1
|
R T, Kumar MH, Ankalgi V, Shaikh SF, Al-Enizi AM, Małecki JG, Kshirsagar UA, Rout CS, Dateer RB. Green Approach for the Synthesis of 2-Phenyl-2 H-indazoles and Quinazoline Derivatives Using Sustainable Heterogeneous Copper Oxide Nanoparticles Supported on Activated Carbon and OER Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22918-22930. [PMID: 39410783 DOI: 10.1021/acs.langmuir.4c03054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
This research work reports the synthesis of copper oxide (CuO) nanoparticles supported on activated carbon by a simple impregnation method using 2-propanol as a green solvent, followed by calcination. The synthesized CuO@C is used as an efficient heterogeneous nanocatalyst for the synthesis of 2H-indazoles and quinazolines utilizing commercially available 2-bromobenzaldehydes, primary amines, and sodium azide under ligand-free and base-free conditions. The present methodology demonstrates the formation of new N-N, C-N, and C═N bonds under one-pot reaction conditions using PEG-400 as a green solvent. The reaction pathways are supported by control experiments and mechanistic elucidation. Further, the synthesized catalyst was characterized by a range of microscopic and spectroscopic techniques such as powdered X-ray diffraction, fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray, UV-vis, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and BET-BJH analysis. Importantly, the study focused on the recyclability of the catalyst and successfully showed gram-scale production. Significantly, our active catalyst exhibited an outstanding performance in the oxygen evolution reaction, with an overpotential of 290 mV and a swallow Tafel slope of 91 mV dec-1.
Collapse
Affiliation(s)
- Thrilokraj R
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Maruboina Hemanth Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Vishwanath Ankalgi
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Shoyebmohamad F Shaikh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Ramesh B Dateer
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| |
Collapse
|
2
|
Ghaith EA, Zoorob HH, Hamama WS. Synthesis, Antimicrobial Evaluation, DFT, and Molecular Docking Studies of Pyrano [4,3-b] Pyranone and Pyrano[2,3-b]Pyridinone Systems. Chem Biodivers 2024; 21:e202400243. [PMID: 38462494 DOI: 10.1002/cbdv.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Dehydroacetic acid (DHA) was utilized as a fundamental precursor in the synthesis of novel pyrano [4,3-b] pyran and pyrano [2,3-b] pyridine systems. Whereas, a new series of fused polyheteronuclear systems was achieved through the reaction of DHA with active methylene compounds such as malononitrile and pyrazolone. Whereas, the treatment of DHA 1 with cyclic ketones involving cyclohexanone and cyclododecanone afforded annulated tricyclic system 6 and spiro hybrid molecule 7. Also, the reaction of DHA 1 with cyanoacetamide derivatives 8 and 11 yielded their corresponding novel pyrano [2,3-b] pyridine-6-carbonitrile frameworks 9 and 12, respectively. Also, in silico predictive theoretical molecular docking studies for bioactive synthesized scaffolds against both HER2 and 6BBP displayed an optimistic result for compounds 2 b, 5, 9, and 12 highlighting their expediency as up-and-coming candidates for future preclinical trials. Additionally, all compounds were assessed as antibacterial agents against various types of four candidates of bacteria in the presence of ampicillin as a reference. Notably, compounds 6, 7, and 12 showed promising antibacterial potential against Bacillus subtilis with activity indexes (69.6, 91.3, and 82.6 %), respectively.
Collapse
Affiliation(s)
- Eslam A Ghaith
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Hanafi H Zoorob
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Wafaa S Hamama
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Khator R, Monga V. Recent advances in the synthesis and medicinal perspective of pyrazole-based α-amylase inhibitors as antidiabetic agents. Future Med Chem 2024. [PMID: 38230638 DOI: 10.4155/fmc-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Diabetes is a serious health threat across the globe, claiming millions of lives worldwide. Among the various strategies employed, inhibition of α-amylase is a therapeutic protocol for the management of Type 2 diabetes mellitus. α-Amylase is a crucial enzyme involved in the breakdown of dietary starch into simpler units. However, the clinically used α-amylase inhibitors have various drawbacks. Therefore, design and development of novel α-amylase inhibitors have gained significant attention. The pyrazole motif has been identified as a versatile scaffold in medicinal chemistry, and recent studies have led to the identification of various pyrazole-based α-amylase inhibitors. This review compiles therapeutic implications of pyrazole-appended α-amylase inhibitors; their synthesis, biological activities, structure-activity relationships and molecular docking studies are discussed.
Collapse
Affiliation(s)
- Rakesh Khator
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| | - Vikramdeep Monga
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| |
Collapse
|
4
|
Patel P, Patel DM, Vala RM, Patel SG, Upadhyay DB, Pannerselvam Y, Patel HM. Catalyst-Free, Room-Temperature Accessible Regioselective Synthesis of Spiroquinolines and Their Antioxidant Study. ACS OMEGA 2023; 8:444-456. [PMID: 36643529 PMCID: PMC9835643 DOI: 10.1021/acsomega.2c05020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
An efficient, regioselective, and environmentally benign approach was established using the multicomponent reaction-based synthesis of novel antioxidant spiroquinoline derivatives such as spiro[dioxolo[4,5-g]quinoline], spiro[dioxino[2,3-g]quinoline], and spiro[pyrazolo[4,3-f]quinoline] by reaction of aryl aldehyde, Meldrum's acid, and amine derivatives under an additive-free reaction in aqueous ethanol. Here, two asymmetric carbon centers, three new C-C bonds, and one C-N bond are developed in the final motif. This synthetic methodology offers excellent yields with an easy workup procedure, high diastereoselectivity [d.r. >50:1 (cis/trans)], admirable atom economy, and low E-factor values. Synthesized spiro compounds were investigated for their in vitro antioxidant activity by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. In the ABTS radical scavenging assay, compounds 4d, 4f, and 4l exhibit excellent potency, and in the DPPH radical scavenging assay, compounds 4a, 4d, 4f, and 4g, exhibit excellent potency.
