1
|
Cai DL, Chan Y, Kong YM, Liu YZ, Guo Y, Cai AQ, Zhu BS. Ginsenoside Rg1 promotes fetal hemoglobin production in vitro: A potential therapeutic avenue for β-thalassemia. Eur J Pharmacol 2024; 968:176404. [PMID: 38382804 DOI: 10.1016/j.ejphar.2024.176404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
β-thalassemia, a globally prevalent genetic disorder, urgently requires innovative treatment options. Fetal hemoglobin (HbF) induction stands as a key therapeutic approach. This investigation focused on Ginsenoside Rg1 from the Panax genus for HbF induction. Employing K562 cells and human erythroid precursor cells (ErPCs) derived from neonatal cord blood, the study tested Rg1 at different concentrations. We measured its effects on γ-globin mRNA levels and HbF expression, alongside assessments of cell proliferation and differentiation. In K562 cells, Rg1 at 400 μM significantly increased γ-globin mRNA expression by 4.24 ± 1.08-fold compared to the control. In ErPCs, the 800 μM concentration was most effective, leading to an over 80% increase in F-cells and a marked upregulation in HbF expression. Notably, Rg1 did not adversely affect cell proliferation or differentiation, with the 200 μM concentration showing an increase in γ-globin mRNA by 2.33 ± 0.58-fold, and the 800 μM concentration enhancing HbF expression by 2.59 ± 0.03-fold in K562 cells. Our results underscore Rg1's potential as an effective and safer alternative for β-thalassemia treatment. By significantly enhancing HbF levels without cytotoxicity, Rg1 offers a notable advantage over traditional treatments like Hydroxyurea. While promising, these in vitro findings warrant further in vivo exploration to confirm Rg1's therapeutic efficacy and to unravel its underlying mechanistic pathways.
Collapse
Affiliation(s)
- Dong-Ling Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Ying Chan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Ya-Min Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yi-Ze Liu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Yan Guo
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Ai-Qi Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Bao-Sheng Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China; Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
2
|
Drakontaeidi A, Pontiki E. A Review on Molecular Docking on HDAC Isoforms: Novel Tool for Designing Selective Inhibitors. Pharmaceuticals (Basel) 2023; 16:1639. [PMID: 38139766 PMCID: PMC10746130 DOI: 10.3390/ph16121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Research into histone deacetylases (HDACs) has experienced a remarkable surge in recent years. These enzymes are key regulators of several fundamental biological processes, often associated with severe and potentially fatal diseases. Inhibition of their activity represents a promising therapeutic approach and a prospective strategy for the development of new therapeutic agents. A critical aspect of their inhibition is to achieve selectivity in terms of enzyme isoforms, which is essential to improve treatment efficacy while reducing undesirable pleiotropic effects. The development of computational chemistry tools, particularly molecular docking, is greatly enhancing the precision of designing molecules with inherent potential for specific activity. Therefore, it was considered necessary to review the molecular docking studies conducted on the major isozymes of the enzyme in order to identify the specific interactions associated with each selective HDAC inhibitor. In particular, the most critical isozymes of HDAC (1, 2, 3, 6, and 8) have been thoroughly investigated within the scope of this review.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
3
|
Peyear TA, Andersen OS. Screening for bilayer-active and likely cytotoxic molecules reveals bilayer-mediated regulation of cell function. J Gen Physiol 2023; 155:e202213247. [PMID: 36763053 PMCID: PMC9948646 DOI: 10.1085/jgp.202213247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
A perennial problem encountered when using small molecules (drugs) to manipulate cell or protein function is to assess whether observed changes in function result from specific interactions with a desired target or from less specific off-target mechanisms. This is important in laboratory research as well as in drug development, where the goal is to identify molecules that are unlikely to be successful therapeutics early in the process, thereby avoiding costly mistakes. We pursued this challenge from the perspective that many bioactive molecules (drugs) are amphiphiles that alter lipid bilayer elastic properties, which may cause indiscriminate changes in membrane protein (and cell) function and, in turn, cytotoxicity. Such drug-induced changes in bilayer properties can be quantified as changes in the monomer↔dimer equilibrium for bilayer-spanning gramicidin channels. Using this approach, we tested whether molecules in the Pathogen Box (a library of 400 drugs and drug-like molecules with confirmed activity against tropical diseases released by Medicines for Malaria Venture to encourage the development of therapies for neglected tropical diseases) are bilayer modifiers. 32% of the molecules in the Pathogen Box were bilayer modifiers, defined as molecules that at 10 µM shifted the monomer↔dimer equilibrium toward the conducting dimers by at least 50%. Correlation analysis of the molecules' reported HepG2 cell cytotoxicity to bilayer-modifying potency, quantified as the shift in the gramicidin monomer↔dimer equilibrium, revealed that molecules producing <25% change in the equilibrium had significantly lower probability of being cytotoxic than molecules producing >50% change. Neither cytotoxicity nor bilayer-modifying potency (quantified as the shift in the gramicidin monomer↔dimer equilibrium) was well predicted by conventional physico-chemical descriptors (hydrophobicity, polar surface area, etc.). We conclude that drug-induced changes in lipid bilayer properties are robust predictors of the likelihood of membrane-mediated off-target effects, including cytotoxicity.
