1
|
Ayan EK, Çoban G, Soyer Z. Design, synthesis, biological evaluation, and molecular modeling studies of some quinazolin-4(3 H)-one-benzenesulfonamide hybrids as potential α-glucosidase inhibitors. J Biomol Struct Dyn 2024:1-21. [PMID: 39539169 DOI: 10.1080/07391102.2024.2427373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycemia, posing serious health risks and becoming increasingly prevalent. Prolonged hyperglycemia can lead to complications such as nephropathy, neuropathy, retinopathy, cardiovascular damage, and blindness. Controlling hyperglycemia through α-glucosidase inhibitors, which slow down carbohydrate breakdown, is an effective treatment strategy. However, current inhibitors like acarbose, voglibose, and miglitol while used to manage type 2 diabetes, have significant side effects. Therefore, developing new α-glucosidase inhibitors that are more effective and have fewer side effects is crucial. In this study, a series of novel quinazolin-4(3H)-one-benzenesulfonamide hybrid compounds were designed, synthesized, and evaluated for in vitro α-glucosidase inhibitory activity. The compounds showed higher enzyme inhibition potency, with IC50 values ranging between 129.2 ± 0.5 and 558.7 ± 13.7 µM, compared to acarbose (IC50=814.3 ± 13.5 µM). Among the tested compounds, compound 10, bearing a 4-chlorophenyl ring on the nitrogen atom of the sulfonamide group, was the most active, with an IC50 value of 129.2 ± 0.5 µM. Enzyme kinetics analyses and molecular modeling studies were conducted to understand their inhibition mechanisms and interactions with the enzyme. The kinetic studies revealed a mixed-type inhibition model, indicating that the compounds bind to the enzyme-substrate complex with higher affinity than to the free enzyme. Molecular modeling results confirmed these findings. Additionally, in silico prediction studies showed that the selected compounds have favourable physicochemical and drug-like properties. These results suggest these compounds have potential for further optimization and development as effective α-glucosidase inhibitors for diabetes treatment.
Collapse
Affiliation(s)
- Emre Kadir Ayan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Güneş Çoban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Zeynep Soyer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| |
Collapse
|
2
|
Yu G, Fu X, Mo X, Tan L, Yang S. Multi-target anti-diabetic styrylpyrones from Phellinus igniarius: Inhibition of α-glucosidase, protein glycation, and oxidative stress. Int J Biol Macromol 2024; 278:134854. [PMID: 39168223 DOI: 10.1016/j.ijbiomac.2024.134854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Bioactivity screening revealed that the EtOAc extract from the culture broth of Phellinus igniarius SY489 exhibited remarkable α-glucosidase inhibitory activity, with an IC50 value of 1.92 μg/mL. Activity- and ultraviolet (UV) profile-guided isolation led to the discovery of four anti-diabetic styrylpyrones (1-4), including two novel compounds, phelignidins A (1) and B (2). Compounds 1 and 2 represent a rare structural type of styrylpyrone dimer, in which one of the pyrone moieties exists in an open-ring state. The absolute configurations of the new compounds 1 and 2, as well as the previously unresolved compound 3, were established. Compounds 1-4 were effective in α-glucosidase inhibition, anti-glycation, and antioxidant assays, surpassing or being comparable to the positive control drugs, with minimal cytotoxicity. Furthermore, studies on α-glucosidase inhibition mechanisms suggested that these compounds interact with α-glucosidase at a single binding site, causing secondary structure unfolding and exerting inhibitory activity via a mixed-type mechanism. These results provide an important basis for developing novel, low-toxicity, multi-target anti-diabetic drugs from edible and medicinal fungi.
Collapse
Affiliation(s)
- Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Xiangji Fu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Xuhua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Lingling Tan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
3
|
Mohammadi-Khanaposhtani M, Sayahi MH, Yazzaf R, Dastyafteh N, Halimi M, Iraji A, Dadgar A, Mojtabavi S, Faramarzi MA, Palimi M, Mirzazadeh R, Larijani B, Delnavazi MR, Mahdavi M. α-Glucosidase inhibition assay of galbanic acid and it amide derivatives: New excellent semi-synthetic α-glucosidase inhibitors. Bioorg Chem 2024; 150:107580. [PMID: 38959646 DOI: 10.1016/j.bioorg.2024.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
α-Glucosidase inhibitory activity of galbanic acid and its new amide derivatives 3a-n were investigated. Galbanic acid and compounds 3a-n showed excellent anti-α-glucosidase activity with IC50 values ranging from 0.3 ± 0.3 μM to 416.0 ± 0.2 μM in comparison to positive control acarbose with IC50 value of = 750.0 ± 5.6. In the kinetic study, the most potent compound 3h demonstrated a competitive mode of inhibition with Ki = 0.57 µM. The interaction of the most potent compound 3h with the α-glucosidase was further elaborated by in vitro Circular dichroism assessment and in silico molecular docking and Molecular dynamics studies. Compound 3h was also non-cytotoxic on human normal cells. In silico study on pharmacokinetics and toxicity profile of the most potent galbanic acid derivatives demonstrated that these compounds are valuable lead compounds for further study in order to achieve new anti-diabetic agents.
Collapse
Affiliation(s)
- Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hosein Sayahi
- Department of Chemistry, Payame Noor University, Tehran, Iran; Chemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-4-3169, Iran
| | - Rozita Yazzaf
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Halimi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran; Liosa Pharmed Parseh Company, Shiraz, Iran
| | - Armin Dadgar
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdie Palimi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Delnavazi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Yan M, Xian X, Zhou X, Liang C. Two new cyclopeptides from Stachys geobombycis C. Y. Wu. Nat Prod Res 2024; 38:2949-2956. [PMID: 37086473 DOI: 10.1080/14786419.2023.2201883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
Two new cyclic peptides, named as cyclogeobomptides A (1) and B (2) were isolated from the roots of Stachys geobombycis C. Y. Wu. Compounds 1 and 2 are both made up of eight amino acids. The structures of them were established on the basis of the spectral data, including mass spectrometry, 2D NMR, and X-ray crystallography. Cyclogeobomptides A and B were proved to have obvious inhibitory activities against α-glucosidase with the IC50 values of 26.00 and 19.16 μM, respectively.
Collapse
Affiliation(s)
- Mengqi Yan
- College of Pharmacy, Guilin Medical University, Guilin, People's Republic of China
| | - Xiaoya Xian
- College of Pharmacy, Guilin Medical University, Guilin, People's Republic of China
| | - Xianli Zhou
- College of Biotechnology, Guilin Medical University, Guilin, People's Republic of China
| | - Chengqin Liang
- College of Pharmacy, Guilin Medical University, Guilin, People's Republic of China
| |
Collapse
|
5
|
Hu RD, Lin WY, Feng Q, Liu J, Chen Y, Ji A, Wang C, Cao L, Zhang R, Liu Z, Cui H, Liang Q, Zhang RR. New α-Glucosidase Inhibitors from the Whole Plant of Hypericum beanii Based on Ligand Fishing and Molecular Networking Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11452-11464. [PMID: 38736181 DOI: 10.1021/acs.jafc.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
In this work, a new rapid and targeted method for screening α-glucosidase inhibitors from Hypericum beanii was developed and verified. Ten new polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperlagarol A-J (1-10), and nine known PPAPs (11-19) were obtained from H. beanii. Their structures were identified by using comprehensive analyses involving mass spectrometry, ultraviolet spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and electron capture dissociation calculations. 1 and 2 are two new rare 2,3-seco-spirocyclic PPAPs, 3 and 4 are two novel 12,13-seco-spirocyclic PPAPs, 5 and 6 are two novel spirocyclic PPAPs, 7 and 8 are two new unusual spirocyclic PPAPs with complex bridged ring systems, and 9 and 10 are two novel nonspirocyclic PPAPs. α-GC inhibitory activities of all isolated compounds were tested. Most of them displayed inhibitory activities against α-glucosidase, with the IC50 values ranging from 6.85 ± 0.65 to 112.5 ± 9.03 μM. Moreover, the inhibitory type and mechanism of the active compounds were further analyzed using kinetic studies and molecular docking.
