1
|
El-Zoghbi MS, El-Sebaey SA, AL-Ghulikah HA, Sobh EA. Design, synthesis, docking, and anticancer evaluations of new thiazolo[3,2- a] pyrimidines as topoisomerase II inhibitors. J Enzyme Inhib Med Chem 2023; 38:2175209. [PMID: 36776024 PMCID: PMC9930781 DOI: 10.1080/14756366.2023.2175209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
New thiazolopyrimidine derivatives 2, 3a-d, 4a-c, 5, 6a-c, and 7a,b were synthesised. All prepared compounds were evaluated by MTT cytotoxicity assay against three human tumour cell lines. Compounds 3c, 3d, 4c, 6a, 6b, and 7b exhibited potent to strong anticancer activity that was nearly comparable or superior to Doxorubicin. Compounds exhibiting significant cytotoxicity were further selected to study their inhibitory activity on the Topo II enzyme. Compound 4c was the most potent Topo II inhibitor with an IC50 value of 0.23 ± 0.01 µM, which was 1.4-fold and 3.6-fold higher than the IC50 values of Etoposide and Doxorubicin. Furthermore, compound 4c showed significant cell cycle disruption and apoptosis on A549 cells compared to control cells. Molecular docking of the most active compounds illustrated proper fitting to the Topo II active site, suggesting that our designed compounds are promising candidates for the development of effective anticancer agents acting through Topo II inhibition.
Collapse
Affiliation(s)
- Mona S. El-Zoghbi
- Department of Pharmaceutical Chemistry, Menoufia University, Menoufia, Egypt,CONTACT Mona S. El-Zoghbi
| | - Samiha A. El-Sebaey
- Department of Pharmaceutical Organic Chemistry, Al-Azhar University, Nasr City, Cairo, Egypt,Samiha A. El-Sebaey
| | - Hanan A. AL-Ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eman A. Sobh
- Department of Pharmaceutical Chemistry, Menoufia University, Menoufia, Egypt
| |
Collapse
|
2
|
Chakrobarty S, Garai S, Ghosh A, Mukerjee N, Das D. Bioactive plantaricins as potent anti-cancer drug candidates: double docking, molecular dynamics simulation and in vitro cytotoxicity analysis. J Biomol Struct Dyn 2023; 41:13605-13615. [PMID: 36775653 DOI: 10.1080/07391102.2023.2177732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
The medical community is desperate for a reliable source of medications to alleviate the severity of conventional cancer treatments and prevent secondary microbial infections in oncological patients. In this regard, plantaricins from lactic acid bacteria were explored as prospective drug candidates against known anti-cancer drug targets. Three plantaricins, JLA-9, GZ1-27 and BN, have a binding affinity of -8.8, -8.6 and -7.2 kcal/mol, respectively, with squalene synthase (SQS), a key molecule in lung cancer metastasis. All three plantaricins displayed analogous binding patterns as SQS inhibitors and generated hydrogen and hydrophobic interactions with ARG 47, ARG 188, PHE24, LEU183 and PRO292. Structural stability of docked complexes was validated using molecular dynamics simulation derived parameters such as RMSD, RMSF and radius of gyration. Based on MD simulation results, conformational changes and stabilities of docked SQS/plantaricin complexes with respect to the time frame were evaluated using machine learning (logistic regression algorithm). Double docking with SQS/matrix metalloproteinase MMP1 and PCA analysis revealed the potential of plantaricin JLA-9 as a multi-substrate inhibitor. Further, plantaricin JLA-9 induced a significant cytotoxic response against the lung carcinoma cell line (A549) in a dose and time dependent manner with inhibition concentration (IC50) of 0.082 µg/ml after 48 h. However, plantaricin JLA-9 did not induce cytotoxicity in normal lung cells (L-132), as the IC50 value was not obtained even at a higher dose of 0.8 µg/ml. In silico pharmacokinetic (ADMET) profile implies that plantaricin JLA-9 could be developed as new age anti-cancer therapeutic with a preference for parenteral administration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Swarnava Garai
