1
|
Cai S, Guo X, Yang H, Zhao T, Li Y, Deng N, Gao Z, Meng Q, Li X, Wang S. Synthesis and antitumor effects of novel betulinic acid derivatives bearing electrophilic moieties. Bioorg Med Chem 2025; 119:118062. [PMID: 39756343 DOI: 10.1016/j.bmc.2025.118062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Betulinic acid (BA) is a kind of naturally occurring lupane pentacyclic triterpenoid, possessing various biological activities including antiviral, anti-inflammatory and antitumor activity. Covalent inhibitors, characterized by electrophilic warheads that form covalent bonds with specific amino acid residues of target proteins, have garnered enormous attention in anticancer agent discovery over the past decade owing to their exceptional selectivity and efficacy. In this study, BA was structurally modified with electrophilic groups, and 23 derivatives of BA were synthesized. Most of these BA derivatives exhibited improved antiproliferative activity against MCF-7, HeLa, MDA-MB-231 cells in MTT assay, especially the compound 15b (IC50 = 1.09 μM against MCF-7 cells). Further study demonstrated that 15b inhibited the migration and clone formation of MCF-7 cells, induced the apoptosis, autophagy and cycle arrest at G2/M phase in MCF-7 cells, and promoted the production of intracellular reactive oxygen species (ROS). Western blot analysis showed that 15b inhibited AKT/mTOR signaling pathway in MCF-7 cells. In addition, 15b reversed the resistance of JIMT-1 cells to trastuzumab, which might be related to the inhibition of AKT/mTOR pathway. Finally, 15b significantly inhibited the growth of tumor in the breast cancer xenograft mouse model with 36 % inhibition rate of tumor growth and without significant reduction of mouse body weight.
Collapse
Affiliation(s)
- Sen Cai
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiuhan Guo
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Haozhe Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tianyu Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yueqing Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Ning Deng
- Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Zhigang Gao
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Qingwei Meng
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaorui Li
- Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| | - Shisheng Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| |
Collapse
|
2
|
Wang Y, Liu K. Therapeutic potential of oleanolic acid in liver diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4537-4554. [PMID: 38294504 DOI: 10.1007/s00210-024-02959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Liver-associated diseases affect millions of individuals worldwide. In developed countries, the incidence of viral hepatitis is reducing due to advancements in disease prevention, diagnosis, and treatment. However, with improvements in living standards, the prevalence of metabolic liver diseases, such as non-alcoholic fatty liver disease and alcohol-related liver disease, is expected to increase; notably, this rise in the prevalence of metabolic liver disease can lead to the development of more severe liver diseases, including liver failure, cirrhosis, and liver cancer. The growing demand for natural alternative therapies for chronic diseases has highlighted the importance of studying the pharmacology of bioactive compounds in plants. One such compound is oleanolic acid (OA), a pentacyclic triterpenoid known for its antioxidant, anti-inflammatory, anti-ulcer, antibacterial, antiviral, antihypertensive, anti-obesity, anticancer, anti-diabetic, cardioprotective, hepatoprotective, and anti-neurodegenerative properties. Recent studies have demonstrated that OA treatment can reduce the risk of pathological liver damage, ultimately alleviating liver dysregulation and restoring overall liver function. This review aims to explore the latest research on the biological effects of OA and its derivatives. Notably, it explores the mechanisms of action of these compounds in both in vitro and in vivo research models and, ultimately, highlights OA as a promising candidate for alternative therapies in the treatment and management of chronic liver disease.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
4
|
Liang C, Ndi C, Semple SJ, Buirchell B, Coriani S, Møller BL, Staerk D. Eremane, viscidane and isozizaene diterpenoids from the leaves of Eremophila rigida and their absolute configurations. PHYTOCHEMISTRY 2024; 219:113972. [PMID: 38211848 DOI: 10.1016/j.phytochem.2024.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Previously undescribed eremane, viscidane, and isozizaene diterpenoids, eremorigidanes A-F, along with six known O-methylated flavonoids and three known triterpenoids were isolated and identified from the leaves of Eremophila rigida Chinnock by combined use of high-resolution PTP1B inhibition profiling, semipreparative- and analytical-scale HPLC separations, HPLC-PDA-HRMS analysis, and NMR spectroscopy. The absolute configuration of the unreported diterpenoids were determined by comparison of their experimental and calculated ECD spectra as well as by biosynthetic arguments. All isolates were evaluated for their PTP1B inhibitory activities, which revealed the flavonoid penduletin (3) to show inhibition with an IC50 value of 18.3 μM, and the triterpenoids 3,4-seco-olean-12-ene-3,28-dioic acid (15), oleanolic acid (16), and 3-oxo-oleanolic acid (17) to show inhibition with IC50 values of 55.7, 9.9, and 6.3 μM, respectively. The preliminary structure-activity relationship (SAR) of isolated flavonoids and triterpenoids is discussed. Plausible biosynthetic steps involved in eremane and isozizaene metabolism are presented and discussed.
