1
|
Kianmehr E, Shafiee-Pour M. Ruthenium(II)-Catalyzed Annulation of Oximes with Maleimides: Synthesis of Pyrrolo[3,4- c]isoquinoline-1,3-diones. Org Lett 2024; 26:6977-6982. [PMID: 39102365 DOI: 10.1021/acs.orglett.4c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A series of pyrroloisoquinoline-1,3-diones has been synthesized using ruthenium(II) as the catalyst and oxygen as the oxidant in a straightforward manner. The reaction proceeds through a tandem C-C/C-N bond formation process between maleimides and ketoximes, providing a direct approach for the synthesis of the titled products. This operationally simple reaction procedure supplies suitable conditions for synthesizing diverse isoquinoline-based heterocycles with a range of functional groups in moderate to good yields and compatible with gram-scale synthesis. Furthermore, the compatibility of this reaction with oxygen as a green and environmentally friendly oxidant raises the importance of the present method.
Collapse
Affiliation(s)
- Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Maryam Shafiee-Pour
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| |
Collapse
|
2
|
Dethe DH, Kumar V, Das R. Ru(II)-Catalyzed C-H Activation/[4+2] Annulation of Sulfoxonium Ylide with Maleimide: Access to Fused Benzo[ e]isoindole-1,3,5-trione. Org Lett 2024; 26:6830-6834. [PMID: 39102293 DOI: 10.1021/acs.orglett.4c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
A ruthenium-catalyzed C-H activation and a concomitant [4+2] annulation of sulfoxonium ylide with maleimide have been demonstrated. This tandem reaction results in the formation of fused benzo[e]isoindole-1,3,5-trione. The method employs mild conditions and is free of metal oxidants. The reaction pathway predominantly involves protodemetalation over β-hydride elimination due to the lack of syn β-hydrogens.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vimlesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rahul Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
3
|
Sharma V, Chander Sharma P, Reang J, Yadav V, Kumar Tonk R, Majeed J, Sharma K. Impact of GSK-3β and CK-1δ on Wnt signaling pathway in alzheimer disease: A dual target approach. Bioorg Chem 2024; 147:107378. [PMID: 38643562 DOI: 10.1016/j.bioorg.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3β (GSK-3β) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3β and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3β and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3β and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3β and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.
Collapse
Affiliation(s)
- Vinita Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | | | - Jurnal Reang
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Vivek Yadav
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Jaseela Majeed
- School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India; Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
4
|
Roy P, Shrestha D, Akhtar MS, Lee YR. Rh-Catalyzed Annulation of Enaminones with Maleimides for Functionalized Aza-spiro α-Tetralones and Benzo[ e]isoindoles via C-H Activation/C═C Bond Cleavage. Org Lett 2024; 26:142-147. [PMID: 38109110 DOI: 10.1021/acs.orglett.3c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
An unprecedented strategy for Rh-catalyzed C-H activation/C═C bond cleavage of enaminones is described for the construction of biologically interesting aza-spiro α-tetralones and benzo[e]isoindoles. This protocol provides diversely functionalized aza-spiro α-tetralones and benzo[e]isoindoles in good yields via a [4 + 2] annulation of the exomaleimides and maleimides. This strategy displays a good substrate scope, outstanding functional group tolerance, and excellent regioselectivity.
Collapse
Affiliation(s)
- Prasanta Roy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Divya Shrestha
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
An YN, Huang JH, Xu SF, Wang XL, Zhou CH, Xu ZG, Lei J, Chen ZZ. Unexpected Cascade Sequence Forming the C(sp 3)-N/C(sp 2)-C(sp 2) Bond: Direct Access to γ-Lactam-Fused Pyridones with Anticancer Activity. J Org Chem 2023; 88:7998-8009. [PMID: 37279456 DOI: 10.1021/acs.joc.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An unexpected Ugi cascade reaction was developed for the facile construction of γ-lactam-fused pyridone derivatives with high tolerance of substrates. A C(sp3)-N bond and a C(sp2)-C(sp2) bond were formed together, accompanied by a chromone ring-opening in Ugi adducts, under the basic conditions without any metal catalyst for the whole process. Screening data of several difficult-to-inhibit cancer cell lines demonstrated that 7l displayed a high cytotoxicity against HCT116 cells (IC50 = 5.59 ± 0.78 μM). Taken together, our findings revealed new insights into the molecular mechanisms underlying compound 7l and provided potential usage of this scaffold for cancer therapeutics.
