1
|
Liu J, Ren J, Zuo XY, Zhou KX, Tang YZ, Jin Z. Design, synthesis, in vitro and in vivo evaluation and molecular docking study of novel pleuromutilin derivatives as antibacterial agents. Fitoterapia 2024; 176:106046. [PMID: 38821322 DOI: 10.1016/j.fitote.2024.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
14 novel pleuromutilin derivatives were designed and synthesized as inhibitors against Staphylococcus aureus (S. aureus). The modification was focused on the C22 position of pleuromutilin. We conducted the characterization, in vitro and in vivo biological assessment of the compounds. Compound 18 exhibited the best antibacterial effect against MRSA (MIC = 0.015 μg/mL, MBC = 0.125 μg/mL). Compound 18 was further studied by time-kill kinetic and post-antibiotic effect (PAE) approaches. Besides, most compounds exhibited low cytotoxicity to RAW 264.7 cells. Compound 18 displayed decent bactericidal activity in vivo (-0.51 log10 CFU/mL). Molecular docking study indicated that compound 18 could be located stably at the ribosome (ΔGb = -7.30 kcal/mol). The results revealed that compound 18 might be further developed into a novel antibiotic.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Ren
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiang-Yi Zuo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ke-Xin Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
2
|
Liu H, Xu T, Xue Z, Huang M, Wang T, Zhang M, Yang R, Guo Y. Current Development of Thiazole-Containing Compounds as Potential Antibacterials against Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2024; 10:350-370. [PMID: 38232301 DOI: 10.1021/acsinfecdis.3c00647] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The emergence of multi-drug-resistant bacteria is threatening to human health and life around the world. In particular, methicillin-resistant Staphylococcus aureus (MRSA) causes fatal injuries to human beings and serious economic losses to animal husbandry due to its easy transmission and difficult treatment. Currently, the development of novel, highly effective, and low-toxicity antimicrobials is important to combat MRSA infections. Thiazole-containing compounds with good biological activity are widely used in clinical practice, and appropriate structural modifications make it possible to develop new antimicrobials. Here, we review thiazole-containing compounds and their antibacterial effects against MRSA reported in the past two decades and discuss their structure-activity relationships as well as the corresponding antimicrobial mechanisms. Some thiazole-containing compounds exhibit potent antibacterial efficacy in vitro and in vivo after appropriate structural modifications and could be used as antibacterial candidates. This Review provides insights into the development of thiazole-containing compounds as antimicrobials to combat MRSA infections.
Collapse
Affiliation(s)
- Hang Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Zihan Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Meijuan Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Miaomiao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
3
|
Guo J, Xie Z, Ruan W, Tang Q, Qiao D, Zhu W. Thiazole-based analogues as potential antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) and their SAR elucidation. Eur J Med Chem 2023; 259:115689. [PMID: 37542993 DOI: 10.1016/j.ejmech.2023.115689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
In recent years, the overuse of antibiotics has resulted in the emergence of antibiotic resistance, which is a serious global health problem. Methicillin-resistant Staphylococcus aureus (MRSA) is a common and virulent bacterium in clinical practice. Numerous researchers have focused on developing new candidate drugs that are effective, less toxic, and can overcome MRSA resistance. Thiazole derivatives have been found to exhibit antibacterial activity against drug-sensitive and drug-resistant pathogens. By hybridizing thiazole with other antibacterial pharmacophores, it is possible to obtain more effective antibacterial candidate drugs. Thiazole derivatives have shown potential in developing new drugs that can overcome drug resistance, reduce toxicity, and improve pharmacokinetic characteristics. This article reviews the recent progress of thiazole compounds as potential antibacterial compounds and examines the structure-activity relationship (SAR) in various directions. It covers articles published from 2018 to 2023, providing a comprehensive platform to plan and develop new thiazole-based small MRSA growth inhibitors with minimal side effects.
Collapse
Affiliation(s)
- Jiaojiao Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Zhouling Xie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Wei Ruan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
4
|
Shahin IG, Mohamed KO, Taher AT, Elsebaei MM, Mayhoub AS, Kassab AE, Elshewy A. New Phenylthiazoles: Design, Synthesis, and Biological Evaluation as Antibacterial, Antifungal, and Anti-COVID-19 Candidates. Chem Biodivers 2023; 20:e202301143. [PMID: 37857580 DOI: 10.1002/cbdv.202301143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
The combination of antibacterial and antiviral agents is becoming a very important aspect of dealing with resistant bacterial and viral infections. The N-phenylthiazole scaffold was found to possess significant anti-MRSA, antifungal, and anti-COVID-19 activities as previously published; hence, a slight refinement was proposed to attach various alkyne lipophilic tails to this promising scaffold, to investigate their effects on the antimicrobial activity of the newly synthesized compounds and to provide a valuable structure-activity relationship. Phenylthiazole 4 m exhibited the most potent anti-MRSA activity with 8 μg/mL MIC value. Compounds 4 k and 4 m demonstrated potent activity against Clostridium difficile with MIC values of 2 μg/mL and moderate activity against Candida albicans with MIC value of 4 μg/mL. When analyzed for their anti-COVID-19 inhibitory effect, compound 4 b emerged with IC50 =1269 nM and the highest selectivity of 138.86 and this was supported by its binding score of -5.21 kcal mol-1 when docked against SARS-CoV-2 M pro . Two H-bonds were formed, one with His164 and the other with Met49 stabilizing phenylthiazole derivative 4 b, inside the binding pocket. Additionally, it created two arene-H bonds with Asn142 and Glu166, through the phenylthiazole scaffold and one arene-H bond with Leu141 via the phenyl ring of the lipophilic tail.