Collapse
Affiliation(s)
- Chao Liang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Chi Ndi
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Susan J Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Bevan Buirchell
- Wise Owl Consulting, Como, Western Australia, 6152, Australia
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800, Kongens Lyngby, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
5
|
Li G, Du Z, Shen P, Zhang J. Novel MeON-glycosides of ursolic acid: Synthesis, antitumor evaluation, and mechanism studies. Fitoterapia 2023; 169:105595. [PMID: 37355050 DOI: 10.1016/j.fitote.2023.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid widely found in in medicinal plants, edible plants, fruits, and flowers. The great interest in this bioactive compound is related to the positive effects in human health. However, its limited solubility, moderate biological activity and poor bioavailability limit the potential and further applications of UA. Here, we explored the efficacy of MeON-Glycosides of UA in inhibiting tumor cell proliferation. A number of compounds showed significant antitumor activity against tested five cancer cell lines. Among them, compound 2a exhibited the most potent activity against HepG2 cells with IC50 values of 3.1 ± 0.5 μM. Especially, compound 2a could induce HepG2 cells apoptosis and reduce mitochondrial membrane potential. Western blot analysis showed that compound 2a up-regulated Bax, cleaved caspase-3/9, cleaved PARP levels and down-regulated Bcl-2 level of HepG2 cells. These results indicated that compound 2a could obviously induce the apoptosis of HepG2 cells. At the same time, compound 2a significantly decreased the expression of p-AKT and p-mTOR, which indicated that compound 2a might exert its cytotoxic effect by targeting PI3K/AKT/mTOR signaling pathway. Moreover, the in silico ADME predictions showed that compound 2a has improved water solubility and other properties. Thus, compound 2a may be a promising antitumor candidate, which may be potentially used to prevent or treat cancers.
Collapse
Affiliation(s)
- Guolong Li
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xianyang, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhichao Du
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Pingping Shen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Jian Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
6
|
Kumari K, Choudhary P, Sharma D, Krishnan V. Amine-Functionalized Graphitic Carbon Nitride as a Sustainable Metal-free Catalyst for Knoevenagel Condensation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kamlesh Kumari
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
7
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
8
|
Li Y, Zeng Q, Wang R, Wang B, Chen R, Wang N, Lu Y, Shi F, Dehaen W, Huai Q. Synthesis and discovery of mitochondria-targeting oleanolic acid derivatives for potential PI3K inhibition. Fitoterapia 2022; 162:105291. [PMID: 36064154 DOI: 10.1016/j.fitote.2022.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/04/2022]
Abstract
Oleanolic acid and its derivatives have been widely reported for their antitumor activities. Recently, the introduction of a triphenylphosphonium cation moiety has been described to improve the selectivity and cytotoxicity of pentacyclic triterpenoids by targeting the mitochondria of human cancer cells. In this work, a series of novel mitochondria-targeting oleanolic acid derivatives were synthesized and their antitumor activities assessed. The majority of the compounds are more cytotoxicity to cancer cells than normal cells, especially for 6c with IC50 of 0.81 μM in A549 cells, which showed a slight increase compared to doxorubicin (0.97 μM). Mechanism studies demonstrated that 6c induced apoptosis of A549 cells in a dose-dependent manner, and reactive oxygen species production, mitochondrial membrane potential depolarization, and particularly pro-apoptotic proteins upregulated by western blotting experiment may be responsible for the results. Moreover, 6c arrested the cell cycle at G2/M phase and cell migration in A549 cells. Compound 6c had a comparable or somewhat improved activity to the positive control LY294002 in molecular docking studies and in vitro testing, demonstrating that the apoptosis mechanism may involve inhibition of the PI3K-Akt pathway. These results augur well for the use of 6c as a novel triphenylphosphonium-conjugated anticancer agent.