Collapse
Affiliation(s)
- Rui-Dan Hu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Wei-Yao Lin
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Qian Feng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Jinru Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Yidi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Aijia Ji
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Caiyan Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Liping Cao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518100, People's Republic of China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Hui Cui
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518100, People's Republic of China
| | - Rong-Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| |
Collapse
|
6
|
Ganjeh MS, Mazlomifar A, Shahvelayti AS, Moghaddam SK. Coumarin linked to 2-phenylbenzimidazole derivatives as potent α-glucosidase inhibitors. Sci Rep 2024; 14:7408. [PMID: 38548784 PMCID: PMC10978946 DOI: 10.1038/s41598-024-57673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
α-Glucosidase inhibitors have emerged as crucial agents in the management of type 2 diabetes mellitus. In the present study, a new series of coumarin-linked 2-phenylbenzimidazole derivatives 5a-m was designed, synthesized, and evaluated as anti-α-glucosidase agents. Among these derivatives, compound 5k (IC50 = 10.8 µM) exhibited a significant inhibitory activity in comparison to the positive control acarbose (IC50 = 750.0 µM). Through kinetic analysis, it was revealed that compound 5k exhibited a competitive inhibition pattern against α-glucosidase. To gain insights into the interactions between the title compounds and α-glucosidase molecular docking was employed. The obtained results highlighted crucial interactions that contribute to the inhibitory activities of the compounds against α-glucosidase. These derivatives show immense potential as promising starting points for developing novel α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Mina Sadeghi Ganjeh
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mazlomifar
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
| | - Ashraf Sadat Shahvelayti
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Khalili Moghaddam
- Department of Biology, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Ait Lahcen M, Adardour M, Mortada S, Oubahmane M, Hmaimou S, Loughzail M, Hdoufane I, Lahmidi S, Faouzi MEA, Cherqaoui D, Mague JT, Baouid A. Synthesis, characterization, X-ray, α-glucosidase inhibition and molecular docking study of new triazolic systems based on 1,5-benzodiazepine via 1,3-dipolar cycloaddition reactions. J Biomol Struct Dyn 2024; 42:1985-1998. [PMID: 37098807 DOI: 10.1080/07391102.2023.2203263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/09/2023] [Indexed: 04/27/2023]
Abstract
We report in this work a synthesis of novel triazolo[1,5]benzodiazepine derivatives by the 1,3-dipolar cycloaddition reaction of N-aryl-C-ethoxycarbonylnitrilimines with 1,5-benzodiazepines. All the structures of the new compounds were determined from their NMR (1H and 13C) and HRMS. Then, X-ray crystallography analysis of compound 4d confirmed the stereochemistry of cycloadducts. The compounds 1, 4a-d, 5a-d, 6c, 7 and 8 were evaluated for their in vitro anti-diabetic activity against α-glucosidase. The compounds 1, 4d, 5a and 5b showed potential inhibitory activities compared to standard acarbose. Additionally, an in silico docking study was conducted to look into the active binding mode of the synthesized compounds within the target enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marouane Ait Lahcen
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Adardour
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Salma Mortada
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mehdi Oubahmane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Samir Hmaimou
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Loughzail
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Ismail Hdoufane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Sanae Lahmidi
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Driss Cherqaoui
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Abdesselam Baouid
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
8
|
Patel P, Shah D, Bambharoliya T, Patel V, Patel M, Patel D, Bhavsar V, Padhiyar S, Patel B, Mahavar A, Patel R, Patel A. A Review on the Development of Novel Heterocycles as α-Glucosidase Inhibitors for the Treatment of Type-2 Diabetes Mellitus. Med Chem 2024; 20:503-536. [PMID: 38275074 DOI: 10.2174/0115734064264591231031065639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 01/27/2024]
Abstract
One of the most effective therapeutic decencies in the treatment of Type 2 Diabetes Mellitus is the inhibition of α-glucosidase enzyme, which is present at the brush border of the intestine and plays an important role in carbohydrate digestion to form mono-, di-, and polysaccharides. Acarbose, Voglibose, Miglitol, and Erniglitate have been well-known α-glucosidase inhibitors in science since 1990. However, the long synthetic route and side effects of these inhibitors forced the researchers to move their focus to innovate simple and small heterocyclic scaffolds that work as excellent α-glucosidase inhibitors. Moreover, they are also effective against the postprandial hyperglycemic condition in Type 2 Diabetes Mellitus. In this aspect, this review summarizes recent progress in the discovery and development of heterocyclic molecules that have been appraised to show outstanding inhibition of α-glucosidase to yield positive effects against diabetes.
Collapse
Affiliation(s)
- Prexa Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Drashti Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | - Vidhi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Dharti Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | | | | | - Anjali Mahavar
- Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, CHARUSAT-Campus, Changa, Gujarat, India
| | - Riddhisiddhi Patel
- Department of Pharmaceutical Science, Saurashtra University, Rajkot, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| |
Collapse
|
9
|
Homoud ZA, Taha M, Rahim F, Iqbal N, Nawaz M, Farooq RK, Wadood A, Alomari M, Islam I, Algheribe S, Rehman AU, Khan KM, Uddin N. Synthesis of indole derivatives as Alzheimer inhibitors and their molecular docking study. J Biomol Struct Dyn 2023; 41:9865-9878. [PMID: 36404604 DOI: 10.1080/07391102.2022.2148126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Acetylcholinesterase prevails in the healthy brain, with butyrylcholinesterase reflected to play a minor role in regulating brain acetylcholine (ACh) levels. However, BuChE activity gradually increases in patients with (AD), while AChE activity remains unaffected or decays. Both enzymes therefore represent legitimate therapeutic targets for ameliorating the cholinergic deficit considered to be responsible for the declines in cognitive, behavioural, and global functioning characteristic of AD. Current study described the synthesis of indole-based sulfonamide derivatives (1-23) and their biological activity. Synthesis of these scaffolds were achieved by mixing chloro-substituted indole bearing amine group with various substituted benzene sulfonyl chloride in pyridine, under refluxed condition to obtained desired products. All products were then evaluated for AchE and BuchE inhibitory potential compare with positive Donepezil as standard drug for both AchE and BchE having IC50 = 0.016 ± 0.12 and 0.30 ± 0.010 μM respectively. In this regard analog 9 was found potent having IC50 value 0.15 ± 0.050 μM and 0.20 ± 0.10 for both AchE and BuChE respectively. All other derivatives also found with better potential. All compounds were characterized by various techniques such as 1H, 13C-NMR and HREI-MS. In addition, biological activity was maintained to explore the bioactive nature of scaffolds and their protein-ligand interaction (PLI) was checked through molecular docking study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zahra Abdulkarim Homoud
- Mawhiba Research Enrichment Program-2021, King Abdulaziz and His Companions Foundation for Giftedness and Creativity, Riyadh, Saudi Arabia
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, AJK, Pakistan
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Munther Alomari
- Medical Laboratory Science, Faculty of Health Science, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi, UAE
| | - Imadul Islam
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Shatha Algheribe
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
10
|
Tariq HZ, Saeed A, Ullah S, Fatima N, Halim SA, Khan A, El-Seedi HR, Ashraf MZ, Latif M, Al-Harrasi A. Synthesis of novel coumarin-hydrazone hybrids as α-glucosidase inhibitors and their molecular docking studies. RSC Adv 2023; 13:26229-26238. [PMID: 37670997 PMCID: PMC10475976 DOI: 10.1039/d3ra03953f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder and more than 90% of diabetic patients suffer from type-2 diabetes, which is characterized by hyperglycemia. α-Glucosidase inhibition has become an appropriate approach to tackle high blood glucose levels. The current study was focused on synthesizing coumarin-hydrazone hybrids (7a-i) by using facile chemical reactions. The synthesized compounds were characterized by using 1H-NMR, 13C-NMR, and IR. To evaluate their anti-diabetic capability, all of the conjugates were screened for in vitro α-glucosidase inhibitory activity to reveal their therapeutic importance. All of the compounds (except 7b) demonstrated significant enzyme inhibitory potential with IC50 values ranging between 2.39-57.52 μM, as compared to the standard inhibitor, acarbose (IC50 = 873.34 ± 1.67 μM). Among them, compound 7c is the most potent α-glucosidase inhibitor (IC50 = 2.39 ± 0.05 μM). Additionally, molecular docking was employed to scrutinize the binding pattern of active compounds within the α-glucosidase binding site. The in silico analysis reflects that hydrazone moiety is an essential pharmacophore for the binding of compounds with the active site residues of the enzyme. This study demonstrates that compounds 7c and 7f deserve further molecular optimization for potential application in diabetic management.
