1
|
De Filippis B, Granese A, Ammazzalorso A. Peroxisome Proliferator-Activated Receptor agonists and antagonists: an updated patent review (2020-2023). Expert Opin Ther Pat 2024; 34:83-98. [PMID: 38501260 DOI: 10.1080/13543776.2024.2332661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION The search for novel compounds targeting Peroxisome Proliferator-Activated Receptors (PPARs) is currently ongoing, starting from the previous successfully identification of selective, dual or pan agonists. In last years, researchers' efforts are mainly paid to the discovery of PPARγ and δ modulators, both agonists and antagonists, selective or with a dual-multitarget profile. Some of these compounds are currently under clinical trials for the treatment of primary biliary cirrhosis, nonalcoholic fatty liver disease, hepatic, and renal diseases. AREAS COVERED A critical analysis of patents deposited in the range 2020-2023 was carried out. The novel compounds discovered were classified as selective PPAR modulators, dual and multitarget PPAR agonists. The use of PPAR ligands in combination with other drugs was also discussed, together with novel therapeutic indications proposed for them. EXPERT OPINION From the analysis of the patent literature, the current emerging landscape sees the necessity to obtain PPAR multitarget compounds, with a balanced potency on three subtypes and the ability to modulate different targets. This multitarget action holds great promise as a novel approach to complex disorders, as metabolic, inflammatory diseases, and cancer. The utility of PPAR ligands in the immunotherapy field also opens an innovative scenario, that could deserve further applications.
Collapse
Affiliation(s)
| | - Arianna Granese
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | | |
Collapse
|
2
|
Xu D, Zhao W, Feng Y, Wen X, Liu H, Ping J. Pentoxifylline attenuates nonalcoholic fatty liver by inhibiting hepatic macrophage polarization to the M1 phenotype. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154368. [PMID: 35994850 DOI: 10.1016/j.phymed.2022.154368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/30/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver (NAFL), recognized as one of the most common causes of chronic liver diseases, is increasingly prevalent worldwide. Pentoxifylline, a derivative of theobromine extracted from Theobroma cacao and tea, has been studied for effects on blood viscosity, tissue oxygenation and inflammation. However, its effects on hepatic lipid accumulation and the potential mechanisms remain unclear. PURPOSE This study aimed to investigate the therapeutic effects of pentoxifylline on high-fat diet-induced NAFL and to explore the corresponding molecular mechanisms. METHODS NAFL mice were injected with or without 25, 50 or 100 mg/kg pentoxifylline for 2 weeks. Hepatic steatosis was observed by haematoxylin-eosin staining and Oil Red O staining, the levels of serum total cholesterol, triglyceride were detected by biochemical kits, and insulin resistance was evaluated by glucose and insulin tolerance tests. In addition, we measured the frequencies of macrophage and its polarization subsets in the liver using flow cytometry and immunofluorescence. The expressions of proteins associated with macrophage polarization signaling pathways were assessed by Western blotting and flow cytometry histograms. Molecular docking and cellular thermal shift assay were conducted to identify and verify the target protein of pentoxifylline in macrophage. RESULTS Pentoxifylline significantly alleviated hepatic lipid accumulation, reduced blood lipid levels and improved insulin resistance. Strikingly, the excessive M1 macrophages in NAFL development was abolished by pentoxifylline. And pentoxifylline was further evidenced it failed to reduce hepatocyte lipid accumulation in the absence of macrophages in vitro. Mechanistically, pentoxifylline competed with LPS for binding to toll-like receptor 4, dramatically inhibiting the TLR4/MyD88/NF-κB signaling pathway. CONCLUSION Pentoxifylline attenuated NAFL by inhibiting hepatic macrophage M1 polarization, indicating that pentoxifylline could be a therapeutic candidate for NAFL. This study first observed that M1 macrophages were increased in NAFL mice and then revealed the molecule targeted by pentoxifylline. In addition, we provided evidence that macrophage targeting may be an emerging strategy for NAFL treatment.