Collapse
Affiliation(s)
- Inas G Shahin
- Department of Organic Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, 11787, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, October 6 University, 6-October, Giza, Egypt
| | - Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
- University of Science and Technology, Nanoscience Program, Zewail, City of Science and Technology, October Gardens, 6th October, Giza, 12578, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed Elshewy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, Galala Plateau, Attaka, Suez, 43713, Egypt
| |
Collapse
|
5
|
Zhang QW, Ren J, Lu JX, Chen XY, He XJ, Wang Q, Zhou ZD, Jin Z, Zeng ZL, Tang YZ. Design, synthesis, and biological evaluation of novel pleuromutilin derivatives containing benzimidazoles as effective anti-MRSA agents. Drug Dev Res 2023; 84:1437-1452. [PMID: 37534779 DOI: 10.1002/ddr.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
A series of pleuromutilin derivatives containing benzimidazole were designed, synthesized, and evaluated for their antibacterial activities against Methicillin-resistant Staphylococcus aureus (MRSA) in this study. The in vitro antibacterial activities of the synthesized derivatives against four strains of S. aureus (MRSA ATCC 43300, S. aureus ATCC 29213, S. aureus 144, and S. aureus AD3) were determined by the broth dilution method. Among these derivatives, compound 58 exhibited superior in vitro antibacterial effect against MRSA (minimal inhibitory concentration [MIC] = 0.0625 μg/mL) than tiamulin (MIC = 0.5 μg/mL). Compound 58 possessed a faster bactericidal kinetic and a longer post-antibiotic effect time against MRSA than tiamulin. Meanwhile, at 8 μg/mL concentration, compound 58 did not display obviously cytotoxic effect on the RAW 264.7 cells. In addition, compound 58 (-2.04 log10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (-1.02 log10 CFU/mL) in reducing MRSA load in mice thigh infection model. In molecular docking study, compound 58 can successfully attach to the 50S ribosomal active site (the binding free energy is -8.11 kcal/mol). Therefore, compound 58 was a potential antibacterial candidate for combating MRSA infections.
Collapse
Affiliation(s)
- Qi-Wen Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Ren
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jia-Xun Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ying Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xian-Jin He
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Dan Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhen-Ling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Kulkarni B, Manjunatha K, Joy MN, Sajith AM, Santra S, Zyryanov GV, Prashantha CN, Alshammari MB, Sunil K. Exploration of NMI-MsCl mediated amide bond formation for the synthesis of novel 3,5-substituted-1,2,4-oxadiazole derivatives: synthesis, evaluation of anti-inflammatory activity and molecular docking studies. Mol Divers 2023; 27:1867-1878. [PMID: 36219380 DOI: 10.1007/s11030-022-10536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/27/2022] [Indexed: 10/17/2022]
Abstract
We herein report the facile synthesis of a series of 3,5-substituted-1,2,4-oxadiazole derivatives 9a-e and 10a-e in good to excellent yields by employing NMI-MsCl mediated amide bond formation reaction. The anti-inflammatory potential of the newly synthesized compounds were evaluated by anti-denaturation assay using diclofenac sodium as the reference drug. The compounds 9a and 9d demonstrated promising activity profile when compared to the reference standard. The SAR and molecular docking studies were also carried out for obtaining more details about the profound activity profile of the synthesized molecules. The synthesized compounds were docked against two target proteins TGF-β and IL-1 by AutoDock vina and Auto Dock 4.2.
Collapse
Affiliation(s)
- B Kulkarni
- Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - K Manjunatha
- Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu, 641046, India.
- Department of Chemistry, Nagarjuna College of Engineering and Technology, Devanahalli, Bengaluru, Karnataka, 562164, India.
| | - Muthipeedika Nibin Joy
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia, 620002
| | | | - Sougata Santra
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia, 620002
| | - Grigory V Zyryanov
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia, 620002
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, Yekaterinburg, Russia, 620219
| | - C N Prashantha
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, Karnataka, 560064, India
| | - Mohammed B Alshammari
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj, 11942, Saudi Arabia
| | - K Sunil
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, 572107, India
| |
Collapse
|
7
|
Husseiny EM, S Abulkhair H, El-Dydamony NM, Anwer KE. Exploring the cytotoxic effect and CDK-9 inhibition potential of novel sulfaguanidine-based azopyrazolidine-3,5-diones and 3,5-diaminoazopyrazoles. Bioorg Chem 2023; 133:106397. [PMID: 36753965 DOI: 10.1016/j.bioorg.2023.106397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Regarding the structural analysis of variable effective CDK-9 suppressors, we record the design and synthesis of two new sets of sulfaguanidine-based azopyrazolidine-3,5-diones and 3,5-diaminoazopyrazoles with expected anticancer and CDK-9 inhibiting activity. In the designed molecules, the pyrazole ring and sulphaguanidine fragment were linked together for the first time through diazo linkers as they are expected to enhance the anticancer activity and CDK degrading interaction. All derivatives have been estimated regarding their cytotoxic activity toward three tumor cells where CDK overexpression has been reported (HePG2, HCT-116, and MCF-7). Among these, four derivatives VII, VIII, X, and XIII exerted potent cytotoxicity against the chosen tumor cells presenting IC50 range equal to 2.86-25.89 µM. As well cytotoxicity on non-cancer cells and CDK-9 inhibition assay have been also assessed for these candidates to evaluate their selectivity indices and enzyme inhibition. The 3,5-diaminopyrazole-1-carboxamide derivative XIII showed a superior combined profile as cytotoxic with high selectivity toward cancer cells (HePG2: IC50 = 6.57 µM, SI = 13.31; HCT-116: IC50 = 9.54 µM, SI = 9.16; MCF-7: IC50 = 7.97 µM, SI = 10.97). Accordingly, it has been chosen to evaluate its probable mechanistic effect both in vitro (via enzyme assay, apoptosis induction, and cell cycle study) as well as in silico (through molecular docking). Overall, this work introduces the 3,5-diaminopyrazole-1-carboxamide derivative XIII as a potent CDK-9 inhibitor candidate (IC50 = 0.16 µM) that merits further investigations for the management of breast, colorectal, and hepatic malignancies.
