1
|
Şahin G, Bağda E, Göktuğ Temiz Ö, Bağda E, Ayhan E, Durmuş M. Thermodynamic and structural investigation of the interaction of quaternized 2,3-octakis-[(2-mercaptopyridine)phthalocyaninato] copper (II) sulfate (CuPc) with parallel and hybrid type G-quadruplex. J Mol Recognit 2024; 37:e3072. [PMID: 38126580 DOI: 10.1002/jmr.3072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
G-quadruplexes are important drug targets and get attention due to their existence in telomere, ribosomal DNA, promoter regions of some oncogenes, and the untranslated regions of mRNA. Due to the biological roles of G-quadruplexes, investigating of the G-quadruplex-small molecule interaction is essential. The primary motivation for these studies is the possibility of inhibiting cell functions associated with G-quadruplex sequences by binding with small molecules. Targeting the small molecules to desired tissue with the G-quadruplex vehicles is the second important goal of the G-quadruplex-small molecule interaction studies. In the present study, the new peripherally 2-mercaptopyridine octasubstituted copper(II) phthalocyanine and its quaternized derivative (CuPc) were synthesized and characterized by elemental analysis FT-IR, UV-Vis, and mass spectra. The excellent solubility of CuPc in water is essential for its transport in the organism. Because of this feature, its affinity toward G-quadruplex forming aptamers, AS1411, Tel21, and Tel45, was investigated. The UV-Vis spectrophotometric titration data confirmed the prevention of aggregation upon interaction with G-quadruplex, which is very important for biomedical applications. The CD spectroscopic analyses and binding stoichiometry confirmed the "end stacking" model for interaction of AS1411 with CuPc. The interaction of CuPc caused the equilibrium shift from hybrid conformation to antiparallel conformation for Tel21 and Tel45. The isothermal titration calorimeter (ITC) was used for the determination of thermodynamic parameters. The thermodynamic data of the interaction was fitted well with the one-site model. The negative values of Gibbs free energy change confirmed the spontaneous nature of the reactions. Besides, the negative values of enthalpy change and entropy change proved that the nature of processes was "enthalpy driven." The interaction stoichiometry was 2 for AS1411 and Tel21 and 1.5 for Tel45. The binding constants were 1.3(±0.3) × 105 , 3.2(±0.4) × 105 , and 1.1(±0.3) × 105 M-1 , which were at the level of ethidium bromide intercalation binding constant given in the literature. The DNA polymerase stop assay further supported the interaction of CuPc with G-quadruplex DNA. The experimental results confirm that the CuPc has a potential photosensitizer behaviour for photodynamic therapy.
Collapse
Affiliation(s)
- Gamze Şahin
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Esra Bağda
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Efkan Bağda
- Moleculer Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ebubekir Ayhan
- Moleculer Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
2
|
Liang JW, Gao ZC, Yang LL, Zhang W, Chen MZ, Meng FH. Development of Acridone Derivatives: Targeting c-MYC Transcription in Triple-Negative Breast Cancer with Inhibitory Potential. Antioxidants (Basel) 2023; 13:11. [PMID: 38275631 PMCID: PMC10812579 DOI: 10.3390/antiox13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Breast cancer, especially the aggressive triple-negative subtype, poses a serious health threat to women. Unfortunately, effective targets are lacking, leading to a grim prognosis. Research highlights the crucial role of c-MYC overexpression in this form of cancer. Current inhibitors targeting c-MYC focus on stabilizing its G-quadruplex (G4) structure in the promoter region. They can inhibit the expression of c-MYC, which is highly expressed in triple-negative breast cancer (TNBC), and then regulate the apoptosis of breast cancer cells induced by intracellular ROS. However, the clinical prospects for the application of such inhibitors are not promising. In this research, we designed and synthesized 29 acridone derivatives. These compounds were assessed for their impact on intracellular ROS levels and cell activity, followed by comprehensive QSAR analysis and molecular docking. Compound N8 stood out, significantly increasing ROS levels and demonstrating potent anti-tumor activity in the TNBC cell line, with excellent selectivity shown in the docking results. This study suggests that acridone derivatives could stabilize the c-MYC G4 structure. Among these compounds, the small molecule N8 shows promising effects and deserves further investigation.