- Department of Bioengineering, NIT Agartala, Agartala, India
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Barasat, Kolkata, India
| | - Deeplina Das
- Department of Bioengineering, NIT Agartala, Agartala, India
| |
Collapse
|
3
|
Xie Z, Liang Z, Huang Y, Shi K, Zang N, Wang M, Liang T, Wei W. Discovery and biological evaluation of 2-((3-phenylisoxazol-5-yl) methoxy) benzamide derivatives as potent nucleocapsid inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Lu W, Tang J, Gu Z, Sun L, Wei H, Wang Y, Yang S, Chi X, Xu L. Crystal structure, in vitro cytotoxicity, DNA binding and DFT calculations of new copper (II) complexes with coumarin-amide ligand. J Inorg Biochem 2023; 238:112030. [PMID: 36327496 DOI: 10.1016/j.jinorgbio.2022.112030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
This work describes the synthesis, anticancer activity and electron structure study of two Cu (II) complexes with coumarin-3-formyl-(3-(aminomethyl) pyridine) ligand (L) - C1 (Cu2L2(OAc)4) and C2 (CuL2(NO3)2). The structure of C1 and C2 was confirmed by elemental analysis, FTIR, and single-crystal X-ray analysis. Complex C1 crystallizes as binuclear where two Cu (II) ions are bridged by four acetate ligands while C2 is a mononuclear complex with twisted octahedral geometry. Density functional theory (DFT) calculations revealed that electronic transitions originate from metal-ligand charge transfer and d-d transitions of metal ions. According to the results of UV-Vis and fluorescence titrations, C1 and C2 intercalate with DNA with the binding constants of 6.9 × 105 M-1 and 5.9 × 105 M-1, respectively. The in vitro cytotoxicity assays on four cancer cell lines (HeLa, HepG2, MCF-7 and A549) and a normal HUVEC cell line indicated higher anti-MCF-7 activity of C2 compared with cisplatin (IC50 = 2.86 ± 0.08 μM vs. 9.07 ± 0.10 μM). Moreover, C2 had superior selectivity since IC50 toward HUVEC cells was over 150 μM compared with 0.58 ± 0.05 μM for cisplatin. We concluded that the anti-MCF activity of mononuclear C2 complex is better than that of binuclear C1 and cisplatin. Therefore, C2 has been selected as a hit compound to develop novel non‑platinum anticancer agents through modification of coumarin-amide structure and variation of copper (II) salts.
Collapse
Affiliation(s)
- Wen Lu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jiongya Tang
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhenzhen Gu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lu Sun
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Haimeng Wei
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanqin Wang
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shilong Yang
- The Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xingwei Chi
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Li Xu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Institute of Material Physics&Chemistry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Synthesis of indole-tetrazole coupled aromatic amides; In vitro anticancer activity, in vitro tubulin polymerization inhibition assay and in silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Sharma P, Kumar D, Shri R, Kumar S. Mechanistic Insights and Docking Studies of Phytomolecules as Potential Candidates in the Management of Cancer. Curr Pharm Des 2022; 28:2704-2724. [PMID: 35473540 DOI: 10.2174/1381612828666220426112116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cancer is a leading risk of death globally. According to the World Health Organization, it is presently the second most important disease that causes death in both developing and developed countries. Remarkable progress has been made in the war against cancer with the development of numerous novel chemotherapy agents. However, it remains an immense challenge to