Collapse
Affiliation(s)
- Yi Li
- Marine College, Shandong University, Weihai 264209, China
| | - Qingqing Zeng
- Marine College, Shandong University, Weihai 264209, China
| | - Rui Wang
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Bo Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Ruofan Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Na Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Yiru Lu
- Marine College, Shandong University, Weihai 264209, China
| | - Fangwen Shi
- Marine College, Shandong University, Weihai 264209, China
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Qiyong Huai
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
9
|
Ibadurrahman W, Hanif N, Hermawan A. Functional network analysis of p85 and PI3K as potential gene targets and mechanism of oleanolic acid in overcoming breast cancer resistance to tamoxifen. J Genet Eng Biotechnol 2022; 20:66. [PMID: 35482141 PMCID: PMC9050990 DOI: 10.1186/s43141-022-00341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022]
Abstract
Background Tamoxifen resistance in estrogen receptor positive (ER+) breast cancer therapy increases, which is the leading cause of cancer treatment failure, as it can impair patients’ prognoses, cause cancer recurrence, metastasis, and death. Combination therapy with compounds is needed to overcome tamoxifen resistance. Oleanolic acid (OA) was known to increase tamoxifen sensitivity in tamoxifen-resistant breast cancer; however, the molecular mechanism of OA and its involvement in overcoming tamoxifen resistance remain unknown and need further investigation. This study was conducted to identify the potential gene targets and molecular mechanisms of OA in overcoming tamoxifen resistance. Results A bioinformatic approach for functional network analysis was used in silico by utilizing secondary data in the Gene Expression Omnibus (GEO) database and analyzing them with GEO2R to obtain data on differentially expressed genes (DEGs). The DEG data were further examined with Database for Annotation, Visualization, and Integrated Discovery (DAVID), STRING, cBioPortal website, and Cytoscape with its plugin CytoHubba. Molecular docking was performed to predict the binding properties of OA on the protein encoded by the potential gene. CD44, FGFR2, PIK3R1, and MDM2 were designated as potential target genes (PTGs), and PIK3R1 was suspected as the potential gene for OA to overcome tamoxifen resistance. Molecular docking confirms that OA can inhibit p85 activation. PIK3R1 is suggested to be the potential gene for OA in overcoming tamoxifen resistance in breast cancer therapy. Conclusion The predicted molecular mechanism of OA in overcoming tamoxifen resistance involves inhibiting p85 activation, leading to the inhibition of the downstream activity of the PI3K signaling pathway, causing breast cancer to respond to tamoxifen therapy once again. Results of this study need to be validated by further studies, including in vitro and in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00341-4.