Collapse
Affiliation(s)
- Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Kurls E Anwer
- Chemistry Department, Faculty of Science, Ain Shams University 11566, Abbassia, Cairo, Egypt.
| |
Collapse
|
8
|
Shahin IG, Mohamed KO, Taher AT, Mayhoub AS, Kassab AE. The Anti-MRSA Activity of Phenylthiazoles: A Comprehensive Review. Curr Pharm Des 2022; 28:3469-3477. [PMID: 36424796 DOI: 10.2174/1381612829666221124112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance is an aggravating global issue therefore it has been under extensive research in an attempt to reduce the number of antibiotics that are constantly reported as obsolete jeopardizing the lives of millions worldwide. Thiazoles possess a reputation as one of the most diverse biologically active nuclei, and phenylthiazoles are no less exceptional with an assorted array of biological activities such as anthelmintic, insecticidal, antimicrobial, antibacterial, and antifungal activity. Recently phenyl thiazoles came under the spotlight as a scaffold having strong potential as an anti-MRSA lead compound. It is a prominent pharmacophore in designing and synthesizing new compounds with antibacterial activity against multidrug-resistant bacteria such as MRSA, which is categorized as a serious threat pathogen, that exhibited concomitant resistance to most of the first-line antibiotics. MRSA has been associated with soft tissue and skin infections resulting in high death rates, rapid dissemination, and loss of millions of dollars of additional health care costs. In this brief review, we have focused on the advances of phenylthiazole derivatives as potential anti-MRSA from 2014 to 2021. The review encompasses the effect on biological activity due to combining this molecule with various synthetic pharmacophores. The physicochemical aspects were correlated with the pharmacokinetic properties of the reviewed compounds to reach a structure-activity relationship profile. Lead optimization of phenyl thiazole derivatives has additionally been outlined where the lipophilicity of the compounds was balanced with the metabolic stability and oral solubility to aid the researchers in medicinal chemistry, design, and synthesizing effective anti- MRSA phenylthiazoles in the future.
Collapse
Affiliation(s)
- Inas G Shahin
- Department of Organic Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza 11787, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.,Department of Pharmaceutical Organic Chemistry, College of Pharmacy, October 6 University, 6-October, Giza, Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.,University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th October, Giza 12578, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
9
|
Singh A, Malhotra D, Singh K, Chadha R, Bedi PMS. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Durmaz Ş, Evren AE, Sağlık BN, Yurttaş L, Tay NF. Synthesis, anticholinesterase activity, molecular docking, and molecular dynamic simulation studies of 1,3,4-oxadiazole derivatives. Arch Pharm (Weinheim) 2022; 355:e2200294. [PMID: 35972839 DOI: 10.1002/ardp.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Two new series of 1,3,4-oxadiazoles bearing pyridine and thiazole heterocycles (4a-h and 5a-h) were synthesized (2,5-disubstituted-1,3,4-oxadiazoles). The structures of these newly synthesized compounds were confirmed by 1 H nuclear magnetic resonance (NMR), 13 C NMR, high-resolution mass spectrometric and Fourier transform infrared spectroscopic methods. All these compounds were evaluated for their enzyme inhibitory activities against two cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). From the studies, we identified compounds 4a, 4h, 5a, 5d, and 5e as selective AChE inhibitors, with IC50 values ranging from 0.023 to 0.037 μM. Furthermore, docking studies of these compounds were performed at the active sites of their target enzymes. The molecular docking study showed that 5e possessed an ideal docking pose with interactions inside AChE.
Collapse
Affiliation(s)
- Şeyma Durmaz
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Asaf E Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Begüm N Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Naime F Tay
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
11
|
Comparative Study of the Synthetic Approaches and Biological Activities of the Bioisosteres of 1,3,4-Oxadiazoles and 1,3,4-Thiadiazoles over the Past Decade. Molecules 2022; 27:molecules27092709. [PMID: 35566059 PMCID: PMC9102899 DOI: 10.3390/molecules27092709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles are well-known pharmacophores for many medicinally important drugs. Throughout the past 10 years, 1,3,4-oxa-/thiadiazole nuclei have been very attractive to researchers for drug design, synthesis, and the study of their potential activity towards a variety of diseases, including microbial and viral infections, cancer, diabetes, pain, and inflammation. This work is an up-to-date comparative study that identifies the differences between 1,3,4-thiadiazoles and 1,3,4-oxadiazoles concerning their methods of synthesis from different classes of starting compounds under various reaction conditions, as well as their biological activities and structure–activity relationship.