Collapse
Affiliation(s)
- Hafiza Zara Tariq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Noor Fatima
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Hesham R El-Seedi
- School of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
| | | | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| |
Collapse
|
11
|
Daud S, Abid OUR, Rehman W, Niaz M, Sardar A, Rasheed L, Niaz B, Shah BA, Alotaibi HF, Obaidullah AJ, Alanazi MM. In vitro evaluation of novel mefenamic acid derivatives as potential α-glucosidase and urease inhibitors: Design, synthesis, in silico and cytotoxic studies. JOURNAL OF SAUDI CHEMICAL SOCIETY 2023; 27:101680. [DOI: 10.1016/j.jscs.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249:115119. [PMID: 36680985 DOI: 10.1016/j.ejmech.2023.115119] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. It is a well-recognized multifactorial health problem contributes significantly to high mortality rates by causing serious health complications mainly related to cardiovascular diseases, kidney damage and neuropathy. The inhibition of α-glucosidase (enzyme that catalyses starch hydrolysis in the intestine) is an effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes. However, the presently approved drugs/inhibitors such as acarbose, miglitol and voglibose have several undesirable gastrointestinal side effects impeding their applications. Therefore, search for novel and more effective inhibitors with reduced side effects and less cost remains a fascinating area of research. In this context, a large variety of α-glucosidase inhibitors have been identified in recent years that demands attention from drug development community. This review is therefore an effort to summarize and highlight the promising α-glucosidase inhibitors especially those which are primarily based on aromatic heterocyclic scaffolds such as coumarin, imidazole, isatin, pyrimidine, quinazoline, triazine, thiazole etc, having improved safety and pharmacological profiles.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mehreen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
13
|
Alshaye NA, Ibrahim MA. Synthesis, characterization and biological evaluation of the novel chromenopyridothiazolopyrimidines and chromenopyridopyrimidothiazolo-pyrimidines. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2172684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Najla A. Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | |
Collapse
|
14
|
Taha M, Uddin N, Saad SM, Iqbal N, Fareed G, Anouar EH, Hassan MH, Almandil NB, Salahuddin M, Khan KM, Wadood A, Rahman AU. An effort to find new α -amylase inhibitors as potent antidiabetics compounds based on indole-based-thiadiazole analogs. J Biomol Struct Dyn 2022; 40:13103-13114. [PMID: 34569449 DOI: 10.1080/07391102.2021.1982774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inhibition of α-amylase enzyme is of key significance for the therapy of diabetes mellitus (DM). Numerous indole-based compounds have earlier been described for broad range of bioactivities. From our previous study, we knew that indole and thiadiazole are potent inhibitors of diabetics II. We design the hybrid molecules of them and synthesized 18 derivatives of indole-based-thiadiazole (1-18). All synthesized compounds were characterized using different spectroscopic methods and evaluated for their α-amylase inhibitory activities. All synthetic compounds, except 4, 13, 15 and 16, were found to be strongly active (IC50 values in the range of 0.80 ± 0.05 - 9.30 ± 0.20 µM) than the standard drug, acarbose (IC50 = 11.70 ± 0.10 µM). Nevertheless, compound 18 was found to be inactive. The modes of binding interactions of five most active compounds 2, 3, 5, 10 and 17 were also studies through molecular docking study. In brief, current study identifies a novel class of α-amylase inhibitors which can be further studied for the treatment of hyperglycemia and obesity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | | | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, Pakistan
| | - Ghulam Fareed
- Pharmaceutical Research Center, PCSIR Laboratories Complex Karachi, Karachi, Pakistan
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Maya Haj Hassan
- Department of Biology, Faculty of Sciences, Lebanese University, Zahle Lebanon
| | - Noor Barak Almandil
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
15
|
Niri DR, Sayahi MH, Behrouz S, Moazzam A, Mojtabavi S, Faramarzi MA, Larijani B, Rastegar H, Mohammadi-Khanaposhtani M, Mahdavi M. Design, synthesis, in vitro, and in silico biological evaluations of coumarin-indole hybrids as new anti-α-glucosidase agents. BMC Chem 2022; 16:84. [PMID: 36329490 PMCID: PMC9635080 DOI: 10.1186/s13065-022-00882-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND A series of coumarin-indole hybrids was synthesized as the new α-glucosidase inhibitors. The title hybrids were considered as α-glucosidase inhibitors because had two active pharmacophores against α-glucosidase: coumarin and indole. METHODS The thirteen various derivatives 4a-m were synthesized, purified, and fully characterized. These compounds were evaluated against α-glucosidase in vitro and in silico. In silico pharmacokinetic studies of the most potent compounds were also performed. RESULTS Most of the title compounds exhibited high anti-α-glucosidase activity in comparison to standard drug acarbose. In particular, the phenoxy derivative 4d namely 3-((1H-indol-3-yl)(3-phenoxyphenyl)methyl)-4-hydroxy-2H-chromen-2-one showed promising activity. This compound is a competitive inhibitor against α-glucosidase and showed the lowest binding energy at the α-glucosidase active site in comparison to other potent synthesized compounds and acarbose. CONCLUSION Compound 4d can be a lead compound for further structural development to obtain effective and potent α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Davood Rezapour Niri
- grid.444860.a0000 0004 0600 0546Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Mohammad Hosein Sayahi
- grid.412462.70000 0000 8810 3346Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Somayeh Behrouz
- grid.444860.a0000 0004 0600 0546Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Ali Moazzam
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- grid.411705.60000 0001 0166 0922Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- grid.411705.60000 0001 0166 0922Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- grid.411705.60000 0001 0166 0922Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran ,grid.411495.c0000 0004 0421 4102Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mahdavi
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Mehmood R, Mughal EU, Elkaeed EB, Obaid RJ, Nazir Y, Al-Ghulikah HA, Naeem N, Al-Rooqi MM, Ahmed SA, Shah SWA, Sadiq A. Synthesis of Novel 2,3-Dihydro-1,5-Benzothiazepines as α-Glucosidase Inhibitors: In Vitro, In Vivo, Kinetic, SAR, Molecular Docking, and QSAR Studies. ACS OMEGA 2022; 7:30215-30232. [PMID: 36061741 PMCID: PMC9435035 DOI: 10.1021/acsomega.2c03328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
In the present study, a series of 2,3-dihydro-1,5-benzothiazepine derivatives 1B-14B has been synthesized sand characterized by various spectroscopic techniques. The enzyme inhibitory activities of the target analogues were assessed using in vitro and in vivo mechanism-based assays. The tested compounds 1B-14B exhibited in vitro inhibitory potential against α-glucosidase with IC50 = 2.62 ± 0.16 to 10.11 ± 0.32 μM as compared to the standard drug acarbose (IC50 = 37.38 ± 1.37 μM). Kinetic studies of the most active derivatives 2B and 3B illustrated competitive inhibitions. Based on the α-glucosidase inhibitory effect, the compounds 2B, 3B, 6B, 7B, 12B, 13B, and 14B were chosen in vivo for further evaluation of antidiabetic activity in streptozotocin-induced diabetic Wistar rats. All these evaluated compounds demonstrated significant antidiabetic activity and were found to be nontoxic in nature. Moreover, the molecular docking study was performed to elucidate the binding interactions of most active analogues with the various sites of the α-glucosidase enzyme (PDB ID 3AJ7). Additionally, quantitative structure-activity relationship (QSAR) studies were performed based on the α-glucosidase inhibitory assay. The value of correlation coefficient (r) 0.9553 shows that there was a good correlation between the 1B-14B structures and selected properties. There is a correlation between the experimental and theoretical results. Thus, these novel compounds could serve as potential candidates to become leads for the development of new drugs provoking an anti-hyperglycemic effect.
Collapse
Affiliation(s)
- Rabia Mehmood
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | | | - Eslam B. Elkaeed
- Department
of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Rami J. Obaid
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Yasir Nazir
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
- Department
of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Hanan A. Al-Ghulikah
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nafeesa Naeem
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Munirah M. Al-Rooqi
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Assiut
University, Assiut 71516, Egypt
| | - Syed Wadood Ali Shah
- Department
of Pharmacy, University of Malakand, Chakdara Dir, Khyber Pakhtunkhwa 18800, Pakistan
| | - Amina Sadiq
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| |
Collapse
|
17
|
Khan SA, Ali M, Latif A, Ahmad M, Khan A, Al-Harrasi A. Mercaptobenzimidazole-Based 1,3-Thaizolidin-4-ones as Antidiabetic Agents: Synthesis, In Vitro α-Glucosidase Inhibition Activity, and Molecular Docking Studies. ACS OMEGA 2022; 7:28041-28051. [PMID: 35990459 PMCID: PMC9386811 DOI: 10.1021/acsomega.2c01969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In this research work, we have focused our efforts to synthesize a series of 2-mercaptobenzimidazole-based 1,3-thiazolidin-4-ones (5-24) following a multistep reaction strategy and characterization of the synthesized derivatives with the help of various spectroscopic techniques. To find the antidiabetic potentials of the synthesized compounds (5-24), in vitro alpha-glucosidase inhibitory activity was performed using acarbose (IC50 = 873 ± 1.2 μM) as the reference standard. The results of the antidiabetic assay were very encouraging because compounds 5, 8, and 14 showed excellent inhibitions with IC50 values of 5.22 ± 0.14, 5.69 ± 0.10, and 10.20 ± 0.12 μM, respectively. The experimental results of anti-alpha-glucosidase activity prompted us to investigate and propose a possible mechanism of how the active molecules will interact with the target enzyme. For this purpose, molecular docking with the AutoDock Vina (an open-source and reliable docking platform) gave us an insight into the binding interactions of the active compounds to different amino acid residues of the enzyme.