Collapse
Affiliation(s)
- Paras
J. Patel
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar388120, Gujarat, India
| | - Divyang M. Patel
- Department
of Chemistry, AEPS Institute of Science, Ankleshwar393002, Gujarat, India
- Veer
Narmad South Gujarat University, Surat395007, Gujarat, India
| | - Ruturajsinh M. Vala
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar388120, Gujarat, India
| | - Subham G. Patel
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar388120, Gujarat, India
| | - Dipti B. Upadhyay
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar388120, Gujarat, India
| | - Yuvaraj Pannerselvam
- Branch
laboratory, CSIR-North East Institute of
Science & Technology (NEIST), Imphal795004, Manipur, India
| | - Hitendra M. Patel
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar388120, Gujarat, India
| |
Collapse
|
5
|
Synthetic benzofuran-linked chalcones with dual actions: a potential therapeutic approach to manage diabetes mellitus. Future Med Chem 2023; 15:167-187. [PMID: 36799245 DOI: 10.4155/fmc-2022-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Background: Identification of molecules having dual capabilities to reduce postprandial hyperglycemia and oxidative stress is one of the therapeutic approaches to treat diabetes mellitus. In this connection, a library of benzofuran-linked chalcone derivatives were evaluated for their dual action. Methods: A series of substituted benzofuran-linked chalcones (2-33) were synthesized and tested for α-amylase inhibitory as well as 2,2-diphenylpicrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities. Results: All compounds showed α-amylase inhibitory activity ranging from IC50 = 12.81 ± 0.03 to 87.17 ± 0.15 μM, compared with the standard acarbose (IC50 = 13.98 ± 0.03 μM). Compounds also demonstrated radical scavenging potential against DPPH and ABTS radicals. Conclusion: The identified compounds may serve as potential leads for further advanced research.
Collapse
|
6
|
Ali S, Noreen A, Qamar A, Zafar I, Ain Q, Nafidi HA, Bin Jardan YA, Bourhia M, Rashid S, Sharma R. Amomum subulatum: A treasure trove of anti-cancer compounds targeting TP53 protein using in vitro and in silico techniques. Front Chem 2023; 11:1174363. [PMID: 37206196 PMCID: PMC10189520 DOI: 10.3389/fchem.2023.1174363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer is a primary global health concern, and researchers seek innovative approaches to combat the disease. Clinical bioinformatics and high-throughput proteomics technologies provide powerful tools to explore cancer biology. Medicinal plants are considered effective therapeutic agents, and computer-aided drug design (CAAD) is used to identify novel drug candidates from plant extracts. The tumour suppressor protein TP53 is an attractive target for drug development, given its crucial role in cancer pathogenesis. This study used a dried extract of Amomum subulatum seeds to identify phytocompounds targeting TP53 in cancer. We apply qualitative tests to determine its phytochemicals (Alkaloid, Tannin, Saponin, Phlobatinin, and Cardic glycoside), and found that alkaloid composed of 9.4% ± 0.04% and Saponin 1.9% ± 0.05% crude chemical constituent. In the results of DPPH Analysis Amomum subulatum Seeds founded antioxidant activity, and then we verified via observing methanol extract (79.82%), BHT (81.73%), and n-hexane extract (51.31%) found to be positive. For Inhibition of oxidation, we observe BHT is 90.25%, and Methanol (83.42%) has the most significant proportion of linoleic acid oxidation suppression. We used diverse bioinformatics approaches to evaluate the effect of A. subulatum seeds and their natural components on TP53. Compound-1 had the best pharmacophore match value (53.92), with others ranging from 50.75 to 53.92. Our docking result shows the top three natural compounds had the highest binding energies (-11.10 to -10.3 kcal/mol). The highest binding energies (-10.9 to -9.2 kcal/mol) compound bonded to significant sections in the target protein's active domains with TP53. Based on virtual screening, we select top phytocompounds for targets which highly fit based on pharmacophore score and observe these compounds exhibited potent antioxidant activity and inhibited cancer cell inflammation in the TP53 pathway. Molecular Dynamics (MD) simulations indicated that the ligand was bound to the protein with some significant conformational changes in the protein structure. This study provides novel insights into the development of innovative drugs for the treatment of cancer disorders.