Collapse
Affiliation(s)
- Ya-Nan An
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiu-Hong Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| | - Shi-Fang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| | - Xiao-Lin Wang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| | - Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| |
Collapse
|
6
|
Babkov D, Bezsonova E, Sirotenko V, Othman E, Klochkov V, Sosonyuk S, Lozinskaya N, Spasov A. 3-Arylidene-2-oxindoles as GSK3β inhibitors and anti-thrombotic agents. Bioorg Med Chem Lett 2023; 87:129283. [PMID: 37054760 PMCID: PMC10088290 DOI: 10.1016/j.bmcl.2023.129283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Development of novel agents that prevent thrombotic events is an urgent task considering increasing incidence of cardiovascular diseases and coagulopathies that accompany cancer and COVID-19. Enzymatic assay identified novel GSK3β inhibitors in a series of 3-arylidene-2-oxindole derivatives. Considering the putative role of GSK3β in platelet activation, the most active compounds were evaluated for antiplatelet activity and antithrombotic activity. It was found that GSK3β inhibition by 2-oxindoles correlates with inhibition of platelet activation only for compounds 1b and 5a. Albeit, in vitro antiplatelet activity matched well with in vivo anti-thrombosis activity. The most active GSK3β inhibitor 5a exceeds antiplatelet activity of acetylsalicylic acid in vitro by 10.3 times and antithrombotic activity in vivo by 18.7 times (ED50 7.3 mg/kg). These results support the promising role of GSK3β inhibitors for development of novel antithrombotic agents.
Collapse
Affiliation(s)
- Denis Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Volgograd 400131, Russian Federation; Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd 400131, Russian Federation.
| | - Elena Bezsonova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Viktor Sirotenko
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd 400131, Russian Federation
| | - Elias Othman
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd 400131, Russian Federation
| | - Vladlen Klochkov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd 400131, Russian Federation
| | - Sergey Sosonyuk
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Natalia Lozinskaya
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Spasov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Volgograd 400131, Russian Federation; Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd 400131, Russian Federation
| |
Collapse
|
7
|
Yao L, Xu X, Xu Y, Li C, Xie F, Guo M, Liu Z, Liu X. OGDHL ameliorates cognitive impairment and Alzheimer's disease-like pathology via activating Wnt/β-catenin signaling in Alzheimer's disease mice. Behav Brain Res 2022; 418:113673. [PMID: 34798170 DOI: 10.1016/j.bbr.2021.113673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases related to several types of pathophysiological signs, including β-amyloid (Aβ) plaque accumulation, neuroinflammation, and neurofibrillary tangles. Similar to one of the three subunits of α-ketoglutarate dehydrogenase complex (KGDHC), oxoglutarate dehydrogenase-like (OGDHL) appears to be downregulated in triple-transgenic Alzheimer's (3 × Tg-AD) mice. KGDHC activity is specifically reduced in the brains of people with AD. However, the underlying mechanism of OGDHL in the cause of AD is still unknown. Herein, we confirmed the low expression of OGDHL in the brain of 3 × Tg-AD based on real-time quantitative PCR, Western blot, and immunohistochemistry. We also found that the upregulation of OGDHL can reduce the memory deficits of 3 × Tg-AD mice, thereby reminding its nervous system neuroprotective effect in AD. Next, we confirmed that the increase in OGDHL could reduce neuroinflammation, amyloid plaque load, and tau phosphorylation in 3 × Tg-AD mice. Additionally, we showed that the overexpression of OGDHL could activate Wnt/β-catenin signaling based on the expression of Wnt7B in vitro. Taken together, the results show that the rise of OGDHL reasonably improves the cognitive functions according to the activation of the Wnt/β-catenin signaling pathway. Therefore, this enzyme may be a potential strategy for AD treatment.