Collapse
Affiliation(s)
- Thasin A. Peyear
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences. New York, NY, USA
| | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Ramli I, Posadino AM, Giordo R, Fenu G, Fardoun M, Iratni R, Eid AH, Zayed H, Pintus G. Effect of Resveratrol on Pregnancy, Prenatal Complications and Pregnancy-Associated Structure Alterations. Antioxidants (Basel) 2023; 12:antiox12020341. [PMID: 36829900 PMCID: PMC9952837 DOI: 10.3390/antiox12020341] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Adverse pregnancy outcomes are considered significant health risks for pregnant women and their offspring during pregnancy and throughout their lifespan. These outcomes lead to a perturbated in-utero environment that impacts critical phases of the fetus's life and correlates to an increased risk of chronic pathological conditions, such as diabetes, obesity, and cardiovascular diseases, in both the mother's and adult offspring's life. The dietary intake of naturally occurring antioxidants promotes health benefits and disease prevention. In this regard, maternal dietary intake of polyphenolic antioxidants is linked to a reduced risk of maternal obesity and cardio-metabolic disorders, positively affecting both the fetus and offspring. In this work, we will gather and critically appraise the current literature highlighting the effect/s of the naturally occurring polyphenol antioxidant resveratrol on oxidative stress, inflammation, and other molecular and physiological phenomena associated with pregnancy and pregnancy conditions, such as gestational diabetes, preeclampsia, and preterm labor. The resveratrol impact on prenatal complications and pregnancy-associated structures, such as the fetus and placenta, will also be discussed. Finally, we will draw conclusions from the current knowledge and provide future perspectives on potentially exploiting resveratrol as a therapeutic tool in pregnancy-associated conditions.
Collapse
Affiliation(s)
- Iman Ramli
- Departement de Biologie Animale, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Grazia Fenu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Manal Fardoun
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence:
| |
Collapse
|
5
|
Pavan AR, Lopes JR, Dos Santos JL. The state of the art of fetal hemoglobin-inducing agents. Expert Opin Drug Discov 2022; 17:1279-1293. [PMID: 36302760 DOI: 10.1080/17460441.2022.2141708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Sickle cell anemia (SCA) is a hematological genetic disorder caused by a mutation in the gene of the β-globin. Pharmacological treatments will continue to be an important approach, including the strategy to induce fetal hemoglobin (HbF). AREAS COVERED Here, we analyzed the articles described in the literature regarding the drug discovery of HbF inducers. The main approaches for such strategy will be discussed, highlighting those most promising. EXPERT OPINION The comprehension of the mechanisms involved in the β-globin regulation is the main key to design new drugs to induce HbF. Among the strategies, gamma-globin regulation by epigenetic enzymes seems to be a promising approach to be pursued, although the comprehension of the selectivity role for those new drugs is crucial to reduce adverse effects. The low druggability of transcription factors and their vital role in embryonic human development are critical points that should be taken in account for drug design. The guanylate cyclase and the NO/cGMP signaling pathway seem to be promising not only for HbF induction, but also for the protective effects in the cardiovascular system. The association of drugs acting through different mechanisms to induce HbF seems to be promising for the discovery of new drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - Juliana Romano Lopes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.,School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| |
Collapse
|
6
|
Urias BS, Pavan AR, Albuquerque GR, Prokopczyk IM, Alves TMF, de Melo TRF, Sartori GR, da Silva JHM, Chin CM, Santos JLD. Optimization of Resveratrol Used as a Scaffold to Design Histone Deacetylase (HDAC-1 and HDAC-2) Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15101260. [PMID: 36297372 PMCID: PMC9611521 DOI: 10.3390/ph15101260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Histone deacetylases (HDAC) are epigenetic enzymes responsible for repressing gene expression through the deacetylation of histone lysine residues. Therefore, inhibition of HDACs has become an interesting approach for the treatment of several diseases, including cancer, hematology, neurodegenerative, immune diseases, bacterial infections, and more. Resveratrol (RVT) has pleiotropic effects, including pan-inhibition of HDAC isoforms; however, its ability to interfere with membranes requires additional optimization to eliminate nonspecific and off-target effects. Thus, to explore RVT as a scaffold, we designed a series of novel HDAC-1 and -2 inhibitors containing the 2-aminobenzamide subunit. Using