1
|
Han N, Wen Y, Liu Z, Zhai J, Li S, Yin J. Advances in the roles and mechanisms of lignans against Alzheimer’s disease. Front Pharmacol 2022; 13:960112. [PMID: 36313287 PMCID: PMC9596774 DOI: 10.3389/fphar.2022.960112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a serious neurodegenerative disease associated with the memory and cognitive impairment. The occurrence of AD is due to the accumulation of amyloid β-protein (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain tissue as well as the hyperphosphorylation of Tau protein in neurons, doing harm to the human health and even leading people to death. The development of neuroprotective drugs with small side effects and good efficacy is focused by scientists all over the world. Natural drugs extracted from herbs or plants have become the preferred resources for new candidate drugs. Lignans were reported to effectively protect nerve cells and alleviate memory impairment, suggesting that they might be a prosperous class of compounds in treating AD. Objective: To explore the roles and mechanisms of lignans in the treatment of neurological diseases, providing proofs for the development of lignans as novel anti-AD drugs. Methods: Relevant literature was extracted and retrieved from the databases including China National Knowledge Infrastructure (CNKI), Elsevier, Science Direct, PubMed, SpringerLink, and Web of Science, taking lignan, anti-inflammatory, antioxidant, apoptosis, nerve regeneration, nerve protection as keywords. The functions and mechanisms of lignans against AD were summerized. Results: Lignans were found to have the effects of regulating vascular disorders, anti-infection, anti-inflammation, anti-oxidation, anti-apoptosis, antagonizing NMDA receptor, suppressing AChE activity, improving gut microbiota, so as to strengthening nerve protection. Among them, dibenzocyclooctene lignans were most widely reported and might be the most prosperous category in the develpment of anti-AD drugs. Conclusion: Lignans displayed versatile roles and mechanisms in preventing the progression of AD in in vitro and in vivo models, supplying potential candidates for the treatment of nerrodegenerative diseases.
Collapse
|
2
|
Du NN, Bai M, Zhang X, Zhou L, Huang XX, Song SJ. Coumarins from Sarcandra glabra (Thunb.) Nakai and Acetylcholinesterase Inhibiting Activity. Chem Biodivers 2022; 19:e202200558. [PMID: 36036517 DOI: 10.1002/cbdv.202200558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022]
Abstract
Nine coumarins including a pair of new enantiomers ( 1a / 1b ) and seven known compounds ( 2-8 ) were isolated from Sarcandra glabra (Thunb.) Nakai. Among them, compounds 1a and 1b were naturally occurring coumarin-phenylpropanoid conjugate enantiomers. Their structures were identified by NMR and ECD calculations. Compounds 1-8 were tested for acetylcholinesterase (AchE) inhibiting activity. The results of the enzymology experiment showed that compound 3 demonstrated obvious AchE inhibitory activity which showed an IC 50 value of 1.982 ± 0.003 μ M, and the binding sites were predicted by molecular docking.
