of metabolism. Nearly all enzymatic phosphorylation reactions in the anabolic core of microbial metabolism act on carboxylates to give acyl phosphates, with a notable exception - the phosphorylation of pyruvate to phosphoenolpyruvate (PEP), which involves an enolate. We wondered whether an ancestral mechanism for the phosphorylation of pyruvate to PEP could also have involved carboxylate phosphorylation rather than the modern enzymatic form. The phosphorylation of pyruvate with P4O10 as a model phosphorylating agent was found to indeed occur via carboxylate phosphorylation, as verified by mechanistic studies using model substrates, time course experiments, liquid and solid-state NMR spectroscopy, and DFT calculations. The in situ generated acyl phosphate subsequently undergoes an intramolecular phosphoryl transfer to yield PEP. A single phosphorylation mechanism acting on carboxylates appears sufficient to initiate metabolic networks that include PEP, strengthening the case that metabolism emerged from self-organized chemistry.
Collapse
Affiliation(s)
- Joris Zimmermann
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Robert J Mayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 Allée Gaspard Monge 67000 Strasbourg France
- Institut Universitaire de France (IUF) France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
7
|
Werner E, Pinna S, Mayer RJ, Moran J. Metal/ADP Complexes Promote Phosphorylation of Ribonucleotides. J Am Chem Soc 2023; 145:21630-21637. [PMID: 37750669 DOI: 10.1021/jacs.3c08047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Under enzyme catalysis, adenosine triphosphate (ATP) transfers a phosphoryl group to canonical ribonucleotide diphosphates (NDPs) to form ribonucleotide triphosphates (NTPs), the direct biosynthetic precursors to RNA. However, it remains unclear whether the phosphorylation of NDPs could have occurred in water before enzymes existed and why an adenosine derivative, rather than another canonical NTP, typically performs this function. Here, we show that adenosine diphosphate (ADP) in the presence of Fe3+ or Al3+ promotes phosphoryl transfer from acetyl phosphate to all canonical NDPs to produce their corresponding NTP in water at room temperature and in the absence of enzymes. No other NDPs were found to promote phosphorylation, giving insight into why adenosine derivatives specifically became used for this purpose in biology. The metal-ADP complexes also promote phosphoryl transfer to ribonucleoside monophosphates (NMPs) to form a mixture of the corresponding NDPs and NTPs, albeit less efficiently. This work represents a rare example in which a single nucleotide carries out a function critical to biology without enzymes. ADP-metal complexes may have played an important role in nucleotide phosphorylation in prebiotic chemistry.
Collapse
Affiliation(s)
- Emilie Werner
- ISIS UMR 7006, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Silvana Pinna
- ISIS UMR 7006, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Robert J Mayer
- ISIS UMR 7006, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Joseph Moran
- ISIS UMR 7006, University of Strasbourg, CNRS, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
8
|
González-Ramírez LA, Moreno A, Ng JD, García-Ruiz JM. Investigations on the Role of Iron (III) and Silica-Iron (III) for DNA Protection Against Highly Intense UV Radiation: Tracking the Connection of Prebiotic Chemistry to Biology. ASTROBIOLOGY 2023; 23:33-42. [PMID: 36257639 DOI: 10.1089/ast.2022.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mineral reaction pathways that yield organic compounds of increasing complexity would have required a means of protective screening against strong ultraviolet radiation for macromolecular assembly on early Earth. In this study, a bacterial chromosomal plasmid DNA was used as a model biomolecule that represents a complex polymeric nucleic acid containing genetic information. The plasmid DNA was exposed to UV radiation through a medium containing air, water, iron (Fe3+), or silica-iron rich aqueous solutions. Our results demonstrate that the plasmid DNA underwent covalent breakage in an aqueous solution when exposed to UV radiation but was shielded against damage due to the presence of iron and silica. It is demonstrated that a suspension of ca. 40 nm colloidal particles of silica gel embedded with Fe3+ ions adsorbed on silanol groups that formed nanoclusters of noncrystalline iron hydroxide is an extremely efficient shelter against intense UV radiation. The implications for our understanding of primitive Earth and Earth-like planets, moons, and asteroids are discussed. The stability of a chromosomal DNA molecule against UV radiation in the presence of iron and silica may provide support on how macromolecules endured early Earth environments and brought forth important implications on early molecular survival against UV radiation.
Collapse
Affiliation(s)
- Luis A González-Ramírez
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Armilla, Spain
| | - Abel Moreno
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Armilla, Spain
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Joseph D Ng
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Juan M García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Armilla, Spain
| |
Collapse
|
9
|
Rauscher SA, Moran J. Hydrogen Drives Part of the Reverse Krebs Cycle under Metal or Meteorite Catalysis. Angew Chem Int Ed Engl 2022; 61:e202212932. [PMID: 36251920 PMCID: PMC10100321 DOI: 10.1002/anie.202212932] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Hydrogen (H2 ) is a geological source of reducing electrons that is thought to have powered the metabolism of the last universal common ancestor to all extant life, and that is still metabolized by various modern organisms. It has been suggested that H2 drove a geochemical analogue of some or all of the reverse Krebs cycle at the emergence of the metabolic network, catalyzed by metals, but this has yet to be demonstrated experimentally. Herein, we show that three consecutive steps of the reverse Krebs cycle, converting oxaloacetate into succinate, can be driven without enzymes and in one-pot by H2 as the reducing agent under mild conditions compatible with biological chemistry. Low catalytic amounts of nickel (10-20 mol %) or platinum group metals (0.1-1 mol %) or even small amounts of ground meteorites were found to promote the reductive chemistry at temperatures between 5 and 60 °C and over a wide pH range, including pH 7. These results lend additional support to the hypothesis that geologically produced hydrogen and metal catalysts could have initiated early metabolic networks.
Collapse
Affiliation(s)
- Sophia A Rauscher
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France.,Institut Universitaire de France (IUF), France
| |
Collapse
|
10
|
Nunes Palmeira R, Colnaghi M, Harrison SA, Pomiankowski A, Lane N. The limits of metabolic heredity in protocells. Proc Biol Sci 2022; 289:20221469. [PMID: 36350219 PMCID: PMC9653231 DOI: 10.1098/rspb.2022.1469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The universal core of metabolism could have emerged from thermodynamically favoured prebiotic pathways at the origin of life. Starting with H
2
and CO
2
, the synthesis of amino acids and mixed fatty acids, which self-assemble into protocells, is favoured under warm anoxic conditions. Here, we address whether it is possible for protocells to evolve greater metabolic complexity, through positive feedbacks involving nucleotide catalysis. Using mathematical simulations to model metabolic heredity in protocells, based on branch points in protometabolic flux, we show that nucleotide catalysis can indeed promote protocell growth. This outcome only occurs when nucleotides directly catalyse CO
2
fixation. Strong nucleotide catalysis of other pathways (e.g. fatty acids and amino acids) generally unbalances metabolism and slows down protocell growth, and when there is competition between catalytic functions cell growth collapses. Autocatalysis of nucleotide synthesis can promote growth but only if nucleotides also catalyse CO
2
fixation; autocatalysis alone leads to the accumulation of nucleotides at the expense of CO
2
fixation and protocell growth rate. Our findings offer a new framework for the emergence of greater metabolic complexity, in which nucleotides catalyse broad-spectrum processes such as CO
2
fixation, hydrogenation and phosphorylation important to the emergence of genetic heredity at the origin of life.
Collapse
Affiliation(s)
- Raquel Nunes Palmeira
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Marco Colnaghi
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Stuart A. Harrison
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
11
|
Harrison SA, Palmeira RN, Halpern A, Lane N. A biophysical basis for the emergence of the genetic code in protocells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148597. [PMID: 35868450 DOI: 10.1016/j.bbabio.2022.148597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
The origin of the genetic code is an abiding mystery in biology. Hints of a 'code within the codons' suggest biophysical interactions, but these patterns have resisted interpretation. Here, we present a new framework, grounded in the autotrophic growth of protocells from CO2 and H2. Recent work suggests that the universal core of metabolism recapitulates a thermodynamically favoured protometabolism right up to nucleotide synthesis. Considering the genetic code in relation to an extended protometabolism allows us to predict most codon assignments. We show that the first letter of the codon corresponds to the distance from CO2 fixation, with amino acids encoded by the purines (G followed by A) being closest to CO2 fixation. These associations suggest a purine-rich early metabolism with a restricted pool of amino acids. The second position of the anticodon corresponds to the hydrophobicity of the amino acid encoded. We combine multiple measures of hydrophobicity to show that this correlation holds strongly for early amino acids but is weaker for later species. Finally, we demonstrate that redundancy at the third position is not randomly distributed around the code: non-redundant amino acids can be assigned based on size, specifically length. We attribute this to additional stereochemical interactions at the anticodon. These rules imply an iterative expansion of the genetic code over time with codon assignments depending on both distance from CO2 and biophysical interactions between nucleotide sequences and amino acids. In this way the earliest RNA polymers could produce non-random peptide sequences with selectable functions in autotrophic protocells.