Collapse
Affiliation(s)
- Jing-Wei Liang
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
- School of Pharmacy, Hainan Medical University, Haikou 570100, China
| | - Zhi-Chao Gao
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang 110044, China
| | - Lu-Lu Yang
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| | - Wei Zhang
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| | - Ming-Zhe Chen
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| |
Collapse
|
3
|
Wei Z, Lin X, Wang S, Zhang J, Ji D, Gong X, Huang ZS, Shu B, Li D. Syntheses and evaluation of acridone derivatives as anticancer agents targeting Kras promoter i-motif structure. Bioorg Chem 2023; 136:106526. [PMID: 37058782 DOI: 10.1016/j.bioorg.2023.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Two series of novel acridone derivatives were designed and synthesized, with their anticancer activity evaluated. Most of these compounds showed potent antiproliferative activity against cancer cell lines. Among them, compound C4 with dual 1,2,3-triazol moieties exhibited the most potent activity against Hep-G2 cells with IC50 value determined to be 6.29 ± 0.93 μM. Subsequent experiments showed that C4 could bind to and destabilize Kras gene promoter i-motif structure without significant interaction with its corresponding G-quadruplex. C4 could down-regulate Kras expression in Hep-G2 cells, possibly due to its interaction with the Kras i-motif. Further cellular studies indicated that C4 could induce apoptosis of Hep-G2 cells, possibly related to its effect on mitochondrial dysfunction. These results indicated that C4 could be further developed as a promising anticancer agent.
Collapse
Affiliation(s)
- Zuzhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Xiaomin Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Siyi Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Jiahui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Dongsheng Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
A comprehensive review on acridone based derivatives as future anti-cancer agents and their structure activity relationships. Eur J Med Chem 2022; 239:114527. [PMID: 35717872 DOI: 10.1016/j.ejmech.2022.114527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
Abstract
The development of drug resistance and severe side-effects has reduced the clinical efficacy of the existing anti-cancer drugs available in the market. Thus, there is always a constant need to develop newer anti-cancer drugs with minimal adverse effects. Researchers all over the world have been focusing on various alternative strategies to discover novel, potent, and target specific molecules for cancer therapy. In this direction, several heterocyclic compounds are being explored but amongst them one promising heterocycle is acridone which has attracted the attention of medicinal chemists and gained huge biological importance as acridones are found to act on different therapeutically proven molecular targets, overcome ABC transporters mediated drug resistance and DNA intercalation in cancer cells. Some of these acridone derivatives have reached clinical studies as these heterocycles have shown huge potential in cancer therapeutics and imaging. Here, the authors have attempted to compile and make some recommendations of acridone based derivatives concerning their cancer biological targets and in vitro-cytotoxicity based on drug design and novelty to increase their therapeutic potential. This review also provides some important insights on the design, receptor targeting and future directions for the development of acridones as possible clinically effective anti-cancer agents.
Collapse
|
5
|
Synthesis of fluoro and trifluoromethyl substituents containing novel tetracyclic N-benzylated benzopiperazine fused acridone regioisomers using a greener solvent 2-MeTHF and their DFT studies. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Jiang CY, Xie H, Huang ZJ, Liang JY, Huang YX, Liang QP, Zeng JY, Zhou B, Zhang SS, Shu B. Access to acridones by tandem copper(I)-catalyzed electrophilic amination/Ag(I)-mediated oxidative annulation of anthranils with arylboronic acids. Org Biomol Chem 2021; 19:8487-8491. [PMID: 34545904 DOI: 10.1039/d1ob01586a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An efficient and practical approach for the synthesis of medicinally important acridones was developed from anthranils and commercially available arylboronic acids by a tandem copper(I)-catalyzed electrophilic amination/Ag(I)-mediated oxidative annulation strategy. This new and straightforward protocol displayed a broad substrate scope (25 examples) and high functional group tolerance. What's more, a possible mechanistic proposal was also presented.