Collapse
Affiliation(s)
- Ning-Ning Du
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, wenhua road, No 103, Shenyang, CHINA
| | - Ming Bai
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, wenhua road, No 103, Shenyang, CHINA
| | - Xin Zhang
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, wenhua road, No 103, Shenyang, CHINA
| | - Le Zhou
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, wenhua road, No 103, Shenyang, CHINA
| | - Xiao-Xiao Huang
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, wenhua road, No 103, Shenyang, CHINA
| | - Shao-Jiang Song
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, wenhua road, No 103, 110016, Shenyang, CHINA
| |
Collapse
|
3
|
Xin BS, Zhao P, Qin SY, Yao GD, Huang XX, Song SJ. Lignans with neuroprotective activity from the fruits of Crataegus pinnatifida. Fitoterapia 2022; 160:105216. [DOI: 10.1016/j.fitote.2022.105216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
|
4
|
de Sousa NF, Scotti L, de Moura ÉP, dos Santos Maia M, Soares Rodrigues GC, de Medeiros HIR, Lopes SM, Scotti MT. Computer Aided Drug Design Methodologies with Natural Products in the Drug Research Against Alzheimer's Disease. Curr Neuropharmacol 2022; 20:857-885. [PMID: 34636299 PMCID: PMC9881095 DOI: 10.2174/1570159x19666211005145952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Natural products are compounds isolated from plants that provide a variety of lead structures for the development of new drugs by the pharmaceutical industry. The interest in these substances increases because of their beneficial effects on human health. Alzheimer's disease (AD) affects occur in about 80% of individuals aged 65 years. AD, the most common cause of dementia in elderly people, is characterized by progressive neurodegenerative alterations, as decrease of cholinergic impulse, increased toxic effects caused by reactive oxygen species and the inflammatory process that the amyloid plaque participates. In silico studies is relevant in the process of drug discovery; through technological advances in the areas of structural characterization of molecules, computational science and molecular biology have contributed to the planning of new drugs used against neurodegenerative diseases. Considering the social impairment caused by an increased incidence of disease and that there is no chemotherapy treatment effective against AD; several compounds are studied. In the researches for effective neuroprotectants as potential treatments for Alzheimer's disease, natural products have been extensively studied in various AD models. This study aims to carry out a literature review with articles that address the in silico studies of natural products aimed at potential drugs against Alzheimer's disease (AD) in the period from 2015 to 2021.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil;,Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil,Address correspondence to this author at the Health Sciences Center, Chemioinformatic Laboratory, Federal University of Paraíba, Paraíba, Brazil; E-mail:
| | - Érika Paiva de Moura
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Mayara dos Santos Maia
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Herbert Igor Rodrigues de Medeiros
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Simone Mendes Lopes
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Marcus Tullius Scotti
- Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| |
Collapse
|
5
|
Yu JH, Yu ZP, Capon RJ, Zhang H. Natural Enantiomers: Occurrence, Biogenesis and Biological Properties. Molecules 2022; 27:1279. [PMID: 35209066 PMCID: PMC8880303 DOI: 10.3390/molecules27041279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
The knowledge that natural products (NPs) are potent and selective modulators of important biomacromolecules (e.g., DNA and proteins) has inspired some of the world's most successful pharmaceuticals and agrochemicals. Notwithstanding these successes and despite a growing number of reports on naturally occurring pairs of enantiomers, this area of NP science still remains largely unexplored, consistent with the adage "If you don't seek, you don't find". Statistically, a rapidly growing number of enantiomeric NPs have been reported in the last several years. The current review provides a comprehensive overview of recent records on natural enantiomers, with the aim of advancing awareness and providing a better understanding of the chemical diversity and biogenetic context, as well as the biological properties and therapeutic (drug discovery) potential, of enantiomeric NPs.
Collapse
Affiliation(s)
- Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Zhi-Pu Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hua Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Wang YX, Duan ZK, Shi WY, Chang Y, Huang XX, Song SJ. A new dilignan from the twigs and leaves of Archidendron clypearia. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:609-614. [PMID: 32644854 DOI: 10.1080/10286020.2020.1791097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Previous work has shown that the lignans from the twigs and leaves of Archidendron clypearia (Jack) I.C.N. possess anti-β-amyloid aggregation activity. Here we report a new dilignan, archidendronin A (1), along with one known sesquilignan (2). Their structures were determined by extensive spectroscopic methods, including UV, HRESIMS, 1 D and 2 D NMR data. The inhibitory activity on Aβ1-42 aggregation was screened by ThT assay with curcumin as the positive control, and compounds 1 and 2 showed inhibition rate of 60.0% and 64.4% at 20 μM, respectively.[Formula: see text].