Collapse
Affiliation(s)
- Sadaqat Ali
- Medical Department, DHQ Hospital Bhawalnagr, Punjab, Pakistan
| | - Asifa Noreen
- Department of Chemistry, Rippha International University, Faisalabad, Pakistan
| | - Adeem Qamar
- Department of Pathology, Sahiwal Medical College Sahiwal, Punjab, Pakistan
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Punjab, Pakistan
| | - Quratul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
- *Correspondence: Mohammed Bourhia, ; Rohit Sharma,
| | - Summya Rashid
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Punjab, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- *Correspondence: Mohammed Bourhia, ; Rohit Sharma,
| |
Collapse
|
7
|
Taha M, Uddin N, Saad SM, Iqbal N, Fareed G, Anouar EH, Hassan MH, Almandil NB, Salahuddin M, Khan KM, Wadood A, Rahman AU. An effort to find new α -amylase inhibitors as potent antidiabetics compounds based on indole-based-thiadiazole analogs. J Biomol Struct Dyn 2022; 40:13103-13114. [PMID: 34569449 DOI: 10.1080/07391102.2021.1982774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inhibition of α-amylase enzyme is of key significance for the therapy of diabetes mellitus (DM). Numerous indole-based compounds have earlier been described for broad range of bioactivities. From our previous study, we knew that indole and thiadiazole are potent inhibitors of diabetics II. We design the hybrid molecules of them and synthesized 18 derivatives of indole-based-thiadiazole (1-18). All synthesized compounds were characterized using different spectroscopic methods and evaluated for their α-amylase inhibitory activities. All synthetic compounds, except 4, 13, 15 and 16, were found to be strongly active (IC50 values in the range of 0.80 ± 0.05 - 9.30 ± 0.20 µM) than the standard drug, acarbose (IC50 = 11.70 ± 0.10 µM). Nevertheless, compound 18 was found to be inactive. The modes of binding interactions of five most active compounds 2, 3, 5, 10 and 17 were also studies through molecular docking study. In brief, current study identifies a novel class of α-amylase inhibitors which can be further studied for the treatment of hyperglycemia and obesity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | | | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, Pakistan
| | - Ghulam Fareed
- Pharmaceutical Research Center, PCSIR Laboratories Complex Karachi, Karachi, Pakistan
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Maya Haj Hassan
- Department of Biology, Faculty of Sciences, Lebanese University, Zahle Lebanon
| | - Noor Barak Almandil
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
8
|
Synthesis and evaluation of aryl aminomethylene substituted barbiturates and thiobarbiturates as novel α-amylase inhibitors and radical scavengers. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Moskalik MY, Astakhova VV. Triflamides and Triflimides: Synthesis and Applications. Molecules 2022; 27:5201. [PMID: 36014447 PMCID: PMC9414225 DOI: 10.3390/molecules27165201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Among the variety of sulfonamides, triflamides (CF3SO2NHR, TfNHR) occupy a special position in organic chemistry. Triflamides are widely used as reagents, efficient catalysts or additives in numerous reactions. The reasons for the widespread use of these compounds are their high NH-acidity, lipophilicity, catalytic activity and specific chemical properties. Their strong electron-withdrawing properties and low nucleophilicity, combined with their high NH-acidity, makes it possible to use triflamides in a vast variety of organic reactions. This review is devoted to the synthesis and use of N-trifluoromethanesulfonyl derivatives in organic chemistry, medicine, biochemistry, catalysis and agriculture. Part of the work is a review of areas and examples of the use of bis(trifluoromethanesulfonyl)imide (triflimide, (CF3SO2)2NH, Tf2NH). Being one of the strongest NH-acids, triflimide, and especially its salts, are widely used as catalysts in cycloaddition reactions, Friedel-Crafts reactions, condensation reactions, heterocyclization and many others. Triflamides act as a source of nitrogen in C-amination (sulfonamidation) reactions, the products of which are useful building blocks in organic synthesis, catalysts and ligands in metal complex catalysis, and have found applications in medicine. The addition reactions of triflamide in the presence of oxidizing agents to alkenes and dienes are considered separately.
Collapse
Affiliation(s)
- Mikhail Y. Moskalik
- Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | | |
Collapse
|
10
|
Chudasama DD, Patel MS, Parekh JN, Patel HC, Rajput CV, Chikhaliya NP, Ram KR. Ultrasound-promoted convenient and ionic liquid [BMIM]BF 4 assisted green synthesis of diversely functionalized pyrazolo quinoline core via one-pot multicomponent reaction, DFT study and pharmacological evaluation. Mol Divers 2022:10.1007/s11030-022-10498-2. [PMID: 35915391 DOI: 10.1007/s11030-022-10498-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
An ultrasound-assisted green protocol for one-pot synthesis of a new series of pharmaceutically relevant pyrazolo quinoline derivatives (4a-t) were synthesized, characterized, and evaluated using DFT and biological activities. Pyrazolo quinoline derivatives (4a-t) were synthesized via a three-component tandem reaction of 1,3-dicarbonyl compound (1a-b), substituted aromatic aldehyde (2a-o), and 5-amino indazole (3a) in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4 ionic liquid in ethanol at ambient conditions. The main purpose of the present work is selective functionalization of pyrazolo quinoline (4a-t) core excluding another potential parallel reaction under environmentally benign reaction conditions. The present protocol shows features such as amphiphilic behavior of ionic liquid during reaction transformation, and reusability of the [BMIM]BF4 ionic liquid under mild reaction condition. All newly derived compounds were evaluated for their in vitro anti-inflammatory and antioxidant activity. Among them, compound 4c showed encouraging antioxidant activity compared with standard antioxidant ascorbic acid, and compounds 4n and 4r displayed very good anti-inflammatory activity compared with a standard drug. In this study, a theoretical computational density functional study was also executed to perform the geometry optimizations, frontier molecular orbital approach, and molecular electrostatic potential (MESP). The DFT study was carried out with the basis set DFT/B3LYP/6-31+G (d, p) level of theory. The quantum chemical descriptors (QCDS) and MESP diagrams were plotted to examine the biological reactivities of representative pyrazolo quinolines (4a-t).