Collapse
Affiliation(s)
- Stuart A Harrison
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Raquel Nunes Palmeira
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Aaron Halpern
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
12
|
Pinna S, Kunz C, Halpern A, Harrison SA, Jordan SF, Ward J, Werner F, Lane N. A prebiotic basis for ATP as the universal energy currency. PLoS Biol 2022; 20:e3001437. [PMID: 36194581 PMCID: PMC9531788 DOI: 10.1371/journal.pbio.3001437] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 08/30/2022] [Indexed: 11/07/2022] Open
Abstract
ATP is universally conserved as the principal energy currency in cells, driving metabolism through phosphorylation and condensation reactions. Such deep conservation suggests that ATP arose at an early stage of biochemical evolution. Yet purine synthesis requires 6 phosphorylation steps linked to ATP hydrolysis. This autocatalytic requirement for ATP to synthesize ATP implies the need for an earlier prebiotic ATP equivalent, which could drive protometabolism before purine synthesis. Why this early phosphorylating agent was replaced, and specifically with ATP rather than other nucleoside triphosphates, remains a mystery. Here, we show that the deep conservation of ATP might reflect its prebiotic chemistry in relation to another universally conserved intermediate, acetyl phosphate (AcP), which bridges between thioester and phosphate metabolism by linking acetyl CoA to the substrate-level phosphorylation of ADP. We confirm earlier results showing that AcP can phosphorylate ADP to ATP at nearly 20% yield in water in the presence of Fe3+ ions. We then show that Fe3+ and AcP are surprisingly favoured. A wide range of prebiotically relevant ions and minerals failed to catalyse ADP phosphorylation. From a panel of prebiotic phosphorylating agents, only AcP, and to a lesser extent carbamoyl phosphate, showed any significant phosphorylating potential. Critically, AcP did not phosphorylate any other nucleoside diphosphate. We use these data, reaction kinetics, and molecular dynamic simulations to infer a possible mechanism. Our findings might suggest that the reason ATP is universally conserved across life is that its formation is chemically favoured in aqueous solution under mild prebiotic conditions.
Collapse
Affiliation(s)
- Silvana Pinna
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| | - Cäcilia Kunz
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| | - Aaron Halpern
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| | - Stuart A. Harrison
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| | - Sean F. Jordan
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| | - John Ward
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, University College London, Darwin Building, London, United Kingdom
| | - Nick Lane
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| |
Collapse
|
13
|
Martínez Giménez JA, Tabares Seisdedos R. A Cofactor-Based Mechanism for the Origin of the Genetic Code. ORIGINS LIFE EVOL B 2022; 52:149-163. [PMID: 36071304 DOI: 10.1007/s11084-022-09628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
The origin of the genetic code is probably the central problem of the studies on the origin of life. The key question to answer is the molecular mechanism that allows the association of the amino acids with their triplet codons. We proposed that the codon-anticodon duplex located in the acceptor stem of primitive tRNAs would facilitate the chemical reactions required to synthesize cognate amino acids from simple amino acids (glycine, valine, and aspartic acid) linked to the 3' acceptor end. In our view, various nucleotide-A-derived cofactors (with reactive chemical groups) may be attached to the codon-anticodon duplex, which allows group-transferring reactions from cofactors to simple amino acids, thereby producing the final amino acid. The nucleotide-A-derived cofactors could be incorporated into the RNA duplex (helix) by docking Adenosine (cofactor) into the minor groove via an interaction similar to the A-minor motif, forming a base triple between Adenosine and one complementary base pair of the duplex. Furthermore, we propose that this codon-anticodon duplex could initially catalyze a self-aminoacylation reaction with a simple amino acid. Therefore, the sequence of bases in the codon-anticodon duplex would determine the reactions that occurred during the formation of new amino acids for selective binding of nucleotide-A-derived cofactors.
Collapse
Affiliation(s)
| | - Rafael Tabares Seisdedos
- Departamento de Medicina, Facultad de Medicina de Valencia, (CIBERSAM; INCLIVA-UV), Universidad de Valencia, Av. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
14
|
Nader S, Sebastianelli L, Mansy SS. Protometabolism as out-of-equilibrium chemistry. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200423. [PMID: 35599565 PMCID: PMC9125230 DOI: 10.1098/rsta.2020.0423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 05/06/2023]
Abstract
It is common to compare life with machines. Both consume fuel and release waste to run. In biology, the engine that drives the living system is referred to as metabolism. However, attempts at deciphering the origins of metabolism do not focus on this energetic relationship that sustains life but rather concentrate on nonenzymatic reactions that produce all the intermediates of an extant metabolic pathway. Such an approach is akin to studying the molecules produced from the burning of coal instead of deciphering how the released energy drives the movement of pistons and ultimately the train when investigating the mechanisms behind locomotion. Theories that do explicitly invoke geological chemical gradients to drive metabolism most frequently feature hydrothermal vent conditions, but hydrothermal vents are not the only regions of the early Earth that could have provided the fuel necessary to sustain the Earth's first (proto)cells. Here, we give examples of prior reports on protometabolism and highlight how more recent investigations of out-of-equilibrium systems may point to alternative scenarios more consistent with the majority of prebiotic chemistry data accumulated thus far. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Serge Nader
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, Canada T6G 2G2
| | - Lorenzo Sebastianelli
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, Canada T6G 2G2
| | - Sheref S. Mansy
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, Canada T6G 2G2
| |
Collapse
|
15
|
Yi J, Kaur H, Kazöne W, Rauscher SA, Gravillier L, Muchowska KB, Moran J. A Nonenzymatic Analog of Pyrimidine Nucleobase Biosynthesis. Angew Chem Int Ed Engl 2022; 61:e202117211. [PMID: 35304939 PMCID: PMC9325535 DOI: 10.1002/anie.202117211] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Metabolic theories for the origin of life posit that inorganic catalysts enabled self-organized chemical precursors to the pathways of metabolism, including those that make genetic molecules. Recently, experiments showing nonenzymatic versions of a number of core metabolic pathways have started to support this idea. However, experimental demonstrations of nonenzymatic reaction sequences along the de novo ribonucleotide biosynthesis pathways are limited. Here we show that all three reactions of pyrimidine nucleobase biosynthesis that convert aspartate to orotate proceed at 60 °C without photochemistry under aqueous conditions in the presence of metals such as Cu2+ and Mn4+ . Combining reactions into one-pot variants is also possible. Life may not have invented pyrimidine nucleobase biosynthesis from scratch, but simply refined existing nonenzymatic reaction channels. This work is a first step towards uniting metabolic theories of life's origin with those centered around genetic molecules.
Collapse
Affiliation(s)
- Jing Yi
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Harpreet Kaur
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Wahnyalo Kazöne
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Sophia A. Rauscher
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Louis‐Albin Gravillier
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Kamila B. Muchowska
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
- Institut Universitaire de France (IUF)France
| |
Collapse
|
16
|
Yi J, Kaur H, Kazöne W, Rauscher SA, Gravillier LA, Muchowska KB, Moran J. A Nonenzymatic Analog of Pyrimidine Nucleobase Biosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Yi
- University of Strasbourg: Universite de Strasbourg ISIS FRANCE
| | - Harpreet Kaur
- University of Strasbourg: Universite de Strasbourg ISIS FRANCE
| | - Wahnyalo Kazöne
- Université de Strasbourg: Universite de Strasbourg ISIS FRANCE
| | | | | | | | - Joseph Moran
- University of Strasbourg ISIS 8 allée Gaspard MongeBP 70028 67083 Strasbourg FRANCE
| |
Collapse
|
17
|
Clay AP, Cooke RE, Kumar R, Yadav M, Krishnamurthy R, Springsteen G. A Plausible Prebiotic One-Pot Synthesis of Orotate and Pyruvate Suggestive of Common Protometabolic Pathways. Angew Chem Int Ed Engl 2022; 61:e202112572. [PMID: 35007387 PMCID: PMC8885966 DOI: 10.1002/anie.202112572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/22/2022]
Abstract
A reaction between two prebiotically plausible building blocks, hydantoin and glyoxylate, generates both the nucleobase orotate, a precursor of biological pyrimidines, and pyruvate, a core metabolite in the citric acid cycle and amino acid biosynthesis. The reaction proceeds in water to provide significant yields of the two widely divergent chemical motifs. Additionally, the reaction of thiohydantoin and glyoxylate produces thioorotate in high yield under neutral aqueous conditions. The use of an open-chain thiohydantoin derivative also enables the potential pre-positioning of a nucleosidic bond prior to the synthesis of an orotate nucleoside. The observation that diverse building blocks of modern metabolism can be produced in a single reaction pot, from common reactants under mild conditions, supports the plausibility of orthogonal chemistries operating at the origins of chemical evolution.