Collapse
Affiliation(s)
- Sher Ali Khan
- Department
of Chemistry, University of Malakand, Dir (Lower), Chakdara, Khyber
Pakhtunkhwa 18800, Pakistan
| | - Mumtaz Ali
- Department
of Chemistry, University of Malakand, Dir (Lower), Chakdara, Khyber
Pakhtunkhwa 18800, Pakistan
| | - Abdul Latif
- Department
of Chemistry, University of Malakand, Dir (Lower), Chakdara, Khyber
Pakhtunkhwa 18800, Pakistan
| | - Manzoor Ahmad
- Department
of Chemistry, University of Malakand, Dir (Lower), Chakdara, Khyber
Pakhtunkhwa 18800, Pakistan
| | - Ajmal Khan
- UoN
Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa 616, Sultanate
of Oman
| | - Ahmed Al-Harrasi
- UoN
Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa 616, Sultanate
of Oman
| |
Collapse
|
18
|
Pedrood K, Rezaei Z, Khavaninzadeh K, Larijani B, Iraji A, Hosseini S, Mojtabavi S, Dianatpour M, Rastegar H, Faramarzi MA, Hamedifar H, Hajimiri MH, Mahdavi M. Design, synthesis, and molecular docking studies of diphenylquinoxaline-6-carbohydrazide hybrids as potent α-glucosidase inhibitors. BMC Chem 2022; 16:57. [PMID: 35909126 PMCID: PMC9341091 DOI: 10.1186/s13065-022-00848-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 03/19/2024] Open
Abstract
A novel series of diphenylquinoxaline-6-carbohydrazide hybrids 7a-o were rationally designed and synthesized as anti-diabetic agents. All synthesized compounds 7a-o were screened as possible α-glucosidase inhibitors and exhibited good inhibitory activity with IC50 values in the range of 110.6 ± 6.0 to 453.0 ± 4.7 µM in comparison with acarbose as the positive control (750.0 ± 10.5 µM). An exception in this trend came back to a compound 7k with IC50 value > 750 µM. Furthermore, the most potent derivative 7e bearing 3-fluorophenyl moiety was further explored by kinetic studies and showed the competitive type of inhibition. Additionally, the molecular docking of all derivatives was performed to get an insight into the binding mode of these derivatives within the active site of the enzyme. In silico assessments exhibited that 7e was well occupied in the binding pocket of the enzyme through favorable interactions with residues, correlating to the experimental results.
Collapse
Affiliation(s)
- Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Khavaninzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mir Hamed Hajimiri
- Nano Alvand Company, Tehran University of Medical Sciences, Avicenna Tech Park, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Noori M, Rastak M, Halimi M, Ghomi MK, Mollazadeh M, Mohammadi-Khanaposhtani M, Sayahi MH, Rezaei Z, Mojtabavi S, Ali Faramarzi M, Larijani B, Biglar M, Amanlou M, Mahdavi M. Design, synthesis, in vitro, and in silico enzymatic evaluations of thieno[2,3-b]quinoline-hydrazones as novel inhibitors for α-glucosidase. Bioorg Chem 2022; 127:105996. [PMID: 35878449 DOI: 10.1016/j.bioorg.2022.105996] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
In the development of novel anti-α-glucosidase agents, we synthesized novel thieno[2,3-b]quinoline-hydrazones 9a-n by facile and efficient conventional chemical reactions. These compounds were characterized by IR, 1H NMR, 13C NMR, and elemental analysis. Inhibitory activities of the title compounds were evaluated against yeast α-glucosidase. In particular, compounds 9c, 9d, and 9h exhibited high anti-α-glucosidase activity. Representatively, compound 9c with IC50 = 1.3 µM, was 576-times more potent than positive control acarbose. Molecular docking study of the most active compounds showed that these compounds formed important binding interactions at α-glucosidase active site. Molecular dynamics study of compound 9c was also performed and the obtained results were compared with acarbose. Compounds 9c, 9d, and 9h were also evaluated for in silico druglikeness properties and ADMET prediction. These studies showed that the title most potent compounds could be exploited as drug candidates.
Collapse
Affiliation(s)
- Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mryam Rastak
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Halimi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mrjan Mollazadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hosein Sayahi
- Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
| | - Zahra Rezaei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Lin J, Liang QM, Ye YN, Xiao D, Lu L, Li MY, Li JP, Zhang YF, Xiong Z, Feng N, Li C. Synthesis and Biological Evaluation of 5-Fluoro-2-Oxindole Derivatives as Potential α-Glucosidase Inhibitors. Front Chem 2022; 10:928295. [PMID: 35815213 PMCID: PMC9261963 DOI: 10.3389/fchem.2022.928295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
α-Glucosidase inhibitors are known to prevent the digestion of carbohydrates and reduce the impact of carbohydrates on blood glucose. To develop novel α-glucosidase inhibitors, a series of 5-fluoro-2-oxindole derivatives (3a ∼ 3v) were synthesized, and their α-glucosidase inhibitory activities were investigated. Biological assessment results showed that most synthesized compounds presented potential inhibition on α-glucosidase. Among them, compounds 3d, 3f, and 3i exhibited much better inhibitory activity with IC50 values of 49.89 ± 1.16 μM, 35.83 ± 0.98 μM, and 56.87 ± 0.42 μM, respectively, which were about 10 ∼ 15 folds higher than acarbose (IC50 = 569.43 ± 43.72 μM). A kinetic mechanism study revealed that compounds 3d, 3f, and 3i inhibited the α-glucosidase in a reversible and mixed manner. Molecular docking was carried out to simulate the affinity between the compound and α-glucosidase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhuang Xiong
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| | - Na Feng
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| | - Chen Li
- *Correspondence: Zhuang Xiong, ; Na Feng, ; Chen Li,
| |
Collapse
|
21
|
Zhang X, Zheng YY, Hu CM, Wu XZ, Lin J, Xiong Z, Zhang K, Xu XT. Synthesis and biological evaluation of coumarin derivatives containing oxime ester as α-glucosidase inhibitors. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Iraji A, Shareghi-Brojeni D, Mojtabavi S, Faramarzi MA, Akbarzadeh T, Saeedi M. Cyanoacetohydrazide linked to 1,2,3-triazole derivatives: a new class of α-glucosidase inhibitors. Sci Rep 2022; 12:8647. [PMID: 35606520 PMCID: PMC9125976 DOI: 10.1038/s41598-022-11771-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractIn this work, a novel series of cyanoacetohydrazide linked to 1,2,3-triazoles (9a–n) were designed and synthesized to be evaluated for their anti-α-glucosidase activity, focusing on the fact that α-glucosidase inhibitors have played a significant role in the management of type 2 diabetes mellitus. All synthesized compounds except 9a exhibited excellent inhibitory potential, with IC50 values ranging from 1.00 ± 0.01 to 271.17 ± 0.30 μM when compared to the standard drug acarbose (IC50 = 754.1 ± 0.5 μM). The kinetic binding study indicated that the most active derivatives 9b (IC50 = 1.50 ± 0.01 μM) and 9e (IC50 = 1.00 ± 0.01 μM) behaved as the uncompetitive inhibitors of α-glucosidase with Ki = 0.43 and 0.24 μM, respectively. Moreover, fluorescence measurements were conducted to show conformational changes of the enzyme after binding of the most potent inhibitor (9e). Calculation of standard enthalpy (ΔHm°) and entropy (ΔSm°) values confirmed the construction of hydrophobic interactions between 9e and the enzyme. Also, docking studies indicated desired interactions with important residues of the enzyme which rationalized the in vitro results.
Collapse
|
23
|
Daud S, Abid OUR, Sardar A, Abdullah S, Shahid W, Ashraf M, Ejaz SA, Saeed A, Shah BA, Niaz B. Exploring ibuprofen derivatives as α-glucosidase and lipoxygenase inhibitors: Cytotoxicity and in silico studies. Arch Pharm (Weinheim) 2022; 355:e2200013. [PMID: 35532320 DOI: 10.1002/ardp.202200013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/19/2022] [Accepted: 04/06/2022] [Indexed: 01/01/2023]
Abstract
This study reports the synthesis of a series of ibuprofen derivatives, including thiosemicarbazides 4a-f, 1,3,4-oxadiazoles 5a-f, 1,3,4-thiadiazoles 6a-f, 1,2,4-triazoles 7a-f, and their S-alkylated derivatives 8a-d. All of the newly synthesized derivatives were analyzed using 1 H NMR, 13 C NMR spectroscopy, and high-resolution mass spectra (electron ionization) spectrometry. These synthetic molecules were examined for their in vitro baking yeast α-glucosidase and soybean 15-lipoxygenase (15-LOX) inhibition and cell viability studies. The results revealed that the compounds N-(3,4-dichlorophenyl)-5-[1-(4-isobutylphenyl)ethyl]-1,3,4-oxadiazol-2-amine 5f (IC50 3.05 ± 1.23 µM) and N-(3-fluorophenyl)-5-[1-(4-isobutylphenyl)ethyl]-1,3,4-oxadiazol-2-amine 5b (IC50 3.12 ± 1.21 µM) were the most potent with respect to the α-glucosidase enzyme while in case of 15-LOX, the compound 4-(2,4-dichlorophenyl)-1-[2-(4-isobutylphenyl)propanoyl]thiosemicarbazide 4e showed potent inhibition with an IC50 value of 55.41 ± 0.41 µM. All these compounds were found least toxic by displaying a blood mononuclear cell viability value of 69.2%-97.8% by the MTT assay compared to the standards when assayed at 0.25 mM concentration. Molecular docking analyses were conducted to evaluate the inhibition profiles of these derivatives against the said enzymes and the data supported the in vitro profiles.