molecular modeling, all compounds, except unsaturated compounds (4) and (7), exhibited a similar mode of interaction at the active sites of HDAC 1 and 2. The docking score values obtained from the study ranged from −12.780 to −10.967 Kcal/mol. All compounds were synthesized, with overall yields ranging from 33% to 67.3%. In an initial screening, compounds (4), (5), (7), and (20)–(26), showed enzymatic inhibitory effects ranging from 1 to 96% and 6 to 93% against HDAC-1 and HDAC-2, respectively. Compound (5), the most promising HDAC inhibitor in this series, was selected for IC50 assays, resulting in IC50 values of 0.44 µM and 0.37 µM against HDAC-1 and HDAC-2, respectively. In a panel of selectivity against HDACs 3–11, compound (5) presented selectivity towards Class I, mainly HDAC-1, 2, and 3. All compounds exhibited suitable physicochemical and ADMET properties as determined using in silico simulations. In conclusion, the optimization of the RVT structure allows the design of selective HDAC inhibitors, mainly targeting HDAC-1 and HDAC-2 isoforms.
Collapse
Affiliation(s)
- Beatriz Silva Urias
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
- Correspondence: (A.R.P.); (J.L.D.S.); Tel.: +55-16-3301-6972 (J.L.D.S.)
| | | | - Igor Muccilo Prokopczyk
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Tânia Mara Ferreira Alves
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | | | - Geraldo Rodrigues Sartori
- Laboratory of Structural and Functional Biology Applied to Biopharmaceuticals, Oswaldo Cruz Foundation (Fiocruz), Eusébio 61773-270, CE, Brazil
- Postgraduate Program in Computational and Systems Biology, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-222, RJ, Brazil
| | - João Hermínio Martins da Silva
- Laboratory of Structural and Functional Biology Applied to Biopharmaceuticals, Oswaldo Cruz Foundation (Fiocruz), Eusébio 61773-270, CE, Brazil
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
- Correspondence: (A.R.P.); (J.L.D.S.); Tel.: +55-16-3301-6972 (J.L.D.S.)
| |
Collapse
|
7
|
Pavan AR, Lopes JR, Lima Imperador CH, Man Chin C, dos Santos JL. Perspectives and challenges to discovering hemoglobin-inducing agents in Sickle Cell Disease. Front Med (Lausanne) 2022; 9:1002063. [PMID: 36160143 PMCID: PMC9492863 DOI: 10.3389/fmed.2022.1002063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Aline Renata Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), São Paulo, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Juliana Romano Lopes
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Carlos Henrique Lima Imperador
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), Sao Jose do Rio Preto, SP, Brazil
| | - Chung Man Chin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), São Paulo, Brazil
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), Sao Jose do Rio Preto, SP, Brazil
- *Correspondence: Chung Man Chin
| | - Jean Leandro dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), São Paulo, Brazil
- Jean Leandro dos Santos
| |
Collapse
|
8
|
Pinheiro AK, Pereira DA, dos Santos JL, Calmasini FB, Alexandre EC, Reis LO, Burnett AL, Costa FF, Silva FH. Resveratrol-nitric oxide donor hybrid effect on priapism in sickle cell and nitric oxide-deficient mouse. PLoS One 2022; 17:e0269310. [PMID: 35653352 PMCID: PMC9162357 DOI: 10.1371/journal.pone.0269310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Children and adult with sickle cell disease (SCD) display priapism associated with low nitric oxide (NO) bioavailability and oxidative stress in penis. Aim This study aimed to evaluate the effects of hybrid compound RVT-FxMe, derived from resveratrol bearing a NO-donor subunit, on two murine model that display priapism phenotype, SCD transgenic mice and endothelial NO synthase gene-deficient (eNOS-/-) mice. Methods Wild-type, SCD, and eNOS-/- mice were treated with RVT-FxMe (25 mg/kg/d, 2 weeks). Outcomes Hematological parameters, concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP), as well as to electrical field stimulation (EFS), were obtained in mice corpus cavernosum strips. Results Corpus cavernosum relaxations to SNP and EFS were increased in eNOS-/- group, which were normalized by RVT-FxMe treatment. SCD mice exhibited an excessive CC relaxant response induced by ACh, EFS and SNP RVT-FxMe treatment did not change the increased relaxant responses to ACh, EFS and SNP in corpus cavernosum from SCD group. Clinical translation Excess of plasma hemoglobin in SCD may interfere in pharmacological activity of NO donors compounds. Strength/Limitations While mechanistic data with promising potential is showed, the current study is not without limitations. RVT-FxMe effects in the mid- and long-term warrant complementary studies. Conclusion Treatment with RVT-FxMe reversed the enhanced NO-cGMP-mediated CC relaxations in eNOS-/- mice, but not in SCD mice; it is likely that excess of plasma hemoglobin in SCD mice act to inactivate NO before it reaches soluble guanylyl cyclase, avoiding restoration of NO bioavailability in penis.