Collapse
|
12
|
Tok F, Kaya M, Karaca H, Koçyiğit-Kaymakçıoğlu B. Synthesis of some novel 1,3,4-oxadiazole derivatives and evaluation of their antimicrobial activity. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Murat Kaya
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Hülya Karaca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | | |
Collapse
|
13
|
Synthesis of New Ursane-Type Hybrids with Morpholinomethyl-, Dialkylamino-, and Hydroxyl-Substituted Azoles. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Sultana R, Arif R, Rana M, Ahmedi S, Mehandi R, Akrema, Manzoor N, Rahisuddin. Ni (II) detection by 2-amino-5-substituted-1,3,4-oxadiazole as a chemosensor using photo-physical method: Antifungal, antioxidant, DNA binding, and molecular docking studies. LUMINESCENCE 2022; 37:408-421. [PMID: 34986516 DOI: 10.1002/bio.4184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022]
Abstract
An oxadiazole derivative 2 was prepared by condensation reaction through cyclization of semicarbazone in the presence of bromine and the structural confirmation was supported by 1 H and 13 C NMR, FT-IR spectroscopy, and LC-MS spectrometry. Its sensing ability was examined towards Ni2+ ion with binding constant 1.04 x 105 over the other suitable metal cations (Ca2+ , Co2+ , Cr3+ , Ag+ , Pb2+ , Fe3+ , Mg2+ , and K+ ) by UV-visible and fluorescence spectroscopic studies and the minimum concentration of Ni2+ ion with LOD was found to be 9.4μM. Job's plot method gives the binding stoichiometry ratio of Ni2+ ion vs oxadiazole derivative 2 to be 2:1. Furthermore, the intercalative binding mode of oxadiazole derivative 2 with Calf Thymus DNA was supported by UV-Vis, fluorescence, viscosity, cyclic voltammetry, time-resolved fluorescence, and circular dichroism measurements. The molecular docking result gives the binding score for oxadiazole derivative 2 to be -6.5 kcal/mol, which further confirms the intercalative interaction. In addition, the anti-fungal activity of oxadiazole derivative 2 was also screened against fungal strains (C. albicans, C. glabrata, and C. tropicalis) by broth dilution and disc diffusion method. In the antioxidant studies, the oxadiazole derivative 2 showed potential scavenging activity against DPPH and H2 O2 free radicals.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rizwan Arif
- Department of Chemistry, Lingayas Vidyapeeth, Faridabad, Haryana, India
| | - Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Saiema Ahmedi
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rabiya Mehandi
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Akrema
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
15
|
Othman EM, Fayed EA, Husseiny EM, Abulkhair HS. Rationale design, synthesis, cytotoxicity evaluation, and in silico mechanistic studies of novel 1,2,3-triazoles with potential anticancer activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02061k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new set of 1,2,3-triazoles was designed and synthesized to evaluate their potential to inhibit the growth of cancer cells.
Collapse
Affiliation(s)
- Esraa M. Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Eman A. Fayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Ebtehal M. Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt
| |
Collapse
|
16
|
Design, synthesis and molecular docking studies of some 1-(5-(2-fluoro-5-(trifluoromethoxy)phenyl)-1,2,4-oxadiazol-3-yl)piperazine derivatives as potential anti-inflammatory agents. Mol Divers 2021; 26:2893-2905. [PMID: 34817768 DOI: 10.1007/s11030-021-10340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
We herein report the facile synthesis of a series of 3,5-substituted-1,2,4-oxadiazole derivatives in good to excellent yields. The anti-inflammatory potential of the newly synthesized compounds was evaluated by anti-denaturation assay using diclofenac sodium as the reference standard. Some of the compounds exhibited profound activity profile when compared to the standard drug. The molecular docking and SAR studies were carried out at the later stage for gaining more insights about the promising activity profile of the synthesized molecules.
Collapse
|
17
|
El-Adl K, Ibrahim MK, Khedr F, Abulkhair HS, Eissa IH. Design, synthesis, docking, and anticancer evaluations of phthalazines as VEGFR-2 inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100278. [PMID: 34596910 DOI: 10.1002/ardp.202100278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022]
Abstract
Twenty new N-substituted-4-phenylphthalazin-1-amine derivatives were designed, synthesized, and evaluated for their anticancer activities against HepG2, HCT-116, and MCF-7 cells as VEGFR-2 inhibitors. HCT-116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 7f was found to be the most potent derivative among all the tested compounds against the three cancer cell lines, with 50% inhibition concentration, IC50 = 3.97, 4.83, and 4.58 µM, respectively, which is more potent than both sorafenib (IC50 = 9.18, 5.47, and 7.26 µM, respectively) and doxorubicin (IC50 = 7.94, 8.07, and 6.75 µM, respectively). Fifteen of the synthesized derivatives were selected to evaluate their inhibitory activities against VEGFR-2. Compound 7f was found to be the most potent derivative that inhibited VEGFR-2 at an IC50 value of 0.08 µM, which is more potent than sorafenib (IC50 = 0.10 µM). Compound 8c inhibited VEGFR-2 at an IC50 value of 0.10 µM, which is equipotent to sorafenib. Moreover, compound 7a showed very good activity with IC50 values of 0.11 µM, which is nearly equipotent to sorafenib. In addition, compounds 7d, 7c, and 7g possessed very good VEGFR-2-inhibitory activity, with IC50 values of 0.14, 0.17, and 0.23 µM, respectively.
Collapse
Affiliation(s)
- Khaled El-Adl
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, El Salam City, Cairo, Egypt
| | - Mohamed K Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fathalla Khedr
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Ibrahim H Eissa
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
18
|
Baykov SV, Mikherdov AS, Novikov AS, Geyl KK, Tarasenko MV, Gureev MA, Boyarskiy VP. π-π Noncovalent Interaction Involving 1,2,4- and 1,3,4-Oxadiazole Systems: The Combined Experimental, Theoretical, and Database Study. Molecules 2021; 26:5672. [PMID: 34577142 PMCID: PMC8466036 DOI: 10.3390/molecules26185672] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
A series of N-pyridyl ureas bearing 1,2,4- (1a, 2a, and 3a) and 1,3,4-oxadiazole moiety (1b, 2b, 3b) was prepared and characterized by HRMS, 1H and 13C NMR spectroscopy, as well as X-ray diffraction. The inspection of the crystal structures of (1-3)a,b and the Hirshfeld surface analysis made possible the recognition of the (oxadiazole)···(pyridine) and (oxadiazole)···(oxadiazole) interactions. The presence of these interactions was confirmed theoretically by DFT calculations, including NCI analysis for experimentally determined crystal structures as well as QTAIM analysis for optimized equilibrium structures. The preformed database survey allowed the verification of additional examples of relevant (oxadiazole)···π interactions both in Cambridge Structural Database and in Protein Data Bank, including the cocrystal of commercial anti-HIV drug Raltegravir.