Collapse
Affiliation(s)
- Dongqin Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China
| | - Wenhao Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China
| | - Yiting Feng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China
| | - Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China
| | - Hanxiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China.
| |
Collapse
|
3
|
Virendra SA, Kumar A, Chawla PA, Mamidi N. Development of Heterocyclic PPAR Ligands for Potential Therapeutic Applications. Pharmaceutics 2022; 14:2139. [PMID: 36297575 PMCID: PMC9611956 DOI: 10.3390/pharmaceutics14102139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
The family of nuclear peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) is a set of ligand-activated transcription factors that regulate different functions in the body. Whereas activation of PPARα is known to reduce the levels of circulating triglycerides and regulate energy homeostasis, the activation of PPARγ brings about insulin sensitization and increases the metabolism of glucose. On the other hand, PPARβ when activated increases the metabolism of fatty acids. Further, these PPARs have been claimed to be utilized in various metabolic, neurological, and inflammatory diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity. A series of different heterocyclic scaffolds have been synthesized and evaluated for their ability to act as PPAR agonists. This review is a compilation of efforts on the part of medicinal chemists around the world to find novel compounds that may act as PPAR ligands along with patents in regards to PPAR ligands. The structure-activity relationship, as well as docking studies, have been documented to better understand the mechanistic investigations of various compounds, which will eventually aid in the design and development of new PPAR ligands. From the results of the structural activity relationship through the pharmacological and in silico evaluation the potency of heterocycles as PPAR ligands can be described in terms of their hydrogen bonding, hydrophobic interactions, and other interactions with PPAR.
Collapse
Affiliation(s)
- Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Ankur Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
4
|
Wang M, Zhou X, Jiang Z, Wang J. Angiogenesis Inhibitor ZM 306416 Reduces Non-Alcoholic Fatty Liver Disease in Mice Induced by High-Fat Diet. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) causes countless burden to people worldwide, especially when the quality of people’s life is improved constantly. It has clinical significance to find novel methods to deal with this common disease. Here, we aimed to assess whether angiogenesis
inhibitor ZM306416 could improve NAFLD. Mice were fed with different diets for 15 weeks and treated with ZM306416 followed by analysis of weight and inflammatory infiltration of adipose tissue, fatty degeneration, and fibrosis by immunohistochemistry, fibrosis-related proteins level by qRT-PCR.
Compared to control group, ZM306416 treatment significantly declined mice weight and adipose tissue weight. In addition, ZM306416 decreased blood vessel density of adipose tissues, mitigated inflammatory infiltration, fatty degeneration, and fibrosis. Moreover, ZM304616 alleviated adipose
fibrosis-related protein expression, and transcription of inflammatory genes and adipogenesis genes. However, the inhibitor enhanced β-oxidation of fatty acid, Nrf2, and SOD2, while decreased serum markers of liver injury. In conclsuion, angiogenesis inhibitor ZM306416 attenuates
adipose fibrosis and degradation, promotes adipose functions and lipid metabolism, thereby alleviating obesity-induced nonalcoholic fatty liver.
Collapse
Affiliation(s)
- Miaojuan Wang
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhengjiang, China
| | - Xiajuan Zhou
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhengjiang, China
| | - Zhenghao Jiang
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhengjiang, China
| | - Jingyuan Wang
- Health Management Center, Zhejiang Provincial People’s Hospital, Hangzhou, 310000, Zhejiang, China
| |
Collapse
|
5
|
Feng Z, Xiang J, Liu H, Li J, Xu X, Sun G, Zheng R, Zhang S, Liu J, Yang S, Xu Q, Wen X, Yuan H, Sun H, Dai L. Design, Synthesis, and Biological Evaluation of Triazolone Derivatives as Potent PPARα/δ Dual Agonists for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2022; 65:2571-2592. [PMID: 35060744 DOI: 10.1021/acs.jmedchem.1c02002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peroxisome proliferator-activator receptors α/δ (PPARα/δ) are regarded as potential therapeutic targets for nonalcoholic steatohepatitis (NASH). However, PPARα/δ dual agonist GFT-505 exhibited poor anti-NASH effects in a phase III clinical trial, probably due to its weak PPARα/δ agonistic activity and poor metabolic stability. Other reported PPARα/δ dual agonists either exhibited limited potency or had unbalanced PPARα/δ agonistic activity. Herein, we report a series of novel triazolone derivatives as PPARα/δ dual agonists. Among them, compound H11 exhibited potent and well-balanced PPARα/δ agonistic activity (PPARα EC50 = 7.0 nM; PPARδ EC50 = 8.4 nM) and a high selectivity over PPARγ (PPARγ EC50 = 1316.1 nM) in PPAR transactivation assays. The crystal structure of PPARδ in complex with H11 revealed a unique PPARδ-agonist interaction. H11, which had excellent PK properties and a good safety profile, showed potent in vivo anti-NASH effects in preclinical models. Together, H11 holds a great promise for treating NASH or other inflammatory and fibrotic diseases.