Collapse
Affiliation(s)
- Chun-Yong Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, P. R. China
| | - Hui Xie
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Zhuo-Jun Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jing-Yi Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Yan-Xia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Qiu-Ping Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jun-Yi Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Binhua Zhou
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, P. R. China
| | - Shang-Shi Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
7
|
Bağda E, Bağda E, Kocak A, Durmuş M. Investigation of Binding behaviour of a water-soluble gallium (III) phthalocyanine with double-stranded and G-quadruplex DNA via experimental and computational methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Microwave-Assisted Regioselective Synthesis and 2D-NMR Studies of New 1,2,3-Triazole Compounds Derived from Acridone. J CHEM-NY 2021. [DOI: 10.1155/2021/5540173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A simple and mild protocol towards the synthesis of new 1,2,3-triazole compounds derived from acridone has been developed via regiospecific 1,3-dipolar cycloaddition reaction between 10-(prop-2-yn-1-yl)acridone derivatives and aromatic azides using CuI as a catalyst. The cycloaddition reaction has been performed using conventional as well as microwave-assisted methods. Microwave-assisted synthesis caused a significant reduction in the reaction times and improvement in the yields of all the synthesized compounds compared with the conventional method. The structure of the 1,4-disubstituted 1,2,3-triazoles has been elucidated by IR, HRMS, 1H-NMR, 13C-NMR, and 2D NMR (1H-13C HMBC, 1H-1H COSY, and 1H-1H NOESY) spectroscopies.
Collapse
|
9
|
Waltemate J, Ivanov I, Ghasemi JB, Aghaee E, Daniliuc CG, Müller K, Prinz H. 10-(4-Phenylpiperazine-1-carbonyl)acridin-9(10H)-ones and related compounds: Synthesis, antiproliferative activity and inhibition of tubulin polymerization. Bioorg Med Chem Lett 2021; 32:127687. [PMID: 33212157 DOI: 10.1016/j.bmcl.2020.127687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
As part of our continuing search for potent inhibitors of tubulin polymerization, two novel series of 42 10-(4-phenylpiperazine-1-carbonyl)acridin-9(10H)-ones and N-benzoylated acridones were synthesized on the basis of a retrosynthetic approach. All newly synthesized compounds were tested for antiproliferative activity and interaction with tubulin. Several analogs potently inhibited tumor cell growth. Among the compounds tested, 10-(4-(3-methoxyphenyl)piperazine-1-carbonyl)acridin-9(10H)-one (17c) exhibited excellent growth inhibitory effects on 93 tumor cell lines, with an average GI50 value of 5.4 nM. We were able to show that the strong cytotoxic effects are caused by disruption of tubulin polymerization, as supported by the EBI (N,N'-Ethylenebis(iodoacetamide)) assay and the fact that the most potent inhibitors of cancer cell growth turned out to be the most efficacious tubulin polymerization inhibitors. Potencies were nearly comparable or superior to those of the antimitotic reference compounds. Closely related to this, the most active analogs inhibited cell cycling at the G2/M phase at concentrations down to 30 nM and induced apoptosis in K562 leukemia cells. We believe that our work not only proves the excellent suitability of the acridone scaffold for the design of potent tubulin polymerization inhibitors but also enables synthetic access to further potentially interesting N-acylated acridones.
Collapse
Affiliation(s)
- Jana Waltemate
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Corrensstraße 48, D-48149 Münster, Germany
| | - Igor Ivanov
- Oncolead GmbH & Co. KG, Zugspitzstraße 5, D-85757 Karlsfeld, Germany
| | - Jahan B Ghasemi
- Drug Design in Silico Lab, Chemistry Faculty, School of Sciences, University of Tehran, Teheran, Iran
| | - Elham Aghaee
- Drug Design in Silico Lab, Chemistry Faculty, School of Sciences, University of Tehran, Teheran, Iran
| | | | - Klaus Müller
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Corrensstraße 48, D-48149 Münster, Germany
| | - Helge Prinz
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Corrensstraße 48, D-48149 Münster, Germany.
| |
Collapse
|
10
|
Andreeva DV, Tikhomirov AS, Shchekotikhin AE. Ligands of G-quadruplex nucleic acids. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Aarjane M, Slassi S, Tazi B, Amine A. Synthesis and biological evaluation of novel isoxazole derivatives from acridone. Arch Pharm (Weinheim) 2020; 354:e2000261. [PMID: 33289176 DOI: 10.1002/ardp.202000261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
The present study was carried out in an attempt to synthesize a new class of potential antibacterial agents. In this context, novel isoxazoles were synthesized and evaluated for their potential antibacterial behavior against four pathogenic bacterial strains. The synthesized compounds exhibited moderate-to-good antibacterial activity against these strains. The highest antibacterial activity was observed against the Escherichia coli strains, particularly for compounds 4a and 4e with phenyl and para-nitrophenyl groups on the isoxazole-acridone skeleton; they showed promising minimum inhibitory concentration values of 16.88 and 19.01 μg/ml, respectively, compared with the standard drug chloramphenicol (22.41 µg/ml). The synthesized compounds were subjected to in silico docking studies to understand the mode of their interactions with the DNA topoisomerase complex (PDB ID: 3FV5) of E. coli. The molecular docking results showed that compounds 4a-l occupy the active site of DNA topoisomerase (PDB ID: 3FV5), stabilized via hydrogen bonding and hydrophobic interactions, which may be the reason behind their interesting in vitro antibacterial activity.
