1
|
Ferrisi R, Polini B, Smolyakova AM, Migone C, Giammattei G, Banti M, Baron G, Della Vedova L, Chiellini G, Gado F, Piras AM, Rapposelli S, Laprairie RB, Ortore G, Manera C. Novel Orthosteric/Allosteric Ligands of Cannabinoid Receptors: An Unexpected Pharmacological Profile. J Med Chem 2025. [PMID: 39749716 DOI: 10.1021/acs.jmedchem.4c01778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The design of dualsteric/bitopic receptor ligands as compounds capable of simultaneously interacting with both the orthosteric and an allosteric binding site has gained importance to achieve enhanced receptor specificity and minimize off-target effects. In this work, we reported the synthesis and biological evaluation of a new series of compounds, namely, the RF series, obtained by chemically combining the CB1R ago-positive allosteric modulators (PAM) GAT211 with the cannabinoid receptors (CBRs) orthosteric agonist FM6b. Therefore, RF compounds were designed as dualsteric/bitopic ligands for hCB1R with the aim of obtaining stronger hCB1R agonists or ago-PAMs, with improved receptor subtype selectivity and reduction of central side effects. Unexpectedly, in vitro assays on hCB1R indicated RF compounds were inverse agonists/antagonists, exhibiting different profiles compared to those of parent compounds FM6b and GAT211 and, furthermore, two compounds behaved as hCB2R PAMs. The unpredictable change in the function of these new ligands suggests that the function of cannabinoids is not simply predicted.
Collapse
Affiliation(s)
- Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Beatrice Polini
- Department of Pathology, University of Pisa, 56126 Pisa, Italy
| | - Anna Maria Smolyakova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Gaia Giammattei
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Matteo Banti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | | | | | - Francesca Gado
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | | | | | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | | |
Collapse
|
2
|
Qi A, Han X, Quitalig M, Wu J, Christov PP, Jeon K, Jana S, Kim K, Engers DW, Lindsley CW, Rodriguez AL, Niswender CM. The cannabinoid CB 2 receptor positive allosteric modulator EC21a exhibits complicated pharmacology in vitro. J Recept Signal Transduct Res 2024; 44:151-159. [PMID: 39575892 PMCID: PMC11636628 DOI: 10.1080/10799893.2024.2431986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Schizophrenia is a complex disease involving the dysregulation of numerous brain circuits and patients exhibit positive symptoms (hallucinations, delusions), negative symptoms (anhedonia), and cognitive impairments. We have shown that the antipsychotic efficacy of positive allosteric modulators (PAMs) of both the M4 muscarinic receptor and metabotropic glutamate receptor 1 (mGlu1) involve the retrograde activation of the presynaptic cannabinoid type-2 (CB2) receptor, indicating that CB2 activation or potentiation could result in a novel therapeutic strategy for schizophrenia. We used two complementary assays, receptor-mediated phosphoinositide hydrolysis and GIRK channel activation, to characterize a CB2 PAM scaffold, represented by the compound EC21a, to explore its potential as a starting point to optimize therapeutics for schizophrenia. These studies revealed that EC21a acts as an allosteric inverse agonist at CB2 in both assays and exhibits a mixed allosteric agonist/negative allosteric modulator profile at CB1 depending upon the assay used for profiling. A series of compounds related to EC21a also functioned as CB2 inverse agonists. Overall, these results suggest that EC21a exhibits complicated and potentially assay-dependent pharmacology, which may impact interpretation of in vivo studies.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Humans
- Schizophrenia/drug therapy
- Schizophrenia/pathology
- Schizophrenia/metabolism
- Schizophrenia/genetics
- Animals
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- CHO Cells
- Antipsychotic Agents/pharmacology
- Cricetulus
Collapse
Affiliation(s)
- Aidong Qi
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Xueqing Han
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Marc Quitalig
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Jessica Wu
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Plamen P Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - KyuOk Jeon
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Darren W Engers
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Alice L Rodriguez
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
New Insights into Bitopic Orthosteric/Allosteric Ligands of Cannabinoid Receptor Type 2. Int J Mol Sci 2023; 24:ijms24032135. [PMID: 36768458 PMCID: PMC9917213 DOI: 10.3390/ijms24032135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Very recently, we have developed a new generation of ligands targeting the cannabinoid receptor type 2 (CB2R), namely JR compounds, which combine the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62, both synthesized in our laboratories. The functional examination enabled us to identify JR14a, JR22a, and JR64a as the most promising compounds of the series. In the current study, we focused on the assessment of the bitopic (dualsteric) nature of these three compounds. Experiments in cAMP assays highlighted that only JR22a behaves as a CB2R bitopic (dualsteric) ligand. In parallel, computational studies helped us to clarify the binding mode of these three compounds at CB2R, confirming the bitopic (dualsteric) nature of JR22a. Finally, the potential of JR22a to prevent neuroinflammation was investigated on a human microglial cell inflammatory model.