Collapse
Affiliation(s)
- Alyssa P. Clay
- Department of ChemistryFurman University3300 Poinsett HwyGreenvilleSC 29613USA
- NSF-NASA Center for Chemical EvolutionAtlantaGA 30332USA
| | - Rachel E. Cooke
- Department of ChemistryFurman University3300 Poinsett HwyGreenvilleSC 29613USA
- NSF-NASA Center for Chemical EvolutionAtlantaGA 30332USA
| | - Ravi Kumar
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
- NSF-NASA Center for Chemical EvolutionAtlantaGA 30332USA
| | - Mahipal Yadav
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
- NSF-NASA Center for Chemical EvolutionAtlantaGA 30332USA
| | - Ramanarayanan Krishnamurthy
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
- NSF-NASA Center for Chemical EvolutionAtlantaGA 30332USA
| | - Greg Springsteen
- Department of ChemistryFurman University3300 Poinsett HwyGreenvilleSC 29613USA
- NSF-NASA Center for Chemical EvolutionAtlantaGA 30332USA
| |
Collapse
|
18
|
Vanchurin V, Wolf YI, Katsnelson MI, Koonin EV. Toward a theory of evolution as multilevel learning. Proc Natl Acad Sci U S A 2022; 119:e2120037119. [PMID: 35121666 PMCID: PMC8833143 DOI: 10.1073/pnas.2120037119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/28/2022] Open
Abstract
We apply the theory of learning to physically renormalizable systems in an attempt to outline a theory of biological evolution, including the origin of life, as multilevel learning. We formulate seven fundamental principles of evolution that appear to be necessary and sufficient to render a universe observable and show that they entail the major features of biological evolution, including replication and natural selection. It is shown that these cornerstone phenomena of biology emerge from the fundamental features of learning dynamics such as the existence of a loss function, which is minimized during learning. We then sketch the theory of evolution using the mathematical framework of neural networks, which provides for detailed analysis of evolutionary phenomena. To demonstrate the potential of the proposed theoretical framework, we derive a generalized version of the Central Dogma of molecular biology by analyzing the flow of information during learning (back propagation) and predicting (forward propagation) the environment by evolving organisms. The more complex evolutionary phenomena, such as major transitions in evolution (in particular, the origin of life), have to be analyzed in the thermodynamic limit, which is described in detail in the paper by Vanchurin et al. [V. Vanchurin, Y. I. Wolf, E. V. Koonin, M. I. Katsnelson, Proc. Natl. Acad. Sci. U.S.A. 119, 10.1073/pnas.2120042119 (2022)].
Collapse
Affiliation(s)
- Vitaly Vanchurin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
- Duluth Institute for Advanced Study, Duluth, MN 55804
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Mikhail I Katsnelson
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
| |
Collapse
|
19
|
Viroids and Viroid-like Circular RNAs: Do They Descend from Primordial Replicators? LIFE (BASEL, SWITZERLAND) 2022; 12:life12010103. [PMID: 35054497 PMCID: PMC8781251 DOI: 10.3390/life12010103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023]
Abstract
Viroids are a unique class of plant pathogens that consist of small circular RNA molecules, between 220 and 450 nucleotides in size. Viroids encode no proteins and are the smallest known infectious agents. Viroids replicate via the rolling circle mechanism, producing multimeric intermediates which are cleaved to unit length either by ribozymes formed from both polarities of the viroid genomic RNA or by coopted host RNAses. Many viroid-like small circular RNAs are satellites of plant RNA viruses. Ribozyviruses, represented by human hepatitis delta virus, are larger viroid-like circular RNAs that additionally encode the viral nucleocapsid protein. It has been proposed that viroids are direct descendants of primordial RNA replicons that were present in the hypothetical RNA world. We argue, however, that much later origin of viroids, possibly, from recently discovered mobile genetic elements known as retrozymes, is a far more parsimonious evolutionary scenario. Nevertheless, viroids and viroid-like circular RNAs are minimal replicators that are likely to be close to the theoretical lower limit of replicator size and arguably comprise the paradigm for replicator emergence. Thus, although viroid-like replicators are unlikely to be direct descendants of primordial RNA replicators, the study of the diversity and evolution of these ultimate genetic parasites can yield insights into the earliest stages of the evolution of life.
Collapse
|
20
|
Clay AP, Cooke RE, Kumar R, Yadav M, Krishnamurthy R, Springsteen G. A Plausible Prebiotic One‐Pot Synthesis of Orotate and Pyruvate Suggestive of Common Protometabolic Pathways. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Ravi Kumar
- TSRI: The Scripps Research Institute chemistry UNITED STATES
| | - Mahipal Yadav
- TSRI: The Scripps Research Institute Chemistry UNITED STATES
| | | | - Greg Springsteen
- Furman University Chemistry Department 3300 Poinsett Hwy 29613 Greenville UNITED STATES
| |
Collapse
|
21
|
Tesovnik T, Jenko Bizjan B, Šket R, Debeljak M, Battelino T, Kovač J. Technological Approaches in the Analysis of Extracellular Vesicle Nucleotide Sequences. Front Bioeng Biotechnol 2021; 9:787551. [PMID: 35004647 PMCID: PMC8733665 DOI: 10.3389/fbioe.2021.787551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Together with metabolites, proteins, and lipid components, the EV cargo consists of DNA and RNA nucleotide sequence species, which are part of the intracellular communication network regulating specific cellular processes and provoking distinct target cell responses. The extracellular vesicle (EV) nucleotide sequence cargo molecules are often investigated in association with a particular pathology and may provide an insight into the physiological and pathological processes in hard-to-access organs and tissues. The diversity and biological function of EV nucleotide sequences are distinct regarding EV subgroups and differ in tissue- and cell-released EVs. EV DNA is present mainly in apoptotic bodies, while there are different species of EV RNAs in all subgroups of EVs. A limited sample volume of unique human liquid biopsy provides a small amount of EVs with limited isolated DNA and RNA, which can be a challenging factor for EV nucleotide sequence analysis, while the additional difficulty is technical variability of molecular nucleotide detection. Every EV study is challenged with its first step of the EV isolation procedure, which determines the EV's purity, yield, and diameter range and has an impact on the EV's downstream analysis with a significant impact on the final result. The gold standard EV isolation procedure with ultracentrifugation provides a low output and not highly pure isolated EVs, while modern techniques increase EV's yield and purity. Different EV DNA and RNA detection techniques include the PCR procedure for nucleotide sequence replication of the molecules of interest, which can undergo a small-input EV DNA or RNA material. The nucleotide sequence detection approaches with their advantages and disadvantages should be considered to appropriately address the study problem and to extract specific EV nucleotide sequence information with the detection using qPCR or next-generation sequencing. Advanced next-generation sequencing techniques allow the detection of total EV genomic or transcriptomic data even at the single-molecule resolution and thus, offering a sensitive and accurate EV DNA or RNA biomarker detection. Additionally, with the processes where the EV genomic or transcriptomic data profiles are compared to identify characteristic EV differences in specific conditions, novel biomarkers could be discovered. Therefore, a suitable differential expression analysis is crucial to define the EV DNA or RNA differences between conditions under investigation. Further bioinformatics analysis can predict molecular cell targets and identify targeted and affected cellular pathways. The prediction target tools with functional studies are essential to help specify the role of the investigated EV-targeted nucleotide sequences in health and disease and support further development of EV-related therapeutics. This review will discuss the biological diversity of human liquid biopsy-obtained EV nucleotide sequences DNA and RNA species reported as potential biomarkers in health and disease and methodological principles of their detection, from human liquid biopsy EV isolation, EV nucleotide sequence extraction, techniques for their detection, and their cell target prediction.