Collapse
Affiliation(s)
- Dipakkumar D Chudasama
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Chetan V Rajput
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Navin P Chikhaliya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, 388120, Gujarat, India.
| |
Collapse
|
11
|
Garg P, Rawat RS, Bhatt H, Kumar S, Reddy SR. Recent Developments in the Synthesis of N‐Heterocyclic Compounds as α‐Amylase Inhibitors via In‐Vitro and In‐Silico Analysis: Future Drugs for Treating Diabetes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pooja Garg
- Department of Chemistry SAS Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| | - Ravindra Singh Rawat
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Harshil Bhatt
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Sanjit Kumar
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | | |
Collapse
|
12
|
Shawish I, Barakat A, Aldalbahi A, Alshaer W, Daoud F, Alqudah DA, Al Zoubi M, Hatmal MM, Nafie MS, Haukka M, Sharma A, de la Torre BG, Albericio F, El-Faham A. Acetic Acid Mediated for One-Pot Synthesis of Novel Pyrazolyl s-Triazine Derivatives for the Targeted Therapy of Triple-Negative Breast Tumor Cells (MDA-MB-231) via EGFR/PI3K/AKT/mTOR Signaling Cascades. Pharmaceutics 2022; 14:pharmaceutics14081558. [PMID: 36015186 PMCID: PMC9414415 DOI: 10.3390/pharmaceutics14081558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Here, we described the synthesis of novel pyrazole-s-triazine derivatives via an easy one-pot procedure for the reaction of β-dicarbonyl compounds (ethylacetoacetate, 5,5-dimethyl-1,3-cyclohexadione or 1,3-cyclohexadionone) with N,N-dimethylformamide dimethylacetal, followed by addition of 2-hydrazinyl-4,6-disubstituted-s-triazine either in ethanol-acetic acid or neat acetic acid to afford a novel pyrazole and pyrazole-fused cycloalkanone systems. The synthetic protocol proved to be efficient, with a shorter reaction time and high chemical yield with broad substrates. The new pyrazolyl-s-triazine derivatives were tested against the following cell lines: MCF-7 (breast cancer); MDA-MB-231 (triple-negative breast cancer); U-87 MG (glioblastoma); A549 (non-small cell lung cancer); PANC-1 (pancreatic cancer); and human dermal fibroblasts (HDFs). The cell viability assay revealed that most of the s-triazine compounds induced cytotoxicity in all the cell lines tested. However, compounds 7d, 7f and 7c, which all have a piperidine or morpholine moiety with one aniline ring or two aniline rings in their structures, were the most effective. Compounds 7f and 7d showed potent EGFR inhibitory activity with IC50 values of 59.24 and 70.3 nM, respectively, compared to Tamoxifen (IC50 value of 69.1 nM). Compound 7c exhibited moderate activity, with IC50 values of 81.6 nM. Interestingly, hybrids 7d and 7f exerted remarkable PI3K/AKT/mTOR inhibitory activity with 0.66/0.82/0.80 and 0.35/0.56/0.66-fold, respectively, by inhibiting their concentrations to 4.39, 37.3, and 69.3 ng/mL in the 7d-treatment, and to 2.39, 25.34 and 57.6 ng/mL in the 7f-treatment compared to the untreated control.
Collapse
Affiliation(s)
- Ihab Shawish
- Department of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Correspondence: (A.B.); (F.A.); or (A.E.-F.)
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Fadwa Daoud
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Mazhar Al Zoubi
- Department of Basic Medical Sciences, Faculty of Sciences, Yarmouk University, Irbid 21163, Jordan;
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Anamika Sharma
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (A.S.); (B.G.d.l.T.)
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (A.S.); (B.G.d.l.T.)
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Correspondence: (A.B.); (F.A.); or (A.E.-F.)
| | - Ayman El-Faham
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 12321, Egypt
- Correspondence: (A.B.); (F.A.); or (A.E.-F.)
| |
Collapse
|
13
|
Wu Y, Zhao S, Hu L. Identification of potent α-amylase inhibitors via dynamic combinatorial chemistry. Bioorg Med Chem 2022; 55:116609. [PMID: 35021143 DOI: 10.1016/j.bmc.2022.116609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022]
Abstract
In this study, we report for the first time the discovery of potent α-amylase inhibitors using principle of dynamic combinatorial chemistry. The best compound identified exhibited not only high inhibitory efficiency but also low cytotoxicity. The binding mode and possible mechanism are determined in the subsequent kinetic and molecular docking studies.
Collapse
Affiliation(s)
- Yao Wu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Shuang Zhao
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Lei Hu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China.
| |
Collapse
|
14
|
Fatmasari N, Kurniawan YS, Jumina J, Anwar C, Priastomo Y, Pranowo HD, Zulkarnain AK, Sholikhah EN. Synthesis and in vitro assay of hydroxyxanthones as antioxidant and anticancer agents. Sci Rep 2022; 12:1535. [PMID: 35087149 PMCID: PMC8795354 DOI: 10.1038/s41598-022-05573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
In the present work, three hydroxyxanthones were synthesized in 11.15-33.42% yield from 2,6-dihydroxybenzoic acid as the starting material. The chemical structures of prepared hydroxyxanthones have been elucidated by using spectroscopic techniques. Afterward, the hydroxyxanthones were evaluated as antioxidant agents through radical scavenging assay; and anticancer agents through in vitro assays against WiDr, MCF-7, and HeLa cancer cell lines. Hydroxyxanthone 3b was categorized as a strong antioxidant agent (IC50 = 349 ± 68 µM), while the other compounds were categorized as moderate antioxidant agents (IC50 > 500 µM). On the other hand, hydroxyxanthone 3a exhibited the highest anticancer activity (IC50 = 184 ± 15 µM) and the highest selectivity (SI = 18.42) against MCF-7 cancer cells. From the molecular docking study, it was found that hydroxyxanthone 3a interacted with the active sites of Topoisomerase II protein through Hydrogen bonding with DG13 and π-π stacking interactions with DA12 and DC8. These findings revealed that hydroxyxanthones are potential candidates to be developed as antioxidant and anticancer agents in the future.