Collapse
|
4
|
Intranuovo F, Brunetti L, DelRe P, Mangiatordi GF, Stefanachi A, Laghezza A, Niso M, Leonetti F, Loiodice F, Ligresti A, Kostrzewa M, Brea J, Loza MI, Sotelo E, Saviano M, Colabufo NA, Riganti C, Abate C, Contino M. Development of N-(1-Adamantyl)benzamides as Novel Anti-Inflammatory Multitarget Agents Acting as Dual Modulators of the Cannabinoid CB2 Receptor and Fatty Acid Amide Hydrolase. J Med Chem 2023; 66:235-250. [PMID: 36542836 DOI: 10.1021/acs.jmedchem.2c01084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cannabinoid type 2 receptor (CB2R), belonging to the endocannabinoid system, is overexpressed in pathologies characterized by inflammation, and its activation counteracts inflammatory states. Fatty acid amide hydrolase (FAAH) is an enzyme responsible for the degradation of the main endocannabinoid anandamide; thus, the simultaneous CB2R activation and FAAH inhibition may be a synergistic anti-inflammatory strategy. Encouraged by principal component analysis (PCA) data identifying a wide chemical space shared by CB2R and FAAH ligands, we designed a small library of adamantyl-benzamides, as potential dual agents, CB2R agonists, and FAAH inhibitors. The new compounds were tested for their CB2R affinity/selectivity and CB2R and FAAH activity. Derivatives 13, 26, and 27, displaying the best pharmacodynamic profile as CB2R full agonists and FAAH inhibitors, decreased pro-inflammatory and increased anti-inflammatory cytokines production. Molecular docking simulations complemented the experimental findings by providing a molecular rationale behind the observed activities. These multitarget ligands constitute promising anti-inflammatory agents.
Collapse
Affiliation(s)
- Francesca Intranuovo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Leonardo Brunetti
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Pietro DelRe
- Institute of Crystallography, National Research Council of Italy, Via Amendola, 122/o, Bari 70126, Italy
| | | | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Fulvio Loiodice
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Jose Brea
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela 15782, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology. School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Maria Isabel Loza
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela 15782, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology. School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Eddy Sotelo
- ComBioMed Research Group, Centro de Química Biológica y Materiales Moleculares (CIQUS), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Michele Saviano
- Institute of Crystallography, National Research Council of Italy, Via Vivaldi, 43, Caserta 81100, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università Degli Studi di Torino, Torino 10126, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy.,Institute of Crystallography, National Research Council of Italy, Via Amendola, 122/o, Bari 70126, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| |
Collapse
|
5
|
Gado F, Ferrisi R, Polini B, Mohamed KA, Ricardi C, Lucarini E, Carpi S, Domenichini F, Stevenson LA, Rapposelli S, Saccomanni G, Nieri P, Ortore G, Pertwee RG, Ghelardini C, Di Cesare Mannelli L, Chiellini G, Laprairie RB, Manera C. Design, Synthesis, and Biological Activity of New CB2 Receptor Ligands: from Orthosteric and Allosteric Modulators to Dualsteric/Bitopic Ligands. J Med Chem 2022; 65:9918-9938. [PMID: 35849804 PMCID: PMC10168668 DOI: 10.1021/acs.jmedchem.2c00582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design of dualsteric/bitopic agents as single chemical entities able to simultaneously interact with both the orthosteric and an allosteric binding site represents a novel approach in medicinal chemistry. Biased dualsteric/bitopic agents could enhance certain signaling pathways while diminishing the others that cause unwanted side effects. We have designed, synthesized, and functionally characterized the first CB2R heterobivalent bitopic ligands. In contrast to the parent orthosteric compound, our bitopic ligands selectively target CB2R versus CB1R and show a functional selectivity for the cAMP signaling pathway versus βarrestin2 recruitment. Moreover, the most promising bitopic ligand FD-22a displayed anti-inflammatory activity in a human microglial cell inflammatory model and antinociceptive activity in vivo in an experimental mouse model of neuropathic pain. Finally, computational studies clarified the binding mode of these compounds inside the CB2R, further confirming their bitopic nature.