Collapse
Affiliation(s)
- Andressa Kely Pinheiro
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Dalila Andrade Pereira
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - Jean Leandro dos Santos
- State University of São Paulo (UNESP), School of Pharmaceutical Science, Laboratory of Drug Discovery, Araraquara, SP, Brazil
| | | | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Arthur L. Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | | | - Fábio Henrique Silva
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
- * E-mail:
| |
Collapse
|
9
|
Mukherjee M, Rahaman M, Ray SK, Shukla PC, Dolai TK, Chakravorty N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: a review of natural products, conventional and combinatorial therapies. Mol Biol Rep 2021; 49:2359-2373. [PMID: 34822068 DOI: 10.1007/s11033-021-06977-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Beta-hemoglobinopathies exhibit a heterogeneous clinical picture with varying degrees of clinical severity. Pertaining to the limited treatment options available, where blood transfusion still remains the commonest mode of treatment, pharmacological induction of fetal hemoglobin (HbF) has been a lucrative therapeutic intervention. Till now more than 70 different HbF inducers have been identified. The practical usage of many pharmacological drugs has been limited due to safety concerns. Natural compounds, like Resveratrol, Ripamycin and Bergaptene, with limited cytotoxicity and high efficacy have started capturing the attention of researchers. In this review, we have summarized pharmacological drugs and bioactive compounds isolated from natural sources that have been shown to increase HbF significantly. It primarily discusses recently identified synthetic and natural compounds, their mechanism of action, and their suitable screening platforms, including high throughput drug screening technology and biosensors. It also delves into the topic of combinatorial therapy and drug repurposing for HbF induction. Overall, we aim to provide insights into where we stand in HbF induction strategies for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Mandrita Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Suman Kumar Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Tuphan Kanti Dolai
- Department of Hematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, 700014, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
10
|
Clementino LDC, Fernandes GFS, Prokopczyk IM, Laurindo WC, Toyama D, Motta BP, Baviera AM, Henrique-Silva F, dos Santos JL, Graminha MAS. Design, synthesis and biological evaluation of N-oxide derivatives with potent in vivo antileishmanial activity. PLoS One 2021; 16:e0259008. [PMID: 34723989 PMCID: PMC8559926 DOI: 10.1371/journal.pone.0259008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a neglected disease that affects 12 million people living mainly in developing countries. Herein, 24 new N-oxide-containing compounds were synthesized followed by in vitro and in vivo evaluation of their antileishmanial activity. Compound 4f, a furoxan derivative, was particularly remarkable in this regard, with EC50 value of 3.6 μM against L. infantum amastigote forms and CC50 value superior to 500 μM against murine peritoneal macrophages. In vitro studies suggested that 4f may act by a dual effect, by releasing nitric oxide after biotransformation and by inhibiting cysteine protease CPB (IC50: 4.5 μM). In vivo studies using an acute model of infection showed that compound 4f at 7.7 mg/Kg reduced ~90% of parasite burden in the liver and spleen of L. infantum-infected BALB/c mice. Altogether, these outcomes highlight furoxan 4f as a promising compound for further evaluation as an antileishmanial agent.
