1
|
Tian F, Zhang S, Wang M, Yan Y, Cao Y, Wang Y, Fan K, Wang H, Zhang J, Zhang XD. Clinical Grade Fibroin Sutures with Bioactive Gold Clusters Enhance Surgical Wound Healing via Inflammation Modulation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39359176 DOI: 10.1021/acsami.4c10451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Silk sutures are common in surgeries, and silk-based textiles are widely used in clinical medicine on account of their great mechanical properties and biodegradability. However, due to the lack of biocatalytic activity, silk sutures show unsatisfactory anti-inflammatory properties and healing speed. To address this constraint, we construct clinical grade bioactive gold cluster-sutures through a heterojunction. The antioxidant activity of bioactive gold cluster-sutures is ∼160 times more than that of clinical sutures. Meanwhile, the suture displays superb reactive oxygen species (ROS) scavenging, superoxide dismutase-like (SOD-like, 5 times more than the silk suture), and catalase-like (CAT-like) activities. The clusters assemble on the surface of silk through hydrogen bonding, leading to a durable catalytic and structural stability for 15 months without decay. Subsequently, the suture significantly accelerates wound healing by exerting excellent anti-inflammatory effects, improving neovascularization and collagen deposition. Clinical grade bioactive gold clusters with high bioactivity, stability, and biocompatibility hold promise for clinical translation and pave the way for other implanted biomaterials from wound healing to intelligent textiles.
Collapse
Affiliation(s)
- Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shu Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Miaoyu Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Yuxing Yan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yiyao Cao
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jianning Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Allkja J, Roudbary M, Alves AMV, Černáková L, Rodrigues CF. Biomaterials with antifungal strategies to fight oral infections. Crit Rev Biotechnol 2024; 44:1151-1163. [PMID: 37587010 DOI: 10.1080/07388551.2023.2236784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
Oral fungal infections pose a threat to human health and increase the economic burden of oral diseases by prolonging and complicating treatment. A cost-effective strategy is to try to prevent these infections from happening in the first place. With this purpose, biomaterials with antifungal properties are a crucial element to overcome fungal infections in the oral cavity. In this review, we go through different kinds of biomaterials and coatings that can be used to functionalize them. We also review their potential as a therapeutic approach in addition to prophylaxis, by going through traditional and alternative antifungal compounds, e.g., essential oils, that could be incorporated in them, to enhance their efficacy against fungal pathogens. We aim to highlight the potential of these technologies and propose questions that need to be addressed in prospective research. Finally, we intend to concatenate the key aspects and technologies on the use of biomaterials in oral health, to create an easy to find summary of the current state-of-the-art for researchers in the field.
Collapse
Affiliation(s)
- Jontana Allkja
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Oral Sciences Research Group, Glasgow Dental School, University of Glasgow, Glasgow, UK
| | - Maryam Roudbary
- Sydney Infectious Disease Institute, University of Sydney, Sydney, Australia
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Anelise Maria Vasconcelos Alves
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Célia Fortuna Rodrigues
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- 1H-TOXRUN - One Health Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário - CESPU, Gandra PRD, Portugal
| |
Collapse
|
3
|
Giorgi L, Ponti V, Boriani F, Margara A. Nonabsorbable Barbed Sutures for Diastasis Recti. A Useful Device with Unexpected Risk: Two Case Reports. Arch Plast Surg 2024; 51:474-479. [PMID: 39346000 PMCID: PMC11436327 DOI: 10.1055/a-2181-8382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2024] Open
Abstract
The introduction of nonabsorbable barbed sutures in plastic surgery has allowed the achievement of significant results in terms of efficacy and short- and long-term outcomes. However, a nonabsorbable material with no antibacterial coating could act as a substrate for subclinical bacterial colonization and thereby determine recurrent subacute and chronic infective-inflammatory processes. The authors report a clinical experience of subacute infectious complications after two cases of diastasis recti surgical correction. The authors present a two-case series in which a nonabsorbable barbed suture was used for the repair of diastasis recti. The postoperative course was complicated by surgical site infection. The origin of the infectious process was clearly localized in the fascial suture used for diastasis correction. The suture was colonized by bacteria resulting in the formation of multiple granulomas of the abdominal wall a few months postoperatively. In both the reported cases, the patients partially responded to the antibiotic targeted therapy and reoperation was required. The microbiological analyses confirmed the colonization of sutures by Staphylococcus aureus . Barbed nonabsorbable sutures should be avoided for diastasis recti surgical correction to minimize the risk of infectious suture-related complications. The paper's main novel aspect is that this is the first clinical report describing infectious complications after surgical correction of diastasis recti with barbed polypropylene sutures. The risk of microbiological subclinical colonization of polypropylene suture untreated with antibacterial coating, therefore, should be taken into account.
Collapse
Affiliation(s)
- Lorenzo Giorgi
- Division of General Surgery, Department of Surgery, Humanitas S. Pio X Hospital, Milan, IT, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Veronica Ponti
- Plastic Surgery Service, Humanitas S. Pio X Hospital, Milan, IT, Italy
| | - Filippo Boriani
- Department of Plastic Surgery and Microsurgery, University Hospital of Cagliari, University of Cagliari, Monserrato, CA, Italy
| | - Andrea Margara
- Plastic Surgery Service, Humanitas S. Pio X Hospital, Milan, IT, Italy
| |
Collapse
|
4
|
Zhang J, Li X, Cheng M, Wan K, Yan S, Peng W, Duan G, Wu Y, Wen L. MoO 3-X nanodots coated suture for combating surgical site infection via antibacterial and anti-inflammatory properties. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102757. [PMID: 38889854 DOI: 10.1016/j.nano.2024.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Surgical site infection (SSI) significantly affects patient recovery time, health outcomes and quality of life which is closely associated with the use of implants or mesh. Sutures are the most frequently used implants that play a significant role in the development of SSI. Studies have demonstrated that the administration of effective bactericidal and anti-inflammatory treatments can significantly decrease the incidence of SSI. To address this concern, a versatile suture was engineered by coating MoO3-X nanodots in this study. The incorporation of MoO3-X nanodots endowed the suture with desirable antibacterial and anti-inflammatory properties that were evaluated in in vitro and in vivo experiments. The results showed its remarkable ability to facilitate wound healing and prevent SSI through its dual action of combating bacterial infection and reducing inflammation. These findings highlight the promising potential of this multifunctional surgical suture as a versatile tool to promote better outcomes in surgical procedures.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Xuexiao Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
| | - Ming Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Kaichen Wan
- Department of osteology, The First Affiliated Hospital of Soochow University, Jiangsu 215000, China
| | - Shangcheng Yan
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Wei Peng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China.
| | - Yongyou Wu
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu 215004, China.
| | - Ling Wen
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Medical Centre of Soochow University, Jiangsu 215000, China.
| |
Collapse
|
5
|
Cai J, Zhang M, Peng J, Wei Y, Zhu W, Guo K, Gao M, Wang H, Wang H, Wang L. Peptide-AIE Nanofibers Functionalized Sutures with Antimicrobial Activity and Subcutaneous Traceability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400531. [PMID: 38716716 DOI: 10.1002/adma.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Indexed: 05/18/2024]
Abstract
As one of the most widely used medical devices, sutures face challenges related to surgical site infections (SSIs) and lack of subcutaneous traceability. In the present study, a facile and effective approach using peptide-AIE nanofibers (NFs-K18) to create fluorescent-traceable antimicrobial sutures, which have been applied to four commercially available sutures is developed. The functionalized sutures of PGAS-NFs-K18 and PGLAS-NFs-K18 exhibit fluorescence with excellent penetration from 4 mm chicken breasts. They also demonstrate remarkable stability after 24 h of white light illumination and threading through chicken breasts 10 times. These sutures efficiently generate ROS, resulting in significant suppression of four clinical bacteria, with the highest antimicrobial rate of ≈100%. Moreover, the sutures exhibit favorable hemocompatibility and biocompatibility. In vivo experiments demonstrate that the optimized PGLAS-NFs-K18 suture displays potent antimicrobial activity against MRSA, effectively inhibiting inflammation and promoting tissue healing in both skin wound and abdominal wall wound models, outperforming the commercially available Coated VICRYL Plus Antibacterial suture. Importantly, PGLAS-NFs-K18 exhibits sensitive subcutaneous traceability, allowing for accurate in situ monitoring of its degradation. It is believed that this straightforward strategy offers a new pathway for inhibiting SSIs and monitoring the status of sutures.
Collapse
Affiliation(s)
- Junyi Cai
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Meng Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Jingqi Peng
- The Third General Surgery Department, Xinjiang Uygur Autonomous Region Traditional Chinese Medicine Research Institute The Fourth Affiliated Hospital of Xinjiang Medical University), Urumqi, 830011, China
| | - Yingqi Wei
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Henan Provincial Key Laboratory of Radiation Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenchao Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Kunzhong Guo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Hui Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Huaiming Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
6
|
Timothy UJ, Mamudu U, Solomon MM, Umoren PS, Igwe IO, Anyanwu PI, Aharanwa BC, Lim RC, Uchechukwu TO, Umoren SA. In-situ biosynthesized plant exudate gums‑silver nanocomposites as corrosion inhibitors for mild steel in hydrochloric acid medium. Int J Biol Macromol 2024; 269:132065. [PMID: 38714280 DOI: 10.1016/j.ijbiomac.2024.132065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Natural gums due to availability, multifunctionality, and nontoxicity are multifaceted in application. In corrosion inhibition applications, their performance, in unmodified form is unsatisfactory because of high hydration rate, solubility issues, algal and microbial contamination, as well as thermal instability. This work attempts to enhance the inhibitive performance of Berlinia grandiflora (BEG) and cashew (CEG) exudate gums through various modification approaches. The potential of biogenic BEG and CEG gums-silver (Ag) nanocomposites (NCPs) for corrosion inhibition of mild steel in 1 M HCl is studied. The nanocomposites were characterized using the FTIR, UV-vis, and TEM techniques. The corrosion studies through the gravimetric and electrochemical (PDP, EIS, LPR, and EFM) analyses reveal moderate inhibition performance by the nanocomposites. Furthermore, the PDP results reveal that both inhibitors are mixed-type with maximum corrosion inhibition efficiencies (IEs) of 61.2 % and 54.2 % for BEG-Ag NCP and CEG-Ag NCP, respectively at an optimum concentration of 1.0 %. Modification of these inhibitors with iodide ion (KI) significantly increased the IE values to 90.1 % and 88.5 % for BEG-Ag NCP and CEG-Ag NCP at the same concentration. Surface observation of the uninhibited and inhibited steel samples using SEM/EDAX, 3D Surface profilometer, and AFM affirm that the modified nanocomposites are highly effective.
Collapse
Affiliation(s)
- Ukeme J Timothy
- Department of Polymer and Textile Engineering, Federal University of Technology, Owerri, Nigeria
| | - Ukashat Mamudu
- Centre for Advanced Material and Energy Sciences (CAMES), Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Moses M Solomon
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, China.
| | - Peace S Umoren
- Department of Bioengineering, Cyprus International University, Nicosia 98258 via Mersin 10, Turkey
| | - Isaac O Igwe
- Department of Polymer and Textile Engineering, Federal University of Technology, Owerri, Nigeria
| | - Placid I Anyanwu
- Department of Polymer and Textile Engineering, Federal University of Technology, Owerri, Nigeria
| | - Bibiana C Aharanwa
- Department of Polymer and Textile Engineering, Federal University of Technology, Owerri, Nigeria
| | - Ren Chong Lim
- Centre for Advanced Material and Energy Sciences (CAMES), Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Theresa O Uchechukwu
- Department of Chemistry, Alex Ekwueme Federal University, Ndufu Alike, Ikwo, Nigeria
| | - Saviour A Umoren
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
7
|
Baygar T, Ugur A, Karaca IR, Kilinc Y, Gultekin SE, Sarac N. Fabrication of a Biocompatible Nanoantimicrobial Suture for Rapid Wound Healing after Surgery. ACS OMEGA 2024; 9:22573-22580. [PMID: 38826546 PMCID: PMC11137723 DOI: 10.1021/acsomega.3c09484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 06/04/2024]
Abstract
Suture-associated infections on surgical sites are known to be related to the surface characteristics of the sutures. The present study aimed to fabricate a novel functional suture for surgical procedures and characterize its antioxidative, antimicrobial, and in vitro wound healing properties. St John's wort, Hypericum perforatum, extract (eHp), and biogenic silver nanoparticles (AgNPs) have been combined and used for coating the silk sutures. Antioxidant, antimicrobial capacity, and in vitro wound healing potential of the coated sutures have been examined. The morphological and microanalytical examination of the coated sutures was also performed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). According to the antioxidant activity tests, free radical scavenging and β-carotene linoleic acid tests revealed that the antioxidative potential of H. perforatum extract-AgNP combination (eHp-AgNP) at 10 mg/mL concentration was higher than those of positive controls, ascorbic acid and α-tocopherol. Coating the sutures with eHp-AgNP resulted in a remarkable inhibition activity of the sutures against Staphylococcus aureus, which is a pathogenic member of human microbiota. When compared with the control groups, it was investigated that coating the sutures with eHp-AgNP stimulated the cell migration of the fibroblasts to heal the artificial wound. Due to their beneficial effects, the eHp-AgNP-coated silk sutures might be a potential antibacterial and wound healing accelerator for surgical approaches.
Collapse
Affiliation(s)
- Tuba Baygar
- Material
Research Laboratory, Research Laboratories Center, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Aysel Ugur
- Faculty
of Dentistry, Department of Basic Sciences, Section of Medical Microbiology, Gazi University, Ankara 06500, Turkey
| | - Inci Rana Karaca
- Faculty
of Dentistry, Department of Oral and Maxillofacial Surgery, Gazi University, Ankara 06500, Turkey
| | - Yeliz Kilinc
- Faculty
of Dentistry, Department of Oral and Maxillofacial Surgery, Gazi University, Ankara 06500, Turkey
| | - Sibel Elif Gultekin
- Faculty
of Dentistry, Department of Basic Sciences, Department of Oral Pathology, Gazi University, Ankara 06500, Turkey
| | - Nurdan Sarac
- Department
of Biology, Faculty of Science, Mugla Sitki
Kocman University, Mugla 48000, Turkey
| |
Collapse
|
8
|
Griffin L, Garren MRS, Maffe P, Ghalei S, Brisbois EJ, Handa H. Preventing Staphylococci Surgical Site Infections with a Nitric Oxide-Releasing Poly(lactic acid- co-glycolic acid) Suture Material. ACS APPLIED BIO MATERIALS 2024; 7:3086-3095. [PMID: 38652779 PMCID: PMC11110049 DOI: 10.1021/acsabm.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Of the 27 million surgeries performed in the United States each year, a reported 2.6% result in a surgical site infection (SSI), and Staphylococci species are commonly the culprit. Alternative therapies, such as nitric oxide (NO)-releasing biomaterials, are being developed to address this issue. NO is a potent antimicrobial agent with several modes of action, including oxidative and nitrosative damage, disruption of bacterial membranes, and dispersion of biofilms. For targeted antibacterial effects, NO is delivered by exogenous donor molecules, like S-nitroso-N-acetylpenicillamine (SNAP). Herein, the impregnation of SNAP into poly(lactic-co-glycolic acid) (PLGA) for SSI prevention is reported for the first time. The NO-releasing PLGA copolymer is fabricated and characterized by donor molecule loading, leaching, and the amount remaining after ethylene oxide sterilization. The swelling ratio, water uptake, static water contact angle, and tensile strength are also investigated. Furthermore, its cytocompatibility is tested against 3T3 mouse fibroblast cells, and its antimicrobial efficacy is assessed against multiple Staphylococci strains. Overall, the NO-releasing PLGA copolymer holds promise as a suture material for eradicating surgical site infections caused by Staphylococci strains. SNAP impregnation affords robust antibacterial properties while maintaining the cytocompatibility and mechanical integrity.
Collapse
Affiliation(s)
- Lauren Griffin
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Richard Stephen Garren
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick Maffe
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sama Ghalei
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Geremew A, Palmer L, Johnson A, Reeves S, Brooks N, Carson L. Multi-functional copper oxide nanoparticles synthesized using Lagerstroemia indica leaf extracts and their applications. Heliyon 2024; 10:e30178. [PMID: 38726176 PMCID: PMC11078880 DOI: 10.1016/j.heliyon.2024.e30178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Developing multifunctional nanomaterials through environmentally friendly and efficient approaches is a pivotal focus in nanotechnology. This study aimed to employ a biogenic method to synthesize multifunctional copper oxide nanoparticles (LI-CuO NPs) with diverse capabilities, including antibacterial, antioxidant, and seed priming properties, as well as photocatalytic organic dye degradation and wastewater treatment potentials using Lagerstroemia indica leaf extract. The synthesized LI-CuO NPs were extensively characterized using UV-vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform-infrared spectroscopy (FT-IR). The colloid displayed surface plasmon resonance peaks at 320 nm, characteristic of LI-CuO NPs. DLS analysis revealed an average particle size of 93.5 nm and a negative zeta potential of -20.3 mV. FTIR and XPS analyses demonstrated that LI-CuO NPs possessed abundant functional groups that acted as stabilizing agents. XRD analysis indicated pure crystalline and spherical LI-CuO NPs measuring 36 nm in size. Antibacterial tests exhibited significant differential activity of LI-CuO NPs against both gram-negative (Escherichia coli, Salmonella typhimurium) and gram-positive (Staphylococcus aureus and Listeria monocytogenes) bacteria. In antioxidant tests, the LI-CuO NPs demonstrated a remarkable radical scavenging activity of 97.6 % at a concentration of 400 μg mL-1. These nanoparticles were also found to enhance mustard seed germination at low concentrations. With a remarkable reusability, LI-CuO NPs exhibited excellent photocatalytic performance, with a degradation efficiency of 97.6 % at 150 μg/mL as well as a 95.6 % reduction in turbidity when applied to wastewater treatment. In conclusion, this study presents environmentally friendly method for the facile synthesis of LI-CuO NPs that could potentially offer promising applications in biomedicine, agriculture, and environmental remediation due to their multifunctional properties.
Collapse
Affiliation(s)
- Addisie Geremew
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Lenaye Palmer
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Andre Johnson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Sheena Reeves
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Nigel Brooks
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Laura Carson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| |
Collapse
|
10
|
Ullah Z, Iqbal J, Gul F, Abbasi BA, Kanwal S, Elsadek MF, Ali MA, Iqbal R, Elsalahy HH, Mahmood T. Biogenic synthesis, characterization, and in vitro biological investigation of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata. Sci Rep 2024; 14:10484. [PMID: 38714767 PMCID: PMC11076632 DOI: 10.1038/s41598-024-60694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 05/10/2024] Open
Abstract
The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 μg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 μg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 μg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.
Collapse
Affiliation(s)
- Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, 24420, Khyber Pakhtunkhwa, Pakistan.
| | - Farhat Gul
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi, 46300, Pakistan
| | - Sobia Kanwal
- Department of Biology and Environmental Sciences, Allama Iqbal Open University, Islamabad, 45320, Pakistan
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Heba H Elsalahy
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan.
| |
Collapse
|
11
|
Xiao B, Wang J, Yang H, Yang DZ, Da M, La T, Temuqile T. Study on preparation and properties of silver alloy for Mongolian medicine acupuncture. Heliyon 2024; 10:e29145. [PMID: 38628746 PMCID: PMC11019177 DOI: 10.1016/j.heliyon.2024.e29145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
The Mongolian medical silver needles often encounter issues of bending, fracturing, and blunting in clinical applications. Similarly, Mongolian warm needles can cause burns on patients due to inaccurate temperature control. In this study, we developed an Ag85Cu15 alloy specifically for acupuncture needles based on material preparation. By incorporating appropriate amounts of Mn and Ti elements, we were able to enhance the mechanical properties and biocompatibility of the acupuncture needles. Compared to commercially available silver needles, this alloy exhibited a significant increase in microhardness up to 210.2 Hv0.2 and an improved tensile strength of 880.2 MPa. Furthermore, we designed a thermoelectric effect-based temperature measurement model for precise control of the warm needle's temperature, enhancing the therapeutic effectiveness of the treatment.
Collapse
Affiliation(s)
- Bin Xiao
- International Mongolian Hospital, Hohhot, Inner Mongolia Autonomous Region, 010021, China
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia Autonomous Region, 010051, China
| | - Jun Wang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - He Yang
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia Autonomous Region, 010051, China
| | - De-zhi Yang
- International Mongolian Hospital, Hohhot, Inner Mongolia Autonomous Region, 010021, China
| | - Man Da
- International Mongolian Hospital, Hohhot, Inner Mongolia Autonomous Region, 010021, China
| | - Ta La
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Temuqile Temuqile
- International Mongolian Hospital, Hohhot, Inner Mongolia Autonomous Region, 010021, China
| |
Collapse
|
12
|
Monroy Caltzonci D, Rasu Chettiar AD, Ibarra VC, Marasamy L, Loredo-Tovías M, Acosta-Torres LS, Manisekaran R. Antimicrobial and Cytotoxic Effect of Positively Charged Nanosilver-Coated Silk Sutures. ACS OMEGA 2024; 9:17636-17645. [PMID: 38645349 PMCID: PMC11025086 DOI: 10.1021/acsomega.4c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/16/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
Sutures are a crucial component of surgical procedures, serving to close and stabilize wound margins to promote healing. However, microbial contamination of sutures can increase the risk of surgical site infections (SSI) due to colonization by pathogens. This study aimed to tackle SSI by synthesizing positively charged silver nanoparticles (P-AgNPs) and using them to produce antimicrobial sutures. The P-AgNPs were reduced and stabilized using polyethylenimine (PEI), a cationic branched polymer. The physiochemical characteristics of P-AgNPs were confirmed from the surface plasmon resonance (SPR) peak at 419 nm, spherical morphology with a particle size range of 8-10 nm, PEI functional groups on NPs, a hydrodynamic diameter of 12.3 ± 2.4 nm, and a zeta potential of 31.3 ± 6 mV. Subsequently, the surfaces of silk sutures were impregnated with P-AgNPs at different time intervals (24, 48, and 96 h) using an ex situ method. Scanning electron microscopy (SEM) and tensile strength studies were conducted to determine the coating and durability of the NP-coated sutures. The NPs were quantified on sutures using inductively coupled plasma optical emission spectrophotometry (ICP-OES), which was in the range of 1-5 μg. Primarily, antimicrobial activity was studied using three microorganisms (Candida albicans, Streptococcus mutans, and Staphylococcus aureus) for both P-AgNPs and suture-coated P-AgNPs using the agar diffusion method. The results showed that only the NPs and NP-coated sutures exhibited enhanced antimicrobial effects against bacteria and fungi. Finally, the cytotoxicity of the sutures was investigated using stem cells from the apical papilla (SCAPs) for 24 h, which exhibited more than 75% cell viability. Overall, the results indicate that NP-coated sutures can potentially be used as antimicrobial sutures to diminish or inhibit SSI in postoperative or general surgery patients.
Collapse
Affiliation(s)
- Diego
Antonio Monroy Caltzonci
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| | - Aruna-Devi Rasu Chettiar
- Facultad
de Química, Materiales-Energía, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
| | - Verónica Campos Ibarra
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| | - Latha Marasamy
- Facultad
de Química, Materiales-Energía, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
| | - Marcos Loredo-Tovías
- Área
de Ciencias de la Tierra, Facultad de Ingeniería,UASLP, Av. Manuel Nava no.8, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| |
Collapse
|
13
|
Zarei Chamgordani N, Asiaei S, Ghorbani-Bidkorpeh F, Babaee Foroutan M, Mahboubi A, Moghimi HR. Fabrication of controlled-release silver nanoparticle polylactic acid microneedles with long-lasting antibacterial activity using a micro-molding solvent-casting technique. Drug Deliv Transl Res 2024; 14:386-399. [PMID: 37578649 DOI: 10.1007/s13346-023-01406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/15/2023]
Abstract
Most topical drug delivery techniques do not provide therapeutic concentrations for treatment of surgical site and other local infections and, therefore, require some kind of enhancement, such as physical methods like microneedles, the subject of the present investigation. Here, controlled-release long-lasting antibacterial polylactic acid (PLA) microneedles containing 1, 3, and 5% silver nanoparticles (AgNP) were prepared using micro-molding solvent-casting technique. Microneedles were characterized using optical microscopy, SEM, FTIR, XRD, and DSC. Also, mechanical strength, barrier disruption ability, insertion depth, in-vitro release kinetics, antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, and silver permeation through rat skin were studied. Microneedles showed good mechanical strength with no signs of failure at an optimum PLA concentration of 25% (w/v). FTIR revealed no chemical interaction between ingredients, and XRD confirmed presence of AgNP in microneedles. Microneedles penetrated the skin model at depth of up to 1143 μm resulting 5-7 times increase in transepidermal water loss (TEWL). Release studies showed 2.2, 6.8, and 8.1 µg silver release from the whole body (obeying Higuchi's release model) and 0.33, 0.45, and 0.78 µg from the needles alone (obeying Fickian-cylindrical type release) for 1, 3, and 5% AgNP microneedles, respectively. Also, prolonged antibacterial activity (for 34 days) was observed. Skin studies over 72 h indicated that besides needles, silver is also released from the baseplate which had a marginal share in total silver permeation through the skin. In conclusion, a straightforward solvent-casting technique can be used to successfully prepare strong AgNP-containing PLA microneedles capable of long-lasting antibacterial activity.
Collapse
Affiliation(s)
- Nasrin Zarei Chamgordani
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sasan Asiaei
- Sensors and Integrated Bio-MEMS/Microfluidics Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Arash Mahboubi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Lenka S, Dubey D, Swain SK, Rath G, Mishra A, Bishoyi AK, Purohit GK. Implementation of Silver Nanoparticles Green Synthesized with Leaf Extract of Coccinia grandis as Antimicrobial Agents Against Head and Neck Infection MDR Pathogens. Curr Pharm Biotechnol 2024; 25:2312-2325. [PMID: 38347796 DOI: 10.2174/0113892010290653240109053852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 09/26/2024]
Abstract
BACKGROUND Head and neck infections (HNI) associated with multidrug resistance (MDR) offer several health issues on a global scale due to inaccurate diagnosis. OBJECTIVES This study aimed to identify the bacteria and Candidal isolates and implement the silver nanoparticles green synthesized with leaf extract of Coccinia grandis (Cg-AgNPs) as a therapeutic approach against HNI pathogens. METHODS The Cg-AgNPs were characterized by the UV-visible spectrophotometer, FT-IR analysis, Zeta particle size, Zeta potential, and field emission scanning electron microscope (FESEM) analysis to validate the synthesis of nanoparticles. Additionally, the antimicrobial activity of Cg-AgNPs was presented by the zone of inhibition (ZOI), minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and antibiofilm assay. Moreover, the cell wall rupture assay was visualized on SEM for the morphological study of antimicrobial activities, and the in-vivo toxicity was performed in a swiss mice model to evaluate the impact of Cg-AgNPs on various biological parameters. RESULTS Different bacterial strains (Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) and Candida sp. (Candida albicans, Candida tropicalis, Candida orthopsilosis, and Candida glabrata) were identified. The MIC, MBC, and antibiofilm potential of Cg-AgNPs were found to be highest against A. baumannii: 1.25 μg/ml, 5 μg/ml, and 85.01±5.19% respectively. However, C. albicans and C. orthopsilosis revealed 23 mm and 21 mm of ZOI. Subsequently, the micromorphology of the cell wall rupture assay confirmed the efficacy of Cg-AgNPs, and no significant alterations were seen in biochemical and hematological parameters on the swiss mice model in both acute and subacute toxicity studies. CONCLUSION The green synthesized Cg-AgNPs have multifunctional activities like antibacterial, anticandidal, and antibiofilm activity with no toxicity and can be introduced against the HNI pathogens.
Collapse
Affiliation(s)
- Smarita Lenka
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India
| | - Debasmita Dubey
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India
| | - Santosh Kumar Swain
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, 751019, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Mishra
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Kumar Bishoyi
- Clinical Hematology, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | | |
Collapse
|
15
|
da Cunha KF, Oliveira Garcia M, Allend SO, de Albernaz DFT, Panagio LA, Neto ACPS, Larré Oliveira T, Hartwig DD. Biogenic silver nanoparticles: in vitro activity against Staphylococcus aureus methicillin-resistant (MRSA) and multidrug-resistant coagulase-negative Staphylococcus (CoNS). Braz J Microbiol 2023; 54:2641-2650. [PMID: 37676406 PMCID: PMC10689704 DOI: 10.1007/s42770-023-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria are one problem in health since the therapeutic alternative are reduced. For this, the application of nanotechnology through functionalized nanoparticles, like a biogenic silver nanoparticle (Bio-AgNP), obtained by biological synthesis, emerges as a possible alternative against the MDR bacteria. This study aimed to evaluate the antibacterial and antibiofilm activity of Bio-AgNP obtained for biological synthesis by Fusarium oxysporum strain 551 against methicillin-resistant Staphylococcus aureus (MRSA) and MDR coagulase-negative Staphylococcus (CoNS) isolates. Bio-AgNP has activity against S. aureus ATCC 25904, Staphylococcus epidermidis ATCC 35984, and MDR isolates, with minimal inhibitory concentration (MIC) ranging from 3.75 to 15 μg.mL-1 and minimal bactericidal concentration (MBC) from 7.5 to 30 μg.mL-1. In the membrane leakage assay, it was observed that all concentrations tested led to proteins release from the cellular content dose-dependently, where the highest concentrations led to higher protein in the supernatant. The 2×MIC of Bio-AgNP killed ATCC 35984 after 6h of treatment, and ATCC 25904 and S. aureus (SA3) strains after 24h of treatment. The 4×MIC was bactericidal in 6h of treatment for all strains in the study. The biofilm of MDR isolates was inhibited in 80.94 to 100% and eradicated in 60 to 94%. The confocal laser scanning microscopy (CLSM) analysis demonstrated similar results to the antibiofilm assays. The Bio-AgNP has antibacterial and antibiofilm activity and can be a promising therapeutic alternative against MDR bacteria.
Collapse
Affiliation(s)
- Kamila Furtado da Cunha
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | - Marcelle Oliveira Garcia
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | - Suzane Olachea Allend
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | - Déborah Farias Trota de Albernaz
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | | | - Amilton Clair Pinto Seixas Neto
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | - Thaís Larré Oliveira
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil.
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
16
|
Zhang X, Yang Z, Yang X, Zhang F, Pan Z. Sustainable Antibacterial Surgical Suture Based on Recycled Silk Resource by an Internal Combination of Inorganic Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37318121 DOI: 10.1021/acsami.3c05054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The current antibacterial treatment methods of silk sutures can only be finished by surface modification, leading to problems of short antibacterial effects, easy slow-release consumption, prominent toxicity, and susceptibility to drug resistance. Speculatively, surgical sutures combining antibacterial material internally will possess a more promising efficacy. Hence, we extracted recycled regenerated silk fibroin (RRSF) from waste silk resources to make RRSF solutions. Internally combining with inorganic titanium dioxide (TiO2) nanoparticles, we fabricated antibacterial RRSF-based surgical sutures. The morphologies, mechanical and antibacterial properties, biocompatibility tests, and in vivo experiments were carried out. The results showed that the surgical sutures with 1.25 wt % TiO2 acquired 2.40 N knot strength (143 μm diameter) and achieved a sustainable antibacterial effect of 93.58%. Surprisingly, the sutures significantly reduced inflammatory reactions and promoted wound healing. Surgical sutures in this paper realize high-value recovery of waste silk fibers and provide a novel approach to preparing multifunctional sutures.
Collapse
Affiliation(s)
- Xin Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| | - Zhenbei Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xin Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| | - Feng Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
| | - Zhijuan Pan
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
| |
Collapse
|
17
|
Essa MS, Ahmad KS, Zayed ME, Ibrahim SG. Comparative Study Between Silver Nanoparticles Dressing (SilvrSTAT Gel) and Conventional Dressing in Diabetic Foot Ulcer Healing: A Prospective Randomized Study. THE INTERNATIONAL JOURNAL OF LOWER EXTREMITY WOUNDS 2023; 22:48-55. [PMID: 33686887 DOI: 10.1177/1534734620988217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND We are trying to evaluate silver nanoparticles' effectiveness (SilvrSTAT Gel) in accelerating healing rate of nonischemic diabetic foot ulcers (DFUs). METHODS This prospective, double-blind, randomized, controlled study includes 80 patients with nonischemic DFUs classified into 2 groups. Group A was subjected to SilvrSTAT Gel dressing, and group B was subjected to conventional dressing (wet-to-moist dressing with or without povidone-iodine). All cases had minimal debridement before treatment. In both groups, all cases were nonischemic after successful revascularization either by bypass surgery or endovascular therapy. RESULTS The healing rate of the SilvrSTAT group was significantly higher than that of the conventional group. The healing rate per week of the SilvrSTAT group was considerably higher than that of the conventional group (P < .0001). The rate of complete healing for ulcers in group A was achieved in 22 patients (55%) by the 6th week, while 29 (72.5%), 34 (85%), and 36 (90%) patients were healed entirely by the 8th, 10th, and 12th weeks, respectively. In group B: 20 (50%), 27 (67.5%), and 30 (75%) patients were completeley healed by the 8th, 10th, and 12th weeks, respectively. CONCLUSIONS SilvrSTATGel is effective in the treatment of DFU.
Collapse
Affiliation(s)
- Mohamed S Essa
- Benha University Hospital, Benha University, Benha, Egypt
| | - Khaled S Ahmad
- Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
18
|
Recent Advances in Silver Nanoparticles Containing Nanofibers for Chronic Wound Management. Polymers (Basel) 2022; 14:polym14193994. [PMID: 36235942 PMCID: PMC9571512 DOI: 10.3390/polym14193994] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Infections are the primary cause of death from burns and diabetic wounds. The clinical difficulty of treating wound infections with conventional antibiotics has progressively increased and reached a critical level, necessitating a paradigm change for enhanced chronic wound care. The most prevalent bacterium linked with these infections is Staphylococcus aureus, and the advent of community-associated methicillin-resistant Staphylococcus aureus has posed a substantial therapeutic challenge. Most existing wound dressings are ineffective and suffer from constraints such as insufficient antibacterial activity, toxicity, failure to supply enough moisture to the wound, and poor mechanical performance. Using ineffective wound dressings might prolong the healing process of a wound. To meet this requirement, nanoscale scaffolds with their desirable qualities, which include the potential to distribute bioactive agents, a large surface area, enhanced mechanical capabilities, the ability to imitate the extracellular matrix (ECM), and high porosity, have attracted considerable interest. The incorporation of nanoparticles into nanofiber scaffolds constitutes a novel approach to “nanoparticle dressing” that has acquired significant popularity for wound healing. Due to their remarkable antibacterial capabilities, silver nanoparticles are attractive materials for wound healing. This review focuses on the therapeutic applications of nanofiber wound dressings containing Ag-NPs and their potential to revolutionize wound healing.
Collapse
|
19
|
Geremew A, Carson L, Woldesenbet S. Biosynthesis of silver nanoparticles using extract of Rumex nepalensis for bactericidal effect against food-borne pathogens and antioxidant activity. Front Mol Biosci 2022; 9:991669. [PMID: 36203876 PMCID: PMC9530741 DOI: 10.3389/fmolb.2022.991669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The evolution and incidence of multidrug-resistant food-borne pathogens still become a critical public health global issue. To avert this challenge there is great interest in medical applications of silver nanoparticles. Thus, this study aimed to synthesize silver nanoparticles (Rn-AgNPs) using aqueous leaf extract of Nepal Dock (Rumex nepalensis Spreng) and evaluate their antibacterial potential against food-borne pathogens and antioxidant activity. The Rn-AgNPs were characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red Spectroscopy (FTIR). The antibacterial activities of the Rn-AgNPs were evaluated using agar well diffusion (zone of inhibition, ZOI) and microdilution (minimum inhibitory concentration, MIC and minimum bactericidal concentration, MBC) methods. The antioxidant property of the Rn-AgNPs was investigated using radical scavenging (DPPH and hydroxyl) assays. The UV-Vis spectra of Rn-AgNPs elucidated the absorption maxima at 425 nm and FTIR detected numerous functional groups of biological compounds that are responsible for capping and stabilizing Rn-AgNPs. DLS analysis displayed monodispersed Rn-AgNPs of 86.7 nm size and highly negative zeta potential (-32.5 mV). Overall results showed that Escherichia coli was the most sensitive organism, whereas Staphylococcus aureus was the least sensitive against Rn-AgNPs. In the antioxidant tests, the AgNPs radical scavenging activity reached 95.44% at 100 μg/ml. This study indicates that Rn-AgNPs exhibit a strong antimicrobial on L. monocytogenes, S. aureus, S. typhimurium, and E. coli and antioxidant and thus might be developed as a new type of antimicrobial agent for the treatment of multidrug-resistant foodborne pathogens and extensible applications in nanomaterial food- and nanocomposite-based antimicrobial packaging and/or as an antioxidant.
Collapse
|
20
|
Sanchez Armengol E, Blanka Kerezsi A, Laffleur F. Allergies caused by textiles: control, research and future perspective in the medical field. Int Immunopharmacol 2022; 110:109043. [PMID: 35843147 DOI: 10.1016/j.intimp.2022.109043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
Textile production forms one of the most polluting industries worldwide. However, other than damaging environmental effects, chemical waste products, such as formaldehyde or thiazolinone, are problematic for human health, as allergic potential is present in these compounds. Mostly, contact dermatitis occurs when human skin is exposed to textiles. Moreover, non-eczemous variants are mainly associated to textiles. In order to diagnose the possible allergy of the patient towards these compounds, in vivo and in vitro methods ca be performed, such as patch testing or cytokine detection assays, respectively. Newest research focuses on medical textiles such as garments or sutures to help in diagnosis, therapy and recovery of the patients. Sutures and dressings with antimicrobial properties, with the release of oxygen and growth factors offer greater properties. In this review, state of the art in the field as well as future perspectives will be discussed, which are based on the smart textiles that are going to become more important and probably widespread after the current limits exceeded.
Collapse
Affiliation(s)
- Eva Sanchez Armengol
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Aletta Blanka Kerezsi
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
21
|
Chen YG, Li CX, Zhang Y, Qi YD, Feng J, Zhang XZ. Antibacterial Sutures Coated with Smooth Chitosan Layer by Gradient Deposition. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Marena GD, Ramos MADS, Carvalho GC, Junior JAP, Resende FA, Corrêa I, Ono GYB, Sousa Araujo VH, Camargo BAF, Bauab TM, Chorilli M. Natural product‐based nanomedicine applied to fungal infection treatment: A review of the last 4 years. Phytother Res 2022; 36:2710-2745. [DOI: 10.1002/ptr.7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | | | | | - Ione Corrêa
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Yuki Bressanim Ono
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Bruna Almeida Furquim Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences and Health University of Araraquara (UNIARA) Araraquara Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
23
|
Hu X, Wu L, Du M, Wang L. Eco-friendly synthesis of size-controlled silver nanoparticles by using Areca catechu nut aqueous extract and investigation of their potent antioxidant and anti-bacterial activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
24
|
Umoren PS, Kavaz D, Nzila A, Sankaran SS, Umoren SA. Biogenic Synthesis and Characterization of Chitosan-CuO Nanocomposite and Evaluation of Antibacterial Activity against Gram-Positive and -Negative Bacteria. Polymers (Basel) 2022; 14:1832. [PMID: 35567006 PMCID: PMC9104765 DOI: 10.3390/polym14091832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022] Open
Abstract
Chitosan-copper oxide (CHT-CuO) nanocomposite was synthesized using olive leaf extract (OLE) as reducing agent and CuSO4⋅5H2O as precursor. CHT-CuO nanocomposite was prepared using an in situ method in which OLE was added to a solution of chitosan and CuSO4⋅5H2O mixture in the ratio of 1:5 (v/v) and heated at a temperature of 90 °C. The obtained CHT-CuO nanocomposite was characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectrophotometry, energy-dispersive X-ray spectroscopy (EDAX), Fourier transform infrared spectroscopy (FTIR), and high-resolution transmission electron microscopy (TEM). TEM results indicated that CHT-CuO nanocomposite are spherical in shape with size ranging from 3.5 to 6.0 nm. Antibacterial activity of the synthesized nanocomposites was evaluated against Gram-positive (Bacillus cereus, Staphyloccous haemolytica and Micrococcus Luteus) and Gram-negative (Escherichia coli, Pseudomonas citronellolis, Pseudomonas aeruginosa, kliebisella sp., Bradyrhizobium japonicum and Ralstonia pickettii) species by cup platting or disc diffusion method. Overall, against all tested bacterial strains, the diameters of the inhibition zone of the three nanocomposites fell between 6 and 24 mm, and the order of the antimicrobial activity was as follows: CuO-1.0 > CuO-0.5 > CuO-2.0. The reference antibiotic amoxicillin and ciprofloxacin showed greater activity based on the diameter of zones of inhibition (between 15−32 mm) except for S. heamolytica and P. citronellolis bacteria strains. The nanocomposites MIC/MBC were between 0.1 and 0.01% against all tested bacteria, except S. heamolityca (>0.1%). Based on MIC/MBC values, CuO-0.5 and CuO-1.0 were more active than CuO-2.0, in line with the observations from the disc diffusion experiment. The findings indicate that these nanocomposites are efficacious against bacteria; however, Gram-positive bacteria were less susceptible. The synthesized CHT-CuO nanocomposite shows promising antimicrobial activities and could be utilized as an antibacterial agent in packaging and medical applications.
Collapse
Affiliation(s)
- Peace Saviour Umoren
- Department of Bioengineering, Cyprus International University, via Mersin 10, Nicosia 98258, Turkey;
| | - Doga Kavaz
- Department of Bioengineering, Cyprus International University, via Mersin 10, Nicosia 98258, Turkey;
| | - Alexis Nzila
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.N.); (S.S.S.)
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Saravanan Sankaran Sankaran
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.N.); (S.S.S.)
| | - Saviour A. Umoren
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
25
|
Xu L, Liu Y, Zhou W, Yu D. Electrospun Medical Sutures for Wound Healing: A Review. Polymers (Basel) 2022; 14:1637. [PMID: 35566807 PMCID: PMC9105379 DOI: 10.3390/polym14091637] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
With the increasing demand for wound healing around the world, the level of medical equipment is also increasing, but sutures are still the preferred medical equipment for medical personnel to solve wound closures. Compared with the traditional sutures, the nanofiber sutures produced by combining the preparation technology of drug-eluting sutures have greatly improved both mechanical properties and biological properties. Electrospinning technology has attracted more attention as one of the most convenient and simple methods for preparing functional nanofibers and the related sutures. This review firstly discusses the structural classification of sutures and the performance analysis affecting the manufacture and use of sutures, followed by the discussion and classification of electrospinning technology, and then summarizes the relevant research on absorbable and non-absorbable sutures. Finally, several common polymers and biologically active substances used in creating sutures are concluded, the related applications of sutures are discussed, and the future prospects of electrospinning sutures are suggested.
Collapse
Affiliation(s)
- Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Wenhui Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
26
|
El-Bendary MA, Afifi SS, Moharam ME, Abo Elsoud MM, Gawdat NA. Optimization of Bacillus subtilis growth parameters for biosynthesis of silver nanoparticles by using response surface methodology. Prep Biochem Biotechnol 2022; 53:183-194. [PMID: 35416757 DOI: 10.1080/10826068.2022.2056899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Silver nanoparticles (AgNPs) are among the most widely biosynthesized and used nanomaterials. They have different unique properties and a wide range of applications. This study is concerned with optimization of the growth conditions of Bacillus subtilis NRC1 for the biosynthesis of AgNPs using two designs of response surface methodology (RSM) statistical analysis. The data obtained from Plackett-Burman design (PBD) followed by central composite design (CCD), showed a good agreement between the experimental and predicted values of AgNPs biosynthesis. The optimum conditions were 0.7% (w/v) casein hydrolysate, 5% dextrin (w/v), pH 7.5 and 57 × 106 CFU/ml inoculum size. The model was highly valid and could be applied with a confidence factor of 99.47%. Minimal inhibitory concentration (MIC) of these AgNPs synthesized using the extracellular filtrate after growth of Bacillus subtilis NRC1 in the optimized medium was found to be 41-43µg/ml for all tested microorganisms with exception of Pseudomonas aeruginosa where MIC was 169 µg/ml.
Collapse
Affiliation(s)
- Magda A El-Bendary
- Department of Microbial Chemistry, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Salwa S Afifi
- Department of Microbiology and Immunology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
| | - Maysa E Moharam
- Department of Microbial Chemistry, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Mostafa M Abo Elsoud
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Noha A Gawdat
- Department of Microbial Chemistry, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
27
|
Toczek J, Sadłocha M, Major K, Stojko R. Benefit of Silver and Gold Nanoparticles in Wound Healing Process after Endometrial Cancer Protocol. Biomedicines 2022; 10:679. [PMID: 35327481 PMCID: PMC8945154 DOI: 10.3390/biomedicines10030679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
It is intractable to manage the vast majority of wounds in a classical surgical manner, however if silver, likewise gold and its representative nanoparticles, can lead to the amelioration of the wound healing process after extensive procedures, they should be employed in the current gynecological practice as promptly as possible. Most likely due to its antimicrobial properties, silver is usually applied as an additional component in the wound healing process. In wound management, we obtained various aspects that can lead to impaired wound healing; the crucial aspect for the wound milieu is to prevent the offending agents from occurring. The greatest barrier to healing is represented by the bacterial biofilm, which can occur naturally or in other ways. Biofilm bacteria can produce extracellular polymers, which can then resist concentrated anti-bacterial treatment. The published literature on the use of silver nanoparticles' utilization in wound healing becomes slightly heterogenous and requires us in difficult moments to set up proper treatment guidelines.
Collapse
Affiliation(s)
- Jakub Toczek
- Department of Gynecology, Obstetrics and Oncological Gynecology, Medical University of Silesia in Katowice, Markiefki 87, 40-211 Katowice, Poland; (M.S.); (K.M.); (R.S.)
| | | | | | | |
Collapse
|
28
|
Wang X, Liu P, Wu Q, Zheng Z, Xie M, Chen G, Yu J, Wang X, Li G, Kaplan D. Sustainable Antibacterial and Anti-Inflammatory Silk Suture with Surface Modification of Combined-Therapy Drugs for Surgical Site Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11177-11191. [PMID: 35192338 DOI: 10.1021/acsami.2c00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Silk sutures with antibacterial and anti-inflammatory functions were developed for sustained dual-drug delivery to prevent surgical site infections (SSIs). The silk sutures were prepared with core-shell structures braided from degummed silk filaments and then coated with a silk fibroin (SF) layer loaded with berberine (BB) and artemisinin (ART). Both the rapid release of drugs to prevent initial biofilm formation and the following sustained release to maintain effective concentrations for more than 42 days were demonstrated. In vitro assays using human fibroblasts (Hs 865.Sk) demonstrated cell proliferation on the materials, and hemolysis was 2.4 ± 0.8%, lower than that required by ISO 10993-4 standard. The sutures inhibited platelet adhesion and promoted collagen deposition and blood vessel formation. In vivo assessments using Sprague-Dawley (SD) rats indicated that the coating reduced the expression of pro-inflammatory cytokines interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α), shortening the inflammatory period and promoting angiogenesis. The results demonstrated that these new sutures exhibited stable structures, favorable biocompatibility, and sustainable antibacterial and anti-inflammatory functions with potential for surgical applications.
Collapse
Affiliation(s)
- Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Peixin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Qinting Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Maobin Xie
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jia Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
29
|
Farhangi ghaleh joughi N, Reza Farahpour M, Mohammadi M, Jafarirad S, Mahmazi S. Investigation on the antibacterial properties and rapid infected wound healing activity of Silver/Laterite/Chitosan nanocomposites. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Miranda RR, Oliveira ACS, Skytte L, Rasmussen KL, Kjeldsen F. Proteome-wide analysis reveals molecular pathways affected by AgNP in a ROS-dependent manner. Nanotoxicology 2022; 16:73-87. [PMID: 35138974 DOI: 10.1080/17435390.2022.2036844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The use of mass spectrometry-based proteomics has been increasingly applied in nanomaterials risk assessments as it provides a proteome-wide overview of the molecular disturbances induced by its exposure. Here, we used this technique to gain detailed molecular insights into the role of ROS as an effector of AgNP toxicity, by incubating Bend3 cells with AgNP in the absence or presence of an antioxidant N-acetyl L-cystein (NAC). ROS generation is a key player in AgNP-induced toxicity, as cellular homeostasis was kept in the presence of NAC. By integrating MS/MS data with bioinformatics tools, in the absence of NAC, we were able to pinpoint precisely which biological pathways were affected by AgNP. Cells respond to AgNP-induced ROS generation by increasing their antioxidant pool, via NRF2 pathway activation. Additionally, cell proliferation-related pathways were strongly inhibited in a ROS-dependent manner. These findings reveal important aspects of the AgNP mechanism of action at the protein level.
Collapse
Affiliation(s)
- Renata Rank Miranda
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Lilian Skytte
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Kaare Lund Rasmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
31
|
Wang Q, Zhang Y, Li Q, Chen L, Liu H, Ding M, Dong H, Mou Y. Therapeutic Applications of Antimicrobial Silver-Based Biomaterials in Dentistry. Int J Nanomedicine 2022; 17:443-462. [PMID: 35115777 PMCID: PMC8805846 DOI: 10.2147/ijn.s349238] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
Microbial infection accounts for many dental diseases and treatment failure. Therefore, the antibacterial properties of dental biomaterials are of great importance to the long-term results of treatment. Silver-based biomaterials (AgBMs) have been widely researched as antimicrobial materials with high efficiency and relatively low toxicity. AgBMs have a broad spectrum of antimicrobial properties, including penetration of microbial cell membranes, damage to genetic material, contact killing, and dysfunction of bacterial proteins and enzymes. In particular, advances in nanotechnology have improved the application value of AgBMs. Hence, in many subspecialties of dentistry, AgBMs have been researched and employed, such as caries arresting or prevention, root canal sterilization, periodontal plaque inhibition, additives in dentures, coating of implants and anti-inflammatory material in oral and maxillofacial surgery. This paper aims to provide an overview of the application approaches of AgBMs in dentistry and present better guidance for oral antimicrobial therapy via the development of AgBMs.
Collapse
Affiliation(s)
- Qiyu Wang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yu Zhang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Li Chen
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Hui Liu
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Meng Ding
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Heng Dong
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
32
|
Liu C, Hua J, Ng PF, Wang Y, Fei B, Shao Z. Bioinspired Photo-Cross-Linking of Stretched Solid Silks for Enhanced Strength. ACS Biomater Sci Eng 2022; 8:484-492. [DOI: 10.1021/acsbiomaterials.1c01170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chang Liu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jiachuan Hua
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Pui Fai Ng
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yidi Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bin Fei
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Zhengzhong Shao
- Department of Macromolecular Science, Fudan University, Shanghai 200437, China
| |
Collapse
|
33
|
Engineering surgical stitches to prevent bacterial infection. Sci Rep 2022; 12:834. [PMID: 35039588 PMCID: PMC8764053 DOI: 10.1038/s41598-022-04925-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
Surgical site infections (SSIs) account for a massive economic, physiological, and psychological burden on patients and health care providers. Sutures provide a surface to which bacteria can adhere, proliferate, and promote SSIs. Current methods for fighting SSIs involve the use of sutures coated with common antibiotics (triclosan). Unfortunately, these antibiotics have been rendered ineffective due to the increasing rate of antibiotic resistance. A promising new avenue involves the use of metallic nanoparticles (MNPs). MNPs exhibit low cytotoxicity and a strong propensity for killing bacteria while evading the typical antibiotic resistance mechanisms. In this work, we developed a novel MNPs dip-coating method for PDS-II sutures and explored the capabilities of a variety of MNPs in killing bacteria while retaining the cytocompatibility. Our findings indicated that our technique provided a homogeneous coating for PDS-II sutures, maintaining the strength, structural integrity, and degradability. The MNP coatings possess strong in vitro antibacterial properties against P aeruginosa and S. aureus—varying the %of dead bacteria from ~ 40% (for MgO NPs) to ~ 90% (for Fe2O3) compared to ~ 15% for uncoated PDS-II suture, after 7 days. All sutures demonstrated minimal cytotoxicity (cell viability > 70%) reinforcing the movement towards the use MNPs as a viable antibacterial technology.
Collapse
|
34
|
Biofilms in Surgical Site Infections: Recent Advances and Novel Prevention and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11010069. [PMID: 35052946 PMCID: PMC8773207 DOI: 10.3390/antibiotics11010069] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Surgical site infections (SSIs) are common postoperative occurrences due to contamination of the surgical wound or implanted medical devices with community or hospital-acquired microorganisms, as well as other endogenous opportunistic microbes. Despite numerous rules and guidelines applied to prevent these infections, SSI rates are considerably high, constituting a threat to the healthcare system in terms of morbidity, prolonged hospitalization, and death. Approximately 80% of human SSIs, including chronic wound infections, are related to biofilm-forming bacteria. Biofilm-associated SSIs are extremely difficult to treat with conventional antibiotics due to several tolerance mechanisms provided by the multidrug-resistant bacteria, usually arranged as polymicrobial communities. In this review, novel strategies to control, i.e., prevent and eradicate, biofilms in SSIs are presented and discussed, focusing mainly on two attractive approaches: the use of nanotechnology-based composites and natural plant-based products. An overview of new therapeutic agents and strategic approaches to control epidemic multidrug-resistant pathogenic microorganisms, particularly when biofilms are present, is provided alongside other combinatorial approaches as attempts to obtain synergistic effects with conventional antibiotics and restore their efficacy to treat biofilm-mediated SSIs. Some detection and real-time monitoring systems to improve biofilm control strategies and diagnosis of human infections are also discussed.
Collapse
|
35
|
Kaimal R, Senthilkumar P, Aljafari B, Anandan S. A nanosecond pulsed laser-ablated MWCNT-Au heterostructure: an innovative ultra-sensitive electrochemical sensing prototype for the identification of glutathione. Analyst 2022; 147:3894-3907. [DOI: 10.1039/d2an00967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a scheme that aptly describes the reduction of gold nanoparticles’ crystalline size on the surface of MWCNTs in an aqueous phase to generate a LAMWCNT-Au heterostructure, employing an Nd:YAG laser (energy = 505 mJ and λ = 1064 nm) is developed.
Collapse
Affiliation(s)
- Reshma Kaimal
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India
| | - Periyathambi Senthilkumar
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, and Research Institute, TANUVAS, Tirunelveli 627358, India
| | - Belqasem Aljafari
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India
| |
Collapse
|
36
|
Khodabakhshi MR, Baghersad MH. Enhanced antimicrobial treatment by a clay-based drug nanocarrier conjugated to a guanidine-rich cell penetrating peptide. RSC Adv 2021; 11:38961-38976. [PMID: 35492451 PMCID: PMC9044475 DOI: 10.1039/d1ra07821f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
In this study, a novel and efficient drug delivery system is proposed for the enhancement of antimicrobial properties of antibiotic medications such as vancomycin (VCM) and levofloxacin (OFX). The architecture of the designed drug carrier is based on halloysite nanotubes (HNTs) with a rolled-laminate shape, suitable for the encapsulation of drug and further release. In order to make them capable for magnetic direction to the target tissue, the exterior surface of the tubes is composed of iron oxide nanoparticles (Fe3O4 NPs), via an in situ process. The main role in the antimicrobial activity enhancement is played by a cell-penetrating peptide (CPP) sequence synthesized in the solid phase, which contains three arginine–tryptophan blocks plus a cysteine as the terminal amino acid (C(WR)3). The drug content values for the prepared nanocargoes named as VCM@Fe3O4/HNT–C(WR)3 and OFX@Fe3O4/HNT–C(WR)3, have been estimated at ca. 10 wt% and 12 wt%, respectively. Also, the drug release investigations have shown that above 90% of the encapsulated drug is released in acetate buffer (pH = 4.6), during a 90 minutes process. Confocal microscopy has corroborated good adhesion and co-localization of the particles and the stained living cells. Moreover, in vitro antimicrobial assessments (optical density, zone of inhibition, and minimum inhibitory concentration) have revealed that the bacterial cell growth rate is significantly inhibited by suggested nanocargoes, in comparison with the individual drugs in the same dosage. Hence, administration of the presented nanocargoes is recommended for the clinical treatment of the infected target organ. A novel anti-infection therapeutic nano-bioconjugate based on magnetized halloysite nanotubes and a CPP is presented. High levels of bactericidal effects have been obtained with the designed nanocargo in comparison with the individual drugs.![]()
Collapse
Affiliation(s)
| | - Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
37
|
Miranda RR, Sampaio I, Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf B Biointerfaces 2021; 210:112254. [PMID: 34896692 DOI: 10.1016/j.colsurfb.2021.112254] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022]
Abstract
Nanomaterials have emerged as promising candidates for cancer therapy and diagnosis as they can solve long-term issues such as drug solubility, systemic distribution, tumor acquired resistance, and improve the performance of diagnostic methods. Among inorganic nanomaterials, AgNPs have been extensively studied in the context of cancer treatment and the reported results have raised exciting expectations. In this review, we provide an overview of the recent research on AgNPs antitumoral properties, their application in different cancer treatment modalities, their potential in biosensors development, and also highlight the main challenges and possible strategies to enable its translation to clinical use.
Collapse
Affiliation(s)
- Renata Rank Miranda
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil.
| | - Isabella Sampaio
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil.
| |
Collapse
|
38
|
Thambirajoo M, Maarof M, Lokanathan Y, Katas H, Ghazalli NF, Tabata Y, Fauzi MB. Potential of Nanoparticles Integrated with Antibacterial Properties in Preventing Biofilm and Antibiotic Resistance. Antibiotics (Basel) 2021; 10:1338. [PMID: 34827276 PMCID: PMC8615099 DOI: 10.3390/antibiotics10111338] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Nanotechnology has become an emerging technology in the medical field and is widely applicable for various clinical applications. The potential use of nanoparticles as antimicrobial agents is greatly explored and taken into consideration as alternative methods to overcome the challenges faced by healthcare workers and patients in preventing infections caused by pathogenic microorganisms. Among microorganisms, bacterial infections remain a major hurdle and are responsible for high morbidity and mortality globally, especially involving those with medical conditions and elderly populations. Over time, these groups are more vulnerable to developing resistance to antibiotics, as bacterial biofilms are difficult to destroy or eliminate via antibiotics; thus, treatment becomes unsuccessful or ineffective. Mostly, bacterial biofilms and other microbes can be found on medical devices and wounds where they disperse their contents which cause infections. To inhibit biofilm formations and overcome antibiotic resistance, antimicrobial-loaded nanoparticles alone or combined with other substances could enhance the bactericidal activity of nanomaterials. This includes killing the pathogens effectively without harming other cells or causing any adverse effects to living cells. This review summarises the mechanisms of actions employed by the different types of nanoparticles which counteract infectious agents in reducing biofilm formation and improve antibiotic therapy for clinical usage.
Collapse
Affiliation(s)
- Maheswary Thambirajoo
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Nur Fatiha Ghazalli
- Biomaterials Unit, School of Dental Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia;
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| |
Collapse
|
39
|
Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int J Mol Sci 2021; 22:ijms221810104. [PMID: 34576268 PMCID: PMC8466259 DOI: 10.3390/ijms221810104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.
Collapse
|
40
|
El‐Bendary MA, Moharam ME, Hamed SR, Abo El‐Ola SM, Khalil SKH, Mounier MM, Roshdy AM, Allam MA. Mycosynthesis of silver nanoparticles using
Aspergillus caespitosus
: Characterization, antimicrobial activities, cytotoxicity, and their performance as an antimicrobial agent for textile materials. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Magda A. El‐Bendary
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Giza Egypt
| | - Maysa E. Moharam
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Giza Egypt
| | - Shimaa R. Hamed
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Division National Research Centre Giza Egypt
| | - Samiha M. Abo El‐Ola
- Department of Protein and Manmade Fibre, Textile Industries Research Division National Research Centre Giza Egypt
| | - Safaa K. H. Khalil
- Spectroscopy Department, Physics Division National Research Centre Giza Egypt
| | - Marwa M. Mounier
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division National Research Center Giza Egypt
| | - Amira M. Roshdy
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Giza Egypt
| | - Mousa A. Allam
- Spectroscopy Department, Physics Division National Research Centre Giza Egypt
| |
Collapse
|
41
|
Verma C, Gupta A, Singh S, Somani M, Sharma A, Singh P, Bhan S, Dey A, Rymbai R, Lyngdoh A, Nonglang FP, Anjum S, Gupta B. Bioactive Khadi Cotton Fabric by Functional Designing and Immobilization of Nanosilver Nanogels. ACS APPLIED BIO MATERIALS 2021; 4:5449-5460. [PMID: 35006726 DOI: 10.1021/acsabm.1c00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The antimicrobial finishing is the most suitable alternative for designing medical textiles for biomedical applications. The present investigation aims at the preparation of skin-contacting khadi cotton fabric that would prevent microbial infection and offer excellent skin compatibility. A simple approach has been followed for the preparation of bioactive nanogels for antimicrobial finishing of the khadi cotton fabric. Bioactive nanogels were synthesized by using aloe vera (AV) as a reducing agent for silver ions in the presence of polyvinyl alcohol (PVA). PVA stabilizes the growth of silver nanoparticles, which is influenced by the variation in the reaction time and the temperature. Nanogels were characterized by transmission electron microscopy and scanning electron microscopy analyses. The nanogels exhibited strong antimicrobial behavior against both Staphylococcus aureus and Escherichia coli, as confirmed by the colony count method. Almost 100% antibacterial behavior was observed for the nanosilver content of 10 mM. The nanogel-finished khadi fabric showed bactericidal properties against both S. aureus and E. coli. The nanogel-finished fabric exhibited high hydrophilicity allowing complete water droplet penetration within 10 s as compared to 136 s in virgin fabric. Moreover, the skin irritation study of the fabric on male Swiss albino mice did not show any appearance of dermal toxicity. These results demonstrated that the bioactive finished khadi fabric is appropriate as skin contacting material in human health care.
Collapse
Affiliation(s)
- Chetna Verma
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Anushka Gupta
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Surabhi Singh
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Manali Somani
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Ankita Sharma
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Pratibha Singh
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Surya Bhan
- Department of Biochemistry, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Ankita Dey
- Department of Biochemistry, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Ridashisha Rymbai
- Department of Biochemistry, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Antonia Lyngdoh
- Department of Biochemistry, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | | | - Sadiya Anjum
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
42
|
Facile Synthesis of Bio-Antimicrobials with "Smart" Triiodides. Molecules 2021; 26:molecules26123553. [PMID: 34200814 PMCID: PMC8230494 DOI: 10.3390/molecules26123553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022] Open
Abstract
Multi-drug resistant pathogens are a rising danger for the future of mankind. Iodine (I2) is a centuries-old microbicide, but leads to skin discoloration, irritation, and uncontrolled iodine release. Plants rich in phytochemicals have a long history in basic health care. Aloe Vera Barbadensis Miller (AV) and Salvia officinalis L. (Sage) are effectively utilized against different ailments. Previously, we investigated the antimicrobial activities of smart triiodides and iodinated AV hybrids. In this work, we combined iodine with Sage extracts and pure AV gel with polyvinylpyrrolidone (PVP) as an encapsulating and stabilizing agent. Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), Surface-Enhanced Raman Spectroscopy (SERS), microstructural analysis by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-Ray-Diffraction (XRD) analysis verified the composition of AV-PVP-Sage-I2. Antimicrobial properties were investigated by disc diffusion method against 10 reference microbial strains in comparison to gentamicin and nystatin. We impregnated surgical sutures with our biohybrid and tested their inhibitory effects. AV-PVP-Sage-I2 showed excellent to intermediate antimicrobial activity in discs and sutures. The iodine within the polymeric biomaterial AV-PVP-Sage-I2 and the synergistic action of the two plant extracts enhanced the microbial inhibition. Our compound has potential for use as an antifungal agent, disinfectant and coating material on sutures to prevent surgical site infections.
Collapse
|
43
|
Yousefbeyk F, Dabirian S, Ghanbarzadeh S, Eghbali Koohi D, Yazdizadeh P, Ghasemi S. Green synthesis of silver nanoparticles from Stachys byzantina K. Koch: characterization, antioxidant, antibacterial, and cytotoxic activity. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1930302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Fatemeh Yousefbeyk
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Dabirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Ghanbarzadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Diba Eghbali Koohi
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Yazdizadeh
- Department of Physiology and Anatomy, Institute for Cardiovascular & Metabolic Disease, University of North Texas Health Science Center (UNTHSC), Fort Worth, TX, USA
| | - Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
44
|
Veeraraghavan VP, Periadurai ND, Karunakaran T, Hussain S, Surapaneni KM, Jiao X. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi J Biol Sci 2021; 28:3633-3640. [PMID: 34220213 PMCID: PMC8241602 DOI: 10.1016/j.sjbs.2021.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 11/28/2022] Open
Abstract
Scutellaria barbata is a perennial herb which was vastly prescribed in Chinese medicine to treat inflammations, infections and it is also used a detoxifying agent. We synthesized silver nanoparticles with Scutellaria barbata extract and characterized the nanoparticles with UV–Vis spectroscopic analysis, TEM, AFM, FTIR and XRD. The biofilm inhibiting property of synthesized silver nanoparticles were examined with XTT reduction assay and the antimicrobial property was examined with well diffusion method. The silver nanoparticles were also coated with cotton fabrics and their efficacy against antimicrobials was analyzed to prove its application. The cytotoxic property of synthesized silver nanoparticles was examined with L929 fibroblast cells using MTT assay. Finally we analyzed the wound healing property of synthesized silver nanoparticles with wound scratch assay. The result of our UV–Vis spectroscopic analysis confirms Scutellaria barbata aqueous extract reduced silver ions and synthesized silver nanoparticles. The characterization studies TEM, AFM, FTIR and XRD confirms the synthesized silver nanoparticles are in ideal shape and size to be utilized as a drug. The XTT reduction assay proves silver nanoparticles effectively inhibits the biofilm formation in both resistant and sensitive strains. Antimicrobial sensitivity tests confirms synthesized silver nanoparticles and cotton coated synthesized silver nanoparticles both are effective against gram positive, gram negative and fungal species. Further the results of MTT assay confirms the synthesized silver nanoparticles are non toxic and finally the wound healing potency of the nanoparticles was confirmed with wound scratch assay. Over all our results authentically confirms the silver nanoparticles synthesized with Scutellaria barbata aqueous extract is potent wound healing drug.
Collapse
Affiliation(s)
- Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Nanthini Devi Periadurai
- Departments of Microbiology, Molecular Virology and Hospital Infection Control, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Thiruventhan Karunakaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.,School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Sardar Hussain
- Department of Biotechnology, Government Science College, Chitradurga 577501, Karnataka, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Molecular Virology, Clinical Skills & Simulation and Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India
| | - Xinsheng Jiao
- Department of Cosmetic, Plastic and Burn Surgery, No. 50, Normal Road, The Fourth People's Hospital of Jinan, Jinan 250031, China
| |
Collapse
|
45
|
Deng X, Qasim M, Ali A. Engineering and polymeric composition of drug-eluting suture: A review. J Biomed Mater Res A 2021; 109:2065-2081. [PMID: 33830631 DOI: 10.1002/jbm.a.37194] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/14/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Sutures are the most popular surgical implants in the global surgical equipment market. They are used for holding tissues together to achieve wound closure. However, controlling the body's immune response to these "foreign bodies" at site of infection is challenging. Natural polymers such as collagen, silk, nylon, and cotton, and synthetic polymers such as polycaprolactone, poly(lactic-co-glycolic acid), poly(p-dioxanone) and so forth, contribute the robust foundation for the engineering of drug-eluting sutures. The incorporation of active pharmaceutical ingredients (APIs) with polymeric composition of suture materials is an efficient way to reduce inflammatory reaction in the wound site as well as to control bacterial growth, while allowing wound healing. The incorporation of polymeric composition in surgical sutures has been found to add high flexibility as well as excellent physical and mechanical properties. Fabrication processes and polymer materials allow control over drug-eluting profiles to effectively address wound healing requirements. This review outlines and discusses (a) polymer materials and APIs used in suture applications, including absorbable and nonabsorbable sutures; (b) suture structures, such as monofilament, multifilament, barded and smart sutures; and (c) the existing manufacturing techniques for drug-eluting suture production, including electrospinning, melt-extrusion and coating.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Muhammad Qasim
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
46
|
Parashar S, Sharma MK, Garg C, Garg M. Green synthesized Silver Nanoparticles as Silver Lining in Antimicrobial Resistance: A Review. Curr Drug Deliv 2021; 19:170-181. [PMID: 33797368 DOI: 10.2174/1567201818666210331123022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
Unprincipled use of antibiotics has led to the antimicrobial resistance (AMR) against mostly available compounds and now become a major cause of concern for the scientific community. However, in the past decade, green synthesized silver nanoparticles (AgNPs) have received greater attention for the development of newer therapies as antimicrobials by virtue of their unique physico-chemical properties. Unlike traditional antibiotics, AgNPs exert their action by acting on multiple mechanisms which make them potential candidates against AMR. Green synthesis of AgNPs using various medicinal plants has demonstrated broader spectrum of action against several microbes in a number of attempts. The present paper provides an insight into the scientific studies that have elucidated the positive role of plant extracts/phytochemicals during green synthesis of AgNPs and their future perspectives. The studies conducted so far seem promising still, a few factors like, the precise mechanism of action of AgNPs, their synergistic interaction with biomolecules, and industrial scalability need to be explored further till effective drug development using green synthesized AgNPs in healthcare systems against AMR is established.
Collapse
Affiliation(s)
- Sonia Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana. India
| | - Manish Kumar Sharma
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal (Sonipat) 131039, Haryana. India
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana. India
| | - Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana. India
| |
Collapse
|
47
|
Juárez-Méndez ME, Lozano-Navarro JI, Velasco-Santos C, Pérez-Sánchez JF, Zapién-Castillo S, Del Angel-Moxica IE, Melo-Banda JA, Tijerina-Ramos BI, Díaz-Zavala NP. Effect of the Melicoccus bijugatus leaf and fruit extracts and acidic solvents on the antimicrobial properties of chitosan-starch films. J Appl Microbiol 2021; 131:1162-1176. [PMID: 33547847 DOI: 10.1111/jam.15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/01/2022]
Abstract
AIM Analysing the antimicrobial activity-against food-borne micro-organisms-of modified chitosan-starch films using formic and acetic acid as chitosan solvents and Melicoccus bijugatus leaves and fruit extracts. METHODS AND RESULTS The films' antimicrobial activity against mesophilic aerobic bacteria, total coliform and fungi were also analysed, in accordance with the Mexican Official Norms (NOM-092-SSA1-1994, NOM-111-SSA1-1994 and NOM-113-SSA1-1994). The pH values of the films and extracts were measured, and the volatile compounds of the extracts and two films were determined by Gas Chromatography-Mass Spectrometry (GC-MS) considering the relationship among the type of compounds, extracts concentration, films' pH and the antimicrobial activity against bacteria and fungi. The best results are obtained by films with formic acid and 10% (v/v) of leaf and fruit extracts, in comparison with untreated chitosan-starch films. CONCLUSIONS The extracts' compounds improved the films' antimicrobial capacity and inhibited the growth of micro-organisms with no previous sterilization required. It is correlated to the pH of the media, the combination of solvent/extract used and its concentration. SIGNIFICANCE AND IMPACT OF THE STUDY This is one of the few researches where the antimicrobial activity of M. bijugatus extracts is studied. It was found that the presence of these extracts is capable of improving the antimicrobial activities of chitosan-starch films. The performance of the modified films suggests their potential application as novel food packaging materials and encourages further research.
Collapse
Affiliation(s)
- M E Juárez-Méndez
- Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prolongación Bahía de Aldair, Parque de la Pequeña y Mediana Industria, Altamira, Mexico
| | - J I Lozano-Navarro
- Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prolongación Bahía de Aldair, Parque de la Pequeña y Mediana Industria, Altamira, Mexico.,Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - C Velasco-Santos
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México-Instituto Tecnológico de Querétaro, Querétaro, Mexico
| | - J F Pérez-Sánchez
- Unidad de Posgrado y Educación Continua, Facultad de Arquitectura, Diseño y Urbanismo, Universidad Autónoma de Tamaulipas Campus Sur, Domicilio conocido, Centro Universitario s/n, Universidad Sur, Tampico, Mexico
| | - S Zapién-Castillo
- Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prolongación Bahía de Aldair, Parque de la Pequeña y Mediana Industria, Altamira, Mexico
| | - I E Del Angel-Moxica
- Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prolongación Bahía de Aldair, Parque de la Pequeña y Mediana Industria, Altamira, Mexico
| | - J A Melo-Banda
- Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prolongación Bahía de Aldair, Parque de la Pequeña y Mediana Industria, Altamira, Mexico
| | - B I Tijerina-Ramos
- Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prolongación Bahía de Aldair, Parque de la Pequeña y Mediana Industria, Altamira, Mexico
| | - N P Díaz-Zavala
- Tecnológico Nacional de México-Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prolongación Bahía de Aldair, Parque de la Pequeña y Mediana Industria, Altamira, Mexico
| |
Collapse
|
48
|
Prabha S, Sowndarya J, Ram PJVS, Rubini D, Hari BNV, Aruni W, Nithyanand P. Chitosan-Coated Surgical Sutures Prevent Adherence and Biofilms of Mixed Microbial Communities. Curr Microbiol 2021; 78:502-512. [PMID: 33389059 DOI: 10.1007/s00284-020-02306-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Sutures are widely used materials for closing the surgical wounds, and being an inert material, sutures are often colonized with drug-resistant polymicrobial biofilms. Surgical site infection (SSI) is a hospital-acquired infection caused by bacteria and fungi specifically in the sutured sites. Although most of the currently available sutures possess antibacterial property, their ability to prevent biofilm colonization by polymicrobial communities is underexplored. So, the present study shows that extracted chitosan (EC) from crab shells prevented the adherence of Staphylococcus epidermidis and Candida albicans, the predominant members that exist as mixed species at the site of SSI. In comparison with a commercial chitosan, EC showed profound inhibition of slime formation and mixed species biofilm inhibition. Intriguingly, EC-coated sutures could inhibit the growth of both bacterial and fungal pathogens when comparing with a commercial triclosan-coated suture which was active only against the bacterial pathogen. Scanning electron microscopy results revealed inhibition of C. albicans hyphal formation by the EC-coated sutures that is a crucial virulence factor responsible for tissue invasiveness. Collectively, the results of the present study showed that EC from crab shells (discarded material as a recalcitrant biowaste) could be used as an alternative to combat drug-resistant biofilms which are the prime cause for SSIs.
Collapse
Affiliation(s)
- Subramani Prabha
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases [CRID], School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Jothipandiyan Sowndarya
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases [CRID], School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Parepalli Janaki Venkata Sai Ram
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases [CRID], School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases [CRID], School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - B Narayanan Vedha Hari
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Wilson Aruni
- US Department of Veteran Affairs, Loma Linda, VA, USA
- California University of Science and Medicine, San Bernardino, California, USA
- Sathyabama Institute of Science and Technology, Chennai, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases [CRID], School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India.
| |
Collapse
|
49
|
Husain S, Verma SK, Yasin D, Hemlata, A Rizvi MM, Fatma T. Facile green bio-fabricated silver nanoparticles from Microchaete infer dose-dependent antioxidant and anti-proliferative activity to mediate cellular apoptosis. Bioorg Chem 2020; 107:104535. [PMID: 33341280 DOI: 10.1016/j.bioorg.2020.104535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022]
Abstract
With the rapid development of nanotechnology, much has been anticipated with silver nanoparticles (AgNPs) due to their extensive industrial and commercial applications. However, it has raised concerns over environmental safety and human health effects. In this study, AgNPs were bio-fabricated using aqueous extract of Microchaete and their medical applications like antioxidant, anti-proliferative, and apoptosis were done. The biosynthesis of AgNPs was continuously followed by UV-vis spectrophotometric analysis. The physiochemical properties like shape, size, crystallinity, and polydispersity of the nanoparticles were determined by Scanning Electron Microscopy (SEM) along with EDX, Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), dynamic light scattering (DLS), and X-Ray Diffraction (XRD). Biosynthesized 7.0 nm sized AgNPs with the crystalline structure (crystalline size 4.8 nm) having a hydrodynamic diameter of 38.74 ± 2.6 nm was achieved due to the involvement of reducing agents present in the cyanobacterial extract. The IC50 values of the AgNPs were evaluated as 75 µg/ml and 79.41 µg/ml with HepG2 and MCF-7 cell lines. Different in-vitro cellular assays investigated in the present study exhibited antioxidant, anti-proliferative, and apoptotic activities. Probably delayed apoptosis in HepG2 and MCF-7 is due to better antioxidant activities of Microchaete based AgNPs.
Collapse
Affiliation(s)
- Shaheen Husain
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India.
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Durdana Yasin
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India
| | - Hemlata
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India
| | - M Moshahid A Rizvi
- Department of Biosciences, Jamia Millia Islmia, New Delhi 110025, India.
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Lab, Jamia Millia Islamia University, New Delhi 110025, India.
| |
Collapse
|
50
|
Islam T, Hasan MM, Awal A, Nurunnabi M, Ahammad AJS. Metal Nanoparticles for Electrochemical Sensing: Progress and Challenges in the Clinical Transition of Point-of-Care Testing. Molecules 2020; 25:E5787. [PMID: 33302537 PMCID: PMC7763225 DOI: 10.3390/molecules25245787] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
With the rise in public health awareness, research on point-of-care testing (POCT) has significantly advanced. Electrochemical biosensors (ECBs) are one of the most promising candidates for the future of POCT due to their quick and accurate response, ease of operation, and cost effectiveness. This review focuses on the use of metal nanoparticles (MNPs) for fabricating ECBs that has a potential to be used for POCT. The field has expanded remarkably from its initial enzymatic and immunosensor-based setups. This review provides a concise categorization of the ECBs to allow for a better understanding of the development process. The influence of structural aspects of MNPs in biocompatibility and effective sensor design has been explored. The advances in MNP-based ECBs for the detection of some of the most prominent cancer biomarkers (carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), Herceptin-2 (HER2), etc.) and small biomolecules (glucose, dopamine, hydrogen peroxide, etc.) have been discussed in detail. Additionally, the novel coronavirus (2019-nCoV) ECBs have been briefly discussed. Beyond that, the limitations and challenges that ECBs face in clinical applications are examined and possible pathways for overcoming these limitations are discussed.
Collapse
Affiliation(s)
- Tamanna Islam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md. Mahedi Hasan
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Abdul Awal
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - A. J. Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| |
Collapse
|