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.S.M.); (A.S.N.); (K.K.G.)
| | - Alexander S. Mikherdov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.S.M.); (A.S.N.); (K.K.G.)
| | - Alexander S. Novikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.S.M.); (A.S.N.); (K.K.G.)
| | - Kirill K. Geyl
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.S.M.); (A.S.N.); (K.K.G.)
| | - Marina V. Tarasenko
- Pharmaceutical Technology Transfer Centre, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia;
| | - Maxim A. Gureev
- Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Vadim P. Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.S.M.); (A.S.N.); (K.K.G.)
| |
Collapse
|
19
|
Gaber AA, El-Morsy AM, Sherbiny FF, Bayoumi AH, El-Gamal KM, El-Adl K, Al-Karmalawy AA, Ezz Eldin RR, Saleh MA, Abulkhair HS. Pharmacophore-linked pyrazolo[3,4-d]pyrimidines as EGFR-TK inhibitors: Synthesis, anticancer evaluation, pharmacokinetics, and in silico mechanistic studies. Arch Pharm (Weinheim) 2021:e2100258. [PMID: 34467546 DOI: 10.1002/ardp.202100258] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Targeting the epidermal growth factor receptors (EGFRs) with small inhibitor molecules has been validated as a potential therapeutic strategy in cancer therapy. Pyrazolo[3,4-d]pyrimidine is a versatile scaffold that has been exploited for developing potential anticancer agents. On the basis of fragment-based drug discovery, considering the essential pharmacophoric features of potent EGFR tyrosine kinase (TK) inhibitors, herein, we report the design and synthesis of new hybrid molecules of the pyrazolo[3,4-d]pyrimidine scaffold linked with diverse pharmacophoric fragments with reported anticancer potential. These fragments include hydrazone, indoline-2-one, phthalimide, thiourea, oxadiazole, pyrazole, and dihydropyrazole. The synthesized molecules were evaluated for their anticancer activity against the human breast cancer cell line, MCF-7. The obtained results revealed comparable antitumor activity with that of the reference drugs doxorubicin and toceranib. Docking studies were performed along with EGFR-TK and ADMET profiling studies. The results of the docking studies showed the ability of the designed compounds to interact with key residues of the EGFR-TK through a number of covalent and noncovalent interactions. The obtained activity of compound 25 (IC50 = 2.89 µM) suggested that it may serve as a lead for further optimization and drug development.
Collapse
Affiliation(s)
- Ahmed A Gaber
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Ahmed M El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Department of Chemistry, Basic Science Center and Pharmaceutical Organic Chemistry College of Pharmaceutical Science & Drug Manufacturing, Misr University for Science and Technology (MUST), Al-Motamayez District, 6th of October City, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Kamal M El-Gamal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Rogy R Ezz Eldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa A Saleh
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
20
|
Khedr F, Ibrahim MK, Eissa IH, Abulkhair HS, El-Adl K. Phthalazine-based VEGFR-2 inhibitors: Rationale, design, synthesis, in silico, ADMET profile, docking, and anticancer evaluations. Arch Pharm (Weinheim) 2021; 354:e2100201. [PMID: 34411344 DOI: 10.1002/ardp.202100201] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023]
Abstract
In the designed compounds, a new linker was inserted in the form of fragments with verified VEGFR-2 inhibitory potential, including an α,β-unsaturated ketonic fragment, pyrazole, and pyrimidine. Also, new distal hydrophobic moieties were attached to these linkers that are expected to increase the hydrophobic interaction with VEGFR-2 and, consequently, the affinity. These structural optimizations have led us to identify the novel dihydropyrazole derivative 6e as a promising hit molecule. All the new derivatives were evaluated to assess their anticancer activity against three human cancer cell lines, including HepG2, HCT-116, and MCF-7. The results of the in vitro anticancer evaluation study revealed the moderate to excellent cytotoxicity of 6c , 6e , 6g , and 7b , with IC50 values in the low micromolar range. The inhibitory activity of VEGFR-2 was investigated for 16 of the designed compounds. The enzyme assay results of the new compounds were compared with those of sorafenib as a reference VEGFR-2 inhibitor. The obtained results demonstrated that our derivatives are potent VEGFR-2 inhibitors. The most potent derivatives 6c , 6e , 6g , and 7b showed IC50 values in the range of 0.11-0.22 µM. Molecular docking and pharmacokinetic studies were also conducted to rationalize the VEGFR-2 inhibitory activity and to evaluate the ability of the most potent derivatives to be developed as good drug candidates.
Collapse
Affiliation(s)
- Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
21
|
Liu J, Zhang GY, Zhang Z, Li B, Chai F, Wang Q, Zhou ZD, Xu LL, Wang SK, Jin Z, Tang YZ. Design, synthesis, in vitro and in vivo evaluation against MRSA and molecular docking studies of novel pleuromutilin derivatives bearing 1, 3, 4-oxadiazole linker. Bioorg Chem 2021; 112:104956. [PMID: 33991838 DOI: 10.1016/j.bioorg.2021.104956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
A class of pleuromutilin derivatives containing 1, 3, 4-oxadiazole were designed and synthesized as potential antibacterial agents against Methicillin-resistant staphylococcus aureus (MRSA). The ultrasound-assisted reaction was proposed as a green chemistry method to synthesize 1, 3, 4-oxadiazole derivatives (intermediates 85-110). Among these pleuromutilin derivatives, compound 133 was found to be the strongest antibacterial derivative against MRSA (MIC = 0.125 μg/mL). Furthermore, the result of the time-kill curves displayed that compound 133 could inhibit the growth of MRSA in vitro quickly (- 4.36 log10 CFU/mL reduction). Then, compound 133 (- 1.82 log10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (- 0.82 log10 CFU/mL) in reducing MRSA load in mice thigh model. Besides, compound 133 exhibited low cytotoxicity to RAW 264.7 cells. Molecular docking studies revealed that compound 133 was successfully localized in the binding pocket of 50S ribosomal subunit (ΔGb = -10.50 kcal/mol). The results indicated that these pleuromutilin derivatives containing 1, 3, 4-oxadiazole might be further developed into novel antibiotics against MRSA.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fei Chai
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Dan Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ling-Ling Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shou-Kai Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Glomb T, Świątek P. Antimicrobial Activity of 1,3,4-Oxadiazole Derivatives. Int J Mol Sci 2021; 22:6979. [PMID: 34209520 PMCID: PMC8268636 DOI: 10.3390/ijms22136979] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The worldwide development of antimicrobial resistance forces scientists to search for new compounds to which microbes would be sensitive. Many new structures contain the 1,3,4-oxadiazole ring, which have shown various antimicrobial activity, e.g., antibacterial, antitubercular, antifungal, antiprotozoal and antiviral. In many publications, the activity of new compounds exceeds the activity of already known antibiotics and other antimicrobial agents, so their potential as new drugs is very promising. The review of active antimicrobial 1,3,4-oxadiazole derivatives is based on the literature from 2015 to 2021.