Collapse
Affiliation(s)
- Nela Fatmasari
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Yehezkiel Steven Kurniawan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Jumina Jumina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Chairil Anwar
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Yoga Priastomo
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Harno Dwi Pranowo
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Abdul Karim Zulkarnain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Eti Nurwening Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
15
|
Li H, Zhai B, Sun J, Fan Y, Zou J, Cheng J, Zhang X, Shi Y, Guo D. Antioxidant, Anti-Aging and Organ Protective Effects of Total Saponins from Aralia taibaiensis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4025-4042. [PMID: 34594101 PMCID: PMC8476322 DOI: 10.2147/dddt.s330222] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Aim Aralia taibaiensis is a natural medicinal and food plant that is rich in triterpenoid saponins with hypoglycaemic, antioxidant, hepatoprotective, anti-gastric ulcer and anti-inflammatory effects. This study has significance in terms of the antioxidant, anti-aging and organ protective effects of Aralia taibaiensis total saponins (TSAT) in D-galactose-induced aging rats. Methods The saponin composition of TSAT was determined and quantified by high performance liquid chromatography (HPLC). We consolidated the antioxidant and enzyme inhibitory activities of TSAT in vitro and assessed the effects of TSAT on daily mobility, body weight, behaviour, organ indices, oxidation-related indices and pathological changes in aging rats. Results In vitro experiments showed that TSAT had a scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), tyrosinase, hydroxyl radicals (HO•) and superoxide radicals (•O2-) and was closely related to the dose of TSAT. In vivo experiments showed that after 8 weeks of continuous gavage administration, the rats gradually recovered their body weight, daily activity ability, learning and memory ability and organ index and effectively improved D-gal-induced organ injury. Specifically, TSAT significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) and significantly decreased malondialdehyde (MDA) levels in the serum, brain, heart, lung, spleen and kidney of aging rats compared to the model group. In addition, TSAT significantly inhibited the D-gal-induced upregulation of hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. The histopathological results showed that TSAT reversed D-gal-induced damage to the brain, heart, lung, kidney, liver and spleen to varying degrees. Conclusion TSAT is a high-quality natural product with antioxidant and anti-aging properties that can alleviate D-gal-induced aging damage in rats.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yu Fan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Junbo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Yajun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China.,The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, People's Republic of China
| |
Collapse
|
16
|
Bushra, Shamim S, Khan KM, Ullah N, Mahdavi M, Faramarzi MA, Larijani B, Salar U, Rafique R, Taha M, Perveen S. Synthesis, in vitro, and in silico evaluation of Indazole Schiff bases as potential α-glucosidase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Akande A, Salar U, Khan KM, Syed S, Aboaba SA, Chigurupati S, Wadood A, Riaz M, Taha M, Bhatia S, Kanwal, Shamim S, Perveen S. Substituted Benzimidazole Analogues as Potential α-Amylase Inhibitors and Radical Scavengers. ACS OMEGA 2021; 6:22726-22739. [PMID: 34514244 PMCID: PMC8427641 DOI: 10.1021/acsomega.1c03056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 08/25/2023]
Abstract
Benzimidazole scaffolds are known to have a diverse range of biological activities and found to be antidiabetic and antioxidant. In this study, a variety of arylated benzimidazoles 1-31 were synthesized. Except for compounds 1, 6, 7, and 8, all are new derivatives. All compounds were screened for α-amylase inhibitory, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities. In vitro screening results revealed that all molecules demonstrated significant α-amylase inhibition with IC50 values of 1.86 ± 0.08 to 3.16 ± 0.31 μM as compared to standard acarbose (IC50 = 1.46 ± 0.26 μM). However, compounds showed significant ABTS and DPPH radical scavenging potentials with IC50 values in the range of 1.37 ± 0.21 to 4.00 ± 0.10 μM for ABTS and 1.36 ± 0.09 to 3.60 ± 0.20 μM for DPPH radical scavenging activities when compared to ascorbic acid with IC50 values of 0.72 ± 0.21 and 0.73 ± 0.05 μM for ABTS and DPPH radical scavenging potentials, respectively. Structure-activity relationship (SAR) was established after critical analysis of varying substitution effects on α-amylase inhibitory and radical scavenging (ABTS and DPPH) potentials. However, molecular docking was also performed to figure out the active participation of different groups of synthetic molecules during binding with the active pocket of the α-amylase enzyme.
Collapse
Affiliation(s)
- Akinsola
Adegboye Akande
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Organic
Unit, Chemistry Department, University of
Ibadan, Ibadan 200132, Nigeria
| | - Uzma Salar
- Dr.
Panjwani Center for Molecular Medicine and Drug Research, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department
of Clinical Pharmacy, Institute for Research and Medical Consultations
(IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Shazia Syed
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Sridevi Chigurupati
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Abdul Wadood
- Department
of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Riaz
- Department
of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Taha
- Department
of Clinical Pharmacy, Institute for Research and Medical Consultations
(IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Saurabh Bhatia
- Natural
& Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Kanwal
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shahbaz Shamim
- H.