Collapse
Affiliation(s)
- Tine Tesovnik
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Robert Šket
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Maruša Debeljak
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
- Faculty of Medicine, Chair of Paediatrics, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovač
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| |
Collapse
|
22
|
Mayer RJ, Kaur H, Rauscher SA, Moran J. Mechanistic Insight into Metal Ion-Catalyzed Transamination. J Am Chem Soc 2021; 143:19099-19111. [PMID: 34730975 DOI: 10.1021/jacs.1c08535] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several classes of biological reactions that are mediated by an enzyme and a co-factor can occur, to a slower extent, not only without the enzyme but even without the co-factor, under catalysis by metal ions. This observation has led to the proposal that metabolic pathways progressively evolved from using inorganic catalysts to using organocatalysts of increasing complexity. Transamination, the biological process by which ammonia is transferred between amino acids and α-keto acids, has a mechanism that has been well studied under enzyme/co-factor catalysis and under co-factor catalysis, but the metal ion-catalyzed variant was generally studied mostly at high temperatures (70-100 °C), and the details of its mechanism remained unclear. Here, we investigate which metal ions catalyze transamination under conditions relevant to biology (pH 7, 20-50 °C) and study the mechanism in detail. Cu2+, Ni2+, Co2+, and V5+ were identified as the most active metal ions under these constraints. Kinetic, stereochemical, and computational studies illuminate the mechanism of the reaction. Cu2+ and Co2+ are found to predominantly speed up the reaction by stabilizing a key imine intermediate. V5+ is found to accelerate the reaction by increasing the acidity of the bound imine. Ni2+ is found to do both to a limited extent. These results show that direct metal ion-catalyzed amino group transfer is highly favored even in the absence of co-factors or protein catalysts under biologically compatible reaction conditions.
Collapse
Affiliation(s)
- Robert J Mayer
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| | - Harpreet Kaur
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| | - Sophia A Rauscher
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| | - Joseph Moran
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| |
Collapse
|
23
|
Di Giulio M. The evolutionary stages of the complexity of biological catalysts mark and clarify the phases of the origin of the genetic code: A model for the origin of the reading frame with codons from proto-mRNAs with different frames. Biosystems 2021; 207:104449. [PMID: 34052366 DOI: 10.1016/j.biosystems.2021.104449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/30/2022]
Abstract
I analyse the origin of the genetic code in the light of the evolution of biological catalysts. I discuss the rudimentary forms that the genetic code assumed in the presence of a catalysis performed by ions or by low molecular weight molecules, such as nucleotide coenzymes. However, it is only with the advent of a mixed polymer made of RNA and peptides - covalently linked - that the genetic code took on a clearer form. Indeed, the first true form of coding appeared. Furthermore, interacting peptidated RNAs promoted an extremely rudimentary form of protein synthesis. This stage evolved into a stage in which proto-mRNAs guided interactions among peptidated RNAs aimed at the synthesis of peptidated RNAs having an active catalytic function. Finally, the invasion of aminoacylated proto-tRNAs with specific amino acids, coming from amino acid metabolism, and recognising only three bases on these proto-mRNAs with reading frames larger than three bases, would have triggered the birth of actual mRNAs, i.e. the origin of codons. All this would have linked the metabolism of amino acids to the origin of mRNAs and therefore to the origin of the organization of the genetic code, as maintained by the coevolution theory of the genetic code.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy; Institute of Biosciences and Bioresources, National Research Council, Via P. Castellino, 111, 80131, Naples, Italy.
| |
Collapse
|
24
|
Neidhöfer C. On the Evolution of the Biological Framework for Insight. PHILOSOPHIES 2021; 6:43. [DOI: 10.3390/philosophies6020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The details of abiogenesis, to date, remain a matter of debate and constitute a key mystery in science and philosophy. The prevailing scientific hypothesis implies an evolutionary process of increasing complexity on Earth starting from (self-) replicating polymers. Defining the cut-off point where life begins is another moot point beyond the scope of this article. We will instead walk through the known evolutionary steps that led from these first exceptional polymers to the vast network of living biomatter that spans our world today, focusing in particular on perception, from simple biological feedback mechanisms to the complexity that allows for abstract thought. We will then project from the well-known to the unknown to gain a glimpse into what the universe aims to accomplish with living matter, just to find that if the universe had ever planned to be comprehended, evolution still has a long way to go.
Collapse
|
25
|
Osinski G, Cockell C, Pontefract A, Sapers H. The Role of Meteorite Impacts in the Origin of Life. ASTROBIOLOGY 2020; 20:1121-1149. [PMID: 32876492 PMCID: PMC7499892 DOI: 10.1089/ast.2019.2203] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The conditions, timing, and setting for the origin of life on Earth and whether life exists elsewhere in our solar system and beyond represent some of the most fundamental scientific questions of our time. Although the bombardment of planets and satellites by asteroids and comets has long been viewed as a destructive process that would have presented a barrier to the emergence of life and frustrated or extinguished life, we provide a comprehensive synthesis of data and observations on the beneficial role of impacts in a wide range of prebiotic and biological processes. In the context of previously proposed environments for the origin of life on Earth, we discuss how meteorite impacts can generate both subaerial and submarine hydrothermal vents, abundant hydrothermal-sedimentary settings, and impact analogues for volcanic pumice rafts and splash pools. Impact events can also deliver and/or generate many of the necessary chemical ingredients for life and catalytic substrates such as clays as well. The role that impact cratering plays in fracturing planetary crusts and its effects on deep subsurface habitats for life are also discussed. In summary, we propose that meteorite impact events are a fundamental geobiological process in planetary evolution that played an important role in the origin of life on Earth. We conclude with the recommendation that impact craters should be considered prime sites in the search for evidence of past life on Mars. Furthermore, unlike other geological processes such as volcanism or plate tectonics, impact cratering is ubiquitous on planetary bodies throughout the Universe and is independent of size, composition, and distance from the host star. Impact events thus provide a mechanism with the potential to generate habitable planets, moons, and asteroids throughout the Solar System and beyond.
Collapse
Affiliation(s)
- G.R. Osinski
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
- Department of Earth Sciences, University of Western Ontario, London, Canada
- Address correspondence to: Dr. Gordon Osinski, Department of Earth Sciences, 1151 Richmond Street, University of Western Ontario, London ON, N6A 5B7, Canada
| | - C.S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - A. Pontefract
- Department of Biology, Georgetown University, Washington, DC, USA
| | - H.M. Sapers
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
26
|
Abstract
The ribosome and RNase P are cellular ribonucleoprotein complexes that perform peptide bond synthesis and phosphodiester bond cleavage, respectively. Both are ancient biological assemblies that were already present in the last universal common ancestor of all life. The large subunit rRNA in the ribosome and the RNA subunit of RNase P are the ribozyme components required for catalysis. Here, we explore the idea that these two large ribozymes may have begun their evolutionary odyssey as an assemblage of RNA "fragments" smaller than the contemporary full-length versions and that they transitioned through distinct stages along a pathway that may also be relevant for the evolution of other non-coding RNAs.
Collapse
Affiliation(s)
- Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
27
|
Nichol D, Robertson-Tessi M, Anderson ARA, Jeavons P. Model genotype-phenotype mappings and the algorithmic structure of evolution. J R Soc Interface 2019; 16:20190332. [PMID: 31690233 PMCID: PMC6893500 DOI: 10.1098/rsif.2019.0332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cancers are complex dynamic systems that undergo evolution and selection. Personalized medicine approaches in the clinic increasingly rely on predictions of tumour response to one or more therapies; these predictions are complicated by the inevitable evolution of the tumour. Despite enormous amounts of data on the mutational status of cancers and numerous therapies developed in recent decades to target these mutations, many of these treatments fail after a time due to the development of resistance in the tumour. The emergence of these resistant phenotypes is not easily predicted from genomic data, since the relationship between genotypes and phenotypes, termed the genotype-phenotype (GP) mapping, is neither injective nor functional. We present a review of models of this mapping within a generalized evolutionary framework that takes into account the relation between genotype, phenotype, environment and fitness. Different modelling approaches are described and compared, and many evolutionary results are shown to be conserved across studies despite using different underlying model systems. In addition, several areas for future work that remain understudied are identified, including plasticity and bet-hedging. The GP-mapping provides a pathway for understanding the potential routes of evolution taken by cancers, which will be necessary knowledge for improving personalized therapies.