discover new efficient therapeutic potential candidates to combat cancer. OBJECTIVES The majority of the currently used anticancer drugs are of natural origins, such as curcumin, colchicine, vinca alkaloid, paclitaxel, bergenin, taxols, and combretastatin. Concerning this, this review article presents the structure of the most potent molecules along with IC50 values, structure-activity relationships, mechanistic studies, docking studies, in silico studies of phytomolecules, and important key findings on human cancer cell lines. METHODS A viewpoint of drug design and development of antiproliferative agents from natural phytomolecules has been established by searching peer-reviewed literature from Google Scholar, PubMed, Scopus, Springer, Science Direct, and Web of Science over the past few years. RESULTS Our analysis revealed that this article would assist chemical biologists and medicinal chemists in industry and academia in gaining insights into the anticancer potential of phytomolecules. CONCLUSION In vitro and in silico studies present phytomolecules, such as curcumin, colchicine, vinca alkaloids, colchicine, bergenin, combretastatin, and taxol encompassing anticancer agents, offerings abundant sanguinity and capacity in the arena of drug discovery to inspire the investigators towards the continual investigations on these phytomolecules. It is extremely expected that efforts in this track will strengthen and grant some budding cancer therapeutics candidates in the near future.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, Punjab, India.,Khalsa College of Pharmacy, Amritsar-143001, Punjab, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Sri Sai College of Pharmacy, Manawala, Amritsar-143115, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, Punjab, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, Punjab, India
| |
Collapse
|
7
|
Al-Matarneh MC, Amărandi RM, Mangalagiu II, Danac R. Synthesis and Biological Screening of New Cyano-Substituted Pyrrole Fused (Iso)Quinoline Derivatives. Molecules 2021; 26:molecules26072066. [PMID: 33916806 PMCID: PMC8038376 DOI: 10.3390/molecules26072066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 11/22/2022] Open
Abstract
Several new cyano-substituted derivatives with pyrrolo[1,2-a]quinoline and pyrrolo[2,1-a]isoquinoline scaffolds were synthesized by the [3 + 2] cycloaddition of (iso)quinolinium ylides to fumaronitrile. The cycloimmonium ylides reacted in situ as 1,3-dipoles with fumaronitrile to selectively form distinct final compounds, depending on the structure of the (iso)quinolinium salt. Eleven compounds were evaluated for their anticancer activity against a panel of 60 human cancer cell lines. The most potent compound 9a showed a broad spectrum of antiproliferative activity against cancer cell lines representing leukemia, melanoma and cancer of lung, colon, central nervous system, ovary, kidney, breast and prostate cancer. In vitro assays and molecular docking revealed tubulin interaction properties of compound 9a.
Collapse
Affiliation(s)
- Maria Cristina Al-Matarneh
- Department of Chemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iași, 11 Carol I, 700506 Iași, Romania; (R.-M.A.); (I.I.M.)
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania
- Correspondence: (C.M.A.-M.); (R.D.)
| | - Roxana-Maria Amărandi
- Department of Chemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iași, 11 Carol I, 700506 Iași, Romania; (R.-M.A.); (I.I.M.)
- TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483 Iași, Romania
| | - Ionel I. Mangalagiu
- Department of Chemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iași, 11 Carol I, 700506 Iași, Romania; (R.-M.A.); (I.I.M.)
| | - Ramona Danac
- Department of Chemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iași, 11 Carol I, 700506 Iași, Romania; (R.-M.A.); (I.I.M.)
- Correspondence: (C.M.A.-M.); (R.D.)