Collapse
Affiliation(s)
- Leandro da Costa Clementino
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Guilherme Felipe Santos Fernandes
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | - Wilquer Castro Laurindo
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Danyelle Toyama
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Bruno Pereira Motta
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Amanda Martins Baviera
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Flávio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Jean Leandro dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- * E-mail: (JLS); (MASG)
| | - Marcia A. S. Graminha
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- * E-mail: (JLS); (MASG)
| |
Collapse
|
11
|
de Melo TRF, Dulmovits BM, Fernandes GFDS, de Souza CM, Lanaro C, He M, Al Abed Y, Chung MC, Blanc L, Costa FF, Dos Santos JL. Synthesis and pharmacological evaluation of pomalidomide derivatives useful for sickle cell disease treatment. Bioorg Chem 2021; 114:105077. [PMID: 34130111 PMCID: PMC8387409 DOI: 10.1016/j.bioorg.2021.105077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Fetal hemoglobin (HbF) induction constitutes a valuable and validated approach to treat the symptoms of sickle cell disease (SCD). Here, we synthesized pomalidomide-nitric oxide (NO) donor derivatives (3a-f) and evaluated their suitability as novel HbF inducers. All compounds demonstrated different capacities of releasing NO, ranging 0.3-30.3%. Compound 3d was the most effective HbF inducer for CD34+ cells, exhibiting an effect similar to that of hydroxyurea. We investigated the mode of action of compound 3d for HbF induction by studying the in vitro alterations in the levels of transcription factors (BCL11A, IKAROS, and LRF), inhibition of histone deacetylase enzymes (HDAC-1 and HDAC-2), and measurement of cGMP levels. Additionally, compound 3d exhibited a potent anti-inflammatory effect similar to that of pomalidomide by reducing the TNF-α levels in human mononuclear cells treated with lipopolysaccharides up to 58.6%. Chemical hydrolysis studies revealed that compound 3d was stable at pH 7.4 up to 24 h. These results suggest that compound 3d is a novel HbF inducer prototype with the potential to treat SCD symptoms.
Collapse
Affiliation(s)
| | - Brian M Dulmovits
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Pediatric Oncology Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | | | - Cristiane M de Souza
- Faculty of Medical Sciences, State University of Campinas - UNICAMP, Campinas 13083-970, Brazil
| | - Carolina Lanaro
- Faculty of Medical Sciences, State University of Campinas - UNICAMP, Campinas 13083-970, Brazil
| | - Minghzu He
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Pediatric Oncology Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Yousef Al Abed
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Pediatric Oncology Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Man Chin Chung
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara 14800-903, Brazil
| | - Lionel Blanc
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Fernando Ferreira Costa
- Faculty of Medical Sciences, State University of Campinas - UNICAMP, Campinas 13083-970, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara 14800-903, Brazil.
| |
Collapse
|
12
|
Hashemi Z, Ebrahimzadeh MA. Hemoglobin F (HbF) inducers; History, Structure and Efficacies. Mini Rev Med Chem 2021; 22:52-68. [PMID: 34036918 DOI: 10.2174/1389557521666210521221615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
Inherited beta-thalassemia is a major disease caused by irregular production of hemoglobin through reducing beta-globin chains. It has been observed that increasing fetal hemoglobin (HbF) production improves symptoms in the patients. Therefore, an increase in the level of HbF has been an operative approach for treating patients with beta-thalassemia. This review represents compounds with biological activities and pharmacological properties that can promote the HBF level and therefore used in the β-thalassemia patients' therapy. Various natural products with different mechanisms of action can be helpful in this medication cure. Clinical trials were efficient in improving the signs of patients. Association of in vivo, and in vitro studies of HbF induction and γ-globin mRNA growth displays that in vitro experiments could be an indicator of the in vivo response. The current study shows that; (a) HbF inducers can be grouped in several classes based on their chemical structures and mechanism of actions; b) According to several clinical trials, well-known drugs such as hydroxyurea and decitabine are useful HbF inducers; (c) The cellular biosensor K562 carrying genes under the control of the human γ-globin and β-globin gene promoters were applied during the researches; d) New natural products and lead compounds were found based on various studies as HbF inducers.
Collapse
Affiliation(s)
- Zahra Hashemi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
13
|
Abstract
Fetal hemoglobin (HbF) can blunt the pathophysiology, temper the clinical course, and offer prospects for curative therapy of sickle cell disease. This review focuses on (1) HbF quantitative trait loci and the geography of β-globin gene haplotypes, especially those found in the Middle East; (2) how HbF might differentially impact the pathophysiology and many subphenotypes of sickle cell disease; (3) clinical implications of person-to-person variation in the distribution of HbF among HbF-containing erythrocytes; and (4) reactivation of HbF gene expression using both pharmacologic and cell-based therapeutic approaches. A confluence of detailed understanding of the molecular basis of HbF gene expression, coupled with the ability to precisely target by genomic editing most areas of the genome, is producing important preliminary therapeutic results that could provide new options for cell-based therapeutics with curative intent.
Collapse
Affiliation(s)
- Martin H Steinberg
- Division of Hematology/Oncology, Department of Medicine, Center of Excellence for Sickle Cell Disease, Center for Regenerative Medicine, Genome Science Institute, Boston University School of Medicine and Boston Medical Center, Boston, MA
| |
Collapse
|