Collapse
Affiliation(s)
- Li Yao
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuemin Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yukun Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunyan Li
- Department of Internal Medicine of Traditional Chinese Medicine, Shizhong District People's Hospital of Jinan, Jinan, China
| | - Fang Xie
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Guo
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaoyang Liu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoming Liu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
8
|
Pati BV, Sagara PS, Ghosh A, Mohanty SR, Ravikumar PC. Ruthenium-Catalyzed Cross Dehydrogenative Annulation of N-(7-Azaindole)benzamides with Maleimides: One-Step Access to Highly Functionalized Pyrroloisoquinoline. J Org Chem 2021; 86:6551-6565. [DOI: 10.1021/acs.joc.1c00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| | - Prateep Singh Sagara
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Asit Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| | - Smruti Ranjan Mohanty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| | - Ponneri Chandrababu Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
9
|
An updated research of glycogen synthase kinase-3β inhibitors: a review. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02718-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Gurram RK, Rajesh M, Reddy Singam MK, Nanubolu JB, Reddy MS. A Sequential Activation of Alkyne and C–H Bonds for the Tandem Cyclization and Annulation of Alkynols and Maleimides through Cooperative Sc(III) and Cp*-Free Co(II) Catalysis. Org Lett 2020; 22:5326-5330. [DOI: 10.1021/acs.orglett.0c01533] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ravi Kumar Gurram
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
11
|
Li B, Guo C, Shen N, Zhang X, Fan X. Synthesis of maleimide fused benzocarbazoles and imidazo[1,2-a]pyridines via rhodium(iii)-catalyzed [4 + 2] oxidative cycloaddition. Org Chem Front 2020. [DOI: 10.1039/d0qo01109f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, an efficient and sustainable synthesis of maleimide-fused benzocarbazoles/imidazo[1,2-a]pyridines from the reaction of 2-arylindoles/2-arylimidazo[1,2-a]pyridines with maleimides through oxidative [4 + 2] annulation is presented.
Collapse
Affiliation(s)
- Bin Li
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Chenhao Guo
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Nana Shen
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Xinying Zhang
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Xuesen Fan
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| |
Collapse
|
12
|
Zhu JN, Wang WK, Zhu Y, Hu YQ, Zhao SY. Cascade Functionalization of C(sp3)–Br/C(sp2)–H Bonds: Access to Fused Benzo[e]isoindole-1,3,5-trione via Visible-Light-Induced Reductive Radical Relay Strategy. Org Lett 2019; 21:6270-6274. [DOI: 10.1021/acs.orglett.9b02153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jia-Nan Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Wen-Kang Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yuan Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yin-Qiu Hu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
13
|
Lozinskaya NA, Babkov DA, Zaryanova EV, Bezsonova EN, Efremov AM, Tsymlyakov MD, Anikina LV, Zakharyascheva OY, Borisov AV, Perfilova VN, Tyurenkov IN, Proskurnina MV, Spasov AA. Synthesis and biological evaluation of 3-substituted 2-oxindole derivatives as new glycogen synthase kinase 3β inhibitors. Bioorg Med Chem 2019; 27:1804-1817. [PMID: 30902399 DOI: 10.1016/j.bmc.2019.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a widely investigated molecular target for numerous diseases including Alzheimer's disease, cancer, and diabetes mellitus. Inhibition of GSK-3β activity has become an attractive approach for treatment of diabetes and cancer. We report the discovery of novel GSK-3β inhibitors of 3-arylidene-2-oxindole scaffold with promising activity. The most potent compound 3a inhibits GSK-3β with IC50 4.19 nM. In a cell-based assay 3a shows no significant leucocyte toxicity at 10 µM and is moderately cytotoxic against A549 cells. Compound 3a demonstrated high antidiabetic efficacy in obese streptozotocin-treated rats improving glucose tolerance at a dose of 50 mg/kg body weight thus representing an interesting lead for further optimization.