Collapse
Affiliation(s)
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
23
|
From triazolophthalazines to triazoloquinazolines: A bioisosterism-guided approach toward the identification of novel PCAF inhibitors with potential anticancer activity. Bioorg Med Chem 2021; 42:116266. [PMID: 34126285 DOI: 10.1016/j.bmc.2021.116266] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Inhibition of PCAF bromodomain has been validated as a promising strategy for the treatment of cancer. In this study, we report the bioisosteric modification of the first reported potent PCAF bromodomain inhibitor, L-45 to its triazoloquinazoline bioisosteres. Accordingly, three new series of triazoloquinazoline derivatives were designed, synthesized, and assessed for their anticancer activity against a panel of four human cancer cells. Three derivatives demonstrated comparable cytotoxic activity with the reference drug doxorubicin. Among them, compound 22 showed the most potent activity with IC50 values of 15.07, 9.86, 5.75, and 10.79 µM against Hep-G2, MCF-7, PC3, and HCT-116 respectively. Also, compound 24 exhibited remarkable cytotoxicity effects against the selected cancer cell lines with IC50 values of 20.49, 12.56, 17.18, and 11.50 µM. Compounds 22 and 25 were the most potent PCAF inhibitors (IC50, 2.88 and 3.19 μM, respectively) compared with bromosporine (IC50, 2.10 μM). Follow up apoptosis induction and cell cycle analysis studies revealed that the bioisostere 22 could induce apoptotic cell death and arrest the cell cycle of PC3 at the G2/M phase. The in silico molecular docking studies were additionally performed to rationalize the PCAF inhibitory effects of new triazoloquinazoline bioisosteres.
Collapse
|
24
|
Verma SK, Verma R, Kumar KSS, Banjare L, Shaik AB, Bhandare RR, Rakesh KP, Rangappa KS. A key review on oxadiazole analogs as potential methicillin-resistant Staphylococcus aureus (MRSA) activity: Structure-activity relationship studies. Eur J Med Chem 2021; 219:113442. [PMID: 33878562 DOI: 10.1016/j.ejmech.2021.113442] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 04/02/2021] [Indexed: 01/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is becoming dangerous to human beings due to easy transmission mode and leading to the difficult-to-treat situation. The rapid resistance development of MRSA to many approved antibiotics is of major concern. There is a lot of scope to develop novel, efficient, specific, and nontoxic drug candidates to fight against MRSA isolates. The interesting molecular structure and adaptable feature of oxadiazole moiety which are bioisosteres of esters and amides, and these functional groups show improved resistance to esterases mediated hydrolytic cleavage, attracting researchers to develop required novel antibiotics based on oxadiazole core. This review summarizes the developments of oxadiazole-containing derivatives as potent antibacterial agents against multidrug-resistant MRSA strains and discussing the structure-activity relationship (SAR) in various directions. The current survey is the highlight of the present scenario of oxadiazole hybrids on MRSA studies, covering articles published from 2011 to 2020. This collective information may become a good platform to plan and develop new oxadiazole-based small molecule growth inhibitors of MRSA with minimal side effects.
Collapse
Affiliation(s)
- Santosh Kumar Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China
| | - Rameshwari Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China.
| | | | - Laxmi Banjare
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur, Koni, 495009, Chhattisgarh, India
| | - Afzal B Shaik
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, 522213, Andhra Pradesh, India
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman Uniersity, Ajman, United Arab Emirates
| | - Kadalipura P Rakesh
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, PR China
| | | |
Collapse
|
25
|
Abulkhair HS, Elmeligie S, Ghiaty A, El-Morsy A, Bayoumi AH, Ahmed HEA, El-Adl K, Zayed MF, Hassan MH, Akl EN, El-Zoghbi MS. In vivo- and in silico-driven identification of novel synthetic quinoxalines as anticonvulsants and AMPA inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000449. [PMID: 33559320 DOI: 10.1002/ardp.202000449] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
The lack of effective therapies for epileptic patients and the potentially harmful consequences of untreated seizure incidents have made epileptic disorders in humans a major health concern. Therefore, new and more potent anticonvulsant drugs are continually sought after, to combat epilepsy. On the basis of the pharmacophoric structural specifications of effective α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists with an efficient anticonvulsant activity, the present work reports the design and synthesis of two novel sets of quinoxaline derivatives. The anticonvulsant activity of the synthesized compounds was evaluated in vivo according to the pentylenetetrazol-induced seizure protocol, and the results were compared with those of perampanel as a reference drug. Among the synthesized compounds, 24, 28, 32, and 33 showed promising activities with ED50 values of 37.50, 23.02, 29.16, and 23.86 mg/kg, respectively. Docking studies of these compounds suggested that AMPA binding could be the mechanism of action of these derivatives. Overall, the pharmacophore-based structural optimization, in vivo and in silico docking, and druglikeness studies indicated that the designed compounds could serve as promising candidates for the development of effective anticonvulsant agents with good pharmacokinetic profiles.