Collapse
Affiliation(s)
- Saima Daud
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | | | - Asma Sardar
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Shawana Abdullah
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Wardah Shahid
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Saeed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Basit Ali Shah
- School of Material Science & Engineering, South China University of Technology, Guangzhou, China
| | - Basit Niaz
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| |
Collapse
|
24
|
Wang Z, Yang L, Xue S, Wang S, Zhu L, Ma T, Liu H, Li R. Molecular docking and dynamic insights on the adsorption effects of soy hull polysaccharides on bile acids. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ziyi Wang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Lina Yang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Sen Xue
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Shengnan Wang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Lijie Zhu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Tao Ma
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Ruren Li
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| |
Collapse
|
25
|
Anti-diabetic potential, crystal structure, molecular docking, DFT, and optical-electrochemical studies of new dimethyl and diethyl carbamoyl-N, N′-disubstituted based thioureas. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Design, synthesis, in vitro and in silico studies of naproxen derivatives as dual lipoxygenase and α-glucosidase inhibitors. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Adinortey CA, Kwarko GB, Koranteng R, Boison D, Obuaba I, Wilson MD, Kwofie SK. Molecular Structure-Based Screening of the Constituents of Calotropis procera Identifies Potential Inhibitors of Diabetes Mellitus Target Alpha Glucosidase. Curr Issues Mol Biol 2022; 44:963-987. [PMID: 35723349 PMCID: PMC8928985 DOI: 10.3390/cimb44020064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is a disorder characterized by higher levels of blood glucose due to impaired insulin mechanisms. Alpha glucosidase is a critical drug target implicated in the mechanisms of diabetes mellitus and its inhibition controls hyperglycemia. Since the existing standard synthetic drugs have therapeutic limitations, it is imperative to identify new potent inhibitors of natural product origin which may slow carbohydrate digestion and absorption via alpha glucosidase. Since plant extracts from Calotropis procera have been extensively used in the treatment of diabetes mellitus, the present study used molecular docking and dynamics simulation techniques to screen its constituents against the receptor alpha glucosidase. Taraxasterol, syriogenin, isorhamnetin-3-O-robinobioside and calotoxin were identified as potential novel lead compounds with plausible binding energies of −40.2, −35.1, −34.3 and −34.3 kJ/mol against alpha glucosidase, respectively. The residues Trp481, Asp518, Leu677, Leu678 and Leu680 were identified as critical for binding and the compounds were predicted as alpha glucosidase inhibitors. Structurally similar compounds with Tanimoto coefficients greater than 0.7 were reported experimentally to be inhibitors of alpha glucosidase or antidiabetic. The structures of the molecules may serve as templates for the design of novel inhibitors and warrant in vitro assaying to corroborate their antidiabetic potential.
Collapse
Affiliation(s)
- Cynthia A. Adinortey
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast CC 033, Ghana;
| | - Gabriel B. Kwarko
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 54, Ghana;
| | - Russell Koranteng
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana;
| | - Daniel Boison
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast CC 033, Ghana; (D.B.); (I.O.)
| | - Issaka Obuaba
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast CC 033, Ghana; (D.B.); (I.O.)
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana;
| | - Samuel K. Kwofie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 54, Ghana;
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana;
- Correspondence: ; Tel.: +233-203-797922
| |
Collapse
|
28
|
Ranđelović S, Bipat R. A Review of Coumarins and Coumarin-Related Compounds for Their Potential Antidiabetic Effect. Clin Med Insights Endocrinol Diabetes 2022; 14:11795514211042023. [PMID: 35173509 PMCID: PMC8842344 DOI: 10.1177/11795514211042023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Background and aims: Worldwide, type 2 diabetes mellitus accounts for a considerable burden of disease, with an estimated global cost of >800 billion USD annually. For this reason, the search for more effective and efficient therapeutic anti-diabetic agents is continuing. Coumarins are naturally derived and synthetic molecules with a wide variety of biological actions. The most common application of these molecules in medicine is for their thrombostatic activity. This study aims to give an overview of the current knowledge about the applicability of these chemical products in the therapeutic strategy against diabetes and its complications. Methods: For this purpose, we searched internet databases for publications and abstracts in English that investigated the effects of coumarins or coumarin-like agents with potential anti-diabetic activity. Results: The result is that a variety of these agents have proven in in vitro, in silico, and simple animal models to possess properties that may reduce the glucose absorption rate in the intestines, increase the level of insulin, increase the cellular uptake of glucose or reduce the gluconeogenesis. In addition, some of these agents also reduced the level of glycation of peptides in diabetic animal models and showed antioxidant properties. Conclusion: In conclusion, we can summarize that coumarins and their related derivatives may be potential antidiabetic agents. Useful formulations with appropriate pharmacokinetic and pharmacodynamic properties must be developed and tested for their efficacy and toxicity in comprehensive animal models before they can enter clinical trials.
Collapse
Affiliation(s)
- Sara Ranđelović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Robbert Bipat
- Department of Physiology, Faculty of Medical Science, Anton de Kom University of Suriname, Paramaribo, Suriname
| |
Collapse
|
29
|
Bakherad Z, Bakherad H, Sepehri S, Faramarzi MA, Mahnam K, Mojtabavi S, Mahdavi M. In silico and in vitro studies of thiosemicarbazone-indole hybrid compounds as potent α-glycosidase inhibitors. Comput Biol Chem 2022; 97:107642. [PMID: 35183819 DOI: 10.1016/j.compbiolchem.2022.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/03/2022]
|
30
|
Design, synthesis, in vitro evaluation, and docking studies on ibuprofen derived 1,3,4-oxadiazole derivatives as dual α-glucosidase and urease inhibitors. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02814-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Design, synthesis, biological evaluations and in silico studies of sulfonate ester derivatives of 2-(2-benzylidenehydrazono)thiazolidin-4-one as potential α-glucosidase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Bhuyan P, Ganguly M, Baruah I, Borgohain G, Hazarika J, Sarma S. Alpha glucosidase inhibitory properties of a few bioactive compounds isolated from black rice bran: combined in vitro and in silico evidence supporting the antidiabetic effect of black rice. RSC Adv 2022; 12:22650-22661. [PMID: 36105966 PMCID: PMC9373002 DOI: 10.1039/d2ra04228b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/30/2022] [Indexed: 12/15/2022] Open
Abstract
Alpha glucosidase inhibitors reduce post prandial hyperglycemia and are the drugs of choice for the treatment of type 2 diabetes. As synthetic α-glucosidase inhibitors often produce undesirable side effects, less toxic inhibitors from natural sources are in high demand.
Collapse
Affiliation(s)
- Pranjal Bhuyan
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Mausumi Ganguly
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Indrani Baruah
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Gargi Borgohain
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Jnyandeep Hazarika
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Shruti Sarma
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| |
Collapse
|
33
|
Zhang JH, Xie HX, Li Y, Wang KM, Song Z, Zhu KK, Fang L, Zhang J, Jiang CS. Design, synthesis and biological evaluation of novel (E)-2-benzylidene-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)hydrazine-1-carboxamide derivatives as α-glucosidase inhibitors. Bioorg Med Chem Lett 2021; 52:128413. [PMID: 34634473 DOI: 10.1016/j.bmcl.2021.128413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022]
Abstract
In this present study, a series of novel (E)-2-benzylidene-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)hydrazine-1-carboxamide derivatives against α-glucosidase were designed and synthesized, and their biological activities were evaluated in vitro and in vivo. Most of the designed analogues exhibited better inhibitory activity than the marketed acarbose, especially the most potent compound 7 with an IC50 value of 9.26 ± 1.84 μM. The direct binding of 7 and 8 with α-glucosidase was confirmed by fluorescence quenching experiments, and the kinetic and molecular docking studies revealed that 7 and 8 inhibited α-glucosidase in a non-competitive manner. Cytotoxicity bioassay indicated compounds 7 and 8 were non-toxic towards LO2 and HepG2 at 100 μM. Furthermore, both compounds were demonstrated to have in vivo hypoglycemic activity by reducing the blood glucose levels in sucrose-treated rats.