Collapse
Affiliation(s)
- Mohammed Aarjane
- Laboratory of Chemistry/Biology Applied to the Environment, University Moulay Ismail, Meknes, Morocco
| | - Siham Slassi
- Laboratory of Chemistry/Biology Applied to the Environment, University Moulay Ismail, Meknes, Morocco
| | - Bouchra Tazi
- Department of Basic Sciences, National School of Agriculture, Meknes, Morocco
| | - Amina Amine
- Laboratory of Chemistry/Biology Applied to the Environment, University Moulay Ismail, Meknes, Morocco
| |
Collapse
|
12
|
Heterocyclic analogs of 5,12-naphthacenequinone 16*. Synthesis and properties of new DNA ligands based on 4,11-diaminoanthra[2,3-b]thiophene-5,10-dione. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02723-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Fernandes SG, Dsouza R, Pandya G, Kirtonia A, Tergaonkar V, Lee SY, Garg M, Khattar E. Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential. Cancers (Basel) 2020; 12:E1901. [PMID: 32674474 PMCID: PMC7409176 DOI: 10.3390/cancers12071901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Sook Y. Lee
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| |
Collapse
|
14
|
Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Xia Y, He W, Li J, Zeng L, Chen T, Liao Y, Sun W, Lan J, Zhuo S, Zhang J, Yang H, Chen J. Acridone Derivate Simultaneously Featuring Multiple Functions and Its Applications. Anal Chem 2019; 91:8406-8414. [DOI: 10.1021/acs.analchem.9b01289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yaokun Xia
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Wenhui He
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350108, People’s Republic of China
| | - Lupeng Zeng
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Tingting Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Yijuan Liao
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, People’s Republic of China
| | - Weiming Sun
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Jianming Lan
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Shuangmu Zhuo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian Province 350007, People’s Republic of China
| | - Jing Zhang
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, People’s Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350108, People’s Republic of China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| |
Collapse
|
16
|
Assessment of DNA Topoisomerase I Unwinding Activity, Radical Scavenging Capacity, and Inhibition of Breast Cancer Cell Viability of N-alkyl-acridones and N, N'-dialkyl-9,9'-biacridylidenes. Biomolecules 2019; 9:biom9050177. [PMID: 31072044 PMCID: PMC6572364 DOI: 10.3390/biom9050177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/26/2022] Open
Abstract
The anticancer activity of acridone derivatives has attracted increasing interest, therefore, a variety of substituted analogs belonging to this family have been developed and evaluated for their anti-cancer properties. A series of N-alkyl-acridones 1–6 and N,N′-dialkyl-9,9′-biacridylidenes 7–12 with variable alkyl chains were examined for their topoisomerase I activity at neutral and acidic conditions as well as for their binding capacity to calf thymus and possible radical trapping antioxidant activity. It was found that at a neutral pH, topoisomerase I activity of both classes of compounds was similar, while under acidic conditions, enhanced intercalation was observed. N-alkyl-acridone derivatives 1–6 exhibited stronger, dose-dependent, cytotoxic activity against MCF-7 human breast epithelial cancer cells than N,N′-dialkyl-9,9′-biacridylidenes 7–12, revealing that conjugation of the heteroaromatic system plays a significant role on the effective distribution of the compound in the intracellular environment. Cellular investigation of long alkyl derivatives against cell migration exhibited 40–50% wound healing effects and cytoplasm diffusion, while compounds with shorter alkyl chains were accumulated both in the nucleus and cytoplasm. All N,N′-dialkyl-9,9′-biacridylidenes showed unexpected high scavenging activity towards DPPH or ABTS radicals which may be explained by higher stabilization of radical cations by the extended conjugation of heteroaromatic ring system.