Collapse
Affiliation(s)
- Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, New Damietta, Egypt
| | - Salwa Elmeligie
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Adel Ghiaty
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Khaled El-Adl
- Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Mohamed F Zayed
- Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Memy H Hassan
- Pharmacy Department, College of Health Sciences, Taibah University, Madinah, Saudi Arabia.,Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Eman N Akl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, New Damietta, Egypt
| | - Mona S El-Zoghbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Koum, Egypt
| |
Collapse
|
26
|
El-Shershaby MH, Ghiaty A, Bayoumi AH, Ahmed HEA, El-Zoghbi MS, El-Adl K, Abulkhair HS. 1,2,4-Triazolo[4,3-c]quinazolines: a bioisosterism-guided approach towards the development of novel PCAF inhibitors with potential anticancer activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj00710f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Targeting PCAF with small inhibitor molecules has emerged as a potential therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
| | - Adel Ghiaty
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Ashraf H. Bayoumi
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Mona S. El-Zoghbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy
- Menoufia University
- Shebin El-Koum
- Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design, Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
- Department of Pharmaceutical Chemistry
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| |
Collapse
|
27
|
Karabelyov V, Kondeva-Burdina M, Angelova VT. Synthetic approaches to unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles and their MAO-B inhibitory activity. A review. Bioorg Med Chem 2021; 29:115888. [PMID: 33360082 DOI: 10.1016/j.bmc.2020.115888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Selective monoamine oxidase type B (MAO-B) inhibitors are currently used as coadjuvants for treating early motor symptoms of Parkinson's disease. Aiming at the elucidation of MAO-B inhibitors with 1,3,4-oxadiazole scaffolds, we make a comprehensive update on the new and old chemical methods employed for the synthesis of the unsymmetrical oxadiazole derivatives that lead to high yield compounds. We summarize a state of the selective MAO-B inhibitors with oxadiazole scaffold, describing the results, structures, structure-activity relationships (SARs) and medicinal chemistry strategies over the years. The analysis of the recent papers would facilitate tracking the increasing number of oxadiazole derivatives as new chemical spaces with MAO-B inhibitory potential designed to ensure the safe use of the compounds and elimination of the unwanted drug-drug interactions.
Collapse
Affiliation(s)
- Valentin Karabelyov
- Laboratory "Drug metabolism and drug toxicity", Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, Bulgaria; Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Laboratory "Drug metabolism and drug toxicity", Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, Bulgaria; Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Bulgaria
| | - Violina T Angelova
- Laboratory "Drug metabolism and drug toxicity", Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, Bulgaria; Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Bulgaria.
| |
Collapse
|
28
|
El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Alswah M, Ahmed HEA, Al-Karmalamy AA, Abulkhair HS. The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj02838c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The resistance of pathogenic microbes to currently available antimicrobial agents has been considered a global alarming concern.
Collapse
Affiliation(s)
- Mohamed H. El-Shershaby
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Kamal M. El-Gamal
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Ashraf H. Bayoumi
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Ahmed A. Al-Karmalamy
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Horus University - Egypt
- New Damietta
- Egypt
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| |
Collapse
|
29
|
Antimicrobial and antitumor activity of peptidomimetics synthesized from amino acids. Bioorg Chem 2020; 106:104506. [PMID: 33276980 DOI: 10.1016/j.bioorg.2020.104506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Thirteen cationic peptidomimetics derived from amino acids bearing an alkyl or ethynylphenyl moiety that mimic the structure of cationic antibacterial peptides were designed and synthesized using a simple coupling reaction of an amino acid with a substituted amine. Antibacterial activities of the resulting peptidomimetics against drug-sensitive bacteria, such as Gram-positive Staphylococcus aureus (S. aureus) and Bacillus subtilis, Gram-negative Escherichia coli (E. coli) and Salmonella enterica, and a drug-resistant bacterium, methicillin-resistant S. aureus (MRSA), were systematically evaluated. Most peptidomimetics show significant broad-spectrum antibacterial activity. A-L-Iso-C12 (isoleucine derivative bearing a dodecyl moiety) show MICs of 2.5 μg/mL against S. aureus and 4 μg/mL against MRSA and A-L-Val-C12 (valine derivative bearing a dodecyl moiety) show MICs of 1.67 μg/mL against E. coli and 8.3 μg/mL against MRSA. A-L-Val-C12 showed low cytotoxicity toward L929 cells in comparison with SGC 7901 cells, indicating tumor-directed killing by peptidomimetics while avoiding toxicity to normal cells. The influences of type of amino acid and substituent, length of substituent, and stereochemistry of amino acids on antibacterial activity and cytotoxicity of peptidomimetics were systematically investigated. The results indicate that this series of cationic peptidomimetics derived from amino acids display antitumor activity and may be useful for treatment of bacterial infections.