Collapse
Affiliation(s)
- Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hong-Xu Xie
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhiling Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
34
|
Nipun TS, Khatib A, Ibrahim Z, Ahmed QU, Redzwan IE, Primaharinastiti R, Saiman MZ, Fairuza R, Widyaningsih TD, AlAjmi MF, Khalifa SAM, El-Seedi HR. GC-MS- and NMR-Based Metabolomics and Molecular Docking Reveal the Potential Alpha-Glucosidase Inhibitors from Psychotria malayana Jack Leaves. Pharmaceuticals (Basel) 2021; 14:978. [PMID: 34681203 PMCID: PMC8541227 DOI: 10.3390/ph14100978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Psychotria malayana Jack leaf, known in Indonesia as "daun salung", is traditionally used for the treatment of diabetes and other diseases. Despite its potential, the phytochemical study related to its anti-diabetic activity is still lacking. Thus, this study aimed to identify putative inhibitors of α-glucosidase, a prominent enzyme contributing to diabetes type 2 in P. malayana leaf extract using gas chromatography-mass spectrometry (GC-MS)- and nuclear magnetic resonance (NMR)-based metabolomics, and to investigate the molecular interaction between those inhibitors and the enzyme through in silico approach. Twenty samples were extracted with different solvent ratios of methanol-water (0, 25, 50, 75, and 100% v/v). All extracts were tested on the alpha-glucosidase inhibition (AGI) assay and analyzed using GC-MS and NMR. Multivariate data analysis through a partial least square (PLS) and orthogonal partial square (OPLS) models were developed in order to correlate the metabolite profile and the bioactivity leading to the annotation of the putative bioactive compounds in the plant extracts. A total of ten putative bioactive compounds were identified and some of them reported in this plant for the first time, namely 1,3,5-benzenetriol (1); palmitic acid (2); cholesta-7,9(11)-diene-3-ol (3); 1-monopalmitin (4); β-tocopherol (5); α-tocopherol (6); 24-epicampesterol (7); stigmast-5-ene (8); 4-hydroxyphenylpyruvic acid (10); and glutamine (11). For the evaluation of the potential binding modes between the inhibitors and protein, the in silico study via molecular docking was performed where the crystal structure of Saccharomyces cerevisiae isomaltase (PDB code: 3A4A) was used. Ten amino acid residues, namely ASP352, HIE351, GLN182, ARG442, ASH215, SER311, ARG213, GLH277, GLN279, and PRO312 established hydrogen bond in the docked complex, as well as hydrophobic interaction of other amino acid residues with the putative compounds. The α-glucosidase inhibitors showed moderate to high binding affinities (-5.5 to -9.4 kcal/mol) towards the active site of the enzymatic protein, where compounds 3, 5, and 8 showed higher binding affinity compared to both quercetin and control ligand.
Collapse
Affiliation(s)
- Tanzina Sharmin Nipun
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | - Irna Elina Redzwan
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | | | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Center for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Raudah Fairuza
- Faculty of Agricultural Technology, Brawijaya University, Malang 65145, Indonesia; (R.F.); (T.D.W.)
| | - Tri Dewanti Widyaningsih
- Faculty of Agricultural Technology, Brawijaya University, Malang 65145, Indonesia; (R.F.); (T.D.W.)
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- Division of Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE 751 24 Uppsala, Sweden;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
35
|
Xie HX, Zhang J, Li Y, Zhang JH, Liu SK, Zhang J, Zheng H, Hao GZ, Zhu KK, Jiang CS. Novel tetrahydrobenzo[b]thiophen-2-yl)urea derivatives as novel α-glucosidase inhibitors: Synthesis, kinetics study, molecular docking, and in vivo anti-hyperglycemic evaluation. Bioorg Chem 2021; 115:105236. [PMID: 34411978 DOI: 10.1016/j.bioorg.2021.105236] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
α-Glucosidase inhibitors, which can inhibit the digestion of carbohydrates into glucose, are one of important groups of anti-type 2 diabetic drugs. In the present study, we report our effort on the discovery and optimization of α-glucosidase inhibitors with tetrahydrobenzo[b]thiophen-2-yl)urea core. Screening of an in-house library revealed a moderated α-glucosidase inhibitors, 5a, and then the following structural optimization was performed to obtain more efficient derivatives. Most of these derivatives showed increased inhibitory activity against α-glucosidase than the parental compound 5a (IC50 of 26.71 ± 1.80 μM) and the positive control acarbose (IC50 of 258.53 ± 1.27 μM). Among them, compounds 8r (IC50 = 0.59 ± 0.02 μM) and 8s (IC50 = 0.65 ± 0.03 μM) were the most potent inhibitors, and showed selectivity over α-amylase. The direct binding of both compounds with α-glucosidase was confirmed by fluorescence quenching experiments. Kinetics study revealed that these compounds were non-competitive inhibitors, which was consistent with the molecular docking results that compounds 8r and 8s showed high preference to bind to the allosteric site instead of the active site of α-glucosidase. In addition, compounds 8r and 8s were not toxic (IC50 > 100 μM) towards LO2 and HepG2 cells. Finally, the in vivo anti-hyperglycaemic activity assay results indicated that compounds 8r could significantly decrease the level of plasma glucose and improve glucose tolerance in SD rats treated with sucrose. The present study provided the tetrahydrobenzo[b]thiophen-2-yl)urea chemotype for developing novel α-glucosidase inhibitors against type 2 diabetes.
Collapse
Affiliation(s)
- Hong-Xu Xie
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jie Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China
| | - Hua Zheng
- Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China
| | - Gui-Zhou Hao
- Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China.
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
36
|
Taha M, Rahim F, Uddin N, Khan IU, Iqbal N, Anouar EH, Salahuddin M, Farooq RK, Gollapalli M, Khan KM, Zafar A. Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors. Int J Biol Macromol 2021; 188:1025-1036. [PMID: 34390751 DOI: 10.1016/j.ijbiomac.2021.08.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 11/27/2022]
Abstract
Indole based thiadiazole derivatives (1-18) were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition. The IC50 values of the synthesized analogues ranging between 0.17 ± 0.05 to 33.10 ± 0.6 μM against (AChE) and 0.30 ± 0.1 to 37.60 ± 0.6 μM against (BChE) enzymes. Among the series compounds 8 (IC50 = 0.17 ± 0.05 μM) (IC50 = 0.30 ± 0.1 μM), 9 (IC50 = 0.30 ± 0.05 μM) (IC50 = 0.60 ± 0.05 μM) and 10 (IC50 = 1.30 ± 0.1 μM) (IC50 = 2.60 ± 0.1) were found to be the most potent analogues bearing para, ortho, and meta-fluoro substitutions on phenyl ring attached to thiadiazole. In addition, all the synthesized scaffolds were characterized by using 1H NMR, 13C NMR spectroscopy, and high-resolution Mass Spectrometry (HR-MS). To apprehend the binding mode of interaction of the most potent synthesized derivatives, a molecular docking study was performed.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Ihsan Ullah Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, AJK, Pakistan
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Gollapalli
- College of Computer Science & Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
37
|
Azimi F, Azizian H, Najafi M, Hassanzadeh F, Sadeghi-Aliabadi H, Ghasemi JB, Ali Faramarzi M, Mojtabavi S, Larijani B, Saghaei L, Mahdavi M. Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: Structure-activity relationship, molecular modeling and kinetic study. Bioorg Chem 2021; 114:105127. [PMID: 34246971 DOI: 10.1016/j.bioorg.2021.105127] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/11/2023]
Abstract
In this study, a new series of quinazolinone-pyrazole hybrids were designed, synthesized and screened for their α-glucosidase inhibitory activity. The results of the in vitro screening indicated that all the molecular hybrids exhibited more inhibitory activity (IC50 values ranging from 60.5 ± 0.3 µM-186.6 ± 20 μM) in comparison to standard acarbose (IC50 = 750.0 ± 10.0 µM). Limited structure-activity relationship suggested that the variation in the inhibitory activities of the compounds affected by different substitutions on phenyl rings of diphenyl pyrazole moiety. The enzyme kinetic studies of the most potent compound 9i revealed that it inhibited α-glucosidase in a competitive mode with a Ki of 56 μM. Molecular docking study was performed to predict the putative binding interaction. As expected, all pharmacophoric moieties used in the initial structure design playing a pivotal role in the interaction with the binding site of the enzyme. In addition, by performing molecular dynamic investigation and MM-GBSA calculation, we investigated the difference in structural perturbation and dynamic behavior that is observed over α-glycosidase in complex with the most active compound and acarbose relative to unbound α-glycosidase enzyme.