Collapse
Affiliation(s)
- Yu-Xi Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wan-Yi Shi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Chang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
7
|
Wang YX, Han FY, Duan ZK, Chang Y, Lin B, Wang XB, Huang XX, Yao GD, Song SJ. Phenolics from Archidendron clypearia (Jack) I.C.Nielsen protect SH-SY5Y cells against H 2O 2-induced oxidative stress. PHYTOCHEMISTRY 2020; 176:112414. [PMID: 32446133 DOI: 10.1016/j.phytochem.2020.112414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Five undescribed phenolics named pithecellobiumin C-G, along with thirteen known ones were isolated from the twigs and leaves of Archidendron clypearia (Jack) I.C.Nielsen. Their structures were elucidated based on comprehensive spectroscopic analyses, combined with computer-assisted structure elucidation software (ACD/Structure Elucidator) and gauge-independent atomic orbitals (GIAO) NMR chemical shift calculations. The absolute configurations were determined by comparison of experimental and calculated specific rotation and ECD curves. These compounds were tested for their neuroprotective activities against H2O2-induced injury in human neuroblastoma SH-SY5Y cells by MTT assay. Pithecellobiumin C-E exhibited noticeable neuroprotective effect. Further pharmacological study demonstrated that they could prevent cell death through inhibiting the apoptosis induction. Flow cytometry assays also proved that these compounds could attenuate reactive oxygen species (ROS) level and mitochondrial dysfunction in SH-SY5Y cells.
Collapse
Affiliation(s)
- Yu-Xi Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China
| | - Feng-Ying Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China
| | - Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China
| | - Ye Chang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiao-Bo Wang
- Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China; Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, People's Republic of China.
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China.
| |
Collapse
|
8
|
Wang YX, Lin B, Zhou L, Yan ZY, Zhang H, Huang XX, Song SJ. Anti- β-amyloid aggregation activity of enantiomeric furolactone-type lignans from Archidendron clypearia (Jack) I.C.N. Nat Prod Res 2020; 34:456-463. [PMID: 30445834 DOI: 10.1080/14786419.2018.1488705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The phytochemical investigation on the twigs and leaves of Archidendron clypearia (Jack) I.C.N. led to the isolation of three pairs of furolactone-type lignans enantiomers, including a pair of new compounds (1R,5S,6S)-Kachiranol (1a) and (1S,5R,6R)-Kachiranol (1b) and four known compounds (2a/2b and 3a/3b). Separation of the furolactone-type lignans enantiomeric mixtures was achieved using chiral HPLC for the first time. Their structures were determined by spectroscopic analysis and comparison between the experimental and calculated electronic circular dichroism (ECD) spectra. All optical pure compounds were evaluated for their inhibitory effects on β-amyloid aggregation by ThT assay. Among them, the inhibitory activity of the compound 1b (71.1%) was higher than the positive control (61.0%) and other compounds. In addition, molecular dynamics and molecular docking were employed to explore the binding relationship between the ligand and the receptor.
Collapse
Affiliation(s)
- Yu-Xi Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Le Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zhi-Yang Yan
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Han Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xiao-Xiao Huang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Postdoctoral Station of Chinese People's Liberation Army 210 Hospital, Dalian, People's Republic of China
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
9
|
Lee SR, Park YJ, Han YB, Lee JC, Lee S, Park HJ, Lee HJ, Kim KH. Isoamericanoic Acid B from Acer tegmentosum as a Potential Phytoestrogen. Nutrients 2018; 10:nu10121915. [PMID: 30518114 PMCID: PMC6315828 DOI: 10.3390/nu10121915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022] Open
Abstract
Phytoestrogens derived from plants have attracted the attention of the general public and the medical community due to their potentially beneficial role in relieving menopausal symptoms. The deciduous tree Acer tegmentosum Maxim (Aceraceae) has long been utilized in Korean folk medicine to alleviate many physiological disorders, including abscesses, surgical bleeding, and liver diseases. In order to explore structurally and/or biologically new constituents from Korean medicinal plants, a comprehensive phytochemical study was carried out on the bark of A. tegmentosum. One new phenolic compound with a 1,4-benzodioxane scaffold, isoamericanoic acid B (1), as well as with nine known phenolic compounds (2–10), were successfully isolated from the aqueous extracts of the bark of A. tegmentosum. A detailed analysis