Collapse
Affiliation(s)
- Daniel Nichol
- Department of Computer Science, University of Oxford, Oxford, UK
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexander R. A. Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Peter Jeavons
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Preiner M, Xavier JC, Vieira ADN, Kleinermanns K, Allen JF, Martin WF. Catalysts, autocatalysis and the origin of metabolism. Interface Focus 2019; 9:20190072. [PMID: 31641438 PMCID: PMC6802133 DOI: 10.1098/rsfs.2019.0072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
If life on Earth started out in geochemical environments like hydrothermal vents, then it started out from gasses like CO2, N2 and H2. Anaerobic autotrophs still live from these gasses today, and they still inhabit the Earth's crust. In the search for connections between abiotic processes in ancient geological systems and biotic processes in biological systems, it becomes evident that chemical activation (catalysis) of these gasses and a constant source of energy are key. The H2–CO2 redox reaction provides a constant source of energy and anabolic inputs, because the equilibrium lies on the side of reduced carbon compounds. Identifying geochemical catalysts that activate these gasses en route to nitrogenous organic compounds and small autocatalytic networks will be an important step towards understanding prebiotic chemistry that operates only on the basis of chemical energy, without input from solar radiation. So, if life arose in the dark depths of hydrothermal vents, then understanding reactions and catalysts that operate under such conditions is crucial for understanding origins.
Collapse
Affiliation(s)
- Martina Preiner
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Joana C Xavier
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Karl Kleinermanns
- Institute for Physical Chemistry, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Abstract
This article proposes that biologically plausible theories of behavior can be constructed by following a method of "phylogenetic refinement," whereby they are progressively elaborated from simple to complex according to phylogenetic data on the sequence of changes that occurred over the course of evolution. It is argued that sufficient data exist to make this approach possible, and that the result can more effectively delineate the true biological categories of neurophysiological mechanisms than do approaches based on definitions of putative functions inherited from psychological traditions. As an example, the approach is used to sketch a theoretical framework of how basic feedback control of interaction with the world was elaborated during vertebrate evolution, to give rise to the functional architecture of the mammalian brain. The results provide a conceptual taxonomy of mechanisms that naturally map to neurophysiological and neuroanatomical data and that offer a context for defining putative functions that, it is argued, are better grounded in biology than are some of the traditional concepts of cognitive science.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada.
| |
Collapse
|
30
|
Arsène S, Ameta S, Lehman N, Griffiths AD, Nghe P. Coupled catabolism and anabolism in autocatalytic RNA sets. Nucleic Acids Res 2019; 46:9660-9666. [PMID: 29982824 PMCID: PMC6182175 DOI: 10.1093/nar/gky598] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/22/2018] [Indexed: 11/14/2022] Open
Abstract
The ability to process molecules available in the environment into useable building blocks characterizes catabolism in contemporary cells and was probably critical for the initiation of life. Here we show that a catabolic process in collectively autocatalytic sets of RNAs allows diversified substrates to be assimilated. We modify fragments of the Azoarcus group I intron and find that the system is able to restore the original native fragments by a multi-step reaction pathway. This allows in turn the formation of catalysts by an anabolic process, eventually leading to the accumulation of ribozymes. These results demonstrate that rudimentary self-reproducing RNA systems based on recombination possess an inherent capacity to assimilate an expanded repertoire of chemical resources and suggest that coupled catabolism and anabolism could have arisen at a very early stage in primordial living systems.
Collapse
Affiliation(s)
- Simon Arsène
- Laboratoire de Biochimie, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), CNRS UMR 8231 Chimie Biologie Innovation, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Sandeep Ameta
- Laboratoire de Biochimie, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), CNRS UMR 8231 Chimie Biologie Innovation, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Niles Lehman
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207, USA
| | - Andrew D Griffiths
- Laboratoire de Biochimie, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), CNRS UMR 8231 Chimie Biologie Innovation, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- To whom correspondence should be addressed. Philippe Nghe: Tel: +33 140794586; Fax: +33 140794776; , Andrew D. Griffiths: Tel: +33 140794539; Fax: +33 140794776;
| | - Philippe Nghe
- Laboratoire de Biochimie, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), CNRS UMR 8231 Chimie Biologie Innovation, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- To whom correspondence should be addressed. Philippe Nghe: Tel: +33 140794586; Fax: +33 140794776; , Andrew D. Griffiths: Tel: +33 140794539; Fax: +33 140794776;
| |
Collapse
|
31
|
Abstract
The search for extraterrestrial life, recently fueled by the discovery of exoplanets, requires defined biosignatures. Current biomarkers include those of extremophilic organisms, typically archaea. Yet these cellular organisms are highly complex, which makes it unlikely that similar life forms evolved on other planets. Earlier forms of life on Earth may serve as better models for extraterrestrial life. On modern Earth, the simplest and most abundant biological entities are viroids and viruses that exert many properties of life, such as the abilities to replicate and undergo Darwinian evolution. Viroids have virus-like features, and are related to ribozymes, consisting solely of non-coding RNA, and may serve as more universal models for early life than do cellular life forms. Among the various proposed concepts, such as “proteins-first” or “metabolism-first”, we think that “viruses-first” can be specified to “viroids-first” as the most likely scenario for the emergence of life on Earth, and possibly elsewhere. With this article we intend to inspire the integration of virus research and the biosignatures of viroids and viruses into the search for extraterrestrial life.
Collapse
|
32
|
Protocells and LUCA: Transport of substances from first physicochemical principles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 145:85-104. [PMID: 30612704 DOI: 10.1016/j.pbiomolbio.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/25/2018] [Accepted: 12/24/2018] [Indexed: 11/22/2022]
Abstract
Models of the transport of substances in protocells are considered from first physicochemical principles. Functional similarities and differences in the transport systems of archaea, cyanobacteria, E. coli, and diatoms have been analyzed. Based on the selection of the most important transport systems, a model of transport of substances through the membrane of the last universal common ancestor, LUCA, was constructed. Models of isotope separation in protocells were considered. Based on the proposed models, the difference in isotope concentrations in rocks can be predicted, which can serve as an indicator of the presence of life in the early stages of evolution. Mechanisms of energy conversion for the simplest forms of directed motion in protocells are considered. A special stage in the evolution of protocells is proposed - the minimal mobile cell.
Collapse
|
33
|
Bonfio C, Godino E, Corsini M, Fabrizi de Biani F, Guella G, Mansy SS. Prebiotic iron–sulfur peptide catalysts generate a pH gradient across model membranes of late protocells. Nat Catal 2018. [DOI: 10.1038/s41929-018-0116-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Vitas M, Dobovišek A. In the Beginning was a Mutualism - On the Origin of Translation. ORIGINS LIFE EVOL B 2018; 48:223-243. [PMID: 29713988 DOI: 10.1007/s11084-018-9557-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/23/2018] [Indexed: 12/28/2022]
Abstract
The origin of translation is critical for understanding the evolution of life, including the origins of life. The canonical genetic code is one of the most dominant aspects of life on this planet, while the origin of heredity is one of the key evolutionary transitions in living world. Why the translation apparatus evolved is one of the enduring mysteries of molecular biology. Assuming the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity, we propose and discuss possible mechanisms, basic aspects of the emergence and subsequent molecular evolution of translation and ribosomes, as well as enzymes as we know them today. It is possible, in this sense, to view the ribosome as a digital-to-analogue information converter. The proposed mechanism is based on the abilities and tendencies of short RNA and polypeptides to fold and to catalyse biochemical reactions. The proposed mechanism is in concordance with the hypothesis of a possible chemical co-evolution of RNA and proteins in the origin of the genetic code or even more generally at the early evolution of life on Earth. The possible abundance and availability of monomers at prebiotic conditions are considered in the mechanism. The hypothesis that early polypeptides were folding on the RNA scaffold is also considered and mutualism in molecular evolutionary development of RNA and peptides is favoured.