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Rational Design of Novel Inhibitors of α-Glucosidase: An Application of Quantitative Structure Activity Relationship and Structure-Based Virtual Screening. Pharmaceuticals (Basel) 2021; 14:ph14050482. [PMID: 34069325 PMCID: PMC8158765 DOI: 10.3390/ph14050482] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
α-Glucosidase is considered a prime drug target for Diabetes Mellitus and its inhibitors are used to delay carbohydrate digestion for the treatment of diabetes mellitus. With the aim to design α-glucosidase inhibitors with novel chemical scaffolds, three folds ligand and structure based virtual screening was applied. Initially linear quantitative structure activity relationship (QSAR) model was developed by a molecular operating environment (MOE) using a training set of thirty-two known inhibitors, which showed good correlation coefficient (r2 = 0.88), low root mean square error (RMSE = 0.23), and cross-validated correlation coefficient r2 (q2 = 0.71 and RMSE = 0.31). The model was validated by predicting the biological activities of the test set which depicted r2 value of 0.82, indicating the robustness of the model. For virtual screening, compounds were retrieved from zinc is not commercial (ZINC) database and screened by molecular docking. The best docked compounds were chosen to assess their pharmacokinetic behavior. Later, the α-glucosidase inhibitory potential of the selected compounds was predicted by their mode of binding interactions. The predicted pharmacokinetic profile, docking scores and protein-ligand interactions revealed that eight compounds preferentially target the catalytic site of α-glucosidase thus exhibit potential α-glucosidase inhibition in silico. The α-glucosidase inhibitory activities of those Hits were predicted by QSAR model, which reflect good inhibitory activities of these compounds. These results serve as a guidelines for the rational drug design and development of potential novel anti-diabetic agents.
Collapse
|
39
|
Lai Y, Han T, Zhan S, Jiang Y, Liu X, Li G. Antiviral Activity of Isoimperatorin Against Influenza A Virus in vitro and its Inhibition of Neuraminidase. Front Pharmacol 2021; 12:657826. [PMID: 33927632 PMCID: PMC8077232 DOI: 10.3389/fphar.2021.657826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Influenza A virus (IAV) poses a severe threat to human health and is a major public health problem worldwide. As global anti-influenza virus drug resistance has increased significantly, there is an urgent need to develop new antiviral drugs, especially drugs from natural products. Isoimperatorin, an active natural furanocoumarin, exhibits a broad range of pharmacologic activities including anticoagulant, analgesic, anti-inflammatory, antibacterial, anti-tumor, and other pharmacological effects, so it has attracted more and more attention. In this study, the antiviral and mechanistic effects of isoimperatorin on influenza A virus in vitro were studied. Isoimperatorin illustrated a broad-spectrum antiviral effect, especially against the A/FM/1/47 (H1N1), A/WSN/33 (H1N1, S31N, amantadine resistant), A/Puerto Rico/8/34 (H1N1), and A/Chicken/Guangdong/1996 (H9N2) virus strains. The experimental results of different administration modes showed that isoimperatorin had the best antiviral activity under the treatment mode. Further time-of-addition experiment results indicated that when isoimperatorin was added at the later stage of the virus replication cycle (6–8 h, 8–10 h), it exhibited an effective antiviral effect, and the virus yield was reduced by 81.4 and 84.6%, respectively. In addition, isoimperatorin had no effect on the expression of the three viral RNAs (mRNA, vRNA, and cRNA). Both the neuraminidase (NA) inhibition assay and CETSA demonstrated that isoimperatorin exerts an inhibitory effect on NA-mediated progeny virus release. The molecular docking experiment simulated the direct interaction between isoimperatorin and NA protein amino acid residues. In summary, isoimperatorin can be used as a potential agent for the prevention and treatment of influenza A virus.
Collapse
Affiliation(s)
- Yanni Lai
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiantian Han
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaofeng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
40
|
Lu M, Zhang H, Wang X, Jiang H, Hu G, Yang FQ. Preparation of phytic acid modified α-Glucosidase/Cu 3(PO 4) 2·3H 2O hybrid nanoflower and its application. Enzyme Microb Technol 2021; 146:109776. [PMID: 33812564 DOI: 10.1016/j.enzmictec.2021.109776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022]
Abstract
A simple, convenient and efficient enzyme immobilization method through phytic acid (PA) modified α-Glucosidase (α-Glu)/Cu3(PO4)2·3H2O hybrid nanoflower was developed. The structural properties of the materials were studied by several characterization techniques. Subsequently, the enzymatic reaction conditions such as the pH value and temperature were optimized, and the enzyme kinetics and inhibition parameters were determined. The PA modified α-Glu/Cu3(PO4)2·3H2O hybrid nanoflower had better enzymatic activity under a wide pH range and high temperature than the free one. After seven successive cycles, the PA modified α-Glu/Cu3(PO4)2·3H2O hybrid nanoflower could still maintain approximately 63.0 % of its initial immobilized enzyme activity. The Michaelis-Menten constant (Km) and the half-maximal inhibitory concentration (IC50) of acarbose were determined as 0.77 mM and 15.01 μM, respectively. In addition, the material was applied to evaluate the inhibitory activity of ten phenolic compounds on α-Glu, and epicatechin gallate, gallocatechin gallate, epigallocatechin gallate and rosmarinic acid showed good inhibitory activity with % of inhibition of (53.42 ± 2.39)%, (37.28 ± 1.32)%, (37.08 ± 0.63)% and (35.53 ± 0.23)%, respectively. These results indicate that the PA modified hybrid nanoflower is an efficient method of α-Glu immobilization.
Collapse
Affiliation(s)
- Min Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Xu Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Hui Jiang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
41
|
Wu P, He H, Ma H, Tu B, Li J, Guo S, Chen S, Cao N, Zheng W, Tang X, Li D, Xu X, Zheng X, Sheng Z, David Hong W, Zhang K. Oleanolic acid indole derivatives as novel α-glucosidase inhibitors: Synthesis, biological evaluation, and mechanistic analysis. Bioorg Chem 2020; 107:104580. [PMID: 33418317 DOI: 10.1016/j.bioorg.2020.104580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022]
Abstract
Research efforts have been directed to the development of oleanolic acid (OA) based α-glucosidase inhibitors and various OA derivatives showed improved anti-α-glucosidase activity. However, the inhibitory effects of indole infused OA derivatives on α-glucosidase is unknown. Herein, we synthesized a series of indole-OA (2a-2o) and -OA methyl ester (3a-3 l) derivatives with various electron withdrawing groups inducted to indole benzene ring and evaluated their anti-α-glucosidase activity. Indole OA derivatives (2a-2o) exhibited superior α-glucosidase inhibitory effects as compared to OA methyl ester derivatives (3a-3l) and OA (with IC50 values of 4.02 μM-5.30 μM v.s. over 10 μM and 5.52 µM, respectively). In addition, mechanistic studies using biochemical (kinetic assay), biophysical (circular dichroism), and computational (docking) methods revealed that OA-indole derivatives (2a and 2f) are mixed type of α-glucosidase inhibitors and their inhibitory effects were attributed to their capacity of forming the ligand-enzyme complex with α-glucosidase enzyme. Findings from this study support that OA indole derivatives are promising α-glucosidase inhibitors as a potential management of diabetes mellitus.
Collapse
Affiliation(s)
- Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China; Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Hao He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China; Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Borong Tu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Jiahao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Shengzhu Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Silin Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Nana Cao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Xiaowen Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Zhaojun Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China.
| | - Weiqian David Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China; Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom.
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China.
| |
Collapse
|
42
|
Nipun TS, Khatib A, Ibrahim Z, Ahmed QU, Redzwan IE, Saiman MZ, Supandi F, Primaharinastiti R, El-Seedi HR. Characterization of α-Glucosidase Inhibitors from Psychotria malayana Jack Leaves Extract Using LC-MS-Based Multivariate Data Analysis and In-Silico Molecular Docking. Molecules 2020; 25:molecules25245885. [PMID: 33322801 PMCID: PMC7763559 DOI: 10.3390/molecules25245885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/15/2023] Open
Abstract
Psychotria malayana Jack has traditionally been used to treat diabetes. Despite its potential, the scientific proof in relation to this plant is still lacking. Thus, the present study aimed to investigate the α-glucosidase inhibitors in P.malayana leaf extracts using a metabolomics approach and to elucidate the ligand–protein interactions through in silico techniques. The plant leaves were extracted with methanol and water at five various ratios (100, 75, 50, 25 and 0% v/v; water–methanol). Each extract was tested for α-glucosidase inhibition, followed by analysis using liquid chromatography tandem to mass spectrometry. The data were further subjected to multivariate data analysis by means of an orthogonal partial least square in order to correlate the chemical profile and the bioactivity. The loading plots revealed that the m/z signals correspond to the activity of α-glucosidase inhibitors, which led to the identification of three putative bioactive compounds, namely 5′-hydroxymethyl-1′-(1, 2, 3, 9-tetrahydro-pyrrolo (2, 1-b) quinazolin-1-yl)-heptan-1′-one (1), α-terpinyl-β-glucoside (2), and machaeridiol-A (3). Molecular docking of the identified inhibitors was performed using Auto Dock Vina software against the crystal structure of Saccharomyces cerevisiae isomaltase (Protein Data Bank code: 3A4A). Four hydrogen bonds were detected in the docked complex, involving several residues, namely ASP352, ARG213, ARG442, GLU277, GLN279, HIE280, and GLU411. Compound 1, 2, and 3 showed binding affinity values of −8.3, −7.6, and −10.0 kcal/mol, respectively, which indicate the good binding ability of the compounds towards the enzyme when compared to that of quercetin, a known α-glucosidase inhibitor. The three identified compounds that showed potential binding affinity towards the enzymatic protein in molecular docking interactions could be the bioactive compounds associated with the traditional use of this plant.