Collapse
|
17
|
Cui Z, Chen S, Wang Y, Gao C, Chen Y, Tan C, Jiang Y. Design, synthesis and evaluation of azaacridine derivatives as dual-target EGFR and Src kinase inhibitors for antitumor treatment. Eur J Med Chem 2017; 136:372-381. [DOI: 10.1016/j.ejmech.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/28/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
|
18
|
Yuan Z, Sun Q, Li D, Miao S, Chen S, Song L, Gao C, Chen Y, Tan C, Jiang Y. Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. Eur J Med Chem 2017; 134:281-292. [DOI: 10.1016/j.ejmech.2017.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/01/2017] [Accepted: 04/08/2017] [Indexed: 12/12/2022]
|
19
|
Liu J, Chen M, Wang Y, Zhao X, Wang S, Wu Y, Zhang W. Synthesis and the interaction of 2-(1 H -pyrazol-4-yl)-1 H -imidazo[4,5-f][1,10]phenanthrolines with telomeric DNA as lung cancer inhibitors. Eur J Med Chem 2017; 133:36-49. [DOI: 10.1016/j.ejmech.2017.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/04/2017] [Accepted: 03/15/2017] [Indexed: 01/16/2023]
|
20
|
Bağda E, Bağda E, Yabaş E. A versatile water soluble ball-type phthalocyanine as potential antiproliferative drug: the interaction with G-quadruplex formed from Tel 21 and cMYC. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.288284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
Gensicka-Kowalewska M, Cholewiński G, Dzierzbicka K. Recent developments in the synthesis and biological activity of acridine/acridone analogues. RSC Adv 2017. [DOI: 10.1039/c7ra01026e] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many people in the world struggle with cancer or bacterial, parasitic, viral, Alzheimer's and other diseases.
Collapse
Affiliation(s)
| | - Grzegorz Cholewiński
- Department of Organic Chemistry
- Chemical Faculty
- Gdansk University of Technology
- 80-233 Gdansk
- Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry
- Chemical Faculty
- Gdansk University of Technology
- 80-233 Gdansk
- Poland
| |
Collapse
|
22
|
Wang Y, Park D, Galermo AG, Gao D, Liu H, Lebrilla CB. Changes in cellular glycosylation of leukemia cells upon treatment with acridone derivatives yield insight into drug action. Proteomics 2016; 16:2977-2988. [DOI: 10.1002/pmic.201600218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Yini Wang
- Department of Chemistry; Tsinghua University; Beijing P. R. China
| | - Dayoung Park
- Department of Chemistry; University of California; Davis CA USA
| | - Ace G. Galermo
- Department of Chemistry; University of California; Davis CA USA
| | - Dan Gao
- The Key Laboratory of Tumor Metabolomics at Shenzhen; Shenzhen P. R. China
| | - Hongxia Liu
- The Key Laboratory of Tumor Metabolomics at Shenzhen; Shenzhen P. R. China
| | | |
Collapse
|
23
|
Recent advances in targeting the telomeric G-quadruplex DNA sequence with small molecules as a strategy for anticancer therapies. Future Med Chem 2016; 8:1259-90. [PMID: 27442231 DOI: 10.4155/fmc-2015-0017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human telomeric DNA (hTelo), present at the ends of chromosomes to protect their integrity during cell division, comprises tandem repeats of the sequence d(TTAGGG) which is known to form a G-quadruplex secondary structure. This unique structural formation of DNA is distinct from the well-known helical structure that most genomic DNA is thought to adopt, and has recently gained prominence as a molecular target for new types of anticancer agents. In particular, compounds that can stabilize the intramolecular G-quadruplex formed within the human telomeric DNA sequence can inhibit the activity of the enzyme telomerase which is known to be upregulated in tumor cells and is a major contributor to their immortality. This provides the basis for the discovery and development of small molecules with the potential for selective toxicity toward tumor cells. This review summarizes the various families of small molecules reported in the literature that have telomeric quadruplex stabilizing properties, and assesses the potential for compounds of this type to be developed as novel anticancer therapies. A future perspective is also presented, emphasizing the need for researchers to adopt approaches that will allow the discovery of molecules with more drug-like properties in order to improve the chances of lead molecules reaching the clinic in the next decade.
Collapse
|
24
|
Design, synthesis and evaluation of acridine derivatives as multi-target Src and MEK kinase inhibitors for anti-tumor treatment. Bioorg Med Chem 2016; 24:261-9. [DOI: 10.1016/j.bmc.2015.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/17/2023]
|