E. J. Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shahnaz Perveen
- PCSIR
Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| |
Collapse
|
18
|
Zheng PF, Xiong Z, Liao CY, Zhang X, Feng M, Wu XZ, Lin J, Lei LS, Zhang YC, Wang SH, Xu XT. In vitro and in silico studies of bis (indol-3-yl) methane derivatives as potential α-glucosidase and α-amylase inhibitors. J Enzyme Inhib Med Chem 2021; 36:1938-1951. [PMID: 34459690 PMCID: PMC8409970 DOI: 10.1080/14756366.2021.1971976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In this paper, bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated for their inhibitory activity against α-glucosidase and α-amylase. All synthesised compounds showed potential α-glucosidase and α-amylase inhibitory activities. Compounds 5 g (IC50: 7.54 ± 1.10 μM), 5e (IC50: 9.00 ± 0.97 μM), and 5 h (IC50: 9.57 ± 0.62 μM) presented strongest inhibitory activities against α-glucosidase, that were ∼ 30 times stronger than acarbose. Compounds 5 g (IC50: 32.18 ± 1.66 µM), 5 h (IC50: 31.47 ± 1.42 µM), and 5 s (IC50: 30.91 ± 0.86 µM) showed strongest inhibitory activities towards α-amylase, ∼ 2.5 times stronger than acarbose. The mechanisms and docking simulation of the compounds were also studied. Compounds 5 g and 5 h exhibited bifunctional inhibitory activity against these two enzymes. Furthermore, compounds showed no toxicity against 3T3-L1 cells and HepG2 cells.Highlights A series of bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated inhibitory activities against α-glucosidase and α-amylase. Compound 5g exhibited promising activity (IC50 = 7.54 ± 1.10 μM) against α-glucosidase. Compound 5s exhibited promising activity (IC50 = 30.91 ± 0.86 μM) against α-amylase. In silico studies were performed to confirm the binding interactions of synthetic compounds with the enzyme active site.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Second Hospital of Lanzhou University, Lanzhou, PR China
| | - Zhuang Xiong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Cui-Ying Liao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Xin Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Mei Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Xiao-Zheng Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Jing Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Lin-Sheng Lei
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, PR China
| | | | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, PR China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| |
Collapse
|
19
|
Mphahlele MJ, Magwaza NM, Malindisa ST, Choong YS. Biological evaluation the 2-aryl-2,3-dihydrobenzodiazaborinin-4(1H)-ones as potential dual α-glucosidase and α-amylase inhibitors with antioxidant properties. Chem Biol Drug Des 2021; 98:234-247. [PMID: 34013660 DOI: 10.1111/cbdd.13893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/03/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022]
Abstract
The 2-aryl-2,3-dihydrobenzodiazaborinin-4(1H)-ones (azaborininone) were synthesized as analogues of the 2-arylquinazoline-4-ones and screened through enzymatic assay in vitro for inhibitory effect against α-glucosidase and α-amylase activities. These azaborininones exhibited moderate to good inhibitory effect against these enzymes compared to acarbose used as a reference standard. The results are supported by the enzyme-ligand interactions through kinetics (in vitro) and molecular docking (in silico) studies. The test compounds also exhibited significant antioxidant activity through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. These azaborininone derivatives exhibited no effect on the viability of the human lung cancer (A549) cell line after 24 hr and were also not toxic towards the Vero cells.
Collapse
Affiliation(s)
- Malose J Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Florida, South Africa
| | - Nontokozo M Magwaza
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Florida, South Africa
| | - Sibusiso T Malindisa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
20
|
Wang L, Ahmad S, Wang X, Li H, Luo Y. Comparison of Antioxidant and Antibacterial Activities of Camellia Oil From Hainan With Camellia Oil From Guangxi, Olive Oil, and Peanut Oil. Front Nutr 2021; 8:667744. [PMID: 34012974 PMCID: PMC8126635 DOI: 10.3389/fnut.2021.667744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background/Aim: Camellia oil from Hainan (SY) is a unique vegetable oil in Hainan, China, due to the geographical environment and oil extraction only through simple physical treatments. To compare SY with camellia oil from Guangxi (SC), olive oil (GL), and peanut oil (HS), this study analyzed the antioxidant and antibacterial activity of four vegetable oils. Methods: Using Gallic acid, BHT as the control, Saccharomyces cerevisiae as the model organism, the antioxidant activities of vegetable oils were measured in vitro and in vivo, and the antibacterial activity was measured with the minimum inhibitory concentration (MIC) method. Results: The major contents of SY, SC, and HS were oleic Acid; the major content of GL was squalene. The highest total flavonoids content of SY was 39.50 ± 0.41 mg RE/g DW; and the highest total phenolic content of SC was 47.05 ± 0.72 mg GAE/g DW. SY exhibited the strongest scavenging activity of hydroxyl radical (HO·) and superoxide anions (O2-·), the IC50 value were 2.06 mg/mL, 0.62 mg/mL, respectively; and SC showed the strongest DPPH· and ABTS· scavenging activity and the reducing abilities. SY showed excellent effect on survival rate, protection rate, flavonoids uptake of S. cerevisiae cells, decreased MDA content and ROS level, inhibited CAT, POD, and GR enzyme activity. The absorption of SC total phenols was the highest by cells. The activity showed GL had a broad-spectrum antibacterial activity. Conclusion: Thus, SY shows potential antioxidant activity and provides an important reference value for people to choose edible vegetable oils.
Collapse
Affiliation(s)
- Lanying Wang
- College of Plant Protection, Hainan University, Haikou, China
| | - Shakil Ahmad
- College of Plant Protection, Hainan University, Haikou, China
| | - Xi Wang
- College of Plant Protection, Hainan University, Haikou, China
| | - Hua Li
- College of Plant Protection, Hainan University, Haikou, China
| | - Yanping Luo
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
21
|
Taha M, Imran S, Salahuddin M, Iqbal N, Rahim F, Uddin N, Shehzad A, Khalid Farooq R, Alomari M, Mohammed Khan K. Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in streptozotocin -induced diabetic albino wistar rats. Bioorg Chem 2021; 110:104808. [PMID: 33756236 DOI: 10.1016/j.bioorg.2021.104808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
We have synthesized new hybrid class of indole bearing sulfonamide scaffolds (1-17) as α-glucosidase inhibitors. All scaffolds were found to be active except scaffold 17 and exhibited IC50 values ranging from 1.60 to 51.20 µM in comparison with standard acarbose (IC50 = 42.45 µM). Among the synthesized hybrid class scaffolds 16 was the most potent analogue with IC50 value 1.60 μM, showing many folds better potency as compared to standard acarbose. Whereas, synthesized scaffolds 1-15 showed good α-glucosidase inhibitory potential. Based on α-glucosidase inhibitory effect, Scaffold 16 was chosen due to highest activity in vitro for further evaluation of antidiabetic activity in Streptozotocin induced diabetic rats. The Scaffold 16 exhibited significant antidiabetic activity. All analogues were characterized through 1H, 13CNMR and HR MS. Structure-activity relationship of synthesized analogues was established and confirmed through molecular docking study.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Naveed Iqbal
- Department of Chemistry University of Poonch, Rawalakot, AJK, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Adeeb Shehzad
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
22
|
Bale AT, Salar U, Khan KM, Chigurupati S, Fasina T, Ali F, Ali M, Nanda SS, Taha M, Perveen S. Chalcones and Bis-Chalcones Analogs as DPPH and ABTS Radical Scavengers. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201001155032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background:
A number of synthetic scaffolds, along with natural products, have been
identified as potent antioxidants. The present study deals with the evaluation of varyingly substituted,
medicinally distinct class of compounds “chalcones and bis-chalcones” for their antioxidant potential.