Collapse
Affiliation(s)
- Natalia A Lozinskaya
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia; Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severnyi Proezd, Chernogolovka 142432, Russia.
| | - Denis A Babkov
- Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia
| | - Ekaterina V Zaryanova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia
| | - Elena N Bezsonova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia
| | - Alexander M Efremov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia
| | - Michael D Tsymlyakov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia
| | - Lada V Anikina
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severnyi Proezd, Chernogolovka 142432, Russia
| | | | - Alexander V Borisov
- Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia
| | - Valentina N Perfilova
- Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia
| | - Ivan N Tyurenkov
- Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia
| | - Marina V Proskurnina
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory St., 1, Moscow 119234, Russia; Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severnyi Proezd, Chernogolovka 142432, Russia
| | - Alexander A Spasov
- Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia
| |
Collapse
|
14
|
Xu M, Wang SL, Zhu L, Wu PY, Dai WB, Rakesh KP. Structure-activity relationship (SAR) studies of synthetic glycogen synthase kinase-3β inhibitors: A critical review. Eur J Med Chem 2018; 164:448-470. [PMID: 30616053 DOI: 10.1016/j.ejmech.2018.12.073] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 12/28/2022]
Abstract
Glycogen Synthase Kinase-3 (GSK-3) is a constitutively dynamic, omnipresent serine/threonine protein kinase regularly called as a "multitasking kinase" due to its pliable function in diverse signaling pathways. It exists in two isoforms i.e., GSK-3α and GSK-3β. Inhibition of GSK-3 may be useful in curing various diseases such as Alzheimer's disease, type II diabetes, mood disorders, cancers, chronic inflammatory agents, stroke, bipolar disorders and so on, but the approach poses significant challenges. Lithium was the first GSK-3β inhibitor to be used for therapeutic outcome and has been effectively used for many years. In recent years, a large number of structurally diverse potent GSK-3β inhibitors are reported. The present review focuses on the recent developments in the area of medicinal chemistry to explore the diverse chemical structures of potent GSK-3β inhibitors and also describes its structure-activity relationships (SAR) and molecular binding interactions of favorable applicability in various diseases.
Collapse
Affiliation(s)
- M Xu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - S L Wang
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - L Zhu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - P Y Wu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - W B Dai
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - K P Rakesh
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
15
|
Yang LJ, Zhou M, Huang LB, Yang WR, Yang ZB, Jiang SZ, Ge JS. Zearalenone-Promoted Follicle Growth through Modulation of Wnt-1/β-Catenin Signaling Pathway and Expression of Estrogen Receptor Genes in Ovaries of Postweaning Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7899-7906. [PMID: 29986586 DOI: 10.1021/acs.jafc.8b02101] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Feedstuffs are severely contaminated by zearalenone (ZEA) worldwide. A specific dietary level of ZEA could cause malformations of the reproductive organs of sows, false estrus, decreased litter size, and abortion. However, the underlying mechanisms are still not clear. The objectives of the present study were to assess the effects of ZEA on morphology, distribution, and expression of estrogen receptors (ERα and ERβ) in the ovaries of postweaning piglets. Furthermore, the relationship between ERs/glycogen synthase kinase (GSK)-3β-dependent pathways mediated by ZEA and the Wnt-1/β-catenin signaling pathway was examined. Forty healthy weaning piglets were allocated to the following four treatment groups: piglets fed with basal diet only (control), and ZEA0.5, ZEA1.0, and ZEA1.5, which were fed basal diets supplemented with ZEA at 0.5, 1.0, and 1.5 mg·kg-1, respectively. Then, the expression of GSK-3β, ERα, ERβ, and Wnt-1/β-catenin were examined histomorphologically and immunohistochemically. Results showed that the proportion of primordial follicles (PrF's) decreased ( p < 0.001) but that of atretic primordial follicles (APFs) increased ( p < 0.001) with increasing dietary ZEA levels. More interestingly, the immunopositivity of ERβ in the ovaries was stronger than that of ERα with the same treatment. The relative mRNA and protein expression levels of ERα, ERβ, Wnt-1, β-catenin, and GSK-3β in the ovaries of postweaning gilts increased linearly ( p < 0.05) as dietary ZEA concentrations increased. Moreover, the accumulation of Wnt-1 and β-catenin in the ovaries indicated that ZEA activated the Wnt-1/β-catenin pathway, mediated by ERs/GSK-3β. Our results strongly suggested that ovarian follicles in the ZEA (0.5-1.5 mg·kg-1)-treated groups were highly proliferative state, indicating that ZEA promoted ovarian development. The results also suggested that ZEA activates the ERs/GSK-3β-dependent Wnt-1/β-catenin signaling pathway, indicating its important role in accelerating development of the ovaries.