| |
Collapse
|
8
|
Sardaru MC, Craciun AM, Al Matarneh CM, Sandu IA, Amarandi RM, Popovici L, Ciobanu CI, Peptanariu D, Pinteala M, Mangalagiu II, Danac R. Cytotoxic substituted indolizines as new colchicine site tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2020; 35:1581-1595. [PMID: 32752898 PMCID: PMC7470029 DOI: 10.1080/14756366.2020.1801671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 07/19/2020] [Indexed: 12/20/2022] Open
Abstract
A potential microtubule destabilising series of new indolizine derivatives was synthesised and tested for their anticancer activity against a panel of 60 human cancer cell lines. Compounds 11a, 11b, 15a, and 15j showed a broad spectrum of growth inhibitory activity against cancer cell lines representing leukaemia, melanoma and cancer of lung, colon, central nervous system, ovary, kidney, breast, and prostate. Among them, compound 11a was distinguishable by its excellent cytostatic activity, showing GI50 values in the range of 10-100 nM on 43 cell lines. The less potent compounds 15a and 15j in terms of GI50 values showed a high cytotoxic effect against tested colon cancer, CNS cancer, renal cancer and melanoma cell lines and only on few cell lines from other types of cancer. In vitro assaying revealed tubulin polymerisation inhibition by all active compounds. Molecular docking showed good complementarity of active compounds with the colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Anda Mihaela Craciun
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Cristina-Maria Al Matarneh
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Isabela Andreea Sandu
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Roxana Maria Amarandi
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- TRANSCEND Research Center, Regional Institute of Oncology, Iași, Romania
| | - Lacramioara Popovici
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
| | | | - Dragos Peptanariu
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Mariana Pinteala
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Ionel I. Mangalagiu
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
| | - Ramona Danac
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
| |
Collapse
|
9
|
Ibrahim TS, Hawwas MM, Taher ES, Alhakamy NA, Alfaleh MA, Elagawany M, Elgendy B, Zayed GM, Mohamed MFA, Abdel-Samii ZK, Elshaier YAMM. Design and synthesis of novel pyrazolo[3,4-d]pyrimidin-4-one bearing quinoline scaffold as potent dual PDE5 inhibitors and apoptotic inducers for cancer therapy. Bioorg Chem 2020; 105:104352. [PMID: 33080494 DOI: 10.1016/j.bioorg.2020.104352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
PDE5 targeting represents a new and promising strategy for apoptosis induction and inhibition of tumor cell growth due to its over-expression in diverse types of human carcinomas. Accordingly, we report the synthesis of series of pyrazolo[3,4-d]pyrimidin-4-one carrying quinoline moiety (11a-r) with potential dual PDE5 inhibition and apoptotic induction for cancer treatment. These hybrids were structurally elucidated and characterized with variant spectroscopic techniques as 1H NMR, 13C NMR and elemental analysis. The assessment of their anticancer activities has been declared. All the rationalized compounds 11a-r have been selected for their cytotoxic activity screening by NCI against 60 cell lines. Compounds 11a, 11b, 11j and 11k were the most active hybrids. Among all, compound 11j was further selected for five dose tesing and it displayed outstanding activity with strong antitumor activity against the nine tumor subpanels tested with selectivity ratios ranging from 0.019 to 8.3 at the GI50 level. Further, the most active targets 11a, b, j and k were screened for their PDE5 inhibitory activity, compound 11j (with IC50 1.57 nM) exhibited the most potent PDE5 inhibitory activity. Moreover, compound 11j is also showed moderate EGFR inhibition with IC50 of 5.827 ± 0.46 µM, but significantly inhibited the Wnt/β-catenin pathway with IC501286.96 ± 12.37 ng/mL. In addition, compound 11j induced the intrinsic apoptotic mitochondrial pathway in HepG2 cells as evidenced by the lower expression levels of the anti-apoptotic Bcl-2 protein, and the higher expression of the pro-apoptotic protein Bax, p53, cytochrome c and the up-regulated active caspase-9 and caspase-3 levels. All results confirmed by western blotting assay. Compound 11j exhibit pre G1 apoptosis and cell cycle arrest at G2/M phase. In conclusion, hybridization of quinoline moiety with the privileged pyrazolo[3,4-d]pyrimidinon-4-one structure resulted in highly potent anticancer agent, 11j, which deserves more study, in particular, in vivo and clinical investiagtions, and it is expected that these results would be applied for more drug discovery process.
Collapse
Affiliation(s)
- Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed M Hawwas
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ehab S Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Nabil A Alhakamy
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A Alfaleh
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Elagawany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Bahaa Elgendy
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110, USA; Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Gamal M Zayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University at Assiut, Assiut, Egypt; Al-Azhar Centre of Nanosciences and Applications (ACNA), Assiut, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt
| | - Zakaria K Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, 32958 Menoufia, Egypt
| |
Collapse
|
10
|
Gracheva IA, Shchegravina ES, Schmalz HG, Beletskaya IP, Fedorov AY. Colchicine Alkaloids and Synthetic Analogues: Current Progress and Perspectives. J Med Chem 2020; 63:10618-10651. [PMID: 32432867 DOI: 10.1021/acs.jmedchem.0c00222] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colchicine, the main alkaloid of Colchicum autumnale, is one of the most famous natural molecules. Although colchicine belongs to the oldest drugs (in use since 1500 BC), its pharmacological potential as a lead structure is not yet fully exploited. This review is devoted to the synthesis and structure-activity relationships (SAR) of colchicine alkaloids and their analogues with modified A, B, and C rings, as well as hybrid compounds derived from colchicinoids including prodrugs, conjugates, and delivery systems. The systematization of a vast amount of information presented to date will create a paradigm for future studies of colchicinoids for neoplastic and various other diseases.