Collapse
Affiliation(s)
- Wilfan Ibadurrahman
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Naufa Hanif
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia. .,Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
10
|
Zhang J, Kaliaperumal K, Liu Z, Zhang J. Chemical constituents from Semiliquidambar chingii and their chemotaxonomic significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2021.104360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Tang ZY, Li Y, Tang YT, Ma XD, Tang ZY. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 2021; 145:112397. [PMID: 34798468 DOI: 10.1016/j.biopha.2021.112397] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA, 3 β - hydroxyoleanolic acid-12-en-28-oic acid) is a pentacyclic triterpenoid present in many plants. As a new framework for development of semi synthetic triterpenoids, OA is of great significance in the discovery of anticancer drugs. Some of these derivatives, such as CDDO (2-cyano-3,12-dioxooleana-1, 9 (11)-dien-28-oic acid) have been verified in clinical trials, while other derivatives studied previously, such as SZC014, SZC015 and SZC017 (OA derivatives respectively), are also candidate drugs for cancer treatment. This paper reviews the preclinical studies, literature evidence, target analysis and anticancer mechanism of OA and its derivatives. The mechanism of action of its derivatives mainly includes anti-cancer cell proliferation, inducing tumor cell apoptosis, inducing autophagy, regulating cell cycle regulatory proteins, inhibiting vascular endothelial growth, anti angiogenesis, inhibiting tumor cell migration and invasion. In recent years, the molecular mechanism of OA and its derivatives has been elucidated. These effects seem to be mediated by the alterations in a variety of signaling pathways induced by OA and its derivatives. In conclusion, OA and its derivatives are considered as important candidate drugs for the treatment of cancer, indicating that OA and its derivatives have the potential to be used as anticancer drugs in practice.
Collapse
Affiliation(s)
- Zhong-Yuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, Jilin, PR China
| | - Yang Li
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yu-Ting Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiao-Dong Ma
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ze-Yao Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
12
|
Meng Q, Zhou J, You F, Wu Y, Yang L, Wang Y, Zhang X, Gao S, Yu R, Yin X. A novel biphenyl diester derivative, AB38b, inhibits glioblastoma cell growth via the ROS-AKT/mTOR pathway. Biochem Pharmacol 2021; 194:114795. [PMID: 34687671 DOI: 10.1016/j.bcp.2021.114795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023]
Abstract
AB38b is a novel biphenyl diester derivative synthesized in our laboratory, and it has been shown to improve the pathology of nephropathy and encephalopathy in diabetic mice. Glioblastoma (GBM) is the most lethal brain tumor, without effective drugs to date. The present study aims at investigating the role of AB38b in GBM growth and revealing the underlying molecular mechanisms. We found that AB38b administration showed a dose- and time-dependent inhibition on cell proliferation in multiple immortalized and primary GBM cell lines, but it had no significant effects on human astrocyte cell line. More importantly, AB38b blocked cell cycle progression, induced early apoptosis, decreased the activity of AKT/mTOR pathway, and increased the generation of reactive oxygen species (ROS) in GBM cells. Interestingly, antioxidant treatments could reverse the AB38b-mediated abovementioned effects; overexpression of constitutively active AKT could partially rescue the suppressive effects of Ab38b on GBM cell proliferation. In addition, AB38b administration inhibited the tumor growth, decreased the activity of AKT/mTOR pathway, and prolonged the survival time in GBM animal models, without any adverse influences on the important organs. These findings suggest that AB38b exerts anti-glioma activity via elevating the ROS generation followed by inhibiting the activity of AKT/mTOR pathway.