Collapse
Affiliation(s)
- Li-Jie Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Min Zhou
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Li-Bo Huang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Wei-Ren Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Zai-Bin Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Shu-Zhen Jiang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Jin-Shan Ge
- Shandong Zhongcheng Feed Technology Co., Ltd. , No. 226 Gongye 2 Road , Feicheng City , Shandong Province 271600 , P.R. China
| |
Collapse
|
16
|
Yang Z, Liu H, Pan B, He F, Pan Z. Design and synthesis of (aza)indolyl maleimide-based covalent inhibitors of glycogen synthase kinase 3β. Org Biomol Chem 2018; 16:4127-4140. [DOI: 10.1039/c8ob00642c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optimization of both non-covalent interactions and reactive groups led to azaindolyl maleimide compound 38b as a selective and covalent inhibitor against GSK3β.
Collapse
Affiliation(s)
- Zhimin Yang
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Xili University Town
| | - Hui Liu
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Xili University Town
| | - Botao Pan
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Xili University Town
| | - Fengli He
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Xili University Town
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Xili University Town
| |
Collapse
|
17
|
Saraswati AP, Ali Hussaini SM, Krishna NH, Babu BN, Kamal A. Glycogen synthase kinase-3 and its inhibitors: Potential target for various therapeutic conditions. Eur J Med Chem 2017; 144:843-858. [PMID: 29306837 DOI: 10.1016/j.ejmech.2017.11.103] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
Abstract
Glycogen Synthase Kinase-3 (GSK-3) is a serine/threonine kinase which is ubiquitously expressed and is regarded as a regulator for various cellular events and signalling pathways. It exists in two isoforms, GSK-3α and GSK-3β and can phosphorylate a wide range of substrates. Aberrancy in the GSK-3 activity can lead to various diseases like Alzheimer's, diabetes, cancer, neurodegeneration etc., rendering it an attractive target to develop potent and specific inhibitors. The present review focuses on the recent developments in the area of GSK-3 inhibitors and also enlightens its therapeutic applicability in various disease conditions.
Collapse
Affiliation(s)
- A Prasanth Saraswati
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - S M Ali Hussaini
- Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Namballa Hari Krishna
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India; Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Bathini Nagendra Babu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Ahmed Kamal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India; Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India; School Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
18
|
Chirkova ZV, Kabanova MV, Filimonov SI, Sergeev SS, Smirnova EA, Sudzilovskaya TN. Synthesis of N-substituted 1-hydroxypyrrolo[3,4-f]indol-5,7-diones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017020087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Sheykhan M, Shafiee-Pour M, Abbasnia M. C–H Activation under the Guise of Diels–Alder Reaction: Annulation toward the Synthesis of Benzo[e]isoindole-1,3-diones. Org Lett 2017; 19:1270-1273. [DOI: 10.1021/acs.orglett.6b03757] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mehdi Sheykhan
- Chemistry
Department, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| | - Maryam Shafiee-Pour
- Chemistry
Department, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| | - Masoumeh Abbasnia
- School
of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|