Collapse
Affiliation(s)
- Iuliia A Gracheva
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina S Shchegravina
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | | | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Alexey Yu Fedorov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
11
|
Synthesis, Antiproliferative Activity and Molecular Docking Studies of Novel Doubly Modified Colchicine Amides and Sulfonamides as Anticancer Agents. Molecules 2020; 25:molecules25081789. [PMID: 32295119 PMCID: PMC7221574 DOI: 10.3390/molecules25081789] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/05/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022] Open
Abstract
Colchicine is a well-known compound with strong antiproliferative activity that has had limited use in chemotherapy because of its toxicity. In order to create more potent anticancer agents, a series of novel colchicine derivatives have been obtained by simultaneous modification at C7 (amides and sulfonamides) and at C10 (methylamino group) positions and characterized by spectroscopic methods. All the synthesized compounds have been tested in vitro to evaluate their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX and BALB/3T3 cell lines. Additionally, the activity of the studied compounds was investigated using computational methods involving molecular docking of the colchicine derivatives to β-tubulin. The majority of the obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin or cisplatin against tested cancer cell lines. Furthermore, molecular modeling studies of the obtained compounds revealed their possible binding modes into the colchicine binding site of tubulin.
Collapse
|
12
|
Ibrahim TS, Sheha TA, Abo-Dya NE, AlAwadh MA, Alhakamy NA, Abdel-Samii ZK, Panda SS, Abuo-Rahma GEDA, Mohamed MFA. Design, synthesis and anticancer activity of novel valproic acid conjugates with improved histone deacetylase (HDAC) inhibitory activity. Bioorg Chem 2020; 99:103797. [PMID: 32247939 DOI: 10.1016/j.bioorg.2020.103797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
Twenty-five valproic acid conjugates have been designed and synthesized. All target compounds were explored for their in vitro anti-proliferative activities using the MTT-based assay against four human cancer cell lines includingliver (HePG2), colon (HCT116), breast (MCF7) and cervical (HeLa) carcinoma cell lines. Out of six valproic acid-amino acid conjugates 2a-f. Only cysteine containing conjugate 2f showed the significant activity (IC50 9.10 µM against HePG2 and 6.81 µM against HCT116). However conjugate 2j showed broad-spectrum antitumor activity against all cell lines tested. In addition, conjugates 4j and 4k which contains phenyl hydrazide and hydroxamic acid group, respectively, also showed broad spectrum activity. Furthermore, six compounds were screened for HDAC 1-9 isozymes inhibitory activities. Compounds 2j, 4j and 4k manifested a higher inhibitory activity more than valproic acid but less than SAHA. In addition, the in vivo antitumor screening of 2j, 4j and 4k was done and the results have shown that 2j, 4j and 4k, particularly 4j, showed a significant decrease in tumor size and presented a considerable decrease in viable EAC count. Docking study of selectedcompound 4j revealed that it can bind nicely to the binding pocket of HDAC 1, 2, 3, 4 and HDAC 8. The results suggest that compounds 2j, 4j and 4k, particularly 4j, may be promising lead candidates for the development of novel targeted anti-tumor drug potentially via inhibiting HDACs.
Collapse
Affiliation(s)
- Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Taghreed A Sheha
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nader E Abo-Dya
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed A AlAwadh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zakaria K Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Siva S Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
| | | | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt.
| |
Collapse
|