Collapse
|
30
|
El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Ahmed HEA, Abulkhair HS. Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives. Arch Pharm (Weinheim) 2020; 354:e2000277. [PMID: 33078877 DOI: 10.1002/ardp.202000277] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
Abstract
Herein, we report the synthesis and in vitro antimicrobial evaluation of novel quinoline derivatives as DNA gyrase inhibitors. The preliminary antimicrobial activity was assessed against a panel of pathogenic microbes including Gram-positive bacteria (Streptococcus pneumoniae and Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), and fungal strains (Aspergillus fumigatus, Syncephalastrum racemosum, Geotrichum candidum, and Candida albicans). Compounds that revealed the best activity were subjected to further biological studies to determine their minimum inhibitory concentrations (MICs) against the selected pathogens as well as their in vitro activity against the E. coli DNA gyrase, to realize whether their antimicrobial action is mediated via inhibition of this enzyme. Four of the new derivatives (14, 17, 20, and 23) demonstrated a relatively potent antimicrobial activity with MIC values in the range of 0.66-5.29 μg/ml. Among them, compound 14 exhibited a particularly potent broad-spectrum antimicrobial activity against most of the tested strains of bacteria and fungi, with MIC values in the range of 0.66-3.98 μg/ml. A subsequent in vitro investigation against the bacterial DNA gyrase target enzyme revealed a significant potent inhibitory activity of quinoline derivative 14, which can be observed from its IC50 value (3.39 μM). Also, a molecular docking study of the most active compounds was carried out to explore the binding affinity of the new ligands toward the active site of DNA gyrase enzyme as a proposed target of their activity. Furthermore, the ADMET profiles of the most highly effective derivatives were analyzed to evaluate their potentials to be developed as good drug candidates.
Collapse
Affiliation(s)
- Mohamed H El-Shershaby
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Kamal M El-Gamal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmacognosy and Pharmaceutical Chemistry Department, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
31
|
Turky A, Sherbiny FF, Bayoumi AH, Ahmed HEA, Abulkhair HS. Novel 1,2,4-triazole derivatives: Design, synthesis, anticancer evaluation, molecular docking, and pharmacokinetic profiling studies. Arch Pharm (Weinheim) 2020; 353:e2000170. [PMID: 32893368 DOI: 10.1002/ardp.202000170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Three novel series of 1,2,4-triazole derivatives were designed and synthesized as potential adenosine A2B receptor antagonists. The design of the new compounds depended on a virtual screening of a previously constructed library of compounds targeting the human adenosine A2B protein. Spectroscopic techniques including 1 H nuclear magnetic resonance (NMR) and 13 C NMR, and infrared and mass spectroscopy were used to confirm the structures of the synthesized compounds. The in vitro cytotoxicity evaluation was carried out against a human breast adenocarcinoma cell line (MDA-MB-231) using the MTT assay, and the obtained results were compared with doxorubicin as a reference anticancer agent. In addition, in silico studies to propose how the two most active compounds interact with the adenosine A2B receptor as a potential target were performed. Furthermore, a structure-activity relationship analysis was performed, and the pharmacokinetic profile to predict the oral bioavailability and other pharmacokinetic properties was also explained. Four of our designed derivatives showed promising cytotoxic effects against the selected cancer cell line. Compound 15 showed the highest activity with an IC50 value of 3.48 µM. Also, compound 20 revealed an equipotent activity with the reference cytotoxic drug, with an IC50 value of 5.95 µM. The observed IC50 values were consistent with the obtained in silico docking scores. The newly designed compounds revealed promising pharmacokinetic profiles as compared with the reference marketed drug.
Collapse
Affiliation(s)
- Abdallah Turky
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Organic Chemistry Department, College of Pharmacy, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
32
|
Turky A, Bayoumi AH, Sherbiny FF, El-Adl K, Abulkhair HS. Unravelling the anticancer potency of 1,2,4-triazole-N-arylamide hybrids through inhibition of STAT3: synthesis and in silico mechanistic studies. Mol Divers 2020; 25:403-420. [PMID: 32830299 DOI: 10.1007/s11030-020-10131-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022]
Abstract
The discovery of potent STAT3 inhibitors has gained noteworthy impetus in the last decade. In line with this trend, considering the proven biological importance of 1,2,4-triazoles, herein, we are reporting the design, synthesis, pharmacokinetic profiles, and in vitro anticancer activity of novel C3-linked 1,2,4-triazole-N-arylamide hybrids and their in silico proposed mechanism of action via inhibition of STAT3. The 1,2,4-triazole scaffold was selected as a privilege ring system that is embedded in core structures of a variety of anticancer drugs which are either in clinical use or still under clinical trials. The designed 1,2,4-triazole derivatives were synthesized by linking the triazole-thione moiety through amide hydrophilic linkers with diverse lipophilic fragments. In silico study to predict cytotoxicity of the new hybrids against different kinds of human cancer cell lines as well as the non-tumor cells was conducted. The multidrug-resistant human breast adenocarcinoma cells (MDA-MB-231) was found most susceptible to the cytotoxic effect of synthesized compounds and hence were selected to evaluate the in vitro anticancer activity. Four of the designed derivatives showed promising cytotoxicity effects against selected cancer cells, among which compound 12 showed the highest potency (IC50 = 3.61 µM), followed by 21 which displayed IC50 value of 3.93 µM. Also, compounds 14 and 23 revealed equipotent activity with the reference cytotoxic agent doxorubicin. To reinforce these observations, the obtained data of in vitro cytotoxicity have been validated in terms of ligand-protein interaction and new compounds were analyzed for ADMET properties to evaluate their potential to build up as good drug candidates. This study led us to identify two novel C3-linked 1,2,4-triazole-N-arylamide hybrids of interesting antiproliferative potentials as probable lead inhibitors of STAT3 with promising pharmacokinetic profiles.
Collapse
Affiliation(s)
- Abdallah Turky
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Pharmaceutical Organic Chemistry Department, College of Pharmacy, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Khaled El-Adl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, International Costal Road, New Damietta, Egypt.
| |
Collapse
|
33
|
Abulkhair HS, Turky A, Ghiaty A, Ahmed HE, Bayoumi AH. Novel triazolophthalazine-hydrazone hybrids as potential PCAF inhibitors: Design, synthesis, in vitro anticancer evaluation, apoptosis, and molecular docking studies. Bioorg Chem 2020; 100:103899. [DOI: 10.1016/j.bioorg.2020.103899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
|