Collapse
Affiliation(s)
- Marko Vitas
- , Laze pri Borovnici 38, Borovnica, Slovenia.
| | - Andrej Dobovišek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| |
Collapse
|
35
|
Koenig M. Primitive Dark-Phase Cycle of Photosynthesis at the Origin of Life. J Mol Evol 2018; 86:167-171. [DOI: 10.1007/s00239-018-9840-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/03/2018] [Indexed: 11/24/2022]
|
36
|
Armstrong DL, Lancet D, Zidovetzki R. Replication of Simulated Prebiotic Amphiphilic Vesicles in a Finite Environment Exhibits Complex Behavior That Includes High Progeny Variability and Competition. ASTROBIOLOGY 2018; 18:419-430. [PMID: 29634319 PMCID: PMC5910049 DOI: 10.1089/ast.2016.1615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/03/2017] [Indexed: 06/08/2023]
Abstract
We studied the simulated replication and growth of prebiotic vesicles composed of 140 phospholipids and cholesterol using our R-GARD (Real Graded Autocatalysis Replication Domain) formalism that utilizes currently extant lipids that have known rate constants of lipid-vesicle interactions from published experimental data. R-GARD normally modifies kinetic parameters of lipid-vesicle interactions based on vesicle composition and properties. Our original R-GARD model tracked the growth and division of one vesicle at a time in an environment with unlimited lipids at a constant concentration. We explore here a modified model where vesicles compete for a finite supply of lipids. We observed that vesicles exhibit complex behavior including initial fast unrestricted growth, followed by intervesicle competition for diminishing resources, then a second growth burst driven by better-adapted vesicles, and ending with a final steady state. Furthermore, in simulations without kinetic parameter modifications ("invariant kinetics"), the initial replication was an order of magnitude slower, and vesicles' composition variability at the final steady state was much lower. The complex kinetic behavior was not observed either in the previously published R-GARD simulations or in additional simulations presented here with only one lipid component. This demonstrates that both a finite environment (inducing selection) and multiple components (providing variation for selection to act upon) are crucial for portraying evolution-like behavior. Such properties can improve survival in a changing environment by increasing the ability of early protocellular entities to respond to rapid environmental fluctuations likely present during abiogenesis both on Earth and possibly on other planets. This in silico simulation predicts that a relatively simple in vitro chemical system containing only lipid molecules might exhibit properties that are relevant to prebiotic processes. Key Words: Phospholipid vesicles-Prebiotic compartments-Prebiotic vesicle competition-Prebiotic vesicle variability. Astrobiology 18, 419-430.
Collapse
Affiliation(s)
- Don L. Armstrong
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, USA
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Raphael Zidovetzki
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, USA
| |
Collapse
|
37
|
Whicher A, Camprubi E, Pinna S, Herschy B, Lane N. Acetyl Phosphate as a Primordial Energy Currency at the Origin of Life. ORIGINS LIFE EVOL B 2018; 48:159-179. [PMID: 29502283 PMCID: PMC6061221 DOI: 10.1007/s11084-018-9555-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/24/2018] [Indexed: 11/30/2022]
Abstract
Metabolism is primed through the formation of thioesters via acetyl CoA and the phosphorylation of substrates by ATP. Prebiotic equivalents such as methyl thioacetate and acetyl phosphate have been proposed to catalyse analogous reactions at the origin of life, but their propensity to hydrolyse challenges this view. Here we show that acetyl phosphate (AcP) can be synthesised in water within minutes from thioacetate (but not methyl thioacetate) under ambient conditions. AcP is stable over hours, depending on temperature, pH and cation content, giving it an ideal poise between stability and reactivity. We show that AcP can phosphorylate nucleotide precursors such as ribose to ribose-5-phosphate and adenosine to adenosine monophosphate, at modest (~2%) yield in water, and at a range of pH. AcP can also phosphorylate ADP to ATP in water over several hours at 50 °C. But AcP did not promote polymerization of either glycine or AMP. The amino group of glycine was preferentially acetylated by AcP, especially at alkaline pH, hindering the formation of polypeptides. AMP formed small stacks of up to 7 monomers, but these did not polymerise in the presence of AcP in aqueous solution. We conclude that AcP can phosphorylate biologically meaningful substrates in a manner analogous to ATP, promoting the origins of metabolism, but is unlikely to have driven polymerization of macromolecules such as polypeptides or RNA in free solution. This is consistent with the idea that a period of monomer (cofactor) catalysis preceded the emergence of polymeric enzymes or ribozymes at the origin of life.
Collapse
Affiliation(s)
- Alexandra Whicher
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Eloi Camprubi
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Silvana Pinna
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Barry Herschy
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
38
|
Westall F, Hickman-Lewis K, Hinman N, Gautret P, Campbell KA, Bréhéret JG, Foucher F, Hubert A, Sorieul S, Dass AV, Kee TP, Georgelin T, Brack A. A Hydrothermal-Sedimentary Context for the Origin of Life. ASTROBIOLOGY 2018; 18:259-293. [PMID: 29489386 PMCID: PMC5867533 DOI: 10.1089/ast.2017.1680] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/07/2017] [Indexed: 05/02/2023]
Abstract
Critical to the origin of life are the ingredients of life, of course, but also the physical and chemical conditions in which prebiotic chemical reactions can take place. These factors place constraints on the types of Hadean environment in which life could have emerged. Many locations, ranging from hydrothermal vents and pumice rafts, through volcanic-hosted splash pools to continental springs and rivers, have been proposed for the emergence of life on Earth, each with respective advantages and certain disadvantages. However, there is another, hitherto unrecognized environment that, on the Hadean Earth (4.5-4.0 Ga), would have been more important than any other in terms of spatial and temporal scale: the sedimentary layer between oceanic crust and seawater. Using as an example sediments from the 3.5-3.33 Ga Barberton Greenstone Belt, South Africa, analogous at least on a local scale to those of the Hadean eon, we document constant permeation of the porous, carbonaceous, and reactive sedimentary layer by hydrothermal fluids emanating from the crust. This partially UV-protected, subaqueous sedimentary environment, characterized by physical and chemical gradients, represented a widespread system of miniature chemical reactors in which the production and complexification of prebiotic molecules could have led to the origin of life. Key Words: Origin of life-Hadean environment-Mineral surface reactions-Hydrothermal fluids-Archean volcanic sediments. Astrobiology 18, 259-293.
Collapse
Affiliation(s)
- F Westall
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - K Hickman-Lewis
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
- 2 Dipartmento di Scienze biologiche, geologiche e ambientale, Università di Bologna , Bologna, Italy
| | - N Hinman
- 3 Geosciences, University of Montana , Missoula, Montana, USA
| | - P Gautret
- 4 University of Orléans , ISTO, UMR 7327, Orléans, France, and CNRS, ISTO, UMR 7327, Orléans, France, and BRGM, ISTO, UMR 7327, Orléans, France
| | - K A Campbell
- 5 School of Environment, The University of Auckland , Auckland, New Zealand
| | - J G Bréhéret
- 6 GéoHydrosytèmes Continentaux, Faculté des Sciences et Techniques, Université François-Rabelais de Tours , Tours, France
| | - F Foucher
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - A Hubert
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - S Sorieul
- 7 University of Bordeaux , CNRS, IN2P3, CENBG, UMR5797, Gradignan, France
| | - A V Dass
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - T P Kee
- 8 School of Chemistry, University of Leeds , Leeds, UK
| | - T Georgelin
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
- 9 Sorbonne Universités , UPMC Paris 06, CNRS UMR 7197, Laboratoire de Réactivité de Surface, Paris, France
| | - A Brack
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| |
Collapse
|
39
|
Kumar VA. Evolution of specific 3'-5'-linkages in RNA in pre-biotic soup: a new hypothesis. Org Biomol Chem 2018; 14:10123-10133. [PMID: 27714238 DOI: 10.1039/c6ob01796g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This article reviews the different possibilities towards progression of the formation of DNA/RNA in the chemical world, before life, in enzyme-free conditions. The advent of deoxyribo- and ribopentose-sugars, nucleosides, nucleotides and oligonucleotides in the prebiotic soup is briefly discussed. Further, the formation of early single stranded oligomers, base-pairing possibilities and information transfer based on the stability parameters of the derived duplexes is reviewed. Each theory has its own merits and demerits which we have elaborated upon. Lastly, using clues from this literature, a possible explanation for the specific 3'-5'-linkages in RNA is proposed.
Collapse
Affiliation(s)
- Vaijayanti A Kumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
40
|
Chemical Transformations in Proto-Cytoplasmic Media. Phosphorus Coupling in the Silica Hydrogel Phase. Life (Basel) 2017; 7:life7040045. [PMID: 29156594 PMCID: PMC5745558 DOI: 10.3390/life7040045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 01/03/2023] Open
Abstract
It has been proposed that prebiotic chemical studies on the emergence of primitive life would be most relevant when performed in a hydrogel, rather than an aqueous, environment. In this paper we describe the ambient temperature coupling of phosphorus oxyacids [Pi] mediated by Fe(II) under aerobic conditions within a silica hydrogel (SHG) environment. We have chosen to examine SHGs as they have considerable geological precedence as key phases in silicification en route to rock formation. Following a description of the preparation and characterization studies on our SHG formulations, coupling experiments between Pi species are described across multiple permutations of (i) Pi compound; (ii) gel formulation; (iii) metal salt additive; and (iv) pH-modifying agent. The results suggest that successful Pi coupling, indicated by observation of pyrophosphate [PPi(V)] via 31P-NMR spectroscopy, takes place when the following components are present: (i) a mixture of mixture of Pi(III) and Pi(V) or pure PPi(III– V); (ii) Fe(II); (iii) acetic or formic acid (not hydrochloric acid); (iv) aerobic conditions or the presence of H2O2 as an oxidant; and (v) the presence of a gel system. On the basis of these, and aqueous control reactions, we suggest mechanistic possibilities.