Collapse
Affiliation(s)
- Qingming Meng
- Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Junbo Zhou
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Fangting You
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yue Wu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Liquan Yang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yan Wang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Xu Zhang
- Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Shangfeng Gao
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Rutong Yu
- Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Xiaoxing Yin
- Nanjing Medical University, Nanjing 211166, Jiangsu, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
13
|
Gupta N. A Review on Recent Developments in the Anticancer Potential of Oleanolic acid and its analogs (2017-2020). Mini Rev Med Chem 2021; 22:600-616. [PMID: 35135459 DOI: 10.2174/1389557521666210810153627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid class of natural product known to possess a broad range of biological activities, specifically, anticancer. Considering the anticancer potential of OA, a large number of analogs have been prepared by several researchers through modifications at C-3, C-12 and C-28 -COOH to develop the potent anticancer agents with improved cytotoxicity and pharmaceutical properties. Some of the synthesized derivatives have been assessed in clinical trials also. This review summarizes the most recent synthetic and biological efforts in the development of oleanolic acid and its analogs during the period 2017-2020. Reports published during this period revealed that both OA and its analogs possess a remarkable potential for the development of effective anticancer agents along with several others such as anti-inflammatory, anti-viral, anti-microbial and anti-diabetic agents.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Pharmaceutical Sciences, MM College of Pharmacy, M. M. University, Mullana, Ambala, Haryana. India
| |
Collapse
|
14
|
He B, Zhu Z, Chen F, Zhang R, Chen W, Zhang T, Wang T, Lei J. Synthesis and antitumor potential of new arylidene ursolic acid derivatives via caspase-8 activation. Arch Pharm (Weinheim) 2021; 354:e2000448. [PMID: 33646592 DOI: 10.1002/ardp.202000448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Continuing our studies on NO-donating ursolic acid-benzylidene derivatives as potential antitumor agents, we designed and synthesized a series of new arylidene derivatives containing NO-donating ursolic acid and aromatic heterocyclic units. Compounds 5c and 6c showed a significant broad-spectrum antitumor activity. Compound 5c exhibited nearly three- to nine-fold higher cytotoxicity as compared with the parent drug in A549, MCF-7, HepG-2, HT-29, and HeLa cells, and it was also found to be the most potent apoptosis inducer of MCF-7 cells. More importantly, compound 5c arrested the MCF-7 cell cycle in the G1 phase, which was associated with caspase activation and a decrease of the Bcl-2/Bax ratio. Meanwhile, compound 5c caused changes in morphological features, dissipation of the mitochondrial membrane potential, and accumulation of reactive oxygen species. A docking study revealed that the nitroxyethyl moiety of compound 5c may form hydrogen bonds with caspase-8 amino acid residues (SER256 and HIS255). Together, these data suggest that NO-donating ursolic acid-arylidene derivatives are potent apoptosis inducers in tumor cells.
Collapse
Affiliation(s)
- Baoen He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuchang Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fenglian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiqiang Chen
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Te Zhang
- Department of Research and Development, Shanghai Hequan Pharmaceutical Co. Ltd., Shanghai, China
| | - Tao Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiamei Lei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Wang WY, Wu WY, Li AL, Liu QS, Sun Y, Gu W. Synthesis, anticancer evaluation and mechanism studies of novel indolequinone derivatives of ursolic acid. Bioorg Chem 2021; 109:104705. [PMID: 33618252 DOI: 10.1016/j.bioorg.2021.104705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
A series of novel indolequinone derivatives of ursolic acid bearing ester, hydrazide, or amide moieties were designed, synthesized, and screened for their in vitro antiproliferative activities against three cancer cell lines (MCF-7, HeLa, and HepG2) and a normal gastric mucosal cell line (Ges-1). A number of compounds showed significant activity against tested cancer cell lines. Among them, compound 6t exhibited the most potent activity against three cancer cell lines with IC50 values of 1.66 ± 0.21, 3.16 ± 0.24, and 10.35 ± 1.63 µM, respectively, and considerably lower cytotoxicity to Ges-1 cells. Especially, compound 6t could arrest cell cycle at S phase, suppress the migration of MCF-7 cells, elevate intracellular reactive oxygen species (ROS) level, and decrease mitochondrial membrane potential. Western blot analysis showed that compound 6t upregulated Bax, cleaved caspase-3/9, cleaved PARP levels and downregulated Bcl-2 level of MCF-7 cells. All these results indicated that compound 6t could significantly induce the apoptosis of MCF-7 cells. Meanwhile, compound 6t markedly decreased p-AKT and p-mTOR expression, which revealed that compound 6t probably exerted its cytotoxicity through targeting PI3K/AKT/mTOR signaling pathway. Therefore, compound 6t could be a promising lead for the discovery of novel anticancer agents.
Collapse
Affiliation(s)
- Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wen-Yi Wu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qing-Song Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|