Collapse
Affiliation(s)
- Zhiqi Feng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiehao Xiang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaxin Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangrui Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Runan Zheng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shangran Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Junlong Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shanlin Yang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Wang X, Ji G, Han X, Hao H, Liu W, Xue Q, Guo Q, Wang S, Lei K, Liu Y. Thiazolidinedione derivatives as novel GPR120 agonists for the treatment of type 2 diabetes. RSC Adv 2022; 12:5732-5742. [PMID: 35424534 PMCID: PMC8981563 DOI: 10.1039/d1ra08925k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
GPR120, also called FFAR4, is preferentially expressed in the intestines, and can be stimulated by long-chain free fatty acids to increase the secretion of glucagon-like peptide-1 (GLP-1) from intestinal endocrine cells. It is known that GLP-1, as an incretin, can promote the insulin secretion from pancreatic cells in a glucose-dependent manner. Therefore, GPR120 is a potential drug target to treat type 2 diabetes. In this study, thiazolidinedione derivatives were found to be novel potent GPR120 agonists. Compound 5g, with excellent agonistic activity, selectivity, and metabolic stability, improved oral glucose tolerance in normal C57BL/6 mice in a dose-dependent manner. Moreover, compound 5g exhibited anti-diabetic activity by promoting insulin secretion in diet-induced obese mice. In summary, compound 5g might be a promising drug candidate for the treatment of type 2 diabetes. GPR120 has emerged as an attractive target for the treatment of type 2 diabetes and obesity. Thiazolidinedione derivatives were found to be novel potent GPR120 agonists.![]()
Collapse
Affiliation(s)
- Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Guoxia Ji
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Xinyu Han
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Huiran Hao
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Wenjing Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Qidi Xue
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Qinghua Guo
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Shiben Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Kang Lei
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Yadi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Yuan Z, Feng S, Zhang J, Liang B, Jin H. Effects of cyclocarya paliurus flavonoid extract in non-alcoholic steatohepatitis mice: Intermeshing network pharmacology and in vivo pharmacological evaluation. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_21_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Li S, Feng L, Ma C. Simple and green synthesis of benzimidazoles and pyrrolo[1,2- a]quinoxalines via Mamedov heterocycle rearrangement. NEW J CHEM 2021. [DOI: 10.1039/d1nj01251g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This method is metal and catalyst-free and only solvent (HOAc) is required with H2O as the sole byproduct.
Collapse
Affiliation(s)
- Shichen Li
- School of Chemistry and Chemical Engineering Shandong University Jinan
- Shandong
- P. R. China
| | - Lei Feng
- School of Chemistry and Chemical Engineering Shandong University Jinan
- Shandong
- P. R. China
| | - Chen Ma
- School of Chemistry and Chemical Engineering Shandong University Jinan
- Shandong
- P. R. China
| |
Collapse
|
9
|
Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis. Pharmacol Ther 2020; 222:107791. [PMID: 33321113 DOI: 10.1016/j.pharmthera.2020.107791] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a dynamic wound-healing process associated with the deposition of extracellular matrix produced by myofibroblasts. HSCs activation, inflammation, oxidative stress, steatosis and aging play critical roles in the progression of liver fibrosis, which is correlated with the regulation of the peroxisome proliferator-activated receptor (PPAR) pathway. As nuclear receptors, PPARs reduce inflammatory response, regulate lipid metabolism, and inhibit fibrogenesis in the liver associated with aging. Thus, PPAR ligands have been investigated as possible therapeutic agents. Mounting evidence indicated that some PPAR agonists could reverse steatohepatitis and liver fibrosis. Consequently, targeting PPARs might be a promising and novel therapeutic option against liver fibrosis. This review summarizes recent studies on the role of PPARs on the pathogenesis and treatment of liver fibrosis.