using 1D and 2D NMR spectroscopy, electronic circular dichroism (ECD) spectral data, and LC/MS afforded the unambiguous structural determination of all isolated compounds, including the new compound 1. In addition, compounds 2, 4, 5, and 9 were isolated and identified from the bark of A. tegmentosum for the first time. All isolated compounds were tested for their estrogenic activities using an MCF-7 BUS cell proliferation assay, which revealed that compounds 1, 2, and 10 showed moderate estrogenic activity. To study the mechanism of this estrogenic effect, a docking simulation of compound 1, which showed the best estrogenic activity, was conducted with estrogen receptor (ER) -α and ER-β, which revealed that it interacts with the key residues of ER-α and ER-β. In addition, compound 1 had slightly higher affinity for ER-β than ER-α in the calculated Gibbs free energy for 1:ER-α and 1:ER-β. Thus, the present experimental evidence demonstrated that active compound 1 from A. tegmentosum could be a promising phytoestrogen for the development of natural estrogen supplements.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Yu Bin Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Joo Chan Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Seongnam 13120, Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
10
|
Liu Q, Wang J, Lin B, Cheng ZY, Bai M, Shi S, Huang XX, Song SJ. Phenylpropanoids and lignans from Prunus tomentosa seeds as efficient β-amyloid (Aβ) aggregation inhibitors. Bioorg Chem 2018; 84:269-275. [PMID: 30529844 DOI: 10.1016/j.bioorg.2018.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/17/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022]
Abstract
Alzheimer's disease (AD) is characterized by the progressive accumulation of extracellular β-amyloid (Aβ) aggregates. Recently, lignans and phenylpropanoids are attracting increasing attention to discovery useful agents of inhibition on Aβ aggregation. In the present study, to develop potential agents for slowing the progression of AD, Prunus tomentosa seeds were selected as a raw material for bioactive compounds, which led to the separation of two pairs of new enantiomeric lignans and phenylpropanoids using chiral HPLC. The planar structures of these compounds were elucidated by spectroscopic data analyses. And their absolute configurations were determined by comparing of experimental and calculated electronic circular dichroism (ECD). The biosynthesis pathway was also discussed. Additionally, the inhibitory activity on Aβ aggregation of all optical pure compounds was tested by thioflavin T (ThT) assay. The isolates (1a, 1b, 2a and 2b) showed more potent inhibitory activity than positive control curcumin with inhibitory rate of 73.89 ± 3.41% 78.69 ± 1.50%, 63.25 ± 2.68%, and 67.13 ± 0.90% at 20 μM, respectively. More importantly, the inhibition profiles were explained by molecular dynamics and docking simulation studies.
Collapse
Affiliation(s)
- Qingbo Liu
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhuo-Yang Cheng
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ming Bai
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shaochun Shi
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Chinese People's Liberation Army 210 Hospital, Dalian 116021, People's Republic of China
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
11
|
Yan ZY, Chen JJ, Duan ZK, Yao GD, Lin B, Wang XB, Huang XX, Song SJ. Racemic phenylpropanoids from the root barks of Ailanthus altissima (Mill.) Swingle with cytotoxicity against hepatoma cells. Fitoterapia 2018; 130:234-240. [DOI: 10.1016/j.fitote.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
12
|
Liu SF, Lin B, Xi YF, Zhou L, Lou LL, Huang XX, Wang XB, Song SJ. Bioactive spiropyrrolizidine oxindole alkaloid enantiomers from Isatis indigotica Fortune. Org Biomol Chem 2018; 16:9430-9439. [DOI: 10.1039/c8ob02046a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four pairs of new alkaloids, isatindigotindoline A–D, were isolated from Isatis indigotica, and were evaluated for their anti-Aβ1–42 aggregation effects.
Collapse
Affiliation(s)
- Si-Fan Liu
- School of Traditional Chinese Materia Medica
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Bin Lin
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- China
| | - Yu-Fei Xi
- School of Traditional Chinese Materia Medica
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Le Zhou
- School of Traditional Chinese Materia Medica
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Li-Li Lou
- School of Traditional Chinese Materia Medica
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Xiao-Xiao Huang
- School of Traditional Chinese Materia Medica
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Xiao-Bo Wang
- Chinese People's Liberation Army 210 Hospital
- Dalian 116021
- People's Republic of China
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- Shenyang Pharmaceutical University
- Shenyang 110016
| |
Collapse
|