Collapse
|
41
|
Abstract
Chemiosmotic coupling - the harnessing of electrochemical ion gradients across membranes to drive metabolism - is as universally conserved as the genetic code. As argued previously in these pages, such deep conservation suggests that ion gradients arose early in evolution, and might have played a role in the origin of life. Alkaline hydrothermal vents harbour pH gradients of similar polarity and magnitude to those employed by modern cells, one of many properties that make them attractive models for life's origin. Their congruence with the physiology of anaerobic autotrophs that use the acetyl CoA pathway to fix CO2 gives the alkaline vent model broad appeal to biologists. Recently, however, a paper by Baz Jackson criticized the hypothesis, concluding that natural pH gradients were unlikely to have played any role in the origin of life. Unfortunately, Jackson mainly criticized his own interpretations of the theory, not what the literature says. This counterpoint is intended to set the record straight.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
42
|
Camprubi E, Jordan SF, Vasiliadou R, Lane N. Iron catalysis at the origin of life. IUBMB Life 2017; 69:373-381. [PMID: 28470848 DOI: 10.1002/iub.1632] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 01/29/2023]
Abstract
Iron-sulphur proteins are ancient and drive fundamental processes in cells, notably electron transfer and CO2 fixation. Iron-sulphur minerals with equivalent structures could have played a key role in the origin of life. However, the 'iron-sulphur world' hypothesis has had a mixed reception, with questions raised especially about the feasibility of a pyrites-pulled reverse Krebs cycle. Phylogenetics suggests that the earliest cells drove carbon and energy metabolism via the acetyl CoA pathway, which is also replete in Fe(Ni)S proteins. Deep differences between bacteria and archaea in this pathway obscure the ancestral state. These differences make sense if early cells depended on natural proton gradients in alkaline hydrothermal vents. If so, the acetyl CoA pathway diverged with the origins of active ion pumping, and ancestral CO2 fixation might have been equivalent to methanogens, which depend on a membrane-bound NiFe hydrogenase, energy converting hydrogenase. This uses the proton-motive force to reduce ferredoxin, thence CO2 . The mechanism suggests that pH could modulate reduction potential at the active site of the enzyme, facilitating the difficult reduction of CO2 by H2 . This mechanism could be generalised under abiotic conditions so that steep pH differences across semi-conducting Fe(Ni)S barriers drives not just the first steps of CO2 fixation to C1 and C2 organics such as CO, CH3 SH and CH3 COSH, but a series of similar carbonylation and hydrogenation reactions to form longer chain carboxylic acids such as pyruvate, oxaloacetate and α-ketoglutarate, as in the incomplete reverse Krebs cycle found in methanogens. We suggest that the closure of a complete reverse Krebs cycle, by regenerating acetyl CoA directly, displaced the acetyl CoA pathway from many modern groups. A later reliance on acetyl CoA and ATP eliminated the need for the proton-motive force to drive most steps of the reverse Krebs cycle. © 2017 IUBMB Life, 69(6):373-381, 2017.
Collapse
Affiliation(s)
- Eloi Camprubi
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Sean F Jordan
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Rafaela Vasiliadou
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
43
|
Ranjan S, Sasselov DD. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry. ASTROBIOLOGY 2017; 17:169-204. [PMID: 28323482 DOI: 10.1089/ast.2016.1519] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO2, fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO2 also means that the UV surface fluence is insensitive to plausible levels of CH4, O2, and O3. At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO2 levels. However, if SO2 and/or H2S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H2O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H2O and is available across a broad range of [Formula: see text], meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H2O and CO2 levels. Key Words: Radiative transfer-Origin of life-Planetary environments-UV radiation-Prebiotic chemistry. Astrobiology 17, 169-204.
Collapse
Affiliation(s)
- Sukrit Ranjan
- Harvard-Smithsonian Center for Astrophysics , Cambridge, Massachusetts
| | | |
Collapse
|
44
|
Domagal-Goldman SD, Wright KE, Adamala K, Arina de la Rubia L, Bond J, Dartnell LR, Goldman AD, Lynch K, Naud ME, Paulino-Lima IG, Singer K, Walther-Antonio M, Abrevaya XC, Anderson R, Arney G, Atri D, Azúa-Bustos A, Bowman JS, Brazelton WJ, Brennecka GA, Carns R, Chopra A, Colangelo-Lillis J, Crockett CJ, DeMarines J, Frank EA, Frantz C, de la Fuente E, Galante D, Glass J, Gleeson D, Glein CR, Goldblatt C, Horak R, Horodyskyj L, Kaçar B, Kereszturi A, Knowles E, Mayeur P, McGlynn S, Miguel Y, Montgomery M, Neish C, Noack L, Rugheimer S, Stüeken EE, Tamez-Hidalgo P, Imari Walker S, Wong T. The Astrobiology Primer v2.0. ASTROBIOLOGY 2016; 16:561-653. [PMID: 27532777 PMCID: PMC5008114 DOI: 10.1089/ast.2015.1460] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/06/2016] [Indexed: 05/09/2023]
Affiliation(s)
- Shawn D Domagal-Goldman
- 1 NASA Goddard Space Flight Center , Greenbelt, Maryland, USA
- 2 Virtual Planetary Laboratory , Seattle, Washington, USA
| | - Katherine E Wright
- 3 University of Colorado at Boulder , Colorado, USA
- 4 Present address: UK Space Agency, UK
| | - Katarzyna Adamala
- 5 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota, USA
| | | | - Jade Bond
- 7 Department of Physics, University of New South Wales , Sydney, Australia
| | | | | | - Kennda Lynch
- 10 Division of Biological Sciences, University of Montana , Missoula, Montana, USA
| | - Marie-Eve Naud
- 11 Institute for research on exoplanets (iREx) , Université de Montréal, Montréal, Canada
| | - Ivan G Paulino-Lima
- 12 Universities Space Research Association , Mountain View, California, USA
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | - Kelsi Singer
- 14 Southwest Research Institute , Boulder, Colorado, USA
| | | | - Ximena C Abrevaya
- 16 Instituto de Astronomía y Física del Espacio (IAFE) , UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rika Anderson
- 17 Department of Biology, Carleton College , Northfield, Minnesota, USA
| | - Giada Arney
- 18 University of Washington Astronomy Department and Astrobiology Program , Seattle, Washington, USA
| | - Dimitra Atri
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Jeff S Bowman
- 19 Lamont-Doherty Earth Observatory, Columbia University , Palisades, New York, USA
| | | | | | - Regina Carns
- 22 Polar Science Center, Applied Physics Laboratory, University of Washington , Seattle, Washington, USA
| | - Aditya Chopra
- 23 Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University , Canberra, Australia
| | - Jesse Colangelo-Lillis
- 24 Earth and Planetary Science, McGill University , and the McGill Space Institute, Montréal, Canada
| | | | - Julia DeMarines
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Carie Frantz
- 27 Department of Geosciences, Weber State University , Ogden, Utah, USA
| | - Eduardo de la Fuente
- 28 IAM-Departamento de Fisica, CUCEI , Universidad de Guadalajara, Guadalajara, México
| | - Douglas Galante
- 29 Brazilian Synchrotron Light Laboratory , Campinas, Brazil
| | - Jennifer Glass
- 30 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia , USA
| | | | | | - Colin Goldblatt
- 33 School of Earth and Ocean Sciences, University of Victoria , Victoria, Canada
| | - Rachel Horak
- 34 American Society for Microbiology , Washington, DC, USA
| | | | - Betül Kaçar
- 36 Harvard University , Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
| | - Akos Kereszturi
- 37 Research Centre for Astronomy and Earth Sciences , Hungarian Academy of Sciences, Budapest, Hungary
| | - Emily Knowles
- 38 Johnson & Wales University , Denver, Colorado, USA
| | - Paul Mayeur
- 39 Rensselaer Polytechnic Institute , Troy, New York, USA
| | - Shawn McGlynn
- 40 Earth Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
| | - Yamila Miguel
- 41 Laboratoire Lagrange, UMR 7293, Université Nice Sophia Antipolis , CNRS, Observatoire de la Côte d'Azur, Nice, France
| | | | - Catherine Neish
- 43 Department of Earth Sciences, The University of Western Ontario , London, Canada
| | - Lena Noack
- 44 Royal Observatory of Belgium , Brussels, Belgium
| | - Sarah Rugheimer
- 45 Department of Astronomy, Harvard University , Cambridge, Massachusetts, USA
- 46 University of St. Andrews , St. Andrews, UK
| | - Eva E Stüeken
- 47 University of Washington , Seattle, Washington, USA
- 48 University of California , Riverside, California, USA
| | | | - Sara Imari Walker
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
- 50 School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University , Tempe, Arizona, USA
| | - Teresa Wong
- 51 Department of Earth and Planetary Sciences, Washington University in St. Louis , St. Louis, Missouri, USA