Collapse
|
10
|
Baran A, Sulukan E, Türkoğlu M, Ghosigharehagaji A, Yildirim S, Kankaynar M, Bolat I, Kaya M, Topal A, Ceyhun SB. Is sodium carboxymethyl cellulose (CMC) really completely innocent? It may be triggering obesity. Int J Biol Macromol 2020; 163:2465-2473. [PMID: 32987073 DOI: 10.1016/j.ijbiomac.2020.09.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022]
Abstract
The toxicity of sodium carboxymethyl cellulose (CMC), which has GRAS status and has been determined as "ADI non specified", was re-evaluated with a new modelling and molecular-based data. For this purpose, CMC, a food additive, was injected to the yolk sac (food) of the zebrafish embryo by the microinjection method at the 4th hour of fertilization at different concentrations. As a result, it was found that CMC showed no toxic effects within the framework of the parameters studied. But, we determined increasing lipid accumulation in zebrafish embryos exposed to CMC in a dose-dependent manner. To elucidate the mechanism underlying this lipid accumulation, the expression levels of genes related to obesity-linked lipid metabolism were examined. Our findings show that while CMC does not cause a toxic effect in zebrafish embryos, it can lead important effects on lipid metabolism by causing changes in the expression of some genes associated with obesity.
Collapse
Affiliation(s)
- Alper Baran
- Department of Food Quality Control and Analysis, Erzurum Vocational School, Atatürk University, Erzurum, Turkey
| | - Ekrem Sulukan
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Medine Türkoğlu
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Atena Ghosigharehagaji
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Mükerrem Kaya
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, TR-25240 Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
11
|
Qiu Q, Wang W, Zhao X, Chen Y, Zhao S, Zhu J, Xu X, Geng R. Design, synthesis and structure-activity relationship studies of novel partial FXR agonists for the treatment of fatty liver. Bioorg Chem 2020; 104:104262. [PMID: 32919135 DOI: 10.1016/j.bioorg.2020.104262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the most common chronic liver disease, while there is still no medicine available. Farnesoid X receptor (FXR) is considered as a potential target for the treatment of NAFLD, and there are several FXR agonists reached in clinical trials. Based on better safety, industry and academia are pursuing development of the partial FXR agonists. To extend the chemical space of existing partial FXR agonists, we performed a structure-activity relationship study based on previously reported partial agonist 1 by using bioisosteric strategy. All of these efforts resulted in the identification of novel partial FXR agonist 13, which revealed the best agonistic activity in this series. Notably, compound 13 significantly alleviated the hepatic steatosis and hepatic function index in methionine-choline deficient (MCD) induced db/db mice, a classical nonalcoholic steatohepatitis (NASH) model widely used in preclinical evaluation. These results suggested that partial FXR agonist 13 might be a promising lead compound worthy further researches.
Collapse
Affiliation(s)
- Qianqian Qiu
- School of Pharmacy, Yancheng Teachers' University, Yancheng, PR China.
| | - Wenling Wang
- School of Pharmacy, Yancheng Teachers' University, Yancheng, PR China
| | - Xiaojuan Zhao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, PR China
| | - Yanli Chen
- School of Pharmacy, Yancheng Teachers' University, Yancheng, PR China
| | - Shiyuan Zhao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, PR China
| | - Jilan Zhu
- School of Pharmacy, Yancheng Teachers' University, Yancheng, PR China
| | - Xiaojuan Xu
- School of Pharmacy, Yancheng Teachers' University, Yancheng, PR China.
| | - Rongqing Geng
- School of Pharmacy, Yancheng Teachers' University, Yancheng, PR China.
| |
Collapse
|
12
|
Li Z, Zhou Z, Hu L, Deng L, Ren Q, Zhang L. ZLY032, the first-in-class dual FFA1/PPARδ agonist, improves glucolipid metabolism and alleviates hepatic fibrosis. Pharmacol Res 2020; 159:105035. [PMID: 32562818 DOI: 10.1016/j.phrs.2020.105035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/19/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
The free fatty acid receptor 1 (FFA1) and peroxisome proliferator-activated receptor δ (PPARδ) are considered as anti-diabetic targets based on their role in improving insulin secretion and resistance. Based on their synergetic mechanisms, we have previously identified the first-in-class dual FFA1/PPARδ agonist ZLY032. After long-term treatment, ZLY032 significantly improved glucolipid metabolism and alleviated fatty liver in ob/ob mice and methionine choline-deficient diet-fed db/db mice, mainly by regulating triglyceride metabolism, fatty acid β-oxidation, lipid synthesis, inflammation, oxidative stress and mitochondrial function. Notably, ZLY032 exhibited greater advantages on lipid metabolism, insulin sensitivity and pancreatic β-cell function than TAK-875, the most advanced candidate of FFA1 agonists. Moreover, ZLY032 prevented CCl4-induced liver fibrosis by reducing the expressions of genes involved in inflammation and fibrosis development. These results suggest that the dual FFA1/PPARδ agonists such as ZLY032 may be useful for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|