Methods:
In vitro radical scavenging activities were performed on a series of synthetic chalcones 1-
13 and bis-chalcones 14-18.
Results:
All molecules 1-18 revealed a pronounced 2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2ʹ-
azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals scavenging potential in the
ranges of IC50s = 0.58 ± 0.14 - 1.72 ± 0.03 and 0.49 ± 0.3 - 1.48 ± 0.06 μM, respectively. Ascorbic
acid (IC50s = 0.5 ± 0.1 and 0.46 ± 0.17 μM for DPPH and ABTS, respectively) was used as a standard
radical scavenger.
Conclusion:
Structure-activity relationship (SAR) revealed an active participation of various
groups, including -SMe and -OMe in scavenging activity.
Collapse
Affiliation(s)
- Adebayo Tajudeen Bale
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270,Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270,Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270,Pakistan
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, Collage of Pharmacy, Qassim University, Buraidah 52571,Saudi Arabia
| | | | - Farman Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270,Pakistan
| | - Muhammad Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270,Pakistan
| | | | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam,Saudi Arabia
| | - Shahnaz Perveen
- PCSIR, Laboratories Complex, Shahrah-e-Dr. Salimuzzaman, Karachi-75280,Pakistan
| |
Collapse
|
23
|
Chigurupati S, Vijayabalan S, Selvarajan KK, Alhowail A, Kauser F. Bacterial endosymbiont inhabiting Leucaena leucocephala leaves and their antioxidant and antidiabetic potential. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:319-325. [PMID: 34187119 DOI: 10.1515/jcim-2020-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/28/2020] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Research on endosymbionts is emerging globally and is considered as a potential source of bioactive phytochemicals. The present study examines the antioxidant and antidiabetic of the endophytic crude extract isolated from Leucaena leucocephala leaves. METHODS Endophytic bacteria were isolated from the leaves of L. leucocephala and 16S rRNA gene sequencing was used to establish their identity. The in vitro antioxidant effect of endophytic crude extract (LL) was evaluated using 2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) free radical scavenging methods. The in vitro antidiabetic properties of LL were evaluated using α-amylase and α-glucosidase enzyme inhibition assay. RESULTS The isolated endophytic bacteria were identified as Cronobacter sakazakii. LL displayed potent free radical scavenging effect against ABTS and DPPH radicals with an inhibitory concentration 50% (IC50) value of 17.49 ± 0.06 and 11.3 ± 0.1 μg/mL respectively. LL exhibited α-amylase and α-glucosidase inhibition with an IC50 value of 23.3 ± 0.08 and 23.4 ± 0.1 μg/mL respectively compared to the standard drug (acarbose). Both glucose loaded normoglycemic rats and STZ induced diabetic rats treated with LL (200 mg/kg) exhibited a considerable reduction in blood glucose levels p<0.01 after 8 h of treatment when compared to normal and diabetic control rats respectively. CONCLUSIONS Thus, the study shows that LL has a wellspring of natural source of antioxidants, and antidiabetic agents and phytoconstituents present in endophytes could be the rich source for bioactive compounds.
Collapse
Affiliation(s)
- Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah52571, Saudi Arabia
| | - Shantini Vijayabalan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Bedong, Kedah, Malaysia
| | | | - Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Fatema Kauser
- Department of Pharmaceutics, Buraydah College of Dentistry and Pharmacy, Buraydah, Saudi Arabia
| |
Collapse
|
24
|
Li WB, Qiao XP, Wang ZX, Wang S, Chen SW. Synthesis and antioxidant activity of conjugates of hydroxytyrosol and coumarin. Bioorg Chem 2020; 105:104427. [DOI: 10.1016/j.bioorg.2020.104427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/24/2022]
|
25
|
Ali I, Rafique R, Khan KM, Chigurupati S, Ji X, Wadood A, Rehman AU, Salar U, Iqbal MS, Taha M, Perveen S, Ali B. Potent α-amylase inhibitors and radical (DPPH and ABTS) scavengers based on benzofuran-2-yl(phenyl)methanone derivatives: Syntheses, in vitro, kinetics, and in silico studies. Bioorg Chem 2020; 104:104238. [PMID: 32911195 DOI: 10.1016/j.bioorg.2020.104238] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/03/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
|
26
|
Liu X, Zhang X, Zhang X, Li F, Zhao H. Effects of different drying methods on the physicochemical and antioxidative characteristics of
Osmunda japonica
Thunb. polysaccharides. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaochen Liu
- College of Food Science Northeast Agricultural University Harbin China
| | - Xiuling Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Xueting Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Fengfeng Li
- College of Food Science Northeast Agricultural University Harbin China
| | - Hengtian Zhao
- Northeast Institute of Geography and AgroecologyChinese Academy of Sciences Harbin China
| |
Collapse
|
27
|
Taha M, Uddin N, Ali M, Anouar EH, Rahim F, Khan G, Farooq RK, Gollapalli M, Iqbal N, Farooq M, Khan KM. Inhibition potential of phenyl linked benzimidazole-triazolothiadiazole modular hybrids against β-glucuronidase and their interactions thereof. Int J Biol Macromol 2020; 161:355-363. [DOI: 10.1016/j.ijbiomac.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
|
28
|
Rafique R, Arshia, Kanwal, Khan KM, Chigurupati S, Salar U, Taha M, Perveen S. Discovery of New N-hydrazinecarbothioamide Indazole Hybrids: As Potential Radical (ABTS and DPPH) Scavengers. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200424074455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Free radicals are the main cause of numerous diseases. Their overproduction
needs to be controlled in order to combat several ailments. The current study deals with the discovery
of new free radical scavengers.