Collapse
Affiliation(s)
- Tanzina Sharmin Nipun
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia;
- Correspondence: (A.K.); (M.Z.S.)
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | - Irna Elina Redzwan
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Center for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (A.K.); (M.Z.S.)
| | - Farahaniza Supandi
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | | | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 23 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
43
|
Bhuyan P, Sarma S, Ganguly M, Hazarika J, Mahanta R. Glutamine: Fructose-6-phosphate aminotransferase (GFAT) inhibitory activity of the anthocyanins present in black rice bran: a probable mechanism for the anti diabetic effect. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Tafesse TB, Bule MH, Khoobi M, Faramarzi MA, Abdollahi M, Amini M. Coumarin-based Scaffold as α-glucosidase Inhibitory Activity: Implication for the Development of Potent Antidiabetic Agents. Mini Rev Med Chem 2020; 20:134-151. [PMID: 31553294 DOI: 10.2174/1389557519666190925162536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/15/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Delaying the absorption of glucose through α-glucosidase enzyme inhibition is one of the therapeutic approaches in the management of Type 2 diabetes, which can reduce the incidence of postprandial hyperglycemia. The existence of chronic postprandial hyperglycemia impaired the endogenous antioxidant defense by inducing oxidative stress-induced pancreatic β-cell destruction through uncontrolled generation of free radicals such as ROS, which in turn, leads to various macrovascular and microvascular complications. The currently available α -glucosidase inhibitors, for instance, acarbose, have some side effects such as hypoglycemia at higher doses, liver problems, meteorism, diarrhea, and lactic acidosis. Therefore, there is an urgent need to discover and develop potential α-glucosidase inhibitors. OBJECTIVE Based on suchmotifs, researchers are intrigued to search for the best scaffold that displays various biological activities. Among them, coumarin scaffold has attracted great attention. The compound and its derivatives can be isolated from various natural products and/or synthesized for the development of novel α-glucosidase inhibitors. RESULTS This study focused on coumarin and its derivatives as well as on their application as potent antidiabetic agents and has also concentrated on the structure-activity relationship. CONCLUSION This review describes the applications of coumarin-containing derivatives as α - glucosidase inhibitors based on published reports which will be useful for innovative approaches in the search for novel coumarin-based antidiabetic drugs with less toxicity and more potency.
Collapse
Affiliation(s)
- Tadesse Bekele Tafesse
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences-International Campus (IC-TUMS), Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,School of Pharmacy, College of Health & Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Mohammed Hussen Bule
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences-International Campus (IC-TUMS), Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center and The Institute of Pharmaceutical Sciences (TIPS), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Taha M, Uddin N, Ali M, Anouar EH, Rahim F, Khan G, Farooq RK, Gollapalli M, Iqbal N, Farooq M, Khan KM. Inhibition potential of phenyl linked benzimidazole-triazolothiadiazole modular hybrids against β-glucuronidase and their interactions thereof. Int J Biol Macromol 2020; 161:355-363. [DOI: 10.1016/j.ijbiomac.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
|
46
|
Biological evaluation and pharmacokinetic profiling of a coumarin-benzothiazole hybrid as a new scaffold for human gliomas. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Assessing the biological potential of new symmetrical ferrocene based bisthiourea analogues. Bioorg Chem 2020; 106:104180. [PMID: 33276979 DOI: 10.1016/j.bioorg.2020.104180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 01/10/2023]
Abstract
In the present work synthesis and characterization of five new bisferrocenyl bisthiourea analogues (G2M, S2M, G3F, G4F and T2M) is reported. UV-Visible and electrochemical studies were performed in order to have optical (absorption maximum, Molar absorption coefficient and optical band gap) and electrochemical parameters (Oxidation/reduction potentials and nature of the electrochemical process) of the compounds. In vitro various biological studies such as antibacterial, antifungal, anti-oxidant and antidiabetic activities were carried out to have comparative overview of the phermacochemical strength of the newly synthesized compounds. Similarly, theoretical analysis was accomplished utilizing density functional theory calculations. DFT/B3LYP (6-31G d, p) technique was used. With a view to explore the structure activity relationship (SAR) of the compounds theoretical docking analysis (against α-amylase, α-glucosidase) was also performed to have pictorial view and understanding of the actual interactions responsible for the activity. S2M displayed best antibacterial activity. Similarly, Antifungal and antidiabetic activities showed G3F as a best candidate, whereas T2M proved to be the best antioxidant agent.
Collapse
|
48
|
Solangi M, Kanwal, Mohammed Khan K, Saleem F, Hameed S, Iqbal J, Shafique Z, Qureshi U, Ul-Haq Z, Taha M, Perveen S. Indole acrylonitriles as potential anti-hyperglycemic agents: Synthesis, α-glucosidase inhibitory activity and molecular docking studies. Bioorg Med Chem 2020; 28:115605. [PMID: 33065441 DOI: 10.1016/j.bmc.2020.115605] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023]
Abstract
One of the most prevailing metabolic disorder diabetes mellitus has become the global health issue that has to be addressed and cured. Different marketed drugs have been made available for the treatment of diabetes but there is still a need of introducing new therapeutic agents that are economical and have lesser or no side effects. The current study deals with the synthesis of indole acrylonitriles (3-23) and the evaluation of these compounds for their potential for α-glucosidase inhibition. The structures of these synthetic molecules were deduced by using different spectroscopic techniques. Acarbose (IC50 = 2.91 ± 0.02 μM) was used as standard in this study and the synthetic molecules (3-23) have shown promising α-glucosidase inhibitory activity. Compounds 4, 8, 10, 11, 14, 18, and 21 displayed superior inhibition of α-glucosidase enzyme in the range of (IC50 = 0.53 ± 0.01-1.36 ± 0.04 μM) as compared to the standard acarbose. Compound 10 (IC50 = 0.53 ± 0.01 μM) was the most effective inhibitor of this library and displayed many folds enhanced activity in contrast to the standard. Molecular docking of synthetic compounds was performed to verify the binding interactions of ligand with the active site of enzyme. This study had identified a number of potential α-glucosidase inhibitors that can be used for further research to identify a potent therapeutic agent against diabetes.
Collapse
Affiliation(s)
- Mehwish Solangi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Institute of Marine Biotechnology, Universiti Malaysia Terengannu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 31441, Dammam, Saudi Arabia.
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Zainab Shafique
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Urooj Qureshi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 31441, Dammam, Saudi Arabia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| |
Collapse
|
49
|
Menteşe E, Baltaş N, Emirik M. Synthesis, α-glucosidase inhibition and in silico studies of some 4-(5-fluoro-2-substituted-1H-benzimidazol-6-yl)morpholine derivatives. Bioorg Chem 2020; 101:104002. [DOI: 10.1016/j.bioorg.2020.104002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/13/2023]
|
50
|
Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int J Mol Sci 2020; 21:E4618. [PMID: 32610556 PMCID: PMC7370201 DOI: 10.3390/ijms21134618] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Privileged structures have been widely used as an effective template for the research and discovery of high value chemicals. Coumarin is a simple scaffold widespread in Nature and it can be found in a considerable number of plants as well as in some fungi and bacteria. In the last years, these natural compounds have been gaining an increasing attention from the scientific community for their wide range of biological activities, mainly due to their ability to interact with diverse enzymes and receptors in living organisms. In addition, coumarin nucleus has proved to be easily synthetized and decorated, giving the possibility of designing new coumarin-based compounds and investigating their potential in the treatment of various diseases. The versatility of coumarin scaffold finds applications not only in medicinal chemistry but also in the agrochemical field as well as in the cosmetic and fragrances industry. This review is intended to be a critical overview on coumarins, comprehensive of natural sources, metabolites, biological evaluations and synthetic approaches.
Collapse
Affiliation(s)
- Francesca Annunziata
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Cecilia Pinna
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| | - Lucia Tamborini
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| |
Collapse
|