Collapse
Affiliation(s)
- Francesca Gado
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,Department of Pathology, University of Pisa, Pisa 56126, Italy
| | - Kawthar A Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | | | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, Pisa 56126, Italy
| | | | - Lesley A Stevenson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | | | - Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada.,Department of Pharmacology, College of Medicine, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| |
Collapse
|
6
|
Song M, Zhao W, Zhu Y, Liu W, Deng X, Huang Y. Design, Synthesis, and Evaluation of Anticonvulsant Activities of New Triazolopyrimidine Derivatives. Front Chem 2022; 10:925281. [PMID: 35815216 PMCID: PMC9260081 DOI: 10.3389/fchem.2022.925281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Epilepsy, a severe brain disease affecting a large population, is treated mainly by antiepileptic drugs (AEDs). However, toxicity, intolerance, and low efficiency of the available AEDs have prompted the continual attempts in the discovery of new AEDs. In this study, we discovered a skeleton of triazolopyrimidine for the development of new AEDs. The design, synthesis, in vivo anticonvulsant activity evaluation of triazolopyrimidines (3a–3i and 6a–6e), and pyrazolopyrimidines (4a–4i) are reported. We found that most triazolopyrimidines showed anticonvulsive activity in the maximal electroshock (MES) and pentetrazol (PTZ)-induced seizure models. On the contrary, pyrazolopyrimidines (4a–4i) showed weak or no protective effects. Among the tested derivatives, compound 6d, holding a median effective dose (ED50) of 15.8 and 14.1 mg/kg against MES and PTZ-induced seizures, respectively, was found to be the most potent one. Moreover, the protection index (PI) value of 6d was significantly higher than that of the available AEDs such as valproate, carbamazepine, and diazepam. The antiepileptic efficacy of compound 6d was also observed in the 3-mercaptopropionic acid and bicuculline-induced seizure models. Antagonistic effects of flumazenil and 3-MP for the anticonvulsive activity of 6d and also the radioligand-binding assay confirmed the involvement of GABA receptors, at least benzodiazepine (BZD) receptor, in the anticonvulsant activity of compound 6d. The docking study of compounds 4e and 6d with GABAA receptor confirmed and explained their affinity to the BZD receptors.
Collapse
Affiliation(s)
- Mingxia Song
- Medical College, Jinggangshan University, Jiʼan, China
- Jiʼan Key Laboratory of Personalized Drug Research of Neuropsychiatric Diseases, Jiʼan, China
| | - Wennan Zhao
- Medical College, Jinggangshan University, Jiʼan, China
| | - Yangnv Zhu
- Medical College, Jinggangshan University, Jiʼan, China
| | - Wenli Liu
- Medical College, Jinggangshan University, Jiʼan, China
| | - Xianqing Deng
- Medical College, Jinggangshan University, Jiʼan, China
- Jiʼan Key Laboratory of Personalized Drug Research of Neuropsychiatric Diseases, Jiʼan, China
- *Correspondence: Xianqing Deng, ; Yushan Huang,
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Xianqing Deng, ; Yushan Huang,
| |
Collapse
|
7
|
Schafroth MA, Mazzoccanti G, Reynoso-Moreno I, Erni R, Pollastro F, Caprioglio D, Botta B, Allegrone G, Grassi G, Chicca A, Gasparrini F, Gertsch J, Carreira EM, Appendino G. Δ 9- cis-Tetrahydrocannabinol: Natural Occurrence, Chirality, and Pharmacology. JOURNAL OF NATURAL PRODUCTS 2021; 84:2502-2510. [PMID: 34304557 DOI: 10.1021/acs.jnatprod.1c00513] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cis-stereoisomers of Δ9-THC [(-)-3 and (+)-3] were identified and quantified in a series of low-THC-containing varieties of Cannabis sativa registered in Europe as fiber hemp and in research accessions of cannabis. While Δ9-cis-THC (3) occurs in cannabis fiber hemp in the concentration range of (-)-Δ9-trans-THC [(-)-1], it was undetectable in a sample of high-THC-containing medicinal cannabis. Natural Δ9-cis-THC (3) is scalemic (ca. 80-90% enantiomeric purity), and the absolute configuration of the major enantiomer was established as 6aS,10aR [(-)-3] by chiral chromatographic comparison with a sample available by asymmetric synthesis. The major enantiomer, (-)-Δ9-cis-THC [(-)-3], was characterized as a partial cannabinoid agonist in vitro and elicited a full tetrad response in mice at 50 mg/kg doses. The current legal discrimination between narcotic and non-narcotic cannabis varieties centers on the contents of "Δ9-THC and isomers" and needs therefore revision, or at least a more specific wording, to account for the presence of Δ9-cis-THCs [(+)-3 and (-)-3] in cannabis fiber hemp varieties.