Methods:
Substituted N-hydrazinecarbothioamide indazoles 1-18 were evaluated for DPPH and
ABTS radical scavenging activities.
Results:
All synthetic compounds possess good radical DPPH and ABTS scavenging
potential in the ranges of IC50 = 2.11 ± 0.17 - 5.3 ± 0.11 μM and IC50 = 2.31 ± 0.06 - 5.5 ± 0.07
μM, respectively, as compared to standard ascorbic acid having IC50 = 2.02 ± 0.11 μM for DPPH
and IC50 = 2.1 ± 0.07 μM for ABTS.
Conclusion:
These compounds could serve as leads for antioxidant activity that have the ability to
control free radical generation and ward off free radical-induced disorders.
Collapse
Affiliation(s)
- Rafaila Rafique
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Arshia
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 31441, Saudi Arabia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| |
Collapse
|
29
|
Shamim S, Khan KM, Ullah N, Chigurupati S, Wadood A, Ur Rehman A, Ali M, Salar U, Alhowail A, Taha M, Perveen S. Synthesis and screening of (E)-3-(2-benzylidenehydrazinyl)-5,6-diphenyl-1,2,4-triazine analogs as novel dual inhibitors of α-amylase and α-glucosidase. Bioorg Chem 2020; 101:103979. [PMID: 32544738 DOI: 10.1016/j.bioorg.2020.103979] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
(E)-3-(2-Benzylidenehydrazinyl)-5,6-diphenyl-1,2,4-triazines analogs 1-27 were synthesized by multi-step reaction scheme and subjected to in vitro inhibitory screening against α-amylase and α-glucosidase enzymes. Out of these twenty-seven synthetic analogs, ten compounds 14-17, 19, and 21-25 are structurally new. All compounds exhibited good to moderate inhibitory potential in terms of IC50 values ranging (IC50 = 13.02 ± 0.04-46.90 ± 0.05 µM) and (IC50 = 13.09 ± 0.08-46.44 ± 0.24 µM) in comparison to standard acarbose (IC50 = 12.94 ± 0.27 µM and 10.95 ± 0.08 µM), for α-amylase and α-glucosidase, respectively. Structure-activity relationship indicated that analogs with halogen substitution(s) were found more active as compared to compounds bearing other substituents. Kinetic studies on most active α-amylase and α-glucosidase inhibitors 5, 7, 9, 15, 24, and 27, suggested non-competitive and competitive types of inhibition mechanism for α-amylase and α-glucosidase, respectively. Molecular docking studies predicted the good protein-ligand interaction (PLI) profile with key interactions such as arene-arene, H-<, <-<, and <-H etc., against the corresponding targets.
Collapse
Affiliation(s)
- Shahbaz Shamim
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, Khyber Pukhtoonkhwa, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, Khyber Pukhtoonkhwa, Pakistan
| | - Muhammad Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi-75280, Pakistan
| |
Collapse
|
30
|
Kawde AN, Taha M, Alansari RS, Almandil NB, Anouar EH, Uddin N, Rahim F, Chigurupati S, Nawaz M, Hayat S, Ibrahim M, Elakurthy PK, Vijayan V, Morsy M, Ibrahim H, Baig N, Khan KM. Exploring efficacy of indole-based dual inhibitors for α-glucosidase and α-amylase enzymes: In silico, biochemical and kinetic studies. Int J Biol Macromol 2020; 154:217-232. [PMID: 32173438 DOI: 10.1016/j.ijbiomac.2020.03.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/25/2023]
Abstract
α-Glucosidase and α-amylase are enzymes which are associated with diabetic II. These enzymes break macromolecules of sugar into monosugar molecules which is soluble in body, hence increase the sugar level in blood. There is need to develop economical and save inhibitors to prevent them from breaking sugar macromolecules to soluble molecules which will control the level of sugar in blood. Therefore, we synthesized indole-based derivatives (1-18) and evaluated as dual inhibitor for α-glucosidase and α-amylase. These chemical scaffolds were built with variation in aryl ring which were found active with good to moderate activity for α-glucosidase having IC50 value ranging from 13.99 ± 0.10 to 59.09 ± 0.30 μM when compared with standard acarbose with IC50 of 11.29 ± 0.10 μM; for α-amylase IC50 value ranging from 13.14 ± 0.10 to 58.99 ± 0.30 μM when compared with the standard acarbose with IC50 of 11.12 ± 0.10 μM. Structure activity relationship (SAR) has been established for all compounds. Enzymatic kinetic study and molecular docking study have been carried out to investigate the binding interactions α-glucosidase and α-amylase enzyme.
Collapse
Affiliation(s)
- Abdel-Nasser Kawde
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Raneem Saud Alansari
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Noor Barak Almandil
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Shawkat Hayat
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Mohamad Ibrahim
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | | | | | - Mohamed Morsy
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Hossieny Ibrahim
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Nadeem Baig
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|