| |
Collapse
|
45
|
|
46
|
Ranjan S, Sasselov DD. Influence of the UV Environment on the Synthesis of Prebiotic Molecules. ASTROBIOLOGY 2016; 16:68-88. [PMID: 26789356 DOI: 10.1089/ast.2015.1359] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ultraviolet radiation is common to most planetary environments and could play a key role in the chemistry of molecules relevant to abiogenesis (prebiotic chemistry). In this work, we explore the impact of UV light on prebiotic chemistry that might occur in liquid water on the surface of a planet with an atmosphere. We consider effects including atmospheric absorption, attenuation by water, and stellar variability to constrain the UV input as a function of wavelength. We conclude that the UV environment would be characterized by broadband input, and wavelengths below 204 nm and 168 nm would be shielded out by atmospheric CO2 and water, respectively. We compare this broadband prebiotic UV input to the narrowband UV sources (e.g., mercury lamps) often used in laboratory studies of prebiotic chemistry and explore the implications for the conclusions drawn from these experiments. We consider as case studies the ribonucleotide synthesis pathway of Powner et al. (2009) and the sugar synthesis pathway of Ritson and Sutherland (2012). Irradiation by narrowband UV light from a mercury lamp formed an integral component of these studies; we quantitatively explore the impact of more realistic UV input on the conclusions that can be drawn from these experiments. Finally, we explore the constraints solar UV input places on the buildup of prebiotically important feedstock gasses like CH4 and HCN. Our results demonstrate the importance of characterizing the wavelength dependence (action spectra) of prebiotic synthesis pathways to determine how pathways derived under laboratory irradiation conditions will function under planetary prebiotic conditions.
Collapse
Affiliation(s)
- Sukrit Ranjan
- Harvard-Smithsonian Center for Astrophysics , Cambridge, Massachusetts
| | | |
Collapse
|
47
|
Abstract
The machines that decode and regulate genetic information require the translation, transcription and replication pathways essential to all living cells. Thus, it might be expected that all cells share the same basic machinery for these pathways that were inherited from the primordial ancestor cell from which they evolved. A clear example of this is found in the translation machinery that converts RNA sequence to protein. The translation process requires numerous structural and catalytic RNAs and proteins, the central factors of which are homologous in all three domains of life, bacteria, archaea and eukarya. Likewise, the central actor in transcription, RNA polymerase, shows homology among the catalytic subunits in bacteria, archaea and eukarya. In contrast, while some "gears" of the genome replication machinery are homologous in all domains of life, most components of the replication machine appear to be unrelated between bacteria and those of archaea and eukarya. This review will compare and contrast the central proteins of the "replisome" machines that duplicate DNA in bacteria, archaea and eukarya, with an eye to understanding the issues surrounding the evolution of the DNA replication apparatus.
Collapse
Affiliation(s)
- Nina Y Yao
- a DNA Replication Laboratory, The Rockefeller University , New York , NY , USA and
| | - Mike E O'Donnell
- a DNA Replication Laboratory, The Rockefeller University , New York , NY , USA and.,b Howard Hughes Medical Institute, The Rockefeller University , New York , NY , USA
| |
Collapse
|
48
|
Czárán T, Könnyű B, Szathmáry E. Metabolically Coupled Replicator Systems: Overview of an RNA-world model concept of prebiotic evolution on mineral surfaces. J Theor Biol 2015; 381:39-54. [PMID: 26087284 DOI: 10.1016/j.jtbi.2015.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
Metabolically Coupled Replicator Systems (MCRS) are a family of models implementing a simple, physico-chemically and ecologically feasible scenario for the first steps of chemical evolution towards life. Evolution in an abiotically produced RNA-population sets in as soon as any one of the RNA molecules become autocatalytic by engaging in template directed self-replication from activated monomers, and starts increasing exponentially. Competition for the finite external supply of monomers ignites selection favouring RNA molecules with catalytic activity helping self-replication by any possible means. One way of providing such autocatalytic help is to become a replicase ribozyme. An additional way is through increasing monomer supply by contributing to monomer synthesis from external resources, i.e., by evolving metabolic enzyme activity. Retroevolution may build up an increasingly autotrophic, cooperating community of metabolic ribozymes running an increasingly complicated and ever more efficient metabolism. Maintaining such a cooperating community of metabolic replicators raises two serious ecological problems: one is keeping the system coexistent in spite of the different replicabilities of the cooperating replicators; the other is constraining parasitism, i.e., keeping "cheaters" in check. Surface-bound MCRS provide an automatic solution to both problems: coexistence and parasite resistance are the consequences of assuming the local nature of metabolic interactions. In this review we present an overview of results published in previous articles, showing that these effects are, indeed, robust in different MCRS implementations, by considering different environmental setups and realistic chemical details in a few different models. We argue that the MCRS model framework naturally offers a suitable starting point for the future modelling of membrane evolution and extending the theory to cover the emergence of the first protocell in a self-consistent manner. The coevolution of metabolic, genetic and membrane functions is hypothesized to follow the progressive sequestration scenario, the conceptual blueprint for the earliest steps of protocell evolution.
Collapse
Affiliation(s)
- Tamás Czárán
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary.
| | - Balázs Könnyű
- Eötvös Lorand University, Department of Plant Systematics, Ecology and Theoretical Biology, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary.
| | - Eörs Szathmáry
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary; Eötvös Lorand University, Department of Plant Systematics, Ecology and Theoretical Biology, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary; Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1,1, D-82049, Munich, Germany.
| |
Collapse
|
49
|
Könnyű B, Czárán T. Template directed replication supports the maintenance of the metabolically coupled replicator system. ORIGINS LIFE EVOL B 2015; 45:105-12. [PMID: 25754591 DOI: 10.1007/s11084-015-9409-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 10/23/2022]
Abstract
The RNA World scenario of prebiotic chemical evolution is among the most plausible conceptual framework available today for modelling the origin of life. RNA offers genetic and catalytic (metabolic) functionality embodied in a single chemical entity, and a metabolically cooperating community of RNA molecules would constitute a viable infrabiological subsystem with a potential to evolve into proto-cellular life. Our Metabolically Coupled Replicator System (MCRS) model is a spatially explicit computer simulation implementation of the RNA-World scenario, in which replicable ribozymes cooperate in supplying each other with monomers for their own replication. MCRS has been repeatedly demonstrated to be viable and evolvable, with different versions of the model improved in depth (chemical detail of metabolism) or in extension (additional functions of RNA molecules). One of the dynamically relevant extensions of the MCRS approach to prebiotic RNA evolution is the explicit inclusion of template replication into its assumptions, which we have studied in the present version. We found that this modification has not changed the behaviour of the system in the qualitative sense, just the range of the parameter space which is optimal for the coexistence of metabolically cooperating replicators has shifted in terms of metabolite mobility. The system also remains resistant and tolerant to parasitic replicators.
Collapse
Affiliation(s)
- Balázs Könnyű
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary
| | | |
Collapse
|
50
|
Phosphoribosylphosphate and phosphoribosylnicotinate pairing with phosphoribosylamine at the origin of the RNA world. J Theor Biol 2015; 379:94-7. [PMID: 25997795 DOI: 10.1016/j.jtbi.2015.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 11/23/2022]
Abstract
The gap between prebiotic chemistry and the RNA origin of life lies in the nature of the pre-ribonucleotides that initiated replication-like activity. The present paper illustrates how the constraints for self-catalytic synthesis of the building blocks point to ionic pairing of the first pre-ribonucleotides and point to a central role for nicotinate.
Collapse
|