Collapse
Affiliation(s)
- Michael A Schafroth
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Giulia Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Ines Reynoso-Moreno
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Reto Erni
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100 Novara, Italy
| | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100 Novara, Italy
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Gianna Allegrone
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100 Novara, Italy
| | - Giulio Grassi
- Canvasalus Research, Via Cristoforo Colombo 64, 35043 Monselice (PD), Italy
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le A. Moro 5, 00185 Rome, Italy
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Erick M Carreira
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
8
|
Arena C, Gado F, Di Cesare Mannelli L, Cervetto C, Carpi S, Reynoso-Moreno I, Polini B, Vallini E, Chicca S, Lucarini E, Bertini S, D’Andrea F, Digiacomo M, Poli G, Tuccinardi T, Macchia M, Gertsch J, Marcoli M, Nieri P, Ghelardini C, Chicca A, Manera C. The endocannabinoid system dual-target ligand N-cycloheptyl-1,2-dihydro-5-bromo-1-(4-fluorobenzyl)-6-methyl-2-oxo-pyridine-3-carboxamide improves disease severity in a mouse model of multiple sclerosis. Eur J Med Chem 2020; 208:112858. [DOI: 10.1016/j.ejmech.2020.112858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
|
9
|
Morales P, Jagerovic N. Novel approaches and current challenges with targeting the endocannabinoid system. Expert Opin Drug Discov 2020; 15:917-930. [PMID: 32336154 PMCID: PMC7502221 DOI: 10.1080/17460441.2020.1752178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The pathophysiological relevance of the endocannabinoid system has been widely demonstrated in a variety of diseases including cancer, neurological disorders, and metabolic issues. Therefore, targeting the receptors and the endogenous machinery involved in this system can provide a successful therapeutic outcome. Ligands targeting the canonical cannabinoid receptors, CB1 and CB2, along with inhibitors of the endocannabinoid enzymes have been thoroughly studied in diverse disease models. In fact, phytocannabinoids such as cannabidiol or Δ9-tetrahydrocannabinol are currently on the market for the management of neuropathic pain due to spasticity in multiple sclerosis or seizures in children epilepsy amongst others. AREAS COVERED Challenges in the pharmacology of cannabinoids arise from its pharmacokinetics, off-target effects, and psychoactive effects. In this context, the current review outlines the novel molecular approaches emerging in the field discussing their clinical potential. EXPERT OPINION Even if orthosteric CB1 and CB2 ligands are on the forefront in cannabinoid clinical research, emerging strategies such as allosteric or biased modulation of these receptors along with controlled off-targets effects may increase the therapeutic potential of cannabinoids.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
10
|
Fazio D, Criscuolo E, Piccoli A, Barboni B, Fezza F, Maccarrone M. Advances in the discovery of fatty acid amide hydrolase inhibitors: what does the future hold? Expert Opin Drug Discov 2020; 15:765-778. [PMID: 32292082 DOI: 10.1080/17460441.2020.1751118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme, that inactivates endogenous signaling lipids of the fatty acid amide family, including the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA). The latter compound has been shown to regulate a number of important pathophysiological conditions in humans, like feeding, obesity, immune response, reproductive events, motor coordination, and neurological disorders. Hence, direct manipulation of the endocannabinoid tone is thought to have therapeutic potential. A new opportunity to develop effective drugs may arise from multi-target directed ligand (MTDL) strategies, which brings the concept that a single compound can recognize different targets involved in the cascade of pathophysiological events. AREAS COVERED This review reports the latest advances in the development of new single targeted and dual-targeted FAAH inhibitors over the past 5 years. EXPERT OPINION In recent years, several FAAH inhibitors have been synthesized and investigated, yet to date none of them has reached the market as a systemic drug. Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases.
Collapse
Affiliation(s)
- Domenico Fazio
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo , Teramo, Italy.,European Center for Brain Research/IRCCS Santa Lucia Foundation , Rome, Italy
| | - Emanuele Criscuolo
- Department of Experimental Medicine, Tor Vergata University of Rome , Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| | - Alessandra Piccoli
- Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo , Teramo, Italy
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome , Